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motzek@ifis.uni-luebeck.de

Abstract—Finding adequate responses to ongoing attacks on
ICT systems is a pertinacious problem and requires assessments
from different perpendicular viewpoints. However, current re-
search focuses on reducing the impact of an attack irregardless
of side-effects caused by responses. In order to achieve a
comprehensive yet accurate response to possible and ongoing
attacks on a managed ICT system, we propose an approach that
relies on a response system that continuously quantifies risks, and
decides how to respond to cyber-threats that target a monitored
ICT system. Our Dynamic Risk Management Response (DRMR)
model is composed of two main modules: a Response Financial
Impact Assessor (RFIA), which provides an assessment concern-
ing the potential financial impact that responses may cause to
an organization; and a Response Operational Impact Assessor
(ROIA), which assesses potential impacts that efficient mitiga-
tion actions may cause on the organization in an operational
perspective. As a result, the DRMR model proposes response
plans to mitigate identified risks, enable choice of the most
suitable response possibilities to reduce identified risks below an
admissible level while minimizing potential negative side effects
of deliberately taken actions.

I. INTRODUCTION

The impact of an event is defined as the magnitude of harm
that is expected to be perceived by an organization as a result
of the consequences from unauthorized disclosure, modifica-
tion, destruction, unavailability, or loss of information [1]. It
may be expressed relative to the nature of its consequences. A
way of expressing such nature is to bind the consequences on
security dimensions. Commonly admitted natures for impacts
on Information Systems are: Confidentiality, Integrity and
Availability (CIA).

Current research focus on considering the impact of attacks
[2]–[5], by evaluating their severity and consequences, leaving
aside the impact of security actions in mitigating the effects
of such attacks. However, the analysis of current cyber events
should also consider the impact of potential mitigation actions
as well as time, geographic space and affected elements [6].

We adopt a quantitative risk-aware approach that considers
the likelihood of success of the detected attacks, their induced
impact, and the cost and consequences of response plans
onto a higher goal, e.g., a company or mission. The research
presented in this paper represents a work in progress towards

the development of a comprehensive and practical dynamic
risk management response system.

Our model considers two approaches: A Financial Impact
Assessment (FIA) and an Operational Impact Assessment
(OIA). A response FIA (RFIA) relies on a Return On Response
Investment (RORI) index and a geometrical model (named
attack volume) to estimate the impact of security incidents
(e.g. intrusions, attacks, errors) in a financial perspective,
and to deploy mitigation actions accordingly. A response
OIA (ROIA) considers that mitigation actions, while highly
effective, could lead to operational negative side-effects inside
the network and therefore onto a mission. ROIA evaluates
proposed response plans based on validatable local impact-
and dependency-assessments of dependencies inside an orga-
nization’s business- and IT-infrastructure. This is beneficial for
applications, where highly critical missions and resources must
be protected, without sacrificing missions in favor of security.

The rest of the paper is structured as follows: Sec-
tions II and III discuss preliminaries and theory of a financial-
and operational-impact assessment. Section IV describes a
proposed dynamic risk management response model based on
financial- and operational impact-assessments. A real world
application of the proposed system is presented in Section V
showing the applicability of the proposed model. Section VI
discusses related work and we conclude in Section VII.

II. FINANCIAL IMPACT ASSESSMENT

Cost sensitive metrics have been proposed as a viable
approach to find an optimal balance between intrusion dam-
ages and response costs, and to guarantee the choice of
the most appropriate response without sacrificing the system
functionalities. Measurements are either absolute or relative.
Absolute measurements use precise values that scale with a
given unit (e.g. hundreds, thousands, millions, etc); whereas
relative measurements are methods for deriving ratio scales
from paired comparisons represented by absolute numbers
[7]. Relative measurements are useful in obtaining an overall
ratio scale ranking of the alternatives. If the ratio produces
repeatable and consistent results, the model can be used
to compare security solutions based on relative values [8].



Examples of these models include the Return On Investment
(ROI) and all its variants [8]–[10].

For the scope of this article, we consider sets of individual
actions performed as a response to an adversary. Sets of these
actions are called response plans:

Definition 1 (Response Plan). A response plan RP is a vector
of mitigation actions, representing individual actions to be
performed as a response to an adversary or threat opposed to
an organization. N

The Return On Response Investment (RORI) is a quantita-
tive model for cost sensitive response based on a financial
comparison of the response plans [11], [12]. RORI is an
adaptation of the Return On Security Investment (ROSI) index,
that provides a qualitative comparison of response plans. The
RORI index considers not only the intrusion impact but also
the effect of response plans, as shown in Equation 1.

RORI =
(ALE ·RM)−ARC

ARC +AIV
· 100 (1)

All parameters are defined as follows:

Definition 2 (Annual Loss Expectancy, ALE). ALE corre-
sponds to the attack impact loss that an organization is ex-
posed to in the absence of mitigation actions. ALE is expressed
in monetary values (e.g., $/year) and depends directly on
the attack’s severity and likelihood. ALE includes the loss of
assets (La), the loss of data (Ld), the loss of reputation (Lr),
the legal procedures (LP ), the loss of revenues from clients
or customers (Lrc), as well as other losses (Lo), contracted
insurances (Ins), to be multiplied by the annual rate of
occurrence of the attack (ARO), i.e.,

ALE = (La + Ld + Lr + LP + Lrc + Lo − Ins) ·ARO .
N

Definition 3 (Annual Infrastructure Value, AIV). AIV repre-
sents the fixed costs that are expected to be perceived by an
organization regardless of the implemented mitigation action.
AIV is strictly positive and is expressed in monetary values
(e.g., $/year). It includes the following costs: equipment costs
(Ce), personnel costs (Cp), service costs (Cs) and other costs
(Co), as well as the resell value (Vr), i.e.,

AIV = Ce + Cp + Cs + Co + Vr . N

Definition 4 (Risk Mitigation, RM). RM refers to the risk
mitigation associated with a given mitigation action. RM takes
values between zero and one hundred percent (i.e. 0% ≤ RM ≤
100%). In the absence of mitigation actions, RM equals 0%.
RM is computed as the product of the Mitigation Coverage
(MC, which is the percentage of the attack covered by the
mitigation action) by the Effectiveness Factor (EF, which is
the percentage of reduction of the total incident cost given the
enforcement of the mitigation action), i.e.,

RM = MC · EF . N

Definition 5 (Annual Response Cost, ARC). ARC refers to the
costs associated to a given mitigation action. ARC is always
positive and expressed in monetary values (e.g., $/year). It
includes direct costs such as the cost of implementation
(Cimpl), the cost of maintenance (Cmaint), as well as other
direct costs (Cod) and indirect costs (Ci) that may originate
from the adoption of a particular mitigation action, i.e.,

ARC = Cimpl + Cmaint + Cod + Ci . N

Considering a RORI index alone, the best candidate re-
sponse set is represented by a maximal positive RORI index.

