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STRONG SOLIDITY OF FREE ARAKI–WOODS FACTORS

RÉMI BOUTONNET, CYRIL HOUDAYER, AND STEFAAN VAES

Abstract. We show that Shlyakhtenko’s free Araki–Woods factors are strongly solid, mean-
ing that for any diffuse amenable von Neumann subalgebra that is the range of a normal
conditional expectation, the normalizer remains amenable. This provides the first class of
nonamenable strongly solid type III factors.

1. Introduction

A von Neumann algebra N is amenable if there exists a norm one projection Φ : B(L2(N)) → N .
By Connes’s fundamental result [Co75], any amenable von Neumann algebra is approximately
finite dimensional. Moreover, the class of amenable factors with separable predual is completely
classified by the flow of weights [Co72, Co75, Ha85, Kr75]. In particular, there exists a unique
amenable II1 factor with separable predual: it is the hyperfinite II1 factor R of Murray and
von Neumann [MvN43].

Starting with [Po01], Popa’s deformation/rigidity theory has lead to far reaching classification
and structure theorems for nonamenable factors. Particular attention was given to several
types of indecomposability results for von Neumann algebras M , like primeness (the impos-
sibility to write a factor as a nontrivial tensor product), solidity (inside M , there is no room
for a nonamenable subalgebra and a diffuse subalgebra to commute) and absence of Cartan
subalgebras (the impossibility to write a factor as one coming from a group action or an equiva-
lence relation). The strongest possible indecomposability property for a von Neumann algebra
M , encompassing primeness, solidity and the absence of Cartan subalgebras was discovered in
Ozawa and Popa’s breakthrough article [OP07] and called strong solidity.

Definition. Let M be any diffuse von Neumann algebra. Following [OP07], we say that M is
strongly solid if for any diffuse amenable von Neumann subalgebra Q ⊂M with faithful normal
conditional expectation EQ : M → Q, the normalizer NM (Q)′′ generated by NM (Q) := {u ∈
U(M) | uQu∗ = Q} remains amenable.

In [OP07], the free group factors L(Fn), 2 ≤ n ≤ +∞, were shown to be strongly solid. This
result strengthens both Voiculescu’s [Vo95] proving that the free group factors have no Cartan
subalgebra and Ozawa’s [Oz03] proving that the free group factors are solid.

The type III counterparts of the free group factors are Shlyakhtenko’s free Araki–Woods factors
[Sh96], defined via Voiculescu’s free Gaussian functor [Vo85, VDN92]. Although free Araki–
Woods factors were shown to be solid and to have no Cartan subalgebra [HR10], strong solidity
remained an open problem. So far, there were even no examples of strongly solid type III factors
altogether. As we explain in detail below, the strong solidity of a type III factor M is closely
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related to a relative strong solidity property of its continuous core c(M), which is a semifinite
von Neumann algebra. The main results of [OP07] apply to the finite corners pc(M)p. But, in
order to be applicable to c(M), we need to control, inside pc(M)p, not only normalizers but
also so-called groupoid-normalizers or stable normalizers. That is precisely the problem that
we solve in the present paper and that allows us to prove that all free Araki–Woods factors are
strongly solid.

Following [Sh96], to any orthogonal representation U : R y HR on a real Hilbert space, one
associates the free Araki–Woods von Neumann algebra Γ(HR, U)′′, which comes equipped with
the free quasi-free state ϕU (see Section 2 for a detailed construction).

Free Araki–Woods factors were first studied in the framework of Voiculescu’s free probability
theory. A complete description of their type classification as well as fullness and computation
of Connes’s Sd and τ invariants was obtained in [Sh96, Sh97a, Sh97b, Sh02] (see also the survey
[Va04]). We have Γ(HR, id)

′′ ∼= L(Fdim(HR)) when U = 1HR
and Γ(HR, U)′′ is a full type III

factor when U 6= 1HR
. Moreover, the free Araki–Woods factor Γ(HR, U)′′ admits a discrete

decomposition in the sense of [Co74] if and only if the orthogonal representation U : R y HR

is almost periodic. The class of free Araki–Woods factors is quite large. Indeed, there are
uncountably many pairwise nonisomorphic type III1 free Araki–Woods factors that admit a
discrete decomposition [Sh96] as well as uncountably many that do not [Sh02]. More recently,
free Araki–Woods factors were studied using Popa’s deformation/rigidity theory. This new
approach allowed to obtain various indecomposability results in [Ho08, HR14] and to show
that free Araki–Woods factors satisfy the complete metric approximation property (CMAP)
[HR10, Theorem A] and have no Cartan subalgebra [HR10, Theorem B].

