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Abstract. A sequence w over a finite alphabet A is generated by a
uniform automaton if there exists an automaton labelled on {0, . . . , k−1}
for some k > 1 and recognizing for each output a in A the set of positions
of a in w expressed in base k. Automatic sequences are generated by finite
automata. By considering pushdown automata instead of finite ones,
we generate exactly the context-free sequences. We distinguish the sub-
families of unambiguous, deterministic, real-time deterministic context-
free sequences associated with the corresponding families of pushdown
automata. We study the closure under shift, product, morphisms, inverse
substitutions and various extractions of these four families of context-
free sequences. Additionally, we show that only using multiplicatively
dependent bases yields the same set of context-free sequences.

1 Introduction

Automatic sequences are well known objects appearing in many area of the-
oretical computer science and mathematics [Co 72,AS 03]. To generate these
sequences, one can use finite k-automata. Fixing an integer k greater than 1, a
k-automaton G has states labelled over an alphabet A and edges labelled on
JkK = {0, . . . , k − 1} so that the family of languages L(G, a) recognized by G

from an initial state to a state labelled a in A forms a partition of the set of
words over JkK labelling paths in G. A k-automaton G generates the sequence
w over A when L(G, a) is the set of positions of a in w properly expressed in
base k.

When G is finite, the sequence w is k-automatic. Finite automata are also
well known devices which recognize regular languages [Kl 56].

As automatic sequences can be characterized in several other ways (using reg-
ular languages, uniform morphisms or their kernel finiteness property), there are
different ways to extend this notion: context-free sequences, morphic sequences,
regular sequences (see [AS 03] for example).

One can also extend this notion using a larger class of automata, the most
natural one being, following Chomsky’s hierarchy [Ch 56], k-pushdown automata
(pushdown automata over JkK). It turns out that this generalization of automatic
sequences, also yields to context-free sequences defined in [Ha 98], [Mo 08] and
[AS 03] (open problem 6.3, p 208): a sequence w is k-context-free if and only if
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for each letter a, the set of occurrences in base k of a in w is a context-free
language.

Contrary to finite automata, we obtain distinct sub-families of sequences
by considering only unambiguous, deterministic, or real-time deterministic k-
pushdown automata. These (proper) sub-families are respectively named unam-
biguous, deterministic, real-time deterministic k-context-free sequences.

The closure properties of these four families of sequences are also different.
This fact underlying the different consequences of the considered transformations
(synchronization product, shift, uniform morphism, inverse injective k-uniform
substitution, regular extractions) over the unambiguity and the determinism
of involved languages and automata. They sometimes share the same closure
properties (Propositions 12 and 14) or not (Propositions 13 and 15).

Moreover, tools used to prove these properties depend on the considered fam-
ily: while, for context-free sequences and unambiguous context-free sequences,
closure properties follow from easy considerations over languages, for determinis-
tic context-free sequences and real-time deterministic context-free sequences one
has to use tools from infinite graph theory. Indeed, for these two last subfamilies,
classes of languages associated to involved pushdown automata no longer have
suitable closure properties and the usual internal representation of k-pushdown
automata is not really suitable to compute automaton transformations induced
by the transformations of sequences we consider. Then, we choose to favor their
external representation (by their transition graphs) using the equivalent notion
of regular k-automata [MS 85].

Finally, we investigate base dependence properties of context-free sequences.

2 Generating sequences with automata

We recall the general notion of automaton, and the particular cases of unambigu-
ous and deterministic automata. The languages recognized by automata over the
alphabet {0, . . . , k − 1} of k > 1 digits, called k-automata, can be seen as sets
of natural numbers expressed in base k. This in turn allows such automata to
define sequences.

2.1 Automata and languages terminology

Let A be an alphabet i.e., a finite set of symbols called letters. A word u over
A of length n ≥ 0 is a mapping from the set JnK = {0, . . . , n− 1} into A which
is denoted by the n-tuple (u(0), . . . , u(n−1)) ∈ An or simply by u = u0· · ·un−1

where ui = u(i) for each i ∈ JnK ; we write |u| the length n of u. The word of
length 0, i.e., the 0-tuple () is the empty word denoted by ε. The set A∗ of words
over A is the free monoid (A∗, ·, ε) generated by A with the concatenation
operator · which can be omitted: u0· · ·um−1 · v0· · ·vn−1 = u0· · ·um−1v0· · ·vn−1.

Any subset of A∗ is a language over A. The family 2A
∗

of languages over A

is a semiring (2A
∗

,∪, ·, ∅, {ε}) for the language concatenation defined by L·M =
{ u·v | u ∈ L∧v ∈ M } for any L,M ⊆ A∗. The closure under concatenation of a
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language L is the language L∗ =
⋃
n≥0

Ln for Ln = { u1·. . . ·un | u1, . . . , un ∈ L }

the concatenation n-times of L. Recall that a language is a regular language if
it can be obtained from ∅ and the elementary languages {a} with a ∈ A by
finite application of the operations ∪, ·,∗. The regular languages are also the
languages recognized by finite automata.

We fix a symbol ι. An automaton over A and an alphabet C of colours
(output alphabet) with ι 6∈ C, is a directed graph G whose each edge is labelled
by a letter in A and whose vertices can be labelled by letters in C ∪ {ι} :

G ⊆ V×A×V ∪ (C ∪ {ι})×V for some (possibly infinite) set V .

A triple (s, a, t) ∈ G is an edge labelled by a from source s to target t ; it is
identified with the transition s

a
−→G t or directly s

a
−→ t if G is understood.

A pair (c, s) ∈ G or directly c s ∈ G means that s is labelled by c. A vertex
can be uncoloured. The set of vertices of G is

VG = { s | ∃ c (cs ∈ G) } ∪ { s | ∃ a, t (s
a

−→G t ∨ t
a

−→G s) }.

So G is a finite automaton if and only if its vertex set VG is finite. An input
vertex is a vertex s labelled by ι : ι s ∈ G.

