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On the alignment dynamics of a passive scalar gradient
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BP 12, 76801 Saint-Etienne du Rouvray Cedex, France

�Received 19 April 2005; accepted 14 September 2005; published online 10 November 2005�

A Lagrangian study of the statistical properties of the orientation of a passive scalar gradient is
performed using experimental data and a simple, numerical analysis. It is shown that, in a
low-Reynolds number Bénard-von Kármán street, the temperature gradient downstream of a heated
line source does not align with the asymptotic orientation predicted by the Lapeyre et al. model
�Phys. Fluids 11, 3729 �1999�� in the hyperbolic regions. This result is ascribed to fluctuations of
strain persistence along Lagrangian trajectories. A numerical analysis of the scalar gradient
alignment properties shows that these fluctuations, together with a low level of the rate of strain,
may lead to preferential orientations that are different from the theoretical one predicted by an
asymptotic model. © 2005 American Institute of Physics. �DOI: 10.1063/1.2130750�
I. INTRODUCTION

The orientation of the gradient of a passive scalar with
respect to the principal strain directions is an essential prop-
erty of the scalar field, for it governs the evolution of the
gradient magnitude. Alignment with the most compressive
strain direction, by causing the rise of the scalar gradient, is
the key mechanism of small scale production and cascade
phenomena.

In three-dimensional �3D� turbulence, the statistics of a
passive scalar gradient derived both from numerical
simulations1–3 and experiments4 reveal a preferential align-
ment with the compressional strain. Interestingly, recent
studies of the two-dimensional �2D� case5,6 clearly show that
in strain-dominated regions the scalar gradient actually does
not tend to align with a strain eigenvector, but with a direc-
tion determined by the combined effects of strain and effec-
tive rotation �i.e., the sum of vorticity and the rotation rate of
strain axes�. Anyway, in both the 2D and 3D cases, it is only
for the asymptotic, ideal pure strain that the compressional
direction is a fixed point for the gradient orientation; the
equilibrium alignment cannot coincide with any of the prin-
cipal strain directions whenever rotation is present.

Now, even if an equilibrium orientation �whether it cor-
responds to a strain direction or not� can be defined, the
alignment statistics depend on the dynamics of the scalar
gradient. In a nonstationary velocity field, good alignment
with an equilibrium direction can be expected only if the
gradient time response is fast enough as compared to the
velocity gradient fluctuations. The orientation dynamics of
the scalar gradient, then, is an essential aspect of small-scale
mixing in turbulent flows and has been addressed in some
previous studies.3,6–8

The overall problem of scalar gradient alignment is cer-
tainly intricate. Because it somewhat simplifies the strain/
vorticity interaction, the 2D case makes it, to a certain extent,
more tractable. In a 2D flow, moreover, one can make use of

5
a topology-based model of the scalar gradient behavior,
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which, as far as we know, has no 3D counterpart. This is the
approach we take to study nonstationary aspects of scalar
gradient alignment. The response of the gradient to time-
dependent velocity derivatives, especially, is examined in
two ways. First, experimental data obtained in a laminar 2D
Bénard-von Kármán street are analyzed statistically and
compared to the prediction of the Lapeyre et al. model.5 In
this situation, the tracer is simply dispersed by a smooth 2D
velocity field characterized by a single large scale. Different
experimental studies have been devoted to the understanding
of 2D transport and mixing.9,10 Here, the originality of the
study is that from a geometrical approach, the experiment
allows revisiting the alignment of the scalar gradient in a 2D
flow with specific conditions. In such conditions it seems
justifiable to ask to what extent the results verify the Lapeyre
et al. theory and are comparable to results obtained in turbu-
lent flow.

Motivated by this experiment, we study, then, the effect
of strain persistence fluctuations on the scalar gradient align-
ment by means of simulations using a simple, numerical
model. We propose a modified picture of the orientation of
the scalar gradient in strain-dominated regions.