III. OPERATIONAL IMPACT ASSESSMENT

An operational impact assessment is used to address po-
tential impacts onto a higher goal, from widespread events
which impact local operational capabilities. For example, a
local impact caused by an event on a distant node, might lead
to a causal chain of operational failures, leading to an impact
on a company. Understanding these impacts is a pertinacious
problem and current work uses adhoc solutions based on
handcrafted algorithms. While such approaches deliver early
results, their assessments need to be verified and validated by
large amounts of data—which is not always available.

Motzek et al. introduce an approach towards OIA based
on a probabilistic graphical model in [26], which defines a
well-understood problem on which an OIA can be reduced.
By resorting to a probabilistic model, the use of conditional
probability distributions allows for local views on assessments,
without a need to understand a specific use case nor any
algorithmic properties. It is this local view, which allows for
a validation of defined data. This means, assessments from
experts can be used directly without global normalization
factors and experts are not forced into expertise which they
can not understand.

The following sections introduce a view on OIA from three
different perspectives, each defining one dependency model
as a probabilistic graphical model of random variables and
respective dependencies.

Remark 1 (Impact). An abstract term of “impact” is used in
this work in the sense of “not operating as fully intended”.
The underlying meaning of “intended operation” lies in an
use case of the model. N

A. Mission Dependency Model (Business View)

Motzek et al. [26] extend a model by Jakobson [22]
and model mission dependencies as shown in Figure 1 as
a graph of mission nodes (MN). A company is dependent
on its business processes. A business process is dependent
on one or more business functions, which are provided by
Business resources. Figure 1 shows a dependency graph of
business relevant objects for a small company consisting of
two business processes, requiring a total of four functions
provided by four resources.

Dependencies are represented by local conditional prob-
ability distributions (CPDs) modeling probabilities of fail-
ure, given dependances fail. For example, the probability of



business-function BF1 (see Figure 1), say, “provide access to
customer data”, failing, given required business-resource A,
e.g., “customer-data-frontend”, fails is 90%. [26] argues that
the meaning of local conditional probabilities are understand-
able using common-sense (e.g., “in 9 out of 10 cases, customer
data were not accessible for employees during frontend-server
maintenance”) and that the (numerical) assessment can be
directly validated by either an expert or through ground-truth.

BF1 BF2

BP1

CM1

0.70.8

p(cm1|bp1) = 0.9

A B

0.9 0.60.1

Fig. 1. Mission Dependency Model. Values along edges denote individual
conditional probability fragments.

Definition 6 (Probabilistic Preliminaries). A node of a proba-
bilistic dependency model is a random variable, denoted as
capital X . Every random variable is assignable to one of
its possible values x ∈ dom(X). Let P (X = x) denote the
probability of random variable X having x as a value. For
the case dom(X) = {true, false} we write +x for the event
X = true and ¬x for X = false. N

The event +x represents the case that node X is opera-
tionally impacted and ¬x that is operating as fully intended,
i.e., no impact is present.

Definition 7 (From dependencies to distributions). Single
dependencies of a random variable Y on X are modeled as
individual conditional probability p(x|y) and p(x|¬y). Such
individual conditional probabilities are fragments of a com-
plete CPD and are therefore denoted in lowercase. To acquire
the local CPD P (X|~Y ) of node X from all its fragments
p(X|Y ) of all dependent nodes Y ∈ ~Y , [26] employs a
non-leaky noisy-or combination function as described in [23],
[24]. N

With Definition 7, a mission dependency model is a
Bayesian network, whose semantics is defined by the joint
probability distribution over all mission nodes, i.e., random
variables, as the product of all local defined CPDs.

Business resources are part of an infrastructure perspec-
tive and—from an operational view—might be irrelevant, but
are identified to be business critical by a business expert.
Notwithstanding, such an assessment might be inaccurate,
which is why transitive impacts must be considered. For
example, a web-service might be identified as a business
critical resource; it can not be expected that an underlying

distributed computing cluster is identified to actually provide
this web-service. The following resource dependency model
covers these dependencies.

B. Resource Dependency Model (Operation View)

Critical resources identified in a mission dependency model
are dependent on further resources. Likewise, if a dependent
resource is threatened, the identified critical resource might
be threatened transitively as well. An operation expert, un-
like a business expert, has an expertise to understand such
dependencies, which we cover in an resource dependency
model. The resource dependency model models dependencies
between individual resources, which can be, e.g., individual
ICT servers, ICS devices, software components or, in other use
cases, manufacturing robots, suppliers, soldiers or vehicles. A
“Bayesian” approach is followed as before, meaning that every
dependency between two resources represents a local condi-
tional probability of impact, if the dependence is impacted, as
shown in Figure 2.

[26] argues that assessing resource dependencies is not
manageable by hand. Complex operation structures render
a manual dependency analysis infeasible and error prone.
Further, dynamically adjusting infrastructures (e.g., as found
in IT cloud use cases) make it even unknown to an expert
to identify exact dependencies. However, [26] argues that an
expert is able to validate a presented infrastructure dependency
model for plausibility. Therefore, a solution based on heuristics
from exchanged information amounts are proposed to obtain a
resource dependency model, for which we present an example
in Section IV-B.

C
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Fig. 2. A minimalistic resource dependency model. Conditional probability
fragments are marked along the edges. Grey nodes represent external shock
events leading to local impacts on resources. Connections to the mission
dependency model are sketched in dashed gray.