The induced automaton G|P of an automaton G to a set P is the restriction
of G to its vertices in P :

G|P = { (s, a, t) ∈ G | s, t ∈ P } ∪ { (c, s) ∈ G | s ∈ P }.

The inverse G−1 of an automaton G is the automaton

G−1 = { (t, a, s) | (s, a, t) ∈ G } ∪ { (c, s) | (c, s) ∈ G }.

The out-degree d+G(s) = |G ∩ {s}×A×VG| and the in-degree d−G(s) = d+G−1(s)
of a vertex s are the number of edges of respectively source and target s ; the
degree of s is d(s) = d+(s) + d−(s). An automaton is of finite (resp. in-, out-)
degree if any vertex is of finite (resp. in-, out-) degree. A finite degree automaton
with finitely many vertex degrees is of bounded degree.

Any tuple (s0, a1, s1, . . ., an, sn) ∈ (V A)∗V for n ≥ 0 with s0
a1
−→G s1 , . . . ,

sn−1
an−→G sn is a path from s0 to sn labelled by u = a1· · ·an ; we write

s0
u

−→G sn or directly s0
u

−→ sn if G is understood; we say that sn is accessible
from s0 and also write s0 −→∗ sn if we do not want to specify a path label.
An accessible automaton G means that any vertex is accessible from an input
vertex: ∀ s ∈ VG ∃ r ∈ VG (ι r ∈ G ∧ r −→∗ s).
We say that G is deterministic if it has a unique input vertex and there are no
two edges with the same source and the same label: (r

a
−→ s ∧ r

a
−→ t) =⇒ s = t.

We also say that G is unambiguous if there is no couple of distinct paths labelled
with the same word from the set of input vertices to the set of coloured vertices.
We abbreviate unambiguous by ‘una.’ and deterministic by ‘det.’.

The language recognized by an automaton G (from ι) to c ∈ C

L(G, c) = { u ∈ A∗ | ∃ s, t ∈ VG (s
u

−→G t ∧ ι s , c t ∈ G) }

is the set of words labelling the paths from an input vertex to a vertex coloured
by c. Kleene’s theorem [Kl 56] states that a language is regular if and only if it
is recognized by a finite (resp. and det.) automaton.
A colouring over (A,C) is a mapping Λ : C −→ 2A

∗

. To any automaton G,
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we associate the colouring ΛG defined for any c ∈ C by ΛG(c) = L(G, c).
We say that a colouring Λ is a partition of P ⊆ A∗ if

⋃
c∈C Λ(c) = P and

Λ(c) ∩ Λ(d) = ∅ for any c 6= d in C.

2.2 Uniform automata and sequences

A sequence w over A is a mapping from the set IN of nonnegative integers into
A denoted by w = (wn)n≥0. Let Aω be the set of sequences over A.
We fix an integer k > 1. Recall that JkK = {0, . . . , k − 1} and we denote

JkK⋄ = JkK∗ − 0.JkK∗

the set of words over JkK not beginning with 0.
The (proper) representation in base k of any n ∈ IN is the word

(n)k = n0· · ·nr ∈ JkK
⋄

such that
∑r

i=0 nik
r−i = n

Conversely to any word u ∈ JkK
∗
, we associate the integer

[u]k =
∑|u|−1

i=0 uik
|u|−i−1.

So for any n ≥ 0 and u ∈ JkK
∗
, we have [(n)k]k = n and ([u]k)k is the greatest

suffix of u in JkK⋄. For any w ∈ Aω, we define the k-colouring Λk
w associating

with any a ∈ A the language

Λk
w(a) = { u ∈ JkK⋄ | w[u]

k

= a } = { (n)k | wn = a }

of the representations in base k of the positions of a in w.
So the colouring Λk

w is a partition of JkK
⋄
.

Definition 1. A k-automaton over A is an accessible automaton G on the
set JkK of edge labels and on the set A of colours such that ΛG is a partition
of JkK

⋄
. We talk about uniform automaton when k and A are not specified.

Any vertex of a uniform automaton has at most one colour. For a det. uniform
automaton, each vertex has a unique colour and its input vertex has no ingoing
edge. A non-det. uniform automaton can have several paths with same labels
starting from distinct input vertices and leading to vertices possibly coloured
but with the same colour.

Definition 2. A k-automaton G generates the sequence Seq(G) ∈ Aω if for
any integer n, the n-th letter Seq(G)n is the colour a such that (n)k ∈ ΛG(a),
i.e., Λk

Seq(G) = ΛG .

Example 3. Let G be the following det. 2-automaton over {a, b} :

1
ι

b

0

b

ba 1 1

0 0

b

0

b

0

0 0

b b

0, 1 0, 1 0, 1 0, 1

1 11

b b b b

0, 1

a
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The automaton G generates the sequence w = Seq(G) characterized by:

Λw(a) = { 1n0n | n ≥ 0 } and Λw(b) = {0, 1}⋄ − Λw(a),

that is wn = a if and only if there exits p in N such that n = 2p(2p+1 − 1) .

3 Context-free sequences

The k-automatic sequences can be characterized using languages. Precisely, a
sequence w is a k-automatic sequence if the colouring Λk

w only contains regu-
lar languages. In [Ha 98] and [AS 03] (open problem 6.3, p 208), authors start
considering the sequences for which the colouring Λk

w is made of context-free
languages [AU 79].

Definition 4. A sequence w over A is a k-context-free sequence if Λk
w(a) is

context-free for all a ∈ A.

Moreover, a sequence w is a k-automatic sequence if and only if it is gen-
erated by a finite k-automaton G : w = Seq(G) [Co 72]. It is natural to expect
that k-context-free sequences are sequences generated by pushdown automata
over JkK (with no 0-edges starting from input vertices), called k-pushdown au-
tomata, as these machines recognize context-free languages. As the usual in-
ternal representation of k-pushdown automata is not really convenient to play
with automata transformations involved by transformations of sequences we will
consider. So we use the equivalent notion (via their transition graphs) of regular
k-automata [MS 85] and we show that k-context-free sequences are sequences
generated by regular k-automata (See Proposition 6).