II. SCALAR GRADIENT ORIENTATION
IN THE LAPEYRE et al. MODEL

In a 2D flow, defining the scalar gradient by G
=��cos � , sin �� and assuming incompressibility, the equa-
tion for the gradient orientation is5,6

d2�

dt
= � − � cos � + D�, �1�

where � is the vorticity and �=2��+��. Angle � defines the
orientation of the strain principal axes and tan 2�=�n /�s; �n

and �s are, respectively, the normal and shear components of
strain and �n

2+�s
2=�2. The term D� represents the effect of

6,11
diffusion upon the gradient orientation and is written as
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D� = 2D�� +
4D

�
� � · �� , �2�

where D is the molecular diffusivity.
Neglecting diffusivity, Eq. �1� is rewritten as5

d�

dt
= ��r − cos �� , �3�

with r given by

r =
� + 2 d�/dt

�
.

This parameter defines strain persistence and had also been
put forward by Dresselhaus and Tabor12 in the study of the
alignment of material elements. Note that r has a Lagrangian
meaning and includes the acceleration gradient tensor
through d� /dt, the rotation rate of the strain basis.

If slow variations of r and � along Lagrangian trajecto-
ries are assumed, then the analysis of Eq. �3� shows that the
evolution of the scalar gradient orientation depends on the
flow topology in a rather simple manner.5 In strain-
dominated regions ��r��1�, � tends to the stable fixed point,
�−=−arccos�r�, corresponding to an equilibrium orientation.
For the special value r=0, the equilibrium orientation coin-
cides with the compressional direction �i.e., −�−	 /4� and
�−=�c=−	 /2. In rotation-dominated regions ��r�
1�, there
is no equilibrium orientation, but a most probable one that
corresponds to the minimal rotation rate of the gradient and
�prob= �1−sign�r��	 /2. Numerical simulations in 2D decay-
ing turbulence5,6 have confirmed this behavior of the scalar
gradient.

III. TEMPERATURE GRADIENT BEHAVIOR
IN A BÉNARD-VON KÁRMÁN FLOW

A. Experimental conditions

The scalar gradient statistics have been experimentally
studied in a simplified, 2D situation. As shown in Fig. 1, the
flow considered here is the Bénard-von Kármán street, that
is, the periodic wake of a circular cylinder at low Reynolds
number Re. In this flow, a symmetric temperature field is
generated using a small heated line source located in the near
wake, on the centerline.13,14 Figure 2 presents the instanta-
neous velocity and temperature fields obtained at a given
value of the phase and shows the smooth thermal plume
development.

The cylinder and line source diameters are, respectively,
d=2 mm and ds=20 �m. The Reynolds number based on the
cylinder diameter is Re=63 �i.e., Re=Rec+15, where Rec is
the critical Reynolds number� and the source Reynolds num-

FIG. 1. Experimental setup.
ber is smaller than unity. The line source is heated so that
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buoyancy effects are avoided. In this experiment, the Rich-
ardson number, calculated with the Reynolds and Grashof
numbers of the source, is lower than 10−3, which ensures that
the thermal field is passive.14 The streamwise location of the
line source is xs

*=xs /d=7. Caution is taken in controlling the
initial conditions at the cylinder and to obtain a 2D velocity
field.13 In the following, an asterisk denotes normalization.
Lengths are normalized by the cylinder diameter, d, and ve-
locities by the upstream velocity, U�. Temperature differ-
ences are normalized by a reference excess temperature.14

Simultaneous measurements of the streamwise and
transverse velocity components and of temperature have
been achieved by using a two-component Laser Doppler An-
emometry �LDA� system combined with a cold-wire probe.
A phase reference for the LDA-cold-wire probe signals is
taken from a second cold wire. Velocity and temperature
gradients are derived from the measured velocity and tem-
perature fields. More details on experimental conditions and
measurement techniques are given in Refs. 13 and 14.

B. Statistics of the temperature gradient orientation

The Lagrangian evolution of the temperature gradient
has been derived by numerically tracking fictitious particles
assumed to move at the measured velocity. The injection of
particles is performed at 39 different points along the trans-
verse section, located at �x*=x*−xs

*=1 downstream of the
line source. Temperature and velocity at each point of a tra-
jectory are interpolated from their respective experimental
fields. Following this procedure, the temperature and veloc-
ity gradients along the trajectories also are derived and used
to compute the quantities of interest such as vorticity, strain,
r, temperature gradient modulus, and orientation �see the Ap-
pendix for details�.