C. Local Impacts (Security View)

Nodes of a resource dependency model might threatened
directly by, so-called, external shock events. A security expert
has the expertise to assess the local consequences on a node,
given the presence of an shock event, e.g., the presence of a
vulnerability or a direct shutdown of a node. An external shock
event SE ∈ ~SE is a random variable and is present (+se)
or not present (¬se), for which a prior random distribution
P (SE) is defined. Every node X might be affected by one or



more external shock events ~SE. Accordingly, the presence of
an external shock event can be known or can be unclear and is
assessed probabilistically through its prior random distribution
P (SE). The set of observed external shock events (known
presence) is a set of instantiations ~se of observed random
variables ~SEO ⊆ ~SE. In the case that an external shock event
is present (se), there exists a probability of it affecting a node
X , expressed as a conditional probability fragment p(+x|+se).
If an external shock event exists and it is not inhibited, [26]
speaks of a local impact on X . In the case that the external
shock event is not present, i.e., ¬se, it does not affect random
variable X . Every individual conditional probability fragment
contributes to a random variable’s CPD in the same way as a
dependance on other nodes.

Definition 8 (Temporal Aspects). [26] defines a temporal
aspect of an external shock event. In an abstract timeslices
an effect of an external shock event changes. Every abstract
timeslice represents a duplicate of the network- and mission
dependencies with a different set of local conditional proba-
bilities and prior probabilities of shock events. A time-varying
probability is denoted as a sequence 〈t0 : p0, . . . , tT : pT 〉,
with T + 1 abstract timeslices. In every abstract timeslice i,
varying probabilities take their respective conditional or prior
probability pi defined for its timeslice ti. N

Note that a security expert does neither need to have any
expertise in dependency analyses nor in business process
analyses. An assessment of potential impacts is performed
using a local, causal, view on resources and direct causes as
external shock events.

D. Mathematical Mission Impact Assessment

To summarize, one probabilistic graphical model is defined
by a mission dependency network, a resource dependency
network and a set of external shock events with associated
local impacts threatening nodes (or random variables) defined
by the resource dependency network. As resource nodes are
dependent on each other, a threatened node might again
threaten another node, which leads to a global “spreading”
of impacts induced by external shock events. In the end, there
exists a probability that even a business process or the com-
plete modeled company (mission) is threatened transitively
by various external shock events, which is what we call the
mission impact assessment.

Definition 9 (Mission Impact Assessment, MIA). The prob-
ability of a mission node MN being impacted, is defined
as the conditional probability of MN being impacted +mn
given all observations of external shock events se ∈ ~se,
i.e. P (+mn|~se), where the effects of local impacts due to
~se are mapped globally based on mission-dependency and
resource-dependency graphs. The mission impact assessment
is therefore defined as the problem of obtaining P (+mn|~se),
for all mission nodes MN defined defined in the mission
dependency model. N

Probabilistic inference is generally known to be NP-hard,
and an exact solution for the MIA problem is only obtainable
in small toy domains. However, approximate inference tech-
niques are a valuable alternative for probabilistic inference.
To obtain an algorithm determining an approximate solutions
to the MIA problem, one can see the probabilistic model as a
probabilistic logic program, where every “path” wMN

i ∈ ~wMN

from an external shock event SE ∈ ~SE to the mission node
MN is a conjunction of Boolean random variables and is a
sufficient proof for satisfying {MN = true} = +mn. Due to
the noisy or assumptions, ~wMN then represents a disjunction
of conjunctions. Every proof wMN

i exists with a probability
P (wMN

i ), where P (wMN
i ) is the product of all probabilities in

this proof. Let P(wMN
i ) denote the probability viewed as a set.

P (+mn|~se) is then the probability that at least one proof holds,
or rather, the probability that the disjunction of conjunctions
is satisfied, i.e.

P (+mn|~se) =
⋃
i

P(wMN
i ) = P (~wMN ) = P ({

∨
i

wMN
i }) ,

where not all P(wMN
i ) are disjoint. Calculating

⋃
i P(wMN

i )
is also known as the probabilistic satisfaction problem and is
also used in the Problog reasoning framework [28]. To reduce
computational complexity, a search for all “paths” wMN

i ∈
~wMN can be limited to a fixed depth, e.g., using a depth-
limited depth-first search. It is reasonable to limit a depth to
an average path length in a graph to at least visit every node
once, i.e., to at least include every external shock event once.

A probabilistic MIA P (+mn|~se) directly originates from
all defined dependency-models and represents an inference
problem in a probabilistic graphical model. Therefore, [26]
argues that if locally defined dependency-models are validated
to be correct, an obtained impact assessment P (+mn|~se) is
validated, too.

IV. DYNAMIC RISK MANAGEMENT RESPONSE SYSTEM

We developed a system that proposes response possibilities
to mitigate identified risks, enable choice of the most suitable
response possibilities to reduce the identified risks below an
admissible level, and then, compute the mitigation actions to
be deployed on monitored or protected ICT systems. We adopt
a quantitative risk-aware approach that provides a comprehen-
sive view of the threats, by considering, (i) the likelihood of
success of the considered attacks, (ii) their induced impact,
and (iii) the cost and impact of the possible responses. Our
dynamic response model is composed of two main modules:
the Response Financial Impact Assessor (RFIA), and the
Response Operational Impact Assessor (ROIA), as shown in
Figure 3.

The RFIA receives input data regarding the severity and
likelihood of the potential threats, benefits and cost of miti-
gation actions, default security policies, and all elements that
could be affected in the exploitation of the threat (e.g., users,
channels, resources). The RFIA performs the evaluation of in-
dividual and combined mitigation actions and creates response
plans based on the selected candidates. Such plans are sent to



Fig. 3. Internal block diagram for the DRMRS components

the ROIA for evaluation. For every proposed response plan,
the ROIA provides an operational impact assessment.

Assessed response plans are propagated to a visualization
module and to an policy enforcement point, which transforms
mitigation actions into security policies. A response plan
selection strategy proposed in this paper used to assist a
security operator in selecting the most suitable response plan.

A. Response Financial Impact Assessor (RFIA)

The Response Financial Impact Assessor quantifies the level
of benefit perceived per response plan on a financial basis.
It provides an assessment concerning the potential financial
impact that a given response plan may cause to an organi-
zation. Response plans represent proposed mitigation of the
assessed risks and are assumed to be composed of one or
more mitigation actions. The RFIA is composed of two main
components: the Return On Response Investment (RORI), and
the Attack Volume (AV), as depicted in Figure 4.