The following is then our main result.

Main theorem. For every orthogonal representation U : R y HR such that dimHR ≥ 2, the
free Araki–Woods factor Γ(HR, U)′′ is strongly solid.

The main step to prove this result is to adapt the proof of Ozawa–Popa’s [OP07, Theorem 3.5]
so as to cover as well the groupoid-normalizer or stable normalizer of Q ⊂ M , defined as the
von Neumann algebra generated by {x ∈ M | xQx∗ ⊂ Q and x∗Qx ⊂ Q}. We thus prove
in particular that for any diffuse amenable Q ⊂ L(Fn), the stable normalizer of Q remains
amenable.

To prove that a free Araki–Woods factor M = Γ(HR, U)′′ is strongly solid, we proceed as
follows. Fix a diffuse amenable von Neumann subalgebra Q ⊂ M with expectation (meaning
that there exists a faithful normal conditional expectation EQ : M → Q). We have to prove
that P := NM (Q)′′ remains amenable.

Using Connes’s continuous decomposition [Co72], we have natural inclusions of the semifinite
continuous cores c(Q) ⊂ c(P ) ⊂ c(M). In general, it is not true that c(P ) is contained in the
normalizer of c(Q). However, since M is solid (see e.g. [HR14, Theorem A]), we may replace Q
by Q ∨ (Q′ ∩M) and assume that Q′ ∩M = Z(Q). Then, c(P ) is contained in the normalizer
of c(Q) (see Lemma 4.1) and by Takesaki’s duality theorem [Ta03, Theorem X.2.3], it suffices
to show that Nc(M)(c(Q))′′ is amenable.

Cutting down by any nonzero finite projection in c(Q), we obtain the inclusions of finite (tracial)
von Neumann algebras Q ⊂ P ⊂ M where Q = pc(Q)p, P = p(Nc(M)(c(Q))′′)p and M =
pc(M)p. It is important to point out that P need not be contained in the normalizer of Q, but
is always contained in the stable normalizer of Q.

By [HR10, Theorem A], the tracial von Neumann algebra M has CMAP and it has a natural
malleable deformation in the sense of [Po03]. So we are exactly in the setting of [OP07], except
that we need to extend their main result on weak compactness to stable normalizers. We do
this in Proposition 3.6.
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2. Preliminaries

2.1. Background on σ-finite von Neumann algebras. For any von Neumann algebra
M , we denote by Z(M) the center of M , by U(M) the group of unitaries in M and by
(M,L2(M), J,L2(M)+) the standard form of M . We say that an inclusion of von Neumann
algebras P ⊂ M is with expectation if there exists a faithful normal conditional expectation
EP : M → P . We say that a σ-finite von Neumann algebra M is tracial if it is endowed with
a faithful normal tracial state τ .

Let M be any σ-finite von Neumann algebra with predual M∗ and ϕ ∈ M∗ any faithful state.
We denote by σϕ the modular automorphism group of the state ϕ. The continuous core of M
with respect to ϕ, denoted by cϕ(M), is the crossed product von Neumann algebra M ⋊σϕ R.
The natural inclusion πϕ :M → cϕ(M) and the unitary representation λϕ : R → cϕ(M) satisfy
the covariance relation

λϕ(t)πϕ(x)λϕ(t)
∗ = πϕ(σ

ϕ
t (x)) for all x ∈M and all t ∈ R.

Put Lϕ(R) = λϕ(R)′′. There is a unique faithful normal conditional expectation ELϕ(R) :
cϕ(M) → Lϕ(R) satisfying ELϕ(R)(πϕ(x)λϕ(t)) = ϕ(x)λϕ(t) for all x ∈ M and all t ∈ R. The

faithful normal semifinite (fns) weight defined by f 7→
∫
R
exp(−s)f(s) ds on L∞(R) gives rise

to a fns weight Trϕ on Lϕ(R) via the Fourier transform. The formula Trϕ = Trϕ ◦ ELϕ(R)

extends it to a fns trace on cϕ(M).