3.1 Regular automata

Regular automata, which form a family of infinite automata (including the finite
automata), is the set of finitely decomposable automata.

Let us make precise the notion of decomposition of an automaton G according
to a graduation which is a mapping g : VG −→ IN such that only finitely many
vertices have the same value by g : g−1(n) is finite for every n ≥ 0.

Let Con(G, g, n) be the set of connected components of G|{ s | g(s)≥n } for any
n ≥ 0. In particular Con(G, g, 0) = {G} for G connected.

We complete elements in Con(G, g, n) to obtain a partition Dec(G, g, n) of
G|{ s | g(s)≥n } ∪ { s

a
−→G t | g(s) > n ∨ g(t) > n } as follows:

Dec(G, g, n) =
⋃

H∈Con(G,g,n)

H ∪

{
s

a
−→G t | ∨

(s ∈ VH ∧ g(s) > n)
(t ∈ VH ∧ g(t) > n)

}

The information added in Dec(G, g, n) consists in specifying the way(s) a
graph of Con(G, g, n) can be linked with others connected components in G.
This additionnal information is useful whenG contains at least a vertex of infinite
degree.

The finiteness of the decomposition Dec(G, g) =
⋃

n≥0 Dec(G, g, n) is ex-
pressed by isomorphism respecting the frontiers. The frontier FrG(H) of H ⊆ G
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is the set of vertices common to H and G−H i.e.,

FrG(H) = VH ∩ VG−H .

We say that H,K ⊆ G are strongly isomorphic if there exists a bijection
h : VH −→ VK preserving edges, colouring and frontiers:

h(H) = K and h(FrG(H)) = FrG(K).

An automaton G is finitely decomposable by a graduation g if

Dec(G, g) has finitely many non-strongly-isomorphic automata.

Finally G is a regular automaton if G is finitely decomposable by some gra-
duation.

In particular, a regular automaton has finitely many non-isomorphic con-
nected components but notice that there exists a non-regular automaton G

with a graduation g giving a decomposition Dec(G, g) with finitely many non-
isomorphic components. Moreover, a regular automaton of finite degree is of
bounded degree.

Example 5. Let us consider the following 4-automaton of vertex set ZZ :

G = { n
0

−→ − n | n ∈ ZZ−{0} } ∪ { n
i

−→ n+ i | n ∈ ZZ , i ∈ {1, 2}}

∪ { n
3

−→ n− 1 | n ∈ ZZ } ∪ {ι 0} ∪ { a 0 } ∪ { b n | n 6= 0 }

This is a 4-automaton which is represented (with vertices in bold faces, with −n

denoted by n) as follows:

1

3

1

3

3 3

1

22

2 2

0 0, 2 0 00 0

2

2

3

1

1

3
a

ι

b1 b3b2

0

b31b2b1

Such an automaton G is regular because it is finitely decomposable by the
graduation g(n) = |n| of the absolute value. In fact, Dec(G, g) has only three
non-strongly-isomorphic automata: G and the following two automata where
the vertices of the frontier are circled:

1

3

1

3

3 3

1 1b b

22

2 2

0 0, 2 0 00 0

2

2

b

and

1

3

b

1

3

3 3

1 1b b

2

2

0 0 00 0

2

2

2

2

0

b bb b b b

For any connected automaton G of finite degree and with finitely many in-
put vertices i.e., { s | ι s ∈ G } is finite, a standard graduation is the distance
from the input vertices: for any vertex s ∈ VG :

DistG(s) = min{ |u| | ∃ r (ι r ∈ G ∧ r
u

−→G ∪ G−1 s) }
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The decomposition Dec(G,Dist, n) of any automaton G at distance n ≥ 0 is
the set of connected components obtained by removing in G all the vertices at
distance from ι less than n. For the automaton presented in Example 5, we

have DistG(n) =
⌈
|n|
2

⌉
for any n ∈ ZZ.

The regular k-automata are isomorphic to the transition graphs of k-push-
down automata (ε-transitions in their transition graphs being removed by gluing
vertices, and with regular set of configurations labelled by each colour) [MS 85].
So the languages recognized by the family of regular automata are the context-
free languages. Moreover, det. (resp. det. and of finite degree, resp. una.) regular
k-automata are isomorphic to transition graphs of det. (resp. real-time det., resp.
una.) k-pushdown automata, so these classes of regular k-automata recognizing
respectively the det. context-free languages, the real-time det. context-free lan-
guages, and una. context-free languages of JkK

⋄
[Ca 07]. We abbreviate real-time

by ‘rt.’.

3.2 Regular automata and context-free sequences

We extend the characterization of automatic sequences by finite automata to
context-free sequences using regular k-automata.

Proposition 6. A sequence is a k-context-free sequence if and only if it is gen-
erated by a regular k-automaton G : w = Seq(G).

Proof. Let w be a k-context-free sequence. As context-free languages over JkK
are recognized by pushdown automata over JkK, for any letter a ∈ A, Λk

w(a) =
L(Ga, a) for some regular k-automaton Ga having a unique colour a. Notice
that in general, the usual product of two regular automata is not regular. As
automata Ga can be choosen with distinct vextex sets, w is generated by the
disjoint finite union ∪a∈AGa which remains a regular k-automaton.

For a sequence generated by a regular k-automaton G, the language Λw(a)
with a ∈ A is recognized by the regular k-automaton obtained from G by
removing colours c 6= a, so Λw(a) is context-free. ⊓⊔

It is natural to introduce the sub-families of k-context-free sequences asso-
ciated with the different classes of regular automata/pushdown automata pre-
sented at the end of Section 3.1.

Definition 7. A sequence is a una. (resp. det., rt. det.) k-context-free sequence
if it is generated by a una. (resp. det. , det. and of finite degree) regular k-
automaton.