The data consist of 7800 trajectories of time duration
T0=33 ms each �the Lagrangian time series are divided into
200 stages�. The statistics of the temperature gradient align-
ment are derived from the Lagrangian sample. Weak gradi-

FIG. 2. Instantaneous velocity and temperature fields obtained at a given
value of phase �streamlines in bold lines and temperature differences in gray
scale�.
ents are discarded by conditioning for the dimensionless

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



117102-3 On the alignment dynamics of a passive scalar Phys. Fluids 17, 117102 �2005�
norm �G�
100. Sensitivity to this threshold is rather delicate
to check because the scalar gradient tends to decay down-
stream and is correlated to the distance from the source. A
too high threshold would imply considering the near field
only. We consider that the chosen threshold is a good com-
promise between a reasonably large sample and a good rep-
resentation of the passive scalar field in the experiment; we
note that the largest gradient magnitude is about 3000. In-
compressibility of the flow is used to improve the procedure
and to ensure the validity of the velocity data. In the follow-
ing, experimental statistics are performed imposing the cri-
terion = ��u /�x+�v /�y� / ���u /�x�+ ��v /�y���0.2.

Figure 3 presents the probability density function �pdf�
of r in the experiment and shows that the pdf is symmetric
and centered on zero. Compared with numerical results in
2D turbulent flows,5 the pdf shape is quite different. Explain-
ing this difference is not straightforward. It would require
more details from both types of flow about quantities in-
cluded in the parameter r, particularly concerning the statis-
tics of the Lagrangian acceleration. We focus this study on
hyperbolic regions and compare the alignments of the scalar
gradient vector with the compressional strain axis and with
the theoretical direction �−.

Close to the source, see Fig. 4�a�, the probability density
function of �−�− has a maximum for zero. The pdf of �
−�c, however, reveals a much better alignment of the tem-
perature gradient with directions shifted by 	 /10 from the
compressional one. This is likely to result from the special
condition of heat injection, which brings about preferential
orientations of the thermal plume. The latter undergoes a
flapping under the action of the local fluctuating transverse
velocity, v�. As already shown,14 the sinusoidal character of
v� /U in the center of the vortex street implies that its pdf is
symmetric with two peaks at ±�v� /U�max. Assuming that suc-
cessive fluid particles coming from the source location keep
their initial trajectories for times smaller than the Eulerian
time scale of v� /U, one can surmise that, in the near field of

FIG. 3. pdf of r where �G��100.
the source, the plume orientation pdf also is bimodal with
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peaks standing at ±arctan�v� /U�max. It follows that the pdf of
2� should have two peaks at �±= ±2 arctan�v� /U�max+	,
which has been checked �note that, because of the plume
thickness, the angle � defining the temperature gradient ori-
entation in the experimental system of reference, is shifted
by ±	 /2 with respect to the local plume orientation�. Now,
the orientation of the temperature gradient with respect to the
local strain axes also depends on angle � �from the � defini-
tion�. We have checked that angles �± correspond to prefer-
ential orientations of �. The combination of these two orien-
tations with respect to the compressional direction coincides
with the shifted direction observed in the pdf.

Far from the source, see Fig. 4�b�, the probability density
function of �−�c shows that the temperature gradient loses
the initial preferential orientation and tends to align with the
compressional direction rather than with the asymptotic so-
lution �−, which contrasts with the predictions of the Lapeyre
et al. model.

C. Analysis of experimental results

The experimental case presented here shows that the ori-
entation properties of the temperature gradient are different
from those predicted by the Lapeyre et al. model in the hy-
perbolic regions. This could be ascribed to the memory of
initial conditions, but this effect is unlikely. As displayed in
Fig. 4, the alignment of the temperature gradient with the
compressional direction is initially weak �Fig. 4�a�� and gets
better farther downstream �Fig. 4�b��. This behavior thus
rather suggests the action of some mechanism promoting the
compressional direction as the most probable one at the ex-
pense of the theoretical, asymptotic direction.

