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Reservoir computing (RC) systems are computational tools for information processing which can be fully
implemented in optics. Here, we experimentally and numerically show that an optically pumped laser
subject to optical delayed feedback can yield similar results as those obtained for electrically pumped
lasers. Unlike the previous implementations, the input data is injected at a time interval which is much
larger than the time-delay feedback. This data is directly coupled to the feedback light beam. Our results
illustrate new possible avenues for RC implementations for prediction tasks. © 2016 Optical Society of America

OCIS codes: (0000.0000) Lasers.
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Reservoir computing (RC) is a brain-inspired concept for in-
formation processing which has been recently demonstrated
to be efficient for solving practical time dependent tasks [1, 2].
RC systems operate by ensuring a nonlinear mapping between
the input and the output allowing therefore a variety of infor-
mation processing through training. To perform well, an RC
system typically requires high dimensionality and nonlinearity.
Traditionally, a high dimensionality is obtained by randomly
interconnecting a large number of neurons while the needed
nonlinearity can be implemented through sigmoidal activation
functions. For example, with an ensemble of 16 interconnected
semiconductor optical amplifiers, state-of-the-art performance
has been achieved [3].

Alternatively, state-of-the-art performance also has been ob-
tained by relying on a single dynamical nonlinear node subject
to delayed-feedback [4]. This configuration (typically referred to
as the delay-based RC) has the advantage of being easy to train
and to implement experimentally. It has led to several imple-
mentations even at high processing speeds using stand-alone
commercial telecommunication components [5–8]. The main dif-
ferences between these experiments are the type of nonlinearity
used and how the input matches with the period of the delay
line. In those implementations, the nonlinear response of the
reservoir is provided by passive nonlinearity such as saturable
absorption of a semiconductor mirror [9–11] or by active de-
vices such as optoelectronic modulators [5, 8], optical amplifiers

[3] or semiconductor lasers [7]. These experiments have been
supported by numerical simulations [8, 12–15]. Numerical simu-
lations also have shown that the different modes of multi mode
lasers subject to optical delayed feedback can be independently
used to process in parallel independent tasks [16]. In all cases,
the readout layer is trained (using some form of regression) from
the state vectors of the reservoir in response to the training data.

Until now, only one experiment has been dedicated to RC
systems in which the processing is done from the response pro-
vided by a laser subject optical delayed feedback [7]. The laser
used in this experiment was an electrically pumped single lon-
gitudinal mode laser and the input data was either electrically
injected by modulating the pump current or optically injected
into the reservoir through optical injection using another laser.
Note that in others experiments [5, 6, 8–11], lasers are used as
light source to supply the reservoir.

In this work, we pursue three different objectives: (i) we aim
at investigating whether a different type of laser subject to simi-
lar delayed feedback can yield similar results as those obtained
in [7]. More precisely, we experimentally and numerically inves-
tigate whether an optically pumped laser can produce similar
results as electrically pumped lasers. (ii) In the usual procedure
of RC, the injection times of the input data (i.e., the inverse of the
processing speeds) is close or corresponds to the time delay. In
addition in previous experiments, long time-delays (time-delays
much larger than the system’s characteristic time) have been
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Fig. 1. Conceptual scheme of RC based on a nonlinear node
(laser) with delayed feedback.

used [4–14, 16]. We explore here whether time-delays less or
comparable to laser relaxation time can also be suitable for RC
systems. This approach is interesting since short delay lines are
desirable for on-chip implementations because it consumes less
wafer space. The time-delays will be typically fixed during the
manufacturing phase for real-world systems while the process-
ing speeds can be controlled. We also investigate the effect of
such a change for fixed time-delay. (iii) we also want to explore
whether the data can be directly coupled to the feedback light
beam instead of using an additional laser for optically injecting
the electrical data into the reservoir as done in [7].

RC system can be conceptually divided into three blocks,
which are schematically shown in Fig. 1: an input layer, a reser-
voir and an output layer. The input layer is the stage where the
input data is provided and preprocessed before being injected
into the reservoir for their processing. The preprocessing in-
cludes the rescaling of the input signal and its multiplication by
a mask matrix M that defines the coupling weights from input to
the reservoir. The role of the mask is to ensure the variability of
the signal over the different virtual nodes where the information
is read out. These virtual nodes are formed by sampling the
delay line at a fixed time interval θ. The output layer is the stage
where the different node responses are weighted and linearly
summed up. The optimal values of these weights are those for
which the summation of all the different node responses always
approaches the associated target as closely as possible. They
can be typically determined with an off-line training procedure
using digital computers [5–8, 11–14] or an on-line training pro-
cedure using an FPGA (Field-Programmable Gate Array) [17].
In our case, the training is done off-line. Three time scales are
relevant: the data injection time Td, the feedback time-delay T
and the mask length given by Nθ where N is the number of
virtual (temporal) nodes. We consider Td = Nθ and apply this
same duration during the postprocessing of each data point.