Let us note RtDetCfk(A
ω), DetCfk(A

ω), UnaCfk(A
ω), Cfk(A

ω) for the re-
spective four families of rt. det., det., una., k-context-free sequences over A.

For any k > 1, we have

RtDetCfk(A
ω) ( DetCfk(A

ω) ( UnaCfk(A
ω) ( Cfk(A

ω)

The strict inclusions follow from these on context-free languages and we can
refine Proposition 6.
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Proposition 8. For any w ∈ Aω and k > 1,

w is a (resp. una.) k-context-free sequence

⇐⇒ Λk
w(a) is (resp. una.) context-free for any a ∈ A.

Furthermore
w is a (resp. rt.) det. k-context-free sequence

=⇒ Λk
w(a) is (resp. rt.) det. context-free for any a ∈ A.

For the unambiguous case, the proof of Proposition 6 holds, as if all automata
Ga are una., the disjoint union ∪a∈AGa remains una. The second implication
comes from the fact that families of det. and rt. det. regular automata recog-
nize respectively det. and rt. det. families of context-free languages [Ca 07]. The
converse of the implication is true for |A| = 2 (because the complement of a
det. context-free language is also context-free) but false in general (see Proposi-
tion 16).

Notice also that the characterization of k-automatic sequences as morphic
sequences obtained with k-uniform morphism [Co 72] can be extended to the
smallest subfamily RtDetk(A

ω) of k-context-free sequences [LeG 12] using a no-
tion of context-free morphic sequence which extend the usual notion of morphic
sequence [Lo 05].

4 Closure properties

The set of k-automatic sequences is stable by various transformations: regular
modifications of letters, shift, application of a uniform morphism, inverse sub-
stitution, various extractions. It underlies the robustness of this concept, and
one can ask whereas these properties remain true or not for the four families of
k-context-free sequences.

In this section, we present closure properties of Cfk(A
ω) and DetCfk(A

ω)
but these properties and their proofs remain valid by replacing Cfk(A

ω) by
UnaCfk(A

ω) and by replacing DetCfk(A
ω) by RtDetCfk(A

ω).
By Proposition 6, we get closure properties of Cfk(A

ω) and UnaCfk(A
ω)

from the closure properties of context-free languages.We get closure properties of
DetCfk(A

ω) and RtDetCfk(A
ω)) from the preservation of deterministic regular

automata by inverse regular path functions.

4.1 An important tool: regular path functions

Let us recall the notion of a path function.
We define the set Exp of regular expressions as the smallest language over

C ∪ A ∪ {ε , ( , ) , −1 , ¬ , ∨ , ∧ , · , +}
such that C ∪ A ∪ {ε} ⊆ Exp and for any u, v in Exp, the expressions
(u−1) , (¬u) , (u ∨ v) , (u ∧ v) , (u · v) , (u+) are in Exp.

We can remove parentheses using the associativity of ∨ , ∧ , · and by assigning
priorities to operators as usual. Finally · can be omitted. The expression u∗

corresponds to ε ∨ u+ and we will use A instead of
∨

a∈A a.



9

A finite expression is a regular expression without the operator + and we
denote by FinExp the set of finite expressions.

The label a ∈ A of an edge s
a

−→G t from s to t of an automaton G is
extended to a regular expression u ∈ Exp by induction on the length of u : for
any c ∈ C and u, v ∈ Exp,

s
c

−→ t if s = t ∧ c s ; s
ε

−→ t if s = t

s
u−1

−→ t if t
u

−→ s ; s
¬u
−→ t if ¬ (s

u
−→ t)

s
u∨ v
−→ t if s

u
−→ t ∨ s

v
−→ t ; s

u∧ v
−→ t if s

u
−→ t ∧ s

v
−→ t

s
uv
−→ t if ∃ r (s

u
−→ r ∧ r

v
−→ t) ; s

u+

−→ t if s (
u

−→)+ t.

A regular expression formalizes a path pattern in a graph.

Example 9. For instance, if u and v are words over A and c in C,

s
ε∧u
−→ t means that there is a cycle on vertex s labelled by u;

s
ε∧uu−1

−→ t means that s = t and there is a path labelled by u starting from s;

s
c

−→ t or s
c

−→ s means that the vertex s = t is coloured by c;

s
(ε∧ucu−1)v

−→ t means that there is a path labelled by u starting from s and
ending to a vertex coloured with c and a path from s to t labelled by v.

s
A∗cA∗

−→ t means that there is a path labelled from s to t which goes through a
vertex colored by c.

A function h : C ∪ A −→ Exp (resp. FinExp) is called a regular (resp.
finite) path function and is applied by inverse to any automaton G to get the
automaton:

h−1(G) = { s
a

−→ t | a ∈ A ∧ s
h(a)
−→G t } ∪ { c s | c ∈ C ∧ s

h(c)
−→G s }.

That is, the graph h−1(G) is obtained by replacing any path of type h(a) from
s to t by an edge s

a
−→ t and colouring of a vertex s by c if a path h(c) loops

on s.
Let us give an example to illustrate the notion of inverse regular path func-

tion.

Example 10. For instance we take the following automaton G = { n
a

−→ n+1 |
n ≥ 0 } depicted as follows:

a a a a

(1)(0) (2) (3) (4)

and the finite path function h defined by h(a) = a and h(ι) = ¬(a−1a).
So h−1(G) is the following automaton:

a a a aι

(1)(0) (2) (3) (4)

By applying to this automaton by inverse the following regular path function g:
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g(ι) = ι ; g(o) = ι ∨ a−1 ι a ;

g(a) = (ε ∧ (a−1)∗ ι (aa)∗) a a ;

g(b) = (ε ∧ (a−1)∗ ι (aa)∗) a−1 ∨ (ε ∧ (a−1)∗ ι a(aa)∗) a−1 a−1 .

we get the following automaton g−1(h−1(G)) depicted as follows:

a a

b b

b boι
o

(3)

(2)(0)

(1)

(4)

The regularity of automata and the finiteness of its degree are preserved by
inverse of regular path function under conditions [CK 01].