Fig. 4. Internal block diagram for the RFIA component

From Figure 4, the RORI interface requests the RORI
Engine to perform the evaluation of mitigation actions (e.g.,
individual and combined) for a given threat scenario. The
RORI Engine requests the input parameters (i.e., ALE, AIV,
ARC, RM) to the RORI database through a get command. If
the ALE or the RM are missing for that particular security
incident, the RORI engine will request the AV Engine to

perform the attack volume evaluation and to provide the
corresponding values.

The AV Engine requests the input data to particular services
(e.g., LDAP, databases, ACL, servers) and retrieves the asso-
ciated RCU (Resource-Channel-User) information in order to
calculate its volume and plot its graphical representation. The
retrieved RCU data is stored in the AV database and displayed
in the AV interface.

Upon reception of all the parameters, the RORI engine
stores them in the RORI database through a push command,
and performs the evaluation of the authorized mitigation
actions.

1) Return On Response Investment (RORI): is a relative
index that indicates the level of benefit perceived if a given
mitigation action is implemented. The input parameters for the
RORI calculation are of two kinds: fixed parameters include
the Annual Infrastructure Value (AIV), which depends on the
system, and the Annual Loss Expectancy (ALE), which char-
acterizes the intrusion or attack; variable parameters include
the Risk Mitigation (RM) and Annual Response Cost (ARC)
which express the costs related to a mitigation action. RORI
is calculated according to Equation 1.

The RORI index is used to evaluate optimal plans, by
ranking them as a trade-off between their efficiency in stopping
potential attacks, and their ability to preserve, at the same time,
the best service to legitimate users. Details on the estimation
of each parameter composing the RORI model can be found
in [12].

2) Attack Volume (AV): is a graphical tool that evaluates the
impact of one or multiple attacks and/or mitigation actions
over a specific target. The representation of each attack is
performed in a three-dimensional coordinate system i.e., user
account (Acc), channel (Ip-Port), and resource (Res). The same
coordinates include also system assets and potential mitigation
actions. The projection of the three axis in our coordinate
system generates a parallelepiped in three dimensions. The
resulting volume is computed as the product of the axes
contribution to the execution of the incident, i.e.,

AV (A) = CoAcc(A)× CoIp−Port(A)× CoRes(A) (2)

The axis contribution is determined as the sum of the
product of each set of axis category (e.g., user account type,
port class, resource type, etc.) by its associated weighting
factor. Each category within the axis contributes differently
to the volume calculation. The weighting factor corresponds
to the severity of a given category based on the CARVER1

methodology [13].
The volume calculation requires the computation of the

contribution of each axis represented in the coordinate system.
This contribution is determined as the sum of each set of
axis entities (e.g., user account type, port class, resource type)

1A multi-criteria methodology that considers Criticality, Accessibility, Re-
cuperability, Vulnerability, Effect, and Recognizability in the evaluation



times its associated weighting factor (that results from the
implementation of the CARVER methodology), i.e.,

CoAxis(S) =

n∑
i=0

Count(E ∈ TypeAxis(S))

×WF (TypeAxis(S)) . (3)

The attack volume interface provides a 3D view of the
complete attack scenario, making it possible to calculate the
impact of multiple attacks that originate simultaneously in the
system. In addition, we are able to compute the coverage of
such attacks in the system, and the level of coverage for one
or more response plans against the detected attack(s). Details
on the computation of the system, attack and countermeasure
volumes can be found in [14].

B. Response Operational Impact Assessor (ROIA)

The ROIA is divided into three components, which acquire,
define and evaluate all information needed for an response
operational impact assessment based on the described proba-
bilistic model.

1) Network Dependency Analyzer: In order to obtain a re-
source dependency model automatically, we propose a module
which consecutively captures traffic inside an organization and
analyses statistics in them based on a heuristic. In our use
case, a resource dependency model consists of a medium sized
ICT environment, in which some ICT devices also represent
gateways to an industry SCADA system. Further, it can be
assumed that every device drives one purpose. This allows for
a simple heuristic on exchanged information amounts to obtain
a plausible resource dependency network, explained at the fol-
lowing simple example: A workstation X consuming different
query results from multiple databases distribute gained and
processed information from such queries to other devices. The
percentage of received traffic TYi,X from every database Yi
towards the total received traffic gives a good guideline for the
conditional dependency between them as p(x|yi) =

TYi,X∑
i TYi,X

.
Depending on a network or company characteristics other
heuristics might be appropriate, e.g. derivation from a mean
received amount of data or a mapping onto a σ distribution. As
long as no irrelevant information is consumed and distributed
to other resources, this heuristic results in a plausible resource
dependency model. As part of the ROIA, we implement
this approach in an automatic module, periodically capturing
traffic and analyzing obtained results, which are presented in
Section V.

2) Local Impact Definition: The introduced probabilistic
mission impact model is based on general external shock
events. In order to obtain a response OIA, a response plan
must be transformed to external shock events. Every mitigation
action inside a response plan represents a potential cause for
local harm. For example, a shutdown of a node X might cause
other transitively dependent nodes to not work as intended,
i.e., become impacted. Assessing the global effects of a local
action is intuitively not possible and is the goal of an ROIA.
However, local assessments are validatable and can even be

grounded on common sense: Given one shuts down a node
X , the probability that it will be impacted, i.e., not work as
intended, is 100%: p(+x|+shutdownx) = 1. We extended
[26]’s proposed external shock event transformation from
response plans:

Definition 10 (Response Plan Side Effects). We define external
shock events by using three abstract temporal timeslices: t0
representing a short-term impact, t1 representing a mid-term
impact, and t2 representing a long-term impact. If a node is
shut down (+se: the external shock event is present) it is easy
to assess a probability of local impact to be 1. This means,
p(+x|+se) = 〈t0 : 1, t1 : 1, t2 : 1〉. Likewise, restarting a
resource has the same effect as a shutdown in t0, and might
likely lead to hardware failure during reboot in a mid-term t1,
but will locally not cause conflicts in a long-term: p(+x|+se) =
〈t0 : 1, t1 : 0.6, t2 : 0〉.