Because of Connes’s Radon–Nikodym cocycle theorem [Co72, Théorème 1.2.1] (see also [Ta03,
Theorem VIII.3.3]), the semifinite von Neumann algebra cϕ(M) together with its trace Trϕ does
not depend on the choice of ϕ in the following precise sense. If ψ ∈M∗ is another faithful state,
there is a canonical surjective ∗-isomorphism Πϕ,ψ : cψ(M) → cϕ(M) such that Πϕ,ψ ◦πψ = πϕ
and Trϕ ◦ Πϕ,ψ = Trψ. Note however that Πϕ,ψ does not map the subalgebra Lψ(R) ⊂ cψ(M)
onto the subalgebra Lϕ(R) ⊂ cϕ(M) (and hence we use the symbol Lϕ(R) instead of the usual
L(R)).

2.2. Free Araki–Woods factors. Let HR be any real Hilbert space and U : R y HR any
orthogonal representation. Denote by H = HR ⊗R C = HR ⊕ iHR the complexified Hilbert
space, by I : H → H : ξ + iη 7→ ξ − iη the canonical anti-unitary involution on H and by
A the infinitesimal generator of U : R y H, that is, Ut = Ait for all t ∈ R. Observe that
j : HR → H : ζ 7→ ( 2

A−1+1
)1/2ζ defines an isometric embedding of HR into H. Moreover, we

have IAI = A−1. Put KR := j(HR). It is easy to see that KR∩ iKR = {0} and that KR+iKR

is dense in H.

We introduce the full Fock space of H:

F(H) = CΩ⊕
∞⊕

n=1

H⊗n.

The unit vector Ω is called the vacuum vector. For all ξ ∈ H, define the left creation operator
ℓ(ξ) : F(H) → F(H) by

{
ℓ(ξ)Ω = ξ,

ℓ(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn.

We have ‖ℓ(ξ)‖∞ = ‖ξ‖ and ℓ(ξ) is an isometry if ‖ξ‖ = 1. For all ξ ∈ KR, put W (ξ) :=
ℓ(ξ) + ℓ(ξ)∗. The crucial result of Voiculescu [VDN92, Lemma 2.6.3] is that the distribution of
the self-adjoint operatorW (ξ) with respect to the vector state ϕU = 〈 ·Ω,Ω〉 is the semicircular
law of Wigner supported on the interval [−‖ξ‖, ‖ξ‖].
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Definition 2.1 (Shlyakhtenko, [Sh96]). Let U : R y HR be any orthogonal representation of
R on a real Hilbert space HR. The free Araki–Woods von Neumann algebra associated with
U : R y HR is defined by Γ(HR, U)′′ := {W (ξ) : ξ ∈ KR}′′.

The vector state ϕU = 〈 ·Ω,Ω〉 is called the free quasi-free state and is faithful on Γ(HR, U)′′.
The modular automorphism group σϕU satisfies the formula

σ
ϕU
t (W (ξ)) =W (Utξ) for all ξ ∈ KR and all t ∈ R.

We also point out that M = Γ(HR, U)′′ satisfies Ozawa’s condition (AO) (see e.g. [HI15, Ap-
pendix]) and hence is solid by [Oz03, VV05], that is, for any diffuse subalgebra with expectation
Q ⊂M , the relative commutant Q′ ∩M is amenable.

2.3. Popa’s intertwining-by-bimodules. Popa introduced his method of intertwining-by-
bimodules in [Po01, Po03]. In the present work, we make use of these results in the context of
semifinite von Neumann algebras. Let (M,Tr) be any semifinite σ-finite von Neumann algebra
endowed with a fns trace. Let p ∈M be any nonzero finite trace projection and A ⊂ pMp any
von Neumann subalgebra. Let B ⊂M be any von Neumann subalgebra such that Tr|B is still
semifinite and denote by EB :M → B the unique trace preserving conditional expectation. We
say that A embeds into B inside M (and write A ≺M B) if there exists a nonzero projection
q ∈ B with Tr(q) <∞ such that A ≺ qBq in the sense of Popa (inside the finite von Neumann
algebra (p ∨ q)M(p ∨ q)). We refer to e.g. [HR10, Section 2.1] for further details.

3. Stable normalizers in II1 factors

In this section, we prove stable strong solidity results for II1 factors. As pointed out in [Ho09,
Proposition 5.2], strong solidity is preserved under finite amplifications. However as we explain
below, there is a priori no reason for strong solidity to be preserved under infinite amplifications.
Nevertheless, we prove in this section that for many known cases of strongly solid II1 factors,
their infinite amplification remains strongly solid.

Definition 3.1. Given a von Neumann algebra M and a von Neumann subalgebra Q ⊂ M ,
define

sNM(Q) := {x ∈M | xQx∗ ⊂ Q and x∗Qx ⊂ Q} .
We call the von Neumann algebra sNM(Q)′′ the stable normalizer of Q inside M .