Proposition 11. Let G be a regular automaton and h a regular path function.

1. If h−1(G) is deterministic or of finite degree, then h−1(G) is regular.
2. If the degree of G is finite and h is a finite path function, then h−1(G) is

regular and of finite degree.

Notice that h−1(G) is deterministic if it has a unique input vertex and for all a

in A and s in VG, s
h(a)
−→G t ∧ s

h(a)
−→G t′ =⇒ t = t′.

4.2 Synchronization product and shift

Let us start with a preservation result by regularly modifying letters. Taking
a mapping ∗ : A×A −→ A, the synchronization product w ∗ w′ of sequences
w,w′ ∈ Aω is the sequence w ∗ w′ = (wn ∗ w′

n)n≥0.

As the intersection of two rt. det. context-free languages can be context-sensitive
but not context-free, the (resp. det.) k-context-freeness of sequences is not pre-
served by synchronization product. We have to restrict one sequence to be au-
tomatic and use the fact that the synchronization product of a (resp. det.) reg-
ular automaton with a finite automaton remains a (resp. det.) regular automa-
ton [Ca 07].

Proposition 12. The families Cfk(A
ω) and DetCfk(A

ω) are closed under syn-
chronization product with any k-automatic sequence.

In particular, the (resp. det.) k-context-freeness of a sequence is preserved
by modifying finitely many letters.

The (left) shift of a sequence w = (wn)n≥0 is the sequence S(w) = (wn)n>0

obtained from w by removing its first letter. The right shift of a sequence w

by a letter a is the sequence aw, with (aw)0 = a and (aw)n = wn−1 for n > 0.
The shift operations preserve k-automaticity.

Proposition 13. The family Cfk(A
ω) is closed under left and right shifts.

The family DetCfk(A
ω) is not closed under left and right shifts.
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Proof. We check this proposition for the left shift operation S. Let w ∈ Cfk(A
ω).

For each a ∈ A, Λk
w(a) is a context-free language.

The transformation R : (n)k −→ (n− 1)k is realized by the following finite
transducer:

{ p
1/ε
−→ r } ∪ { p

i/i
−→ q | 0 ≤ i < k } ∪ { q

i/i
−→ q | 0 ≤ i < k }

∪ { q
i/i−1
−→ r | 0 < i < k } ∪ {r

0/k−1
−→ r}

of input state p and of final state r. Hence, the language Λk
S(w)(a) = R(Λk

w(a))

is context-free for each a ∈ A, that is S(w) ∈ Cfk(A
ω).

Note that this transducer also preserves unambiguous context-freeness.

Furthermore let us consider the following deterministic regular 2-automaton G :

1
ι

a

b

0

0

1

b

0

0

b

1

1

b

b0

b

1

1

b

0

b0

1

1

b

0

b

1 1 1 1

1

b

1

1

b

0
b

0 0
b

00

b bb

b b

0, 1

0, 1 0, 10, 1

0, 1

So w = Seq(G) ∈ RtDetCf2({a, b}ω) and the language

Λ2
w(a) = {11} ∪ { 10m+n+110n12m0 | m,n ≥ 0 }

is det. context-free. For the shifted sequence S(w), we have:

Λ2
S(w)(a) = {10} ∪ { 10n+21n+1 | n ≥ 0 }

∪ { 10m+n+110n12m−101 | m > 0, n ≥ 0 }

which is not a deterministic context-free language since the language

Λ2
S(w)(a) ∩ (10∗1++10∗1+01) = { 10n+11n | n > 0 } ∪ { 10n+112n01 | n > 0 }

is not deterministic context-free [Yu 89]. So S(w) is not in DetCfk(A
ω). ⊓⊔

4.3 Morphisms and inverse substitutions

A p-uniform morphism over an alphabet A is a function σ : A −→ Ap, extended
to A∗ and Aω by concatenation of images.

Proposition 14. The families Cfk(A
ω) and DetCfk(A

ω) are closed under any
finite p-uniform morphism with p > 0.

Proof. Let w ∈ Cfk(A
ω) and σ : A −→ Ap. Let us show that σ(w) ∈ Cfk(A

ω).
For each a ∈ A, Λk

w(a) is a context-free language and we have to check that
Λk
σ(w) remains a context-free colouring. By denoting ũ the mirror of a (finite)

word u, the relation R = { (u, v) ∈ JkK
∗
×JkK

∗ | [ṽ]k = p× [ũ]k } is recognized
by the following finite transducer [Be 72] :

{ r
q/t
−→ s | r, s ∈ JpK, q, t ∈ JkK, pq + r = ks+ t }

∪ { r
ε/[r]k−→ p | r ∈ JpK } ∪ { p

ε/0
−→ p }
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of input state 0 and of final state p. So for any context-free language L ⊆ JkK∗,

p× L = { (p× [u]k)k | u ∈ L } = R̃(L̃) ∩ JkK⋄ is a context-free language.

By applying r ≥ 0 right shifts, p × L + r = { (p× [u]k + r)k | u ∈
L } remains context-free (see proof of Proposition 13). Also, note that this
transformation L 7→ p× L + r preserves unambiguous context-freeness.

To conclude the proof for Cfk(A
ω), it remains to see that for any a ∈ A,

Λk
σ(w)(a) =

⋃
b∈A , σ(b)r = a p× Λk

w(b) + r.

For the family DetCfk(A
ω), we cannot use the same argument as the family of

det. context-free languages is not stable by mirror image. However, this trans-
formation of context-free sequences is done by inverse of a finite path function
on associated det. regular automata.

Let w ∈ Aω generated by a det. regular k-automaton G. Let σ : A −→ Ap

be a p-uniform morphism.

Let r the initial vertex of G and G0 = G ∪ {r
0

−→r} (which is also a regular
automaton). For any s ∈ VG0 and i ∈ JkK, we denote si the i-th successor

of s : s
i

−→G0 si.