Employing a patch on a node X might produce collateral
damage as well. During installation of the patch, there exists a
(low) probability of immediate conflict, e.g., a flat assumption
of 10% or a measure published by a software vendor. In a
mean time, a patch might enforce a reboot of a resource. This
leads to a temporal shutdown and might lead to hardware
failure. Finally, after a successful reboot, a replacement of
hardware, and/or a restore of a previous backup, the network
device will fully resume its operational capability. Therefore,
p(+x|+se) = 〈t0 : 0.1, t1 : 1.0, t2 : 0.0〉. We argue that every
installation, update or change of software can be modeled from
an impact perspective as a patching operation.

Like software is exchanged by a patch, hardware can be
reconfigured as well. A reconfiguration is likely to enforce
a reboot, if an exchanged component is not hot swappable.
Therefore, we assume the same local impact as induced by a
reboot. N

Further examples for shock events are given by Motzek et
al. in [26].

3) Monte-Carlo Evaluator: As mentioned before, an exact
calculation of

⋃
i P(wMN

i ) is possible by the inclusion and
exclusion principle and the Sylvester-Poincar equality, but is
exponentially hard due to the subtraction of all overlapping
sets and is therefore not practical. We therefore approximate
a solution to the MIA problem by the use of an approximate
inference technique.

For every mission node MN , there exists a Boolean formula
~wMN as a disjunction of conjunction over Boolean random
variables ~B. However, Boolean random variables in ~B take
their respective truth value according to a probability distribu-
tion. To approximate

⋃
i P(wMN

i ), i.e., to find an approximate
solution to the MIA problem, a complete instantiation of all
Boolean variables ~B is drawn by sampling every Boolean
variable according to its distribution, and ~wMN is checked
for satisfaction. Repeating this process n times, where n+

times a satisfaction was found, approximates P (+mn|~se) by
n+/n. Our results show that an upper three-sigma bound of
expected error Ē is obtained by Ē = 0.775 ·√n−1. A detailed



description and evaluation is given in [26] and left out for
brevity in this paper.

C. Selection of Response Plans

Both, RFIA and ROIA, perform impact assessments of a
proposed response plan as a collection of individual mitigation
actions. Due to their nature, a financial impact assessments
(using a RORI index) and an operational impact assessments
are performed from perpendicular perspectives: On the one
hand, the less invasive a response plan is, the less it can po-
tential cause collateral damage. On the other hand, a minimally
invasive response plan, will not significantly reduce a risk. It
is the novel advantage of the proposed DRMRS of being able
to combine both assessments.

However, finding an optimal response plan in all dimensions
defined by an OIA and a FIA is not trivial. The proposed FIA
results in a linear, relative metric, i.e., assessments depend on
a use-case and context and are only interpretable, evaluable
and comparable during one evaluation of a set of response
plans. Still, among one evaluation there exists a well-defined
ordering. However, relative reference points are required for
obtaining an absolute scale from one evaluation.

The proposed OIA is based on a probabilistic model result-
ing in a stable, absolute metric, e.g., an assessment of, say,
5% is understandable and interpretable independent of any
context, use-case or evaluation. For example, an OIA of 5%
for a potential impact on a company, given a set of observed
external shock event, is equivalent to a 5% of winning a lottery,
given one plays the lottery, or a 5% probability of tossing a
1 on a twenty-sided cube. However, an OIA consists an n-
dimensional vector representing a temporal diversity.

Due to a missing absolute scale in FIA and an assumed in-
comparability of temporal dimensions, an optimization goal by
a defined cost function is not available. We therefore propose
a selection of response plans based on a best compromise,
i.e., a semi-optimal solution among all impact assessment
dimensions, related to a Pareto optimum.

Definition 11 (Semi-optimal response plans). Let ~RP
d

be a
vector of proposed response plans, associated with a linearly
scaled impact assessment of dimension d. Let ṘP

d ⊆ ~RP
d

denote the set of optimal proposed response plans in terms of
dimension d. Let R̂P

d
denote the assessment of the theoretical

optimal response plan and let ŘP
d

denote the assessment
of the theoretical worst response plan in terms of dimension
d. Then, let ṘP

d

ε ⊆ ~RP
d

represent the set of semi-optimal
response plans in terms of dimension d and easing factor ε ∈
[0, 1] representing the allowed deviation ε of the theoretical
response plan range |R̂P d−ŘP d| from the evaluated optimal
response plan ṘP

d
. Thus, ṘP

d

0 = ṘP
d

and ṘP
d

1 = ~RP
d
.
N

Finding a best compromise among an n-dimensional impact
assessment is therefore defined as finding the smallest semi-
optimal set.

Definition 12 (Smallest semi-optimum). Let ~d be the vector
of all impact dimensions. Then, the smallest semi-optimal set
of response plans R̊P is the set

R̊P = min
ε

⋂
d∈~d

ṘP
d

ε

 6= ∅
 . N (4)

As the ROIA represents an absolute metric, ŘP
ROI

= 1

and R̂P
ROI

= 0. For the relative RFIA metric ŘP
RFI

and R̂P
RFI

depend on ~RP
RFI

. If not all possibly allowed
response plans are evaluated by the RFIA for performance
criteria, ŘP

RFI
and R̂P

RFI
are not uniquely identifiable and

must be estimated by ŘP
RFI

= −1 and R̂P
RFI

= ṘP
RFI

.
This means, ṘP

RFI

ε might be too large. A selection of a
response plan according to Definition 12 can efficiently be
performed by using a binary search.

V. USE CASE

This section studies an application of the proposed DRMRS
in an infrastructure environment of an Energy Distribution Or-
ganization. The environment consists of a distributed network
of remote terminal units (RTU) in energy stations of medium
voltage (MV = 20,000 Volts) and high voltage (HV = 150,000
Volts). RTUs acquire data from electrical equipments (e.g.,
PLC, sensors, etc.), and send data to a supervisor terminal
unit (STU) of the headquarter. The RTU network utilizes
Supervisory Control and Data Acquisition (SCADA) protocols
and is composed of over 13,000 energy stations, 6,000 of
which are controlled by the STU.