The terminology stable normalizer is motivated by Lemma 3.4(3) saying that the stable nor-
malizer of Q is given by the normalizer of the stabilization Q⊗ B(ℓ2(N)) of Q.

Note that xy and x∗ belong to sNM (Q) for all x, y ∈ sNM(Q). Also, Q ⊂ sNM(Q) and the
linear span of sNM(Q) is a ∗-algebra containing Q and Q′ ∩ M . The polar decomposition
x = v|x| of an element x ∈ sNM(Q) satisfies the following properties: |x| ∈ Q, v is a partial
isometry whose initial projection p = v∗v and final projection q = vv∗ belong to Q and that
satisfies vQv∗ = qQq.

Definition 3.2. We say that a diffuse von Neumann algebra M is stably strongly solid if
for every diffuse amenable von Neumann subalgebra with expectation A ⊂ M , we have that
sNM(A)′′ remains amenable.

A priori, strong solidity does not imply stable strong solidity. The reason for this is that the
stable normalizer has a qualitatively more general behavior than the normalizer, as can be seen
as follows. Assume that M is a II1 factor with tracial state τ . Let A ⊂M be a von Neumann
subalgebra. When u ∈ NM (A), then Adu defines a trace preserving automorphism of A. In
particular, the restriction of Adu to the center of A defines a trace preserving automorphism
of Z(A). When v ∈ M is a partial isometry with p = v∗v ∈ A, q = vv∗ ∈ A and vAv∗ = qAq,



STRONG SOLIDITY OF FREE ARAKI–WOODS FACTORS 5

the restriction of Ad v to the center of A defines a partial automorphism of Z(A) that need not
be trace preserving. Writing Z(A) = L∞(X,µ), it even happens quite naturally that the orbit
equivalence relation induced by the orbits of all these Ad v is a type III equivalence relation on
(X,µ) (see [MV13] for an example where this phenomenon occurs).

Note that the stable normalizer of a von Neumann subalgebra Q ⊂ M is contained in the
quasi-normalizer, defined as the von Neumann algebra generated by

QNM (Q) =
{
x ∈M

∣∣∣ ∃xi, yj ∈M,xQ ⊂
n∑

i=1

Qxi and Qx ⊂
m∑

j=1

yjQ
}
.

In general, the inclusion sNM(Q)′′ ⊂ QNM (Q)′′ is strict. Nevertheless, when Q is abelian, we
have the following result.

Proposition 3.3. Let M be a stably strongly solid von Neumann algebra and A ⊂M a diffuse

abelian von Neumann subalgebra with expectation. Then QNM (A)′′ is amenable.

Proof. Since A is abelian, QNM (A)′′ is generated by partial isometries v ∈ M with right
support p = v∗v and left support q = vv∗ belonging to A′ ∩M and with vAv∗ = Aq. Writing
Q = A ∨ (A′ ∩M), it follows that QNM (A)′′ ⊂ sNM(Q)′′. Since M is in particular solid, Q
is diffuse and amenable. By stable strong solidity, we conclude that sNM (Q)′′ and thus also
QNM (A)′′ is amenable. �

3.1. Properties of the stable normalizer. The set sNM (Q) behaves well under amplifica-
tions/reductions and is itself a stable version of the normalizer NM (Q). In [JP81, Lemma
2.1] and [Po03, Lemma 3.5], a detailed analysis of normalizing unitaries versus amplifica-
tions/reductions was made and several key techniques were introduced. We only need the
following easy and well known lemma (see e.g. [FSW10, Lemma 3.2] for a proof of the last
statement, also based on [JP81, Lemma 2.1]).

Lemma 3.4. Let M be a von Neumann algebra and Q ⊂M a von Neumann subalgebra.

(1) For every projection q ∈ Q, we have qsNM(Q)q = sNqMq(qQq).
(2) For every Hilbert space K, we have sNM⊗B(K)(Q⊗ B(K))′′ = sNM(Q)′′ ⊗ B(K).

(3) If Q is σ-finite and K = ℓ2(N), we have

sNM (Q)′′ ⊗ B(K) = NM⊗B(K)(Q⊗ B(K))′′ .

We also need the following technical lemma providing an explicit dilation of a partial isometry
in sNM(Q) to a normalizing unitary of an infinite amplification of Q. We need this explicit
version to get as a conclusion that for every amenable Q and every fixed x ∈ sNM(Q), the von
Neumann algebra (Q ∪ {x, x∗})′′ remains amenable. Again the method of proof is basically
given by [JP81, Lemma 2.1].