We start by copying p times each vertex of the automaton G0: we take new
symbols 0′, . . . , (p − 1)′ and to any vertex s ∈ VG0 coloured by a ∈ A, we
associate new vertices s|0′ , s|1′ , . . . , s|(p−1)′ respectively colored by letters σ(a)0,

σ(a)1, . . . , σ(a)p−1 and linked to s by edges s
i′

−→ s|i′ in order to complete G0

into the following automaton:

G′ = G0 ∪ { s
i′

−→ s|i′ | s ∈ VG0 ∧ i ∈ JpK } ∪ { σ(a)i s|i′ | a s ∈ G0 ∧ i ∈ JpK }.

So G′ remains a deterministic regular automaton.

By linking the vertices s|i′ for s ∈ VG and i ∈ JpK with a finite path function
h, we will construct a new k-automaton h−1(G′) generating σ(w).
Let r be the input vertex of G.

In h−1(G′), for any s ∈ VG, the kp successors of s|0′ , . . . , s|(p−1)′ are

s0|0′ , . . . , s0|(p−1)′, s1|0′ , . . . , s1|(p−1)′ , . . . , s(k − 1)|0′ , . . . , s(k − 1)|(p−1)′ ,

where the k first are successors of s|0′ ordered by increasing index of edges i ∈ JkK,
the following k are successors of s|1′ ordered by increasing index of edges i ∈ JkK
and so on.

Formally, we can define the finite path function h as follows. We denote

[i, j] = ki+ j for any i ∈ JpK and j ∈ JkK

and the Euclidian division of any integer n ≥ 0 by p is denoted by

n = pqn + rn with 0 ≤ rn < p.

We define h by

for any a ∈ A, h(a)=a and h(ι) = (0′)−1ι0′,

for any j ∈ JkK, j 6= 0, h(j) =
∨

i∈ JpK

(i′)−1 · q[i,j] · (r[i,j])
′.

and h(0) = (0′)−1 · (¬ι)0 · (0′)′ ∨
∨

i∈ JpK,i6=0

(i′)−1 · q[i,0] · (r[i,0])
′.



13

For instance for p = 3 and k = 2, the table of q[i,j], r[i,j] for i ∈ J3K and j ∈ J2K
is given by:

i \ j 0 1

0 0, 0 0, 1
1 0, 2 1, 0
2 1, 1 1, 2

hence
h(0) ≡ (0′)−1 · (¬ ι) · 0 · 0′ ∨ (1′)−1 · 0 · 2′ ∨ (2′)−1 · 1 · 1′

h(1) ≡ (0′)−1 · 0 · 1′ ∨ (1′)−1 · 1 · 0′ ∨ (2′)−1 · 1 · 2′

By Propositions 11, h−1(G′) is a det. regular k-automaton. The det. regular
k-automaton h−1(G′) generates σ(w). ⊓⊔

Let us apply p-uniform morphism by inverse on a sequence: starting from
position 0 each sequence of length p is replaced by a letter. A substitution σ

on a set V is a mapping V −→ 2V
∗

and it is a p-uniform substitution for
p ≥ 0 if σ(s) ⊆ V p for every s ∈ V . A p-uniform substitution σ is total if⋃

s∈V σ(s) = Ap. A substitution σ is injective if σ(s) ∩ σ(t) = ∅ for any s, t ∈ V

with s 6= t. We apply by inverse an injective and total p-uniform substitution
σ on any sequence w ∈ Aω to get the sequence σ−1(w) defined by:

σ−1(w) =
(
σ−1(wnp. . .w(n+1)p−1)

)
n≥0

.

Proposition 15. The family DetCfk(A
ω) is closed under inverse of any injec-

tive and total kp-uniform substitution with p ≥ 0.
The family Cfk(A

ω) is not closed under inverse of injective total k-uniform
substitutions.

Proof. Let w = Seq(G) for some det. k-automaton G.
Let p ≥ 0 and σ be an injective and total kp-uniform substitution.

Let G′ = G ∪ { r
0

−→ r} for ι r ∈ G. So G′ remains deterministic and regular.
Let h be the finite path function on G′ which renames colours as follows: the
initial vertex does not change h(ι) = ι and for any a ∈ A, a vertex s is relabelled
by a if there exists a word u in σ(a) such that for any v ∈ JkK

p
, the v-path

from s ends to a vertex coloured by the [v]k-th letter of u, that is, formally:

h(a) =
∨

u∈σ(a)

∧
v ∈ JkKp

(ε ∧ v u[v]
k

v−1) where (v)−1 stands for v−1
p · · · v−1

2 v−1
1

Finally, the 0-loop on the inital vertex is removed and labels on edges are un-
changed: h(0) = (¬ι)0 and h(i) = i for any 0 < i < k.

Since h is a regular path function, h−1(G′) is a det. regular k-automaton
and we have Seq(h−1(G′)) = σ−1(w).

Let us check the non-closure of Cfk(A
ω) under the inverse of an injective k-

substitution.
We consider the following real-time deterministic context-free languages:

L = 1+·{ 0n1n | n > 0 } and M = { 1n0n | n > 0 }·1+

The language L·0 ∪ M · 1 is context-free but not deterministic [Yu 89].
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Let a, b ∈ A. We define the 2-context-free sequence w ∈ {a, b}ω by

Λk
w(a) = L·0 ∪ M ·1 and Λk

w(b) = JkK⋄ − Λk
w(a).

The letter a appears in w in positions [1m0n1n0]k or [1n0n1m]k for m,n > 0.
Morevoer, the pattern aa appears in w in positions [1n0n1n0]k for n > 0.
Let σ be the k-uniform substitution

σ(a) = aabk−2 and σ(b) = Ak − σ(a)

which is total and injective. As Λk
σ−1(w)(a) = L ∩ M = { 1n0n1n | n > 0 }

is not context-free, σ−1(w) is not a k-context-free sequence. ⊓⊔

A consequence of this last proposition is that the converse of the implication of
Proposition 8 is false:

Proposition 16. There exists a sequence w such that Λk
w(a) is a rt. det.

context-free language for all a, and w is not a deterministic k-context-free
sequence.