For testing purposes, we emulated the energy distribution
organization (EDO) using the information shown in Table I.

TABLE I
INFORMATION OF THE EDO SYSTEM

Dimension Elements Description Q WF
Resource R1:R12 HV/MV Server 12 1-5

R13:R16 HV/MV Front End 4 4
R17:R22 HV/MV Gateway 4 4
R23:R56 Routers 34 3-4
R57:R63 Human-Machine Interface 6 2-3
R64:R363 Remote Terminal Unit 300 5
R364:R365 Firewall 2 2
R366 PC 1 2
R367:R368 IDS 2 2

Channel Ch1:Ch2 Public IP address 2 3
Ch3:Ch302 Private IP address 300 2
Ch303:Ch698 UDP Port 396 1-5
Ch699:Ch1712 TCP Port 1014 3-5

User U1:U30 Basic Operator 30 1
Account U31:U38 Advanced Operator 8 4

U39:U52 High Voltage Operator 14 3
U53:U70 Medium Voltage Operator 18 2
U71 Supervisor 1 5

From Table I, we organize the information of the EDO
according to their nature (dimension). We have for instance,
servers, firewalls, IDs, etc as resources; IP addresses and
port numbers as channels, and operators as user accounts.



Depending on the type of element and their importance to
the mission of the organization, we assign a weighting factor.
A basic operator is assigned a WF=1, whereas an advanced
operator has a WF=4, and a supervisor has a WF=5. For
those cases where the category regroups elements of different
types (e.g., SCADA Servers, Web servers, NTP Server, etc
are regroup as Servers), we assign a weighting factor for each
type of element, going from one to five.

The annual infrastructure value for the EDO is equivalent
to 11,379,800.00 , which represents the cost of operation,
license, maintenance and services incurred in a yearly basis
for the regular operations of the organization. It considers the
annual cost of all the policy enforcement points (PEPs) of the
organization.

A. Threat Scenario

Security experts from the use case partner identified a
threat, called “AS02”, which corresponds to a compromise
of a specific target through vulnerability exploitation. More
precisely, the threat will cause data corruption or leakage of a
database in the ICT domain, e.g., from a file server.

There exists an attack vector via the ICT Network from,
e.g., a vulnerable router “VR-08”, targeting first a Web server
“Web-SRV”, second, a workstation “User-PC”, and third, a
file server “File-SRV”.

B. Financial Impact Assessment

Threat AS02 has a severity defined as “serious”, which cor-
responds to 1,000,000 e, and a likelihood defined as “high”,
which corresponds to a value of 12. The ALE is computed as
12,000,000 e/year. This threat has been associated to a set of
mitigation actions. Combinations of associated mitigation ac-
tions form response plans that shall improve the security status
of the monitored system (e.g., patch deployment, shutdown,
restart, or other system reconfiguration). They are selected
and executed by operators resulting in automated deployment
of mitigation actions where possible (e.g., firewall reconfigu-
rations) or otherwise issuing instructions to senior operators
for follow-up deployment of actions (e.g., patch deployment).
The detailed information of all authorized mitigation actions
is shown in Table II.

TABLE II
MITIGATION ACTION RFIA EVALUATION

MA Description EF COV RM ARC Restriction RORI
MA1 Reconfig. V-R08 1.00 0.60 0.60 50 None 63.27
MA2 Reconfig. Web-SRV 0.80 0.15 0.12 1,000 MA10 12.64
MA3 Reconfig. File-SRV 0.80 0.15 0.12 500 MA11 12.65
MA4 Patch Web-SRV 1.00 0.15 0.15 2,000 MA10 15.8
MA5 Patch File-SRV 1.00 0.15 0.15 500 MA11 15.81
MA6 Patch User-PC 1.00 0.10 0.10 500 MA12 10.54
MA7 Restart Web-SRV 0.01 0.15 0.00 50 MA10 0.16
MA8 Restart File-SRV 0.01 0.15 0.00 50 MA11 0.16
MA9 Restart User-PC 0.01 0.10 0.00 50 MA12 0.11
MA10 Shutdown Web-SRV 0.10 0.15 0.01 50 MA2,4,7 1.58
MA11 Shutdown File-SRV 0.10 0.15 0.01 50 MA3,5,8 1.58
MA12 Shutdown User-PC 0.10 0.10 0.01 50 MA6,9 1.05

Table II summarizes the information about mitigation ac-
tions that are authorized as a response to the specified threat
AS02. ARC and EF of each security mitigation action were
estimated based on expert knowledge and historical data. The
RM value is calculated as the product of the EF and coverage
(COV). A coverage is obtained using geometrical operations
from the attack volume model. The RORI index is calculated
using Equation 1.

From the list of proposed mitigation actions, MA1
(Reconfiguration of V-R08) provides the highest RORI index.
By taking this action, the risk is expected to be reduced to
60% (RM), resulting in a RORI index of 63.27. Response
plans for this threat are formed by combinations of all possible
mitigation actions, considering those actions that are mutually
exclusive (e.g.,MA10 can not be simultaneously implemented
with MA2, MA4, and MA7). All potential combinations,
i.e., 797 response plans are evaluated and the best response
plan results in a RORI index of R̂P

RFI
= 97.1435

with a combination of mitigation actions as
〈MA1,MA2,MA3,MA4,MA5,MA6,MA7,MA8,MA9〉.
The worst is represented by {〈MA7,MA9〉 〈MA8,MA9〉}
with ŘP

RFI
= 0.21.

The graphical representation of the best response plan vs.
the evaluated threat is depicted in Figure 5, where hashed
lines represent threat AS02 and colored lines represent the
mitigation actions.
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Fig. 5. Graphical representation of the threat and the best response plan.

C. Operational Impact Assessment

To perform a response operational impact assessment, a
resource dependency model is needed. As described in Sec-
tion III a manual assessment is said to be infeasible and a
solution based on a heuristic of exchanged traffic information
was proposed in Section IV-B. An evaluation of one week
of traffic recordings inside the EDO resulted in a resource
dependency model as shown in Figure 6 consisting of 35 nodes
and 66 edges (dependencies); 470 other nodes resembled
insignificant dependencies and were removed for visualization



and anonymization purposes. The average path length between
two nodes resulted to be 2.5, s.t., a maximum search depth of
7 is likely to cover all paths.