More insight into the right phenomenon is given by ex-
amining the Lapeyre et al. model. The latter is based on two
main assumptions: �i� diffusion is neglected; �ii� r and � vary
slowly along Lagrangian trajectories �the analytical deriva-
tion of the gradient asymptotic orientation actually requires

FIG. 4. Alignment pdf in the hyperbolic regions ��r��1� for �G��100:
�a� “close” to the heat source ��x� �4�; �b� “far” from the heat source
��x� 
4�; � pdf of �−�c; � pdf of �−�−.
that � and r are constant�. The failure of at least one hypoth-

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



117102-4 Garcia, Gonzalez, and Paranthoën Phys. Fluids 17, 117102 �2005�
esis would explain the discrepancies between experimental
data and model predictions and would reveal diffusion or
nonstationary effects �or a combination of both mechanisms�
in the experiment.

Analyses of diffusion influence upon scalar gradient
alignment are scarce. It could be expected that diffusion gen-
erally causes misalignment as a result of blurring. In fact,
nonlinear diffusion effects coupling the modulus and orien-
tation of the gradient, see Eq. �2�, make the real mechanism
more intricate. As shown by Constantin et al.,11 the nonlinear
part of diffusion indirectly causes the destruction of weak,
disorganized gradients while promoting alignment with the
direction of the largest ones. Whether this mechanism is
strong enough in comparison with linear diffusion effects,
however, remains unclear. Anyway, the overall effect of dif-
fusion upon the scalar gradient orientation should be
Reynolds-number dependent. This is confirmed by numerical
simulations in 2D turbulence. The numerical results of Lap-
eyre et al.5,6 for Reynolds numbers larger than 104 show a
weak effect of diffusion on gradient orientation. Insofar as
the scalar gradient can be compared with the vorticity gradi-
ent, the simulations by Protas et al.15 in forced turbulence
reveal that the vorticity gradient alignment with the compres-
sional direction gets better as the Reynolds number is in-
creased.

In the present low-Reynolds-number experiment, a non-
negligible influence of diffusion, then, is to be expected. To
examine the importance of diffusion, we compute the mean
ratio, �Di��, measuring the competition between diffusion
and mechanical effects, where

Di� =� D�
2

�2 + �2 .

The quantity �Di�� is calculated from the experimental
data for the scalar gradient norm � larger than �G�c �Table I�.

We can see that diffusion is not negligible and that �Di��
slightly decreases when �G�c increases. These values are not
surprising. An upper bound of �Di�� can be estimated by
computing the ratio of the convective time scale �c=d /2U�

to the scalar diffusion time scale, ��=ds
2 /D, which leads to

�c /��	100.
This large level of diffusion, however, does not explain

the difference between the experimental data and the Lap-
eyre et al. approach regarding the temperature gradient ori-
entation. Figure 5 presents the �−�c and �−�− pdf’s far from
the source, in the hyperbolic regions, with � computed from
Eq. �3� in which � and r are taken from the experimental
data. Since Eq. �3� neglects diffusion, this is an indirect es-
timate of diffusion influence on gradient orientation. The
pdf’s derived following this procedure are sharper than the

TABLE I. Mean ratio of scalar gradient diffusion to mechanical effects
�Di�� conditioned on norm � greater than �G�c.

�G�c 100 200 500 800

�Di�� 11.4 11 9.3 8.8
full-experimental ones �Fig. 4�b��, but still reveal a better
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alignment with the compressional direction than with the La-
peyre et al. equilibrium orientation. A comparison of Figs.
4�b� and 5 shows that diffusion effects tend to move both
alignments closer. It can be noted that the pdf’s are slightly
shifted toward negative values. This is due to the mean value
of r, which is not exactly zero. Although, as revealed by
�Di�
, diffusion is far from being negligible in this experi-
ment, its action is not responsible for misalignment with the
theoretical equilibrium direction. This lends support to the
idea that nonstationary effects are likely to play the main role
in misalignment.

We now examine the second assumption of the Lapeyre
et al. model, stating that � and r vary “slowly” along La-
grangian trajectories. An important issue consists in evaluat-
ing to what extent the possible nonvalidity of this assumption
may change the picture of the alignment mechanism. A first
clue is provided by the evolution of �, r, and d� /dt along a

FIG. 5. Alignment pdf for �r��1 and for �G��100 derived from Eq. �3� in
which � and r are taken from the experimental data. � pdf of �−�c; � pdf
of �−�−.
FIG. 6. Lagrangian evolution of � �top�, r �middle�, and d� /dt �bottom�.
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typical, experimental Lagrangian trajectory; see Fig. 6. It is
clear that r varies as d� /dt. We can notice, also, that r varies
on a shorter time scale than �, which is understandable, for
d� /dt includes the Lagrangian derivative of �. In the case
under study, assuming the slow Lagrangian evolution of both
� and r may therefore be questionable.