Proof. We use the same languages L,M as in the proof of Proposition 15. Let
A = {a, a, b, b, c} be a five letters alphabet. We define w ∈ Aω by

Λk
w(a) = L·0 ; Λk

w(a) = (JkK
⋄ − (L ∪ {ε}))·0 ;

Λk
w(b) = M ·1 ; Λk

w(b) = (JkK
⋄ −M)·1 ; Λk

w(c) = JkK
⋄{2, . . . , k − 1} ∪ {ε}.

For any a ∈ A, the language Λk
w(a) is a rt. det. context-free language and the

pattern ab only appears in w in positions [1n0n1n0]k for n > 0.
Let σ be the k-substitution defined by σ(a) = abck−2 and σ(b) = Ak−σ(a).
As Λk

σ−1(w)(a) = L ∩ M , the sequence σ−1(w) is not k-context-free.
By Proposition 15, w cannot be a deterministic k-context-free sequence. ⊓⊔

4.4 1-context-free sequences and extractions of ultimately periodic

subsequences

The k-automatic sequences are characterized by the finiteness of their k-kernels.
The k-kernel Kk(w) of a sequence w ∈ Aω is the set of subsequences ku(w)
for u ∈ JkK∗ obtained by only picking up letters in positions of type [vu]k, for
v ∈ JkK

⋄
, that is, ku(w) =

(
wk|u|n+[u]k

)
n≥0

.

Proposition 17. The k-kernel of any (resp. det.) k-context-free sequence only
contains (resp. det.) k-context-free sequence.

Proof. Let i ∈ JkK and w ∈ Cfk(A
ω). As we have kε(w) = w and kuv(w) =

kv(ku(w)) for any u, v ∈ JkK∗, we just need to check that ki(w) ∈ Cfk(A
ω).

As ki(w) = (wkn+i)n≥0, the language Λk
ki(w)(a) = Λk

w(a)i
−1 is the right

residual by i of Λk
w(a), for any a ∈ A, thus context-free. It follows that ki(w)

is a k-context-free sequence.

Now assume that w ∈ DetCfk(A
ω). We define the injective and total k-substi-

tution h by h(a) = Ai−1aAk−i for any a ∈ A. Hence by Proposition 15,
ki(w) = h−1(w) so ki(w) ∈ DetCfk(A

ω). ⊓⊔
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To generate the ultimately periodic sequences, we extend the definition of a
k-automaton to the case k = 1.

Definition 18. A 1-automaton over A is an accessible automaton G on the
set J1K = {0} of edge labels and on the set A of colours such that ΛG is a
partition of {0}∗.
A 1-automaton G generates the sequence Seq(G) ∈ Aω such that for any n ≥ 0,
its n-th letter Seq(G)n is the colour a such that 0n ∈ ΛG(a).

The 1-colouring Λ1
w of any w ∈ Aω is the mapping associating with any a ∈ A

the language Λ1
w(a) = { 0n | wn = a } of the representations in base 1 of the

positions of a in w.

Definition 19. A sequence w over A is 1-automatic (resp. 1-context-free) if
Λ1
w(a) is a regular (resp. context-free) for all a in A.

Lemma 20. For any w ∈ Aω, the following four statements are equivalent:

a) w is a ultimately periodic sequence,

b) w is a 1-automatic sequence,

c) w is a 1-context-free sequence,

d) Λ1
w(a) is a regular language for any a ∈ A.

Proof. The equivalences a) ⇐⇒ b) ⇐⇒ d) are well known (see [AS 03] for
example) and b) =⇒ c) because any finite automaton is regular.

To show c) =⇒ d) , Let w = Seq(G) for some regular 1-automaton G. For any
a ∈ A, Λ1

w(a) = ΛG(a) is a context-free language over {0}. By Parikh’s lemma,
every context-free language over a unique letter is regular. ⊓⊔

We can extract ultimately periodic sequences in any k-context-free sequence by
picking k-regularly letters.

Proposition 21. Let w be a k-context-free sequence and u, v1, . . . , vp ∈ JkK
∗

with p ≥ 1, uv1 ∈ JkK⋄ and v1, . . . , vp 6= ε. For any q ≥ 0 and i ∈ {1, . . . , p},

we denote vq+
i
p = (v1. . .vp)

qv1. . .vi.

The sequence

(
w
[uv

n
p ]

k

)

n≥0

is ultimately periodic.

Proof. We have w = Seq(G) for some regular k-automaton G.
Let h be the finite path function on G defined as follows:

h(ι) = u−1 ι u ; h(a) = a for any a ∈ A ; h(i) = vi for any
1 ≤ i ≤ p.

So h−1(G) is a prefix-recognizable automaton (got from the complete binary
tree by inverse regular path functions).
We take the following finite deterministic automaton:

H = { i
i

−→ i+1 | 1 ≤ i < p } ∪ {p
p

−→ 1} ∪ {ι 1} ∪ { a i | a ∈ A ∧ 1 ≤ i ≤ p }

The following synchronisation product of h−1(G) and H
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h−1(G)×H = { (s, p)
0

−→ (t, q) | ∃ i (s
i

−→h−1(G) t ∧ p
i

−→H q) }

∪ { a (s, p) | a s ∈ h−1(G) ∧ a p ∈ H }

is a deterministic prefix-recognizable automaton, hence by [CK 01] is a regular
automaton.
Let K be the restriction by accessibility from ι of h−1(G) ×H .

So K is a regular 1-automaton generating Seq(K) =

(
w
[uv

n
p ]

k

)

n≥0

.