Lemma 3.5. LetM be a von Neumann algebra and Q ⊂M a σ-finite von Neumann subalgebra.

Define Q̃ = Q ⊗ B(ℓ2(N)) ⊗ ℓ∞(N) and view Q̃ as a von Neumann subalgebra of M̃ = M ⊗
B(ℓ2(N × N)). Denote by e ∈ B(ℓ2(N × N)) the minimal projection given by the unit vector

δ0 ⊗ δ0.

For every x ∈ sNM(Q), there exist u ∈ N
M̃
(Q̃) and a, b ∈ Q such that

x⊗ e = u(a⊗ e) = (b⊗ e)u .

If Q is amenable and x ∈ sNM(Q), then (Q ∪ {x, x∗})′′ remains amenable.
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Proof. By taking the polar decomposition of x, we may assume that x = v is a partial isometry
with p = v∗v and q = vv∗ belonging to Q and vQv∗ = qQq. We prove that there exists a

u ∈ N
M̃
(Q̃) such that v ⊗ e = u(p⊗ e) = (q ⊗ e)u. Denote by zp the central support of p in Q

and similarly define zq. Define Q1 = Q⊗B(ℓ2(N)) and view Q1 as a von Neumann subalgebra
of M1 =M⊗B(ℓ2(N)). In Q1, the projection zp⊗1 is equivalent with infinitely many copies of
p⊗e00. So we can take a sequence of partial isometries wn ∈ Q1 such that w∗

nwn = p⊗e00 for all
n and

∑
nwnw

∗
n = zp⊗1. We make this choice such that w0 = p⊗e00. Similarly take a sequence

of partial isometries vn ∈ Q1 such that v∗nvn = q ⊗ e00 and
∑

n vnv
∗
n = zq ⊗ 1. Also here, we

make this choice such that v0 = q⊗e00. Define V =
∑

n vn(v⊗e00)w∗
n. Note that V

∗V = zp⊗1,
V V ∗ = zq ⊗ 1 and V Q1V

∗ = Q1(zq ⊗ 1). By construction, V (p⊗ e00) = v ⊗ e00 = (q ⊗ e00)V .

Identify Z(Q) = L∞(X,µ) for some probability space (X,µ). Take U ,V ⊂ X such that zp = 1U
and zq = 1V . The restriction of AdV to Z(Q1) = Z(Q)⊗1 induces a nonsingular transformation
ϕ : U → V. Denote by R the countable nonsingular equivalence relation on (X,µ) generated
by the graph of ϕ. Using powers of V and V ∗, it follows that every partial transformation ψ
in the full pseudogroup of R is given by the restriction of AdW to Z(Q1) for some partial
isometry W ∈M1 such that z =W ∗W and z′ =WW ∗ belong to Z(Q1) and WQ1W

∗ = Q1z
′.

Define the equivalence relation R̃ on X̃ = X ×N given by (x, i)R̃(y, j) iff xRy. We say that

two Borel subsets of X̃ are equivalent if they are, up to measure zero, the range (resp. domain)

of an element of the full pseudogroup [[R̃]]. By construction, the sets U × {0} and V × {0} are

equivalent. Being properly infinite with R̃-saturations equal to X̃, also the sets X̃ \ (U × {0})
and X̃ \ (V ×{0}) are equivalent. This means that we can find a partial isometry W ∈ M̃ such

that W ∗W = 1− zp ⊗ 1⊗ 1, WW ∗ = 1− zq ⊗ 1⊗ 1 and WQ̃W ∗ = Q̃(1− zq ⊗ 1⊗ 1).

The unitary u = V ⊗ 1 +W belongs to N
M̃
(Q̃) and satisfies v ⊗ e = u(p ⊗ e) = (q ⊗ e)u.

Finally assume that Q is amenable and x ∈ sNM(Q). First, replace M by (Q ∪ {x, x∗})′′.
Then, take u as above. Since Q̃ is amenable and u normalizes Q̃, also P̃ := (Q̃ ∪ {u, u∗})′′ is
amenable. Since the von Neumann algebra (1⊗ e)P̃ (1⊗ e) contains Q and x, it must be equal
to M ⊗ e and we conclude that M is amenable. �

3.2. A general weak compactness argument. In [OP07, Theorem 3.5], Ozawa and Popa
proved the following seminal result: if a tracial von Neumann algebra (M, τ) has the complete
metric approximation property (CMAP) and A ⊂M is any amenable von Neumann subalgebra,
then the action of the normalizer NM (A) on A given by conjugacy is weakly compact in the
sense of [OP07, Definition 3.1], meaning that there exists a net of unit vectors ξn ∈ L2(A⊗Aop)
such that

• limn ‖ξn − (a⊗ a)ξn‖2 = 0 for all a ∈ U(A),
• limn ‖ξn −Ad(u⊗ u)ξn‖2 = 0 for all u ∈ NM (A),
• limn〈(a⊗ 1)ξn, ξn〉 = τ(a) for all a ∈ A.