As benchmark task, we will use the Santa time series to eval-
uate the prediction performance of the system. The Santa-Fe
data are intensity time series experimentally recorded from a
far-infrared laser operating in a chaotic state [18]. The goal for
this task is to predict the sample one-step ahead in a chaotic time
trace before it has been injected into the reservoir computer. The
system performance is evaluated by calculating the normalized
mean square error (NMSE) between the predicted value y and
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Fig. 2. Experimental setup: PM: phase modulator; AWG: Arbi-
trary waveform generator.

the expected value ȳ:

NMSE(y, ȳ) =

〈∣∣∣∣y(n)− ȳ(n)
∣∣∣∣2〉〈∣∣∣∣ȳ(n)− 〈ȳ(n)〉∣∣∣∣2〉 , (1)

where n is a discrete time index while ‖ . ‖ and 〈.〉 stand for
the norm and the average over time, respectively. Note that
NMSE= 0 means perfect prediction while NMSE= 1 indicates
no prediction at all. Our results will be compared to those in [7]
as it is a similar RC system which was, however, built using a
different type of laser and a large time-delay.

The Experimental setup is shown in Fig. 2. It is composed
of a diode-pumped Erbium doped microchip laser with optical
delayed feedback. The microchip laser is a sample provided
by the laboratory LETI-CEA (Technologies Avanckes) [19]. The
threshold currents of the diode-pump and the micro laser are
Isp ≈ 24.2 mA and Is ≈ 100 mA, respectively. The microchip
laser’s stability threshold is close but above its lasing thresh-
old. The micro laser is bi-mode which, above Is, emits a total
radiation of a few milliwatts at the wavelength λ1 ∼ 1532 nm
and λ2 ∼ 1535 nm with a side mode suppression of ≈ 26 dB.
The emitted light has been collected using collimating lensed
fiber with a collection efficiency of ≈ 50%. To implement the
delayed feedback, the collected light beam is split into two parts
using a 50% optical coupler: one part is directly read out by
a photodiode with 1 GHz-bandwidth while the second part is
connected to port number 2 of an optical circular. The circulator
couples light from port 2 to port 3 and from port 3 to port 1 with
minimal power loss. The signal at port number 3 is delayed by
a single mode optical fiber of length ≈ 126 m (i.e., time-delay
of ∼ 630 ns). The light beam at the fiber output is split into two
paths. One path passes through a 10 GHz LiNbO3 phase modu-
lator (PM) (half-wave voltage Vπ = 5 V, maximum input power
28 dBm). The PM output signal is combined with the light beam
of the second path using a 2× 2 optical coupler implementing
an intensity modulation, of the light beam. One output port
of this coupler is connected to port number 1 of the circulator
while the second output port is connected to an optical spectrum
analyzer. So, taking into account the loses about 10% of the
collected power is re-injected into the laser.

The original data to be processed is first convoluted with a
random mask which has 4 discrete values (−1,−0.25, 0.25, 1)
generated randomly with equal probability at the time interval
of θ = 24 ns. The resulting signal is uploaded in a two chan-
nel arbitrary waveform generator (AWG) (Tektronix AFG3102C,
dual channel, 1 GS/s, 100 MHz) from where it is injected into
the reservoir via the PM radio-frequency electrode. The am-
plitude of the injected signal is rescaled such as to obtain an
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Fig. 3. Original data (black) and the corresponding experimen-
tal recorded signal of the laser response read by the photodi-
ode (color) for the diode pump current (a) I = 120 mA and
(b) I = 220 mA. The amplitude of the input data and the laser
response have been rescaled with its maximum value in each
case. The laser response signal has been shifted for clarity.

optimal contrast of the modulation at the laser output. In our
case, the peak-to-peak voltage from the AWG was 10 V. The
data is recorded using a digital oscilloscope (LeCroy 200 MHz,
2.5 GS/s). The AWG is perfectly synchronized with the oscil-
loscope so that the original data and the laser response to this
data can be simultaneously recorded. We experimentally use
1000 steps for training and 250 steps for testing. The samples
are injected at the time interval Td = 2.4 µs which is 3.8 times
larger than the time-delay, i.e T = 630 ns. This corresponds
to a reservoir with N = Td/θ = 100 virtual nodes. As such,
only a fraction of the virtual nodes (i.e., ∼ N/3.8) are connected
through the feedback to nodes in a previous state (i.e. nodes that
receive an input corresponding to a previous time).