Based on the resource dependency model and a mission
dependency model defined by business experts from the use
case partner, ROI assessments for all proposed response plans
are evaluated. The mission dependency model for the EDO
consists of four business processes and 26 identified critical
resources, from which not all are yet simulated and not needed
for the scope of this paper. For anonymization purposes and
non-disclosure agreements, the mission dependency model
can not be displayed here. A comparison between a RORI
index and operational impact assessments in three temporal
dimensions are given in Table III. Note how both lowest and
highest probabilities of operational impact lead to extremely
low RORI indices. In fact, Pearson’s product-moment corre-
lation coefficient between RORI and OI0 and OI1 for all
evaluated response plan is ≈ 0.14 and between RORI and
OI2 even ≈ 0.01, showing that RORI and OI are almost
uncorrelated.

Fig. 6. Resource dependency model extracted from the use case partner.
Thicker and darker edges represent higher dependency degrees. Visualized
using Gephi [27].

TABLE III
MITIGATION ACTION ROIA EVALUATION. (RORI given for reference)

MA Description RORI OI0 OI1 OI2
MA1 Reconfig. V-R08 63.27 4.2% 2.4% 0
MA2 Reconfig. Web-SRV 12.64 6.6% 3.6% 0
MA3 Reconfig. File-SRV 12.65 36.6% 22.2% 0
MA4 Patch Web-SRV 15.8 0.6% 6.6% 0
MA5 Patch File-SRV 15.81 3.6% 37.2% 0
MA6 Patch User-PC 10.54 0.6% 6.6% 0
MA7 Restart Web-SRV 0.16 6.6% 4.2% 0
MA8 Restart File-SRV 0.16 36.6% 22.2% 0
MA9 Restart User-PC 0.11 6.6% 4.2% 0
MA10 Shutdown Web-SRV 1.58 7.2% 7.2% 7.2%
MA11 Shutdown File-SRV 1.58 40.8% 40.8% 40.8%
MA12 Shutdown User-PC 1.05 7.2% 7.2% 7.2%

D. Selection of Mitigation Actions

Judging from Table III a good compromise is to
singly deploying mitigation action MA1, resulting
in both a low probability of operational impact and
being financially attractive in terms of RORI. The
most financially attractive response plan RPR =
〈MA1,MA2,MA3,MA4,MA5,MA6,MA7,MA8,MA9〉

with a RORI index of 97.1435, however, is assessed to bear
almost the highest probability of operational impact with
〈t0 : 0.408 t1 : 0.402 t2 : 0.0〉. Note that an OI assessment
of a response plan is not a linear combination of individual
mitigation actions, as a “double count” of probabilities is not
allowed and would lead to spurious results. In terms of lowest
short-term (t0) OI probability, MA4 and MA6 alone show to
be dominant, and in mid-term (t1) MA1 alone is dominant.
In a long-term perspective (t2) a large set of response plans
is dominant with a 0 probability of impact. Thus RPR,
MA4 and MA6 represent a Pareto optimal set. As proposed
in Section IV-C we search for the best compromise: From
Definition 12 one obtains the best semi-optimal response
plan set R̊P = {〈MA1,MA2,MA4,MA6,MA7,MA9〉}
using ε = 0.1475, consisting of one response plan with an
operational impact assessment of 〈t0 : 0.108 t1 : 0.09 t2 : 0.0〉
and a RORI index of 82.8514. This means, with a compromise
of 14.75% of the theoretical optimum in every dimension
from the evaluated optimum, a semi-optimal response plan is
found.

Notwithstanding, one could normalize all impact dimen-
sions to a range between [0, 1], where 1 represents the best
(i.e., 0 for operational impact and the best evaluated RORI
index for financial impact) and 0 the worst assessment and
then define an equally weighted cost function f used for se-
lection of an optimal response plan. Following such approach,
one selects: RPf = 〈MA1,MA2,MA4,MA6,MA9〉 with
〈t0 : 0.102 t1 : 0.09 t2 : 0.0 rori = 82.7732〉, which is differ-
ent from R̊P . The following example clarifies the difference:
Say, there exists another response plan RP ∗ with an as-
sessment 〈t0 : 0.191 t1 : 0.0 t2 : 0.0 rori = 82.7732〉, i.e., an
assessment similar to the one of RPf , but where an impact
of dimension t1 is moved to t0 with a small difference. RP ∗

would be assigned an even better cost than RPf by f , but
the t0 assessments differs by ε = 18.5% of the theoretical
optimum from the evaluated optimum in dimension t0 instead
of 14.75% as R̊P does.

VI. RELATED WORK

Current researches focus on considering the impact of
attacks by evaluating their severity and consequences, leaving
aside the impact of security actions in mitigating the effects
of such attacks. Dini and Tiloca [2], for instance, propose
a simulation framework that evaluates the impact of cyber-
physical attacks, discusses the attack ranking process, and
analyzes different mitigation actions. However, these latter are
not considered in the calculation of the attacks’ impact nor
they are ranked according to their effectiveness in stopping or
mitigating the attacks.

Kundur et al. [3], propose a paradigm for cyber attack
impact analysis that employs a graph-theoretic structure and a
dynamical systems framework to model the complex interac-
tions amongst the various system components. The approach
involves quantifying the effects of given classes of cyber
attack, providing information on the degree of disruption that
such class of attacks enable, and identifying sophisticated



dependencies between the cyber and physical systems, but
leaves aside the impact of mitigation actions in the attack’s
impact calculation.

Squoras et al. [5] present a qualitative assessment of the
cyber attack impact on critical Smart Grid infrastructures.
Authors evaluate the impact of DoS/DDoS attacks on data
availability without considering mitigation actions in the as-
sessment of the overall impact calculation.

In terms of operational impact assessment, probabilistic
models have been researched as an adequate assessment of
impacts or risks posed due to attacks or found vulnerabilities
[15]–[17]. However, often imperfect knowledge is not consid-
ered [15] or dependency cycles pose a problem [17]. Other
impact propagation approaches, able to handle such details,
are not probabilistic based and degrade to a handcrafted
propagation algorithm with arbitrary scores [18], [19].