Here, we denote by Aop the opposite von Neumann algebra of A. We also denote a = (a∗)op

for every a ∈ A.
We adapt the proof of [OP07, Theorem 3.5] to also cover conjugation by elements x ∈ sNM(A).

Fix a tracial von Neumann algebra (M, τ) and a von Neumann subalgebra A ⊂M . Denote by
EZ the unique trace preserving conditional expectation of A onto Z(A). For every x ∈ sNM(A),
we define zrx as the support projection of EZ(x

∗x) and we define zlx as the support of EZ(xx
∗).

We denote by αx : Z(A)zrx → Z(A)zlx the unique ∗-isomorphism determined by xa = αx(a)x for
all a ∈ Z(A)zrx. The main difficulty comes from the fact that αx need not be trace preserving.
We denote by ∆x the Radon-Nikodym derivative between τ and τ ◦ αx, i.e. ∆x is the unique
positive self-adjoint nonsingular operator affiliated with Z(A)zlx satisfying τ(∆xαx(a)) = τ(a)
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for all a ∈ Z(A)zrx. Note that ∆xy = ∆xαx(∆y) for all x, y ∈ sNM(A). Also note that
∆x = EZ(xx

∗)αx(EZ(x
∗x)−1).

We need the following notation.

sN 0
M(A) = {x ∈ sNM(A) | ∃δ > 0 such that EZ(x

∗x) ≥ δzrx and EZ(xx
∗) ≥ δzlx } .

Note that for every x ∈ sNM(A), we can choose a sequence of projections zn ∈ Z(A) such that
zn → 1 strongly and xzn ∈ sN 0

M(A) for every n. In particular, sN 0
M(A) generates the same

von Neumann algebra as sNM(A). For every x ∈ sN 0
M(A), the Radon-Nikodym derivative ∆x

is a bounded invertible operator in Z(A)zlx.

Proposition 3.6 (Weak compactness). Let (M, τ) be a tracial von Neumann algebra with the

CMAP and take an amenable von Neumann subalgebra A ⊂ M . Then there exists a net of

positive vectors ξn ∈ L2(A⊗Aop) such that

(1) limn ‖(a⊗ 1)ξn − (1⊗ aop)ξn‖2 = 0, for all a ∈ A ;

(2) limn ‖(x⊗ 1)ξn(x
∗∆

1/2
x ⊗ 1)− (1⊗ xop)ξn(1⊗ x)‖2 = 0, for all x ∈ sN 0

M(A) ;

(3) limn〈(x⊗ 1)ξn, ξn〉 = τ(x), for all x ∈M .

Also, for every partial isometry v ∈ sN 0
M(A), there exists an element T (v) in the unit ball of

M ⊗Mop and a sequence of elements T (v, k) in the unit ball of M ⊗alg M
op such that

lim
n

‖(v ⊗ 1)ξn − (1⊗ vop)ξnT (v)‖2 = 0 ,

lim
n

‖(v∗ ⊗ 1)ξn − (1⊗ v)ξnT (v)
∗‖2 = 0 ,

lim
k

(
lim sup

n
‖(v ⊗ 1)ξn − (1⊗ vop)ξnT (v, k)‖2

)
= 0 ,

lim
k

(
lim sup

n
‖(v∗ ⊗ 1)ξn − (1⊗ v)ξnT (v, k)

∗‖2
)
= 0 .