By Lemma 20, Seq(K) is an ultimately periodic sequence. ⊓⊔

4.5 About base dependence

A famous theorem of Cobham states that sequences which are automatic in
two multiplicatively independent bases are the ultimately periodic ones [Co 69].
This section presents two results in the direction of a possible extension of this
statement for context-free sequences. First, the context-freeness is preserved for
any non-null power of the base (but not the deterministic context-freeness).
Second, we have the same set of context-free sequences only for multiplicatively
dependent bases.

Proposition 22. For every k, p > 1, we have
Cfk(A

ω) = Cfkp(Aω) and DetCfk(A
ω) ( DetCfkp(Aω).

Proof. Let h : JkpK −→ JkK
p

be the bijective mapping associating with any
n ∈ JkpK its (n+ 1)-th word of JkK

p
by (length) lexicographic order:

h(n) = 0p−⌈logk(n+1)⌉(n)k for every n ∈ JkpK

which is extended by morphism on JkpK
∗
. For any w ∈ Aω and a ∈ A, we have

Λk
w(a) = (0∗)−1h

(
Λkp

w (a)
)
∩ JkK

⋄
and Λkp

w (a) = h−1
(
0∗Λk

w(a)
)
∩ JkpK

⋄

We deduce that Cfk(A
ω) = Cfkp(Aω).

Let w = Seq(G) for some regular deterministic k-automaton G. We complete

G by adding a 0-loop to its input vertex: G′ = G ∪ { r
0

−→ r } for ι r ∈ G.
The mapping h is extended to a finite path function by adding its behaviours on

colours h(ι) = ι and h(a) = a for any a ∈ A. Let H = h−1(G′)−{ r
0

−→ r }.
We have Seq(H) = Seq(G) and by Proposition 11, H is a regular deterministic
kp-automaton. Thus DetCfk(A

ω) ⊆ DetCfkp(Aω).

Let us check that this inclusion is strict. As k, p > 1, we have kp ≥ 4 and

h(0) = 0p ; h(1) = 0p−11 ; h(k) = 0p−210 ; h(kp−1) = 10p−1

Let a, b ∈ A. We define the sequence w ∈ {a, b}ω by

Λkp

w (a) = 1{ 0n+1(kp−1)2n | n ≥ 0 } ∪ k{ 0n1n+1 | n ≥ 0 },

Λkp

w (b) = JkpK
⋄ − Λkp

w (a).

So w ∈ DetCfkp(Aω) and

Λk
w(a) = 1{ (0p)n+1(10p−1)2n | n ≥ 0 } ∪ 10{ (0p)n(0p−11)n+1 | n ≥ 0 }

= { 10pn+p(10p−1)2n | n ≥ 0 } ∪ { 10pn+p(10p−1)n1 | n ≥ 0 }

which is not a deterministic context-free language, so w 6∈ DetCfk(A
ω). ⊓⊔
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Proposition 23. For any p, q > 1,

Cfp(A
ω) = Cfq(A

ω) ⇐⇒ ∃ i, j > 0, pi = qj.

Proof. ⇐= : This implication is straightforward from Proposition 22.

=⇒ : We just transpose the construction given in [Be 72] for the context-free
integer sets.
Let a, b ∈ A. We define the sequence w ∈ {a, b}ω by

Λp
w(a) = 10∗ and Λp

w(b) = JpK
⋄ − 10∗.

So w ∈ Cfp(A
ω) = Cfq(A

ω) thus Λq
w(a) is an infinite context-free language.

As a corollary of the pumping lemma on context-free languages, there exists
u, v, x, y, z in JqK

∗
such that u 6= ε and for every n ≥ 0, xunyvnz ∈ Λq

w(a).

The integer mapping f defined for every n ≥ 0 by [xunyvnz]q = pf(n) is
increasing.
Note that for any s, t ∈ JqK

∗
, [st]q = [s]q q

|t| + [t]q, hence for any n ≥ 0,

[snt]q = [s]q q
|sn−1t| + . . .+ [s]q q

|st| + [s]q q
|t| + [t]q

= [s]q q
|t|
(
1 + q|s| + [t]q + . . .+ (q|s|)n−1

)

= [s]q q
|t| qn|s|−1

q−1 + [t]q

Thus for any n ≥ 0, pf(n) = [xunyvnz]q = Aqn|uv| + B qn|v| + C with

A = q|yz|
(
[x]q +

[u]
q

q−1

)
; B = q|z|

(
[y]q +

[v]
q
−q|y| [u]

q

q−1

)
; C = [z]q −

q|z| [v]
q

q−1

hence
pf(n+1)

pf(n) ∼ Aq(n+1)|uv|

Aqn|uv| = q|uv| i.e., limn→∞ pf(n+1)−f(n) = q|uv|.

This last equality on integers implies that there exists n0 such that

pf(n0+1)−f(n0) = q|uv|,

meaning that p and q are multiplicatively dependent. ⊓⊔

5 Conclusion and open problems

Let us mention again that the results of Section 4 remain valid when substituting
UnaCfk for Cfk, and RtDetCfk for DetCfk.

The difference of behaviours of these families of context-free sequences under
transformations and the difference of involved tools (from languages or from gaph
theory) also allows to deeper understand from where come the strong robustness
of automatic sequences, for which concepts of unambiguity of languages and
determinism of automata are totally erased.

Some properties of k-context-free sequences have to be further studied, for
instance the structure of their k-kernels, properties of symbolic dynamical sys-
tems associated with these sequences, their degenerated cases (how to decide
whenever a k-context-free sequence is k-automatic, periodic, etc.). Moreover, re-
sults of Section 4.5 are encouraging for a possible extension of the Cobham’s
theorem on base dependence.
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We expect that the most of presented closure properties extend to similar
constructions of sequences using indexed languages [Ah 68] and higher order
indexed languages following Maslov’s hierarchy of languages [Ma 74]. As regular
and context-free languages are the first two level of this hierarchy, this paper is
a second step towards a theory of the infinite hierarchy of higher order indexed
automatic sequences following Maslov’s hierarchy, the automatic sequences and
context-free automatic sequences being the first two levels.
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