Barreto et al. [20], [21] only consider direct impacts as
approaches to mission modeling, leaving aside transitive im-
pacts and/or defining a manual description of all dependencies
between individual devices inside one organization, which is,
in most of the cases an unfeasible process.

Our approach proposes the evaluation and selection of
mitigation actions based on the financial- and operational-
assessment of security events (e.g., attacks and mitigation
actions). The ultimate goal of our approach is to select the
set of mitigation actions that provides the maximal positive
financial gain and the minimal operational negative side-effect.

VII. CONCLUSION

In this paper we have proposed an automatic response
system, reacting to threats opposed on a company based on a
multi-dimensional impact assessments. Two different impact
assessment approaches have been incorporated, which seem
to be conflicting at first sight: Every action taken in order to
reduce a potential attack vector, bears a potential negative side
effect that needs to be reduced.

Based on a multi-dimensional minimization proposal, we
propose the choice of semi-optimal response plans that on the
one hand bear the highest financial attractiveness on return on
investment, and, on the other hand, bear the lowest probability
of conflicting with a company’s missions. This is beneficial for
applications, where highly critical missions and resources must
be protected, without sacrificing missions in favor of security.

ACKNOWLEDGMENT

The research in this paper has received funding from the
PANOPTESEC project, as part of the Seventh Framework
Programme (FP7) of the European Commission (GA 610416).

REFERENCES

[1] R. Kissel,Glossary of key information security terms, National Institute
of Standards and Technology, U.S. Department of Commerce, 2011.

[2] G. Dini, M. Tiloca,On simulative analysis of attack impact in Wireless
Sensor Networks, 18th Conference on Emerging Technologies & Factory
Automation (ETFA), 2013.

[3] D. Kundur, X. Feng, S. Liu, T. Zourntos, K.L. Butler-Purry, Towards
a Framework for Cyber Attack Impact Analysis of the Electric Smart
Grid, International Conference on Smart Grid Communications (Smart-
GridComm), pp. 244–249, 2010.

[4] P. Su, X. Chen, H. Tang, DoS Attack Impact Assessment based on 3GPP
QoS Indexes, 3rd International Conference on Innovative Computing
Information and Control, 2008.

[5] K. I. Sgouras, A. D. Birda, D. P. Labridis, Cyber Attack Impact on
Critical Smart Grid Infrastructures, Innovative Smart Grid Technologies
Conference (ISGT), 2014.

[6] B. Roberts, The Macroeconomic Impacts of the 9/11 Attack: Evidence
from Real-Time Forecasting, Working Paper, Homeland Security, Office
of Immigration Statistics, 2009.

[7] T. L. Saaty, What is relative measurement? The ratio scale phantom,
Mathematical and Computer Modelling Journal, vol. 17, number 4-5,
pp. 1–12, 1993.

[8] W. Sonnenreich, J. Albanese, B. Stout, Return On Security Investment
(ROSI) A Practical Quantitative Model, Journal of Research and Practice
in Information Technology, vol. 38, number 1, 2006.

[9] M. Jeffrey, Return on Investment Analysis for e-Business Projects, Internet
Encyclopedia. Hossein Bidgoli Editor, vol. 3, pp. 211–236, 2004.

[10] Lockstep Consulting, A Guide for Government Agencies Calculating
Return on Security Investment, Technical Paper, 2004

[11] N. Kheir, N. Cuppens-Boulahia, F. Cuppens, H. Debar, A Service Depen-
dency Model for Cost-Sensitive Intrusion Response, European Symposium
on Research in Computer Security (ESORICS), pp. 626–642, 2010.

[12] G. Gonzalez-Granadillo, M. Belhaouane, H. Debar, G. Jacob, RORI-
based countermeasure selection using the OrBAC formalism, International
Journal of Information Security, Vol. 13(1), pp. 63–79, 2014.

[13] T. L. Norman, Risk Analysis and Security Countermeasure Selection,
CRC Press, Taylor & Francis Group, 2010.

[14] G. Gonzalez Granadillo, J. Garcia-Alfaro, H. Debar, Using a 3D
Geometrical Model to Improve Accuracy in the Evaluation and Selection
of Countermeasures Against Complex Cyber Attacks, In Security and
Privicay in Communication Networks, vol. 164, pp. 538–555, 2015.

[15] L. Wang, T.a Islam, T. Long, A. Singhal, S. Jajodia An attack graph-
based probabilistic security metric, Data and Applications Security
XXII. Springer Berlin Heidelberg, 283–296, 2008.

[16] L. Yu, H. Man Network vulnerability assessment using Bayesian net-
works. International Society for Optics and Photonics, 2005.

[17] P. Xie, J. Li, X. Ou, P. Liu, R. Levy, Using Bayesian networks for cyber
security analysis, International Conference on Dependable Systems and
Networks, pp. 211–220, 2010.

[18] N. Kheir, H. Debar, N. Cuppens-Boulahia, F. Cuppens, J. Viinikka Cost
evaluation for intrusion response using dependency graphs, International
Conference on Network and Service Security, 2009.

[19] J. Marko, C. Thul, P. Martini, Graph based metrics for intrusion
response measures in computer networks, 32nd IEEE Conference on
Local Computer Networks, 2007.

[20] A. Barreto, P. Costa, E. Yano, A Semantic Approach to Evaluate the
Impact of Cyber Actions to the Physical Domain, 7th International
Conference on Semantic Technologies for Intelligence, pp. 64–71, 2012.

[21] A. Barreto, P. Costa, E. Yano, Using a Semantic Approach to Cyber Im-
pact Assessment, 8th International Conference on Semantic Technologies
for Intelligence, pp. 101–108, 2013.

[22] G. Jakobson, Mission Cyber Security Situation Assessment using Impact
Dependency Graphs, In Fourteenth International Conference on Informa-
tion Fusion, IEEE, 2011, pp. 1–8.

[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, 2014.

[24] M. Henrion, Practical Issues in Constructing a Bayes’ Belief Network,
In Third Conference on Uncertainty in Artificial Intelligence, 1987.

[25] J. Pearl, Causality: Models, Reasoning and Inference, 2nd Edition,
Cambridge University Press, New York, NY, USA, 2009.
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