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Summary

The higher biological effect of Carbon ions hadrontherapy (C+)  is explained by the nature of the DNA damages. It is known that 
cell response to γ-irradiation (γ-IR), but not to C+, is correlated with telomere length in different type of cancer cells. Here, we 
propose that this “telomeric effect” must result from an effect of ROS in γ-IR compared to C+.
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Introduction

Carbon ions (C+) hadrontherapy is an alternative treatment 
for radio-resistant tumors. Compared with photon irradiation 
(γ -IR), C+ has demonstrated a higher Relative Biological Effi-
ciency (RBE) in vitro [1] and in vivo [2]. Clustered DNA lesions 
called Locally Multiply Damaged Sites (LMDS) are more diffi-
cult to repair and are therefore responsible for the higher RBE 
of C+ irradiation [3]. In contrast, isolated double strand breaks 
(DSBs) are thought to be the primary determinant of cell death 
after γ -IR with a minor implication for LMDS [4]. However, 
the genomic region damaged by these types of irradiation can 
also influence the RBE. Telomeres, the heterochromatin struc-
ture located at the end of chromosomes, play different roles in  
response to C+ and γ-IR [5]. While the initial length of telomeres 
influences cellular responses only to γ -IR, it is subsequent  

increase in telomeric length that is specifically observed after 
C+ [6]. To further characterize the initial telomeric effect, we 
have studied the telomeric DSBs known as Telomeric dam-
age-Induced Foci (TIF) after C+ and γ-IR which yield the same 
RBE.

Methods and Materials

U373MG cell line (telomere length 14 kb) was a kind gift from 
Pr. Verelle (EA3846, Clermont-Ferrand, France). C+ irradiation 
was given at 72 MeV/u, LET 33.6 keV/µm, and X-ray beam of 
250 kV at 2Gy.min-1 for photon irradiation. The RBE value for 
the carbon ion beam relative to X-ray at the D10 levels was 
determined (Figure A) and used to irradiate cell at the same 
biologic dose (fold 2). TIFs were determined by immunofluo-
rescence analysis of a DSBs signalizing protein 53BP1 (Novus 
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biological : NB100-305) and the telomeric protein TRF1 Ab-
cam : ab10579) co-localization counting. Antibody were used 
at a dilution of 1:300. Acquisation was done with a Z-stack 
(Step 0.1µm). At least 30 cells with more than one TIF were 
counted by condition. Only cells with more than one TIF were 
considered. The values represent the mean ± s.d of two inde-
pendent experiments. The clonogenic survival assays were 
done as previously published [5].

Results and Discussion

We observed no difference in the number of initial DSBs pro-
duced directly at telomeric sites between the two types of irra-
diation (2.46 TIFs per cell at 30min) (Figure B).

However, the percentage of cell with TIF and the average num-
ber of TIF per cell increased and reached a peak 6h post-irra-
diation after γ-IR (3.3 and 86%, Fig. B, C). γ -IR is a well-known 
inducer of reactive oxygen species (ROS). Due to their GGG 
stretch, telomeres produce an excess of 8-oxoguanines, com-
pared to the rest of whole genome, when exposed to ROS [7]. 
This type of DNA damages is poorly repaired at telomeres and 
frequently turned into single and double strand breaks [8, 9]. 
Furthermore, it is described in the literature that C+ produced 
less oxidized purine that γ-IR [10]. Thus, this could explain the  
appearance of DSBs resulting from the mis-repaired 8-oxogua-
nine at telomeres.

However, after C+ irradiation, the average number of TIFs 
per cell (Figure C) and the number of cells impacted by TIF 
remained lower and were quite stable over the 24h post-irra-
diation period. It is noteworthy that C+ produces clusters of 
DNA damage in the vicinity of the track of the particle (see the 
large 53BP1 foci, Figure D) in a ROS-independent manner [11]. 
In this context, telomeric damages induced by the impact of 
the particle are expected to be yield into much complex LMDS. 
Because of their complexity, LMDS are rarely repaired in accor-
dance with the stable level of TIFs that we have observed over 
a 24h time period (2.6 to 2.2).

Finally, we observed a higher percentage of cells with residual 
DNA damages 24h post- γ -IR at telomeres, in comparison with 
C+ (72% versus 33%), while the mean number of TIF per cells 
was similar (2.7 versus 2.5). Residual/unrepaired DNA damag-
es are known to promote cell death [12].

Considering that we used doses of γ-IR and C+ leading to the 
same level of cell death, this observation confirms that resid-
ual telomeric damages play a minor role after C+ irradiation. 
Persistent Telomere-Associated DNA damage Foci (TAFs) are 
also predictive of an increased risk of secondary cancer [13]. 
The higher level of TAFs after γ-IR as compared with C+ was 
concordant with a higher rate of recurrence after γ-IR [2].
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Figure Legends 
 
Telomeres are targeted differently by photon and carbon irradiations. (A) Clonogenic survival assays were 

performed after photon or C+ irradiation. The values represent the mean ± s.d of three independent experiments. (B) 

Representation of the percentage of cells presenting TIFs after 2Gy or 1Gy, respectively with photon and carbon 

irradiation. The values represent the mean ± s.d of two independent experiments. (C) Average number of TIFs per 

cell after 2Gy or 1Gy, respectively with photon or carbon irradiation. (D) Representative pictures of TIFs staining, 

6h post-irradiation, nuclei are delimited by a white line and TIF is represented by a white arrow. 
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Figure 1. Telomeres are targeted differently by photon and carbon irradiations. (A) Clonogenic survival assays were performed after photon or 
C+ irradiation. The values represent the mean ± s.d of three independent experiments. (B) Representation of the percentage of cells presenting 
TIFs after 2Gy or 1Gy, respectively with photon and carbon irradiation. The values represent the mean ± s.d of two independent experiments. 
(C) Average number of TIFs per cell after 2Gy or 1Gy, respectively with photon or carbon irradiation. (D) Representative pictures of TIFs stain-
ing, 6h post-irradiation, nuclei are delimited by a white line and TIF is represented by a white arrow.
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Globally, these data are concordant with the hypothesis that 
the initial “telomeric effect” results from a pan-ROS prominent 
effect of γ -IR, while C+ irradiation acts mainly by LMDS.
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