Figure 3 shows the temporal profiles of the original data
(black) and the laser response at the photodiode output (red)
for two values of the diode-pump currents with one close the
threshold (I = 120 mA) and another far away from the threshold
(I = 220 mA). For I = 120 mA, the micro laser emits a low power
and therefore the fraction of the signal (i.e., about 10% of the
collected power) to be re-injected into the laser is small. In this
case, the dynamical response of the laser to input signal may also
be limited since the feedback light beam is the one carrying the
input data. For I = 220 mA, the beam fraction driven the data
is larger. The laser response is quite similar to the input signal.
These laser output signals are used to optimize the readout
weights. The prediction error rates NMSE obtained for the two
cases were ≈ 0.4 and ≈ 0.07 for I = 120 mA and I = 220 mA
respectively. To demonstrate that the nonlinearity of the laser
is necessary for this computation, we have also optimized the
weights directly from the AWG’s output signals. We obtained
the prediction error rates NMSE of ≈ 0.7. This significantly
worse performance evidences that eventual nonlinearity caused
by the out-of-bandwidth operation of the AWG does not already
allow for reservoir computing.

To identify the most suitable parameter regimes for which the
system can successfully predict a chaotic input signal one-time
step ahead in the future, we show in Fig. 4 the system perfor-
mance expressed by the NMSE as a function of the diode-pump
rate µ = (I − Isp)/(Is − Isp). For each value of µ, we run the
experiments 6 different times and record for each run a time
trace of 5 ms at the output of the photodiode. The sampling rate
at the oscilloscope is 2 ns. The shown values of the NMSE are the
mean values over the runs. For low pump rates µ, large values
of NMSE are obtained meaning worse performance. This degra-
dation is due to noise which is dominant for small laser output
powers (the signal-to-noise ratio (SNR) is small in this case).
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Fig. 4. Prediction errors NMSE as a function of (a) the pump
rate µ for virtual node’s separation θ = 24 ns; (b) θ for µ = 2.5.
The time interval resolution of the time-delay is θ.

This noise is mainly readout noise from photodiode. For large
values of µ (i.e., large laser output signals), the SNR is large and
the influence of readout noise can be minimized. For such cases,
we obtain a lowest NMSE of 0.12± 0.04 at µ ≈ 2.58 (note that
for clarity, the error bars are not plotted) while a lowest NMSE
of 0.108 was obtained in [7] for the same task. The performance
of the two systems is therefore similar although we consider a
time delay comparable to the laser’s relaxation oscillation time,
τRO, [note that τRO ≈ (γγe(µ− 1))−1/2 ≈ 750 ns at µ ≈ 2.5].

For real-world applications, the delay length would be fixed
during the manufacturing phase of the device while the length
of the mask could be independently varied by changing, for
example, the temporal node’s separation. To investigate this fact,
we show in Fig. 4(b) the NMSE values for different values of θ
when N and µ are kept fixed to 100 and 2.5 respectively. The
optimal value lies around θ = 24 ns. These are therefore the
values of θ for which the optimal coupling between the virtual
nodes is obtained.

For further insights, we perform numerical simulations using
the model of diode-pumped Erbium microchip laser subject to
optical delayed feedback introduced in [20, 21]. The relavant
variables of the model are the slow-varying complex envelope
of the electric field Em(t) associated to the longitudinal mode m
(with m = 1, 2) and its corresponding carrier number Nm(t):

Ė1,2 =
1
2

(
Bg1,2N1,2 − γ

)
E1,2 +

iα
2

BN1,2

+
η

2

[
1 + ei

(
S(t)−ω1,2δT

)]
E1,2(t− T)eiω1,2T + ξ1,2(t),

Ṅ1,2 =γe

(
Np − N1,2

)
+ gBN1,2

(
|E1,2|2 + $|E2,1|2

)
+ ζ1,2(t),

where the parameters are the Einstein coefficient: B, the decay
rate of the population inversion: γe, the pumping rate: γe Np,
the laser cavity decay rate: γ, the linewidth enhancement factor:
α, the feedback rate: η, the time delay: T, the cross-saturation
parameter: $, the solitary laser frequency for mode m: ωm. S(t)
is the signal which results from convolution between the origi-
nal data to be processed and the mask. The noise is modeled as
the Langevin forces ξ1,2(t) and ζ1,2(t) which describe the quan-
tum fluctuations of the laser population and the radiation field.
These forces are defined as having a zero mean value and white-
noise-type correlation functions: 〈ξi(t)ξ∗j (t

′)〉 = Dδij(t− t′) and
〈ζi(t)ζ∗j (t

′)〉 = Dγγeµδij(t− t′)/B for i, j = 1, 2 where D is the
spontaneous emission factor.