Now, from the strict view of signal theory, Eq. �3� is
nothing but the dynamic response of variable � to a time-
varying forcing, r, with a relaxation time scale of the order of
1 /�. It thus follows that the key parameter is the ratio of the
characteristic time scale of r fluctuations �say, T� to the re-
laxation time scale; large �T imply that � responds to r fluc-
tuations and is always close to the equilibrium value �if any�
imposed by the instantaneous value of r whereas low �T
bring about an inadequate response. This suggests that in the
experiment, fluctuations of the strain persistence parameter,
r, occurring on a time scale shorter than 1/� might lead to
misalignment of the temperature gradient with respect to the
theoretical orientation predicted by the Lapeyre et al. model.

The response time scale resulting from Eq. �3� is actually
not 1 /�. Solving Eq. �3� for different values of r shows that
it is r dependent, as depicted by Fig. 7 in which the response
time scale normalized by 1/�, ��, has been plotted for two
different initial orientations of the scalar gradient. We have
checked that the smallest value of ��, ��=1, which means
that the smallest response time scale is 1 /�, occurs indepen-
dently of the initial orientation. It follows, then, that the pa-
rameter �T overestimates the gradient response to r fluctua-
tions.

An order of magnitude of �T in the experiment is de-
rived from the mean value of �, ��
	70 s−1 and the au-
tocorrelation time scale of r, T	2 ms �both quantities are
obtained by averaging over all Lagrangian trajectories�. The
value �T	0.15, which, as explained above, is overesti-
mated, thus suggests that nonstationary effects should be sig-
nificant in the experiment. In the following, the latter are
examined by means of a simple numerical model. This

FIG. 7. Scalar gradient response time scale �� as a function of r for two
initial orientations �0.
model shows, incidentally, that it is not the time spent in
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hyperbolic regions that explains the discrepancy between the
experimental results and the prediction of the Lapeyre et al.
model.

IV. ANALYSIS OF NONSTATIONARY EFFECTS UPON
GRADIENT ALIGNMENT DYNAMICS USING A
SIMPLE NUMERICAL MODEL

In this section, the influence of the nonstationary effect
on scalar gradient alignment is analyzed in the hyperbolic
regime. Scalar gradient evolution has been numerically
simulated using two different models for r�t�. Strain inten-
sity, �, is assumed to be constant and we introduce the di-
mensionless time �=�t. The orientation equation �Eq. �3��
becomes

d�

d�
= r − cos � . �4�

An additional orientation is defined as the orientation based
on the mean value of r instead of on its instantaneous value:
��r�=−arccos�r�. Since the Lagrangian analysis of experi-
mental data reveals that the probability density function of r
is symmetric and centered on zero �Fig. 3�, the value chosen
for the model is �r�=0. In this case, the �r�-defined orienta-
tion, ��r�, coincides with the compressional orientation �c.

A. The sinusoidal model for r time variations

A sinusoidal model for r is considered with the follow-
ing expression:

r��� = �r sin�2	�*�� ,

where the normalized frequency is �*=1/�T; T is the oscil-
lating period. Equation �4� describes a filter with input r and
output � and we examine how the scalar gradient orientation
behaves when the input is sinusoidal.

Equation �4� is solved numerically with �r=0.8 and the
transfer functions are plotted in Fig. 8. Figures 8�a� and 8�b�
display the frequency response in, respectively, gain and

FIG. 8. Frequency response for gradient orientation: �a� gain G; �b� phase �.
phase. The form of the transfer function, see Fig. 8�a�, indi-
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cates that the scalar gradient orientation dynamics is repre-
sented by a first-order lag relation, but this is not true if
phase is considered; see Fig. 8�b�. The scalar gradient orien-
tation behaves approximately as a low-pass frequency filter.
This means that when �* is small, the scalar gradient orien-
tation evolves as �− �determined by the instantaneous value
of r�, whereas for high values of �*, the scalar gradient can-
not keep up with r time fluctuations, and its orientation is
governed by �r�.