(3.1)

Proof. SinceM has CMAP, we can take a net of finite rank, normal, completely bounded maps
ϕn :M →M such that limn ‖ϕn‖cb = 1 and limn ‖ϕn(x)−x‖2 = 0 for all x ∈M . Exactly as in
the proof of [OP07, Theorem 3.5], we then define, for every amenable von Neumann subalgebra

Q ⊂ M , the normal functionals µQn ∈ (Q ⊗ Qop)∗ given by µ
Q
n (a ⊗ bop) = τ(ϕn(a)b) for all

a, b ∈ Q and satisfying limn ‖µQn ‖ = 1. We define the normal states ωQn ∈ (Q⊗Qop)∗ given by

ω
Q
n = ‖µQn ‖−1 |µQn |. Since limn µ

Q
n (a⊗ a) = 1 for all a ∈ U(Q), we get, still in the same way as

in the proof of [OP07, Theorem 3.5], that limn ‖µQn − ω
Q
n ‖ = 0, limn ‖(a ⊗ a) · ωQn − ω

Q
n ‖ = 0

and limn ‖ωQn · (a⊗ a)− ω
Q
n ‖ = 0 for all a ∈ U(Q). This implies that

(3.2) lim
n

‖(a⊗ 1) · ωQn − (1⊗ aop) · ωQn ‖ = 0 and lim
n

‖ωQn · (a⊗ 1)− ωQn · (1⊗ aop)‖ = 0

for all a ∈ Q.

We view ω
Q
n as an element of L1(Q ⊗ Qop)+. We define ξn = (ωAn )

1/2 and prove that the net
ξn ∈ L2(A⊗Aop)+ satisfies the conclusions of the proposition.

Properties (1) and (3) hold immediately. Since we already have (1), it suffices to prove property
(2) when x = v is a partial isometry in sN 0

M(A). Fix such a v and write q = vv∗, p = v∗v. Define

Dr = (EZ(p))
1/2 and Dl = (EZ(q))

1/2. Denote by zr, zl the support projections of Dr,Dl.

Then, Dr (resp. Dl) are invertible operators in Z(A)zr (resp. Z(A)zl) and ∆
1/2
v = Dl αv(D

−1
r ).

Put Q = (A ∪ {v, v∗})′′. By Lemma 3.5, Q is amenable. It then follows from (3.2) that

(3.3) lim
n

‖(v ⊗ 1) · ωQn · (v∗ ⊗ 1)− (1⊗ vop) · ωQn · (1⊗ v)‖1 = 0 .

The restriction of µQn to A⊗Aop equals µAn . Therefore, limn ‖EA⊗Aop(ω
Q
n )−ωAn ‖1 = 0. Because

v ∈ sNM (A), we have that EA(vyv
∗) = vEA(y)v

∗ for all y ∈M . Applying EA⊗Aop to (3.3), we
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conclude that

(3.4) lim
n

‖(v ⊗ 1) · ωAn · (v∗ ⊗ 1)− (1⊗ vop) · ωAn · (1⊗ v)‖1 = 0 .

By Lemma 3.9 below, we can take sequences of elements ai, bj ∈ A such that

(3.5)

∞∑

i=0

aia
∗
i = zl ,

∞∑

i=0

a∗i ai = D−2
l q ,

∞∑

j=0

bjb
∗
j = zr ,

∞∑

j=0

b∗jbj = D−2
r p .

We make this choice such that a0 = q and b0 = p.

Consider the von Neumann algebra N = B(ℓ2(N2)⊕C)⊗M⊗Mop with its canonical semifinite
trace Tr⊗τ and associated 1-norm ‖ · ‖1 and 2-norm ‖ · ‖2. View B(C, ℓ2(N2)) ⊂ B(ℓ2(N2)⊕C)
and denote by eij ∈ B(C, ℓ2(N2)) the operator given by eij(µ) = µδij , where (δij)i,j∈N is the
canonical orthonormal basis of ℓ2(N2).

Define V ∈ B(C, ℓ2(N2))⊗M ⊗ 1 given by

V =
∑

i,j

eij ⊗Dlaivb
∗
j ⊗ 1 .

Note that V is a well defined bounded operator satisfying V ∗V = zr ⊗ 1. We similarly define
W ∈ B(C, ℓ2(N2))⊗ 1⊗Mop given by

W =
∑

i,j

eij ⊗ 1⊗ (aivb
∗
jDr)

op

and note that W ∗W = 1⊗ z
op
l .

We claim that (3.4) together with properties (1) and (3) implies that

(3.6) lim
n

‖V (D2
r ⊗ 1)ωAn V

∗ −W (1⊗ (D2
l )

op)ωAn W
∗‖1 = 0 .

For every finite subset F ⊂ N2, we define VF and WF in the same way as V and W by only
summing over (i, j) ∈ F . Note that ‖VF‖ ≤ 1 for all F ⊂ N2 and note that ‖V − VF‖2 can be
made arbitrarily small. For every U ∈ B(C, ℓ2(N2))⊗M⊗1, we find using the Cauchy-Schwarz
inequality and property (3) that

lim sup
n

‖U ωAn ‖1 ≤ lim sup
n

‖U ξn‖2 ‖ξn‖2 = ‖U‖2 .