From experiments, we have retrieved the parameters γ =
53.66 µs−1, γe = 0.217 µs−1, $ = 0.43. We also consider other
parameters from [20, 21]: B = 122.1, α = 1, η = 0.3 µs−1,
g = 0.95, Np = µγ/B, ωmT = 0, ωmδT = −0.9π and D = 10−4.
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state. (b) Corresponding NMSE as a function of the pump
rate µ. We consider θ = 24 ns and µ = 2.5. The time interval
resolution of the time-delay is θ.

We numerically use 3000 steps in the data set for training and
1000 other steps for testing. For each value of µ, we run the
simulations 10 different times and record for each run the
laser output as |E(t)|2 = |E1(t) + E2(t)|2. Additional Gaus-
sian white noise is added to |E(t)|2 to model the readout noise
from the photodiode. Thus, the weights are optimized from
|E(t)|2 + Doutξout(t) instead of |E(t)|2, where Dout is the noise
amplitude while ξout(t) is a Gaussian white noise with zero
mean and correlation 〈ξout(t)ξ∗out(t

′)〉 = δ(t − t′). Dout = 0
refers to noiseless photodetectors. We choose Dout = 4 as it is
the value for which numerical and experimental SNRs calcu-
lated as SNR= 10log10

(
〈|E(t)|2〉/〈Dout〉

)
are similar. The SNR

is ≈ 10 dB at µ = 1.2 and ≈ 26 dB at µ = 2.5. The value of Dout
is kept fixed for the rest of the Letter.

The numerical obtained values of the NMSE as a function of
the pump rates are also shown in Fig. 4 in comparison with the
experimental ones. Again, the error bars are not plotted. In both
cases, an excellent agreement is found between experimental
and numerical results. In particular, it is confirmed that, because
of noise, the system performance strongly degrades for small
values of µ [see Fig. 4(a)] and also for high processing speeds
[see Fig. 4(b)]. We obtain, for example, an NMSE≈ 0.43 for
θ = 6 ns although all the N virtual nodes are connected through
the feedback to nodes in the previous state for this θ. Note that
for fixed N, the processing speed increases with the decrease
of θ. By comparing the NMSE values obtained from a system
with (•) and without readout noise (�), it turns out that the
degradation of the NMSE for low values of µ is mainly due to
the readout noise. Through numerical simulations, we have
also found that the calculation of the weights from |E1(t)|2 or
|E2(t)|2 (i.e., considering only one mode) yields similar results
as from |E1(t) + E2(t)|2. This is not surprising since the mode
spacing is large such that the heterodyne signal is outside the
detection bandwidth of the system. In such a case, the choice of
either mono- or bi-mode laser is not of importance.

The memory capacity of the system may decrease when only
a fraction of the virtual nodes is connected through the feedback
to the previous input states. To investigate this fact, we compare
in Fig. 5 (a) the simulated results of the memory function (cal-
culated from uniformly distributed random signal drawn in the
interval [−0.5; 0.5]) when N/3.8 virtual nodes (�) and when all
the N virtual nodes (•) are connected to nodes in a previous state
considering θ = 24 ns and µ = 2.5. Effectively, it is seen that
the memory slightly decreases for N/3.8 connected to nodes in
a previous state. The fading slope of the memory is also slow

in this case. But, the calculation of the NMSE shows that these
changes in the memory do not significantly degrade the system
performance for one-step ahead prediction [Fig. 5 (b)]. However,
the low memory in Fig. 5 (a) suggests that this system may not
be suitable for some tasks requiring large memory capacity.

In conclusion, we have experimentally and numerically
shown that diode-pumped Erbium doped microchip lasers sub-
ject to optical feedback can be used to implement RC systems
for prediction tasks. Using Santa-Fe time series as benchmark,
we found a best prediction error similar to that obtained with
a similar system (but with a long time-delay [7]) although the
use of a short time-delay. Our results also have shown that even
multi-mode lasers with large mode spacing can be used.
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