It is also interesting to focus on the preferential align-
ment of the scalar gradient derived from this model. The
probability density functions of �−�− and �−��r� are calcu-
lated for two different normalized frequencies �*=0.01 and
�*=2. It is worth noticing, from Fig. 9, that alignment prop-
erties directly depend on the value of �*. For �*=0.01, the
�−�− pdf reaches a maximum for zero, which means that the
scalar gradient tends to align with the asymptotic direction.
For �*=2, the situation is opposite; the scalar gradient tends
to better align with the �r�-defined orientation ��r� than with
the asymptotic direction.

We can summarize the main features of the scalar gradi-
ent orientation with parameter �= P−�X� �−� , +��� / P�r��X
� �−� , +���, where P�r� and P− are the probabilities of �

−��r� and �−�− and, arbitrarily, �=	 /10. Figure 10 displays
the evolution of � vs �* for two different values of �r. The
scalar gradient moves from preferential alignment with the
asymptotic solution ��
1� to alignment with the compres-
sional direction ���1� for �* values in the range �0.1; 0.2�.

This study was performed with �r�1, but similar re-
sults concerning the orientation properties in the hyperbolic
regime are obtained with �r greater than one. This model
confirms that the parameter �* plays a crucial role in the
alignment properties. High values of �* involve significant
nonstationary effects, which lead to a better alignment with
another direction than �−. As suggested by the numerical
results, the preferential orientation, then, is ��r�, which, for

FIG. 9. Alignment pdf for �r � �1 with �r=0.8: with �*=2; � pdf of
�−��r�; � pdf of �−�−; with �*=0.01; � pdf of �−��r�; � pdf of �−�−.
�r�=0, coincides with the compressional direction.
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This numerical study, which may model any Lagrangian
evolution of orientation, shows that the scalar gradient does
not align with the equilibrium direction if nonstationary ef-
fects, betokened by r fluctuations, are large; it rather tends to
align with a direction determined by �r� and thus by the
statistics of the flow topology.

B. The stochastic model for r time variations

If a nonstationary behavior akin to turbulent fluctuations
is to be simulated, then a more elaborated model than the
previous one is required. Since r includes velocity deriva-
tives and the acceleration gradient tensor, its statistics is cer-
tainly not Gaussian.17 This is confirmed by the pdf of r �Fig.
3�. For the only purpose of examining the gradient orienta-
tion response to time-varying r, we, however, use a stochas-
tic model based on a one-dimensional generalized Langevin
equation.16 Parameter r, then, obeys a stochastic differential
equation with zero mean and variance r�2:

dr��� = − r�*d� + �2r�2�*�1/2 dW��� . �5�

Again, �*=1/�T where, this time, T is the Lagrangian inte-
gral time scale and dW��� is a Wiener process.

As previously, the dimensionless equation, Eq. �4�, is
solved numerically using the r signal derived from Eq. �5�
and the statistics of �−��r� and �−�− are computed. Accord-
ing to Fig. 11, the scalar gradient tends to align preferentially
with the �r�-based direction rather than with the asymptotic
solution �−. Figure 12 shows that for small values of �*

��*�0.5�, the gradient is aligned with the direction corre-
sponding to the asymptotic solution ��
1� whereas for
larger values, it reveals a much better alignment of the scalar
gradient with the �r�-based direction ���1�.

Comparisons of computed results obtained from both
previous models enable us to assess the significant role of
nonstationary effects upon gradient scalar dynamics. Results
concerning scalar gradient orientation in the experiment are

FIG. 10. Ratio � measuring alignment with either �− or ��r�: �, �r=0.4;
�, �r=0.8.
consistent with these numerical results. Moreover, the results
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described in this section show that when nonstationary ef-
fects through r fluctuations are significant, the scalar gradient
alignment strongly depends on �r� and, hence, on r statistics.
According to these results based only on the pdf of r with
�r�=0, it would be interesting to explore further the influence
of different �r� on the preferential alignment for imposed
high value �*.

Also, the numerical study reveals that the scalar gradient
does not align with the theoretical orientation whatever the
duration of the simulation, even for r fluctuating with the
constraint �r��1, provided �* is large. This implies that
when r fluctuations are fast enough, the theoretical orienta-
tion is never reached, even if the time spent in hyperbolic
regions is long.

FIG. 11. Alignment pdf for �r��1 with �*=5 and r�2=4; � pdf of �−��r�;
� pdf of �−�−.

FIG. 12. Ratio � measuring alignment with either �− or ��r�: �, r�2=0.25;
2
�, r� =4.
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V. CONCLUSIONS AND DISCUSSION

The Lagrangian evolution of the orientation of the tem-
perature gradient downstream of a heated line source located
in the center of a Bénard-von Kármán street has been studied
using experimental data. The analysis has been focused on
hyperbolic regions. In the latter, the experimental results are
at variance with the Lapeyre et al. approach, which predicts
that in strain-dominated regions the scalar gradient aligns
with an asymptotic orientation �−, determined by r and, in
general, different from the compressional direction. Although
diffusion has been checked to be significant in the orientation
equation, it has been proved, however, that it is not diffusion
that implies misalignment with �−. It has thus been inferred
that, in this experiment, the alignment of the temperature
gradient is noticeably influenced by nonstationarity through
Lagrangian fluctuations of strain persistence. This explains
that the Lapeyre et al. model, based on the assumption of
slow Lagrangian variations of r, is not suited to this case.

The nonstationary effect upon scalar gradient alignment
has also been examined using a simple numerical model,
allowing for Lagrangian variations of r. The latter predicts
that the scalar gradient aligns with the asymptotic orientation
�− if �T�1, where � is the strain rate and T is a character-
istic time scale of r fluctuations. If �T is weak, the scalar
gradient tends to align with a direction that is determined by
�r� and coincides with the compressional direction for �r�
=0. These results add new considerations on the Lapeyre
et al. model. They reveal that the scalar gradient alignment
strongly depends both on r statistics and the value of crite-
rion �T. The present study actually shows that the Lapeyre
et al. model is valid, even for fluctuating r, provided �T is
large enough.

A consequence of these results is that a moderate level of
strain does not necessarily implies poor mixing provided �T
is small and �r� is close to zero, for these conditions drive the
scalar gradient to align with the compressional direction. It
would be interesting to know if such conditions can be met
in other types of flow.

To what extent the picture derived from the study of this
low-Reynolds number flow can be extrapolated to turbulent
flows and why the predictions of the Lapeyre et al. model are
verified in a simulated turbulent flow �whereas they are not
in the present one� are, also, important questions. Good pre-
dictions of the Lapeyre et al. model in turbulent flows might
be explained by large levels of �T, but checking this would
require estimating the level of �T in 2D turbulent flow. As
far as we know, there is no information concerning the
Lagrangian characteristic time scale, T, of r fluctuations. It
would be interesting to derive this quantity from numerical
simulations of turbulence, e.g., through the Lagrangian auto-
correlation time scale of r. Moreover, this question is actu-
ally even more intricate because d� /dt includes �, which
might imply that T and � are, to some extent, not completely
independent. For these reasons, further information would be
appreciated to check our interpretation in turbulent flow.
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APPENDIX: PROCEDURE FOR THE LAGRANGIAN
CALCULATION OF DYNAMICAL QUANTITIES

• From the Eulerian velocity and temperature dataset, the
full set of first-order velocity and temperature space de-
rivatives is calculated using a second-order scheme.

• Lagrangian trajectories are integrated with a second-order
Runge-Kutta scheme using a particle velocity interpolated
from the Eulerian velocity field by bicubic spline interpo-
lation.

• Bicubic spline interpolation is also used to compute all
other quantities �scalar gradient components, �n ,�s ,� , . . .�
along Lagrangian trajectories. In particular, the interest of
this Lagrangian approach is mainly to calculate the r pa-
rameter, for it includes the time derivative of the local
frame orientation, d� /dt. The latter term is calculated
along particle trajectories using the following relation:

2
d�

dt
=

�s�d�n/dt� − �n�d�s/dt�
�2 �A1�

�derived from tan 2�=�n /�s� in which the derivatives of
�n and �s are computed at the second order.
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