From (3.4) and property (1), we immediately get that for every finite subset F ⊂ N2,

lim
n

‖VF (D2
r ⊗ 1)ωAn V

∗
F −WF (1⊗ (D2

l )
op)ωAn W

∗
F‖1 = 0 .

By the preceding discussion, we conclude that also (3.6) holds.

Because Dr belongs to the center of A and V ∗V = zr ⊗ 1, the element V (Dr ⊗ 1) ξn V
∗ is the

positive square root of V (D2
r ⊗ 1)ωAn V

∗. Similarly, W (1 ⊗ D
op
l ) ξnW

∗ is the positive square

root of W (1⊗ (D2
l )

op)ωAn W
∗. The Powers-Størmer inequality then implies that

(3.7) lim
n

‖V (Dr ⊗ 1) ξn V
∗ −W (1⊗D

op
l ) ξnW

∗‖2 = 0 .

Multiplying on the left with e∗00⊗ 1⊗ 1 and on the right with e00⊗ 1⊗ 1, we find that property
(2) holds. Denote T (v) =W ∗V . Then T (v) belongs to the unit ball of M ⊗Mop. Multiplying
(3.7) on the left with e∗00 ⊗ 1 ⊗ 1 and on the right with V , we find that the first estimate in
(3.1) holds.

Define Vk by the same formula as V , but only summing over i, j = 1, . . . , k. Define T (v, k) =
W ∗Vk and note that T (v, k) belongs to the unit ball of M ⊗alg M

op. Write V ∗Vk = dk ⊗ 1,
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where dk ∈ A and limk ‖zr − dk‖2 = 0. Multiplying (3.7) on the left with e∗00 ⊗ 1 ⊗ 1 and on
the right with Vk, we find that

lim sup
n

‖(v ⊗ 1) ξn (dk ⊗ 1)− (1⊗ vop) ξn T (v, k)‖2 = 0 .

Since limn ‖ξn(dk ⊗ 1)− ξn(zr ⊗ 1)‖2 = ‖dk − zr‖2, we conclude that also the third estimate in
(3.1) holds.

Replacing in the above reasoning v by v∗, in (3.5), we interchange to roles of ai and bj . We
then get that

T (v∗) =
∑

i,j

Drbjv
∗a∗i ⊗ (Dlaivb

∗
j )

op = (Dr ⊗ (D−1
r )op)T (v)∗ (D−1

l ⊗D
op
l ) and

T (v∗, k) = (Dr ⊗ (D−1
r )op)T (v, k)∗ (D−1

l ⊗D
op
l ) .

Since limn ‖(1 ⊗ v)ξn(Dr ⊗ (D−1
r )op) − (1 ⊗ v)ξn‖2 = 0 and limn ‖(v∗ ⊗ 1)ξn(D

−1
l ⊗ D

op
l ) −

(v∗ ⊗ 1)ξn‖2 = 0, it follows that also the second and fourth estimate in (3.1) hold. �

3.3. Consequences of weak compactness. The approximate invariance given by weak com-
pactness as in (3.1) combines very well with deformation/rigidity theory. In particular, we can
apply to ξn any s-malleable deformation of M , in the sense of [Po03], i.e. a trace preserv-

ing inclusion (M, τ) ⊂ (M̃, τ) together with a strongly continuous one-parameter group of

trace preserving automorphisms (αt)t∈R of M̃ and a trace preserving period 2 automorphism

β ∈ Aut(M̃ , τ) satisfying β ◦ αt = α−t ◦ β and β|M = id.

Following [PV11, Definition 2.3], for any tracial von Neumann algebras P ⊂ (M, τ) and (Q, τ),
we say that an M -Q-bimodule MKQ is left P -amenable if there exists a P -central state Ω on
B(K) ∩ (Qop)′ whose restriction to M equals τ . The methods of [OP07, Section 4] can be
applied and give the following result.

Proposition 3.7. Let (M, τ) be a tracial von Neumann algebra with the CMAP and A ⊂M a

von Neumann subalgebra. Assume that ξn ∈ L2(A⊗Aop) is a net of positive vectors satisfying

the conclusion of Proposition 3.6. Also assume that (αt)t∈R is an s-malleable deformation as

above. Then at least one of the following statements holds.

(1) We have that limt→0

(
supa∈U(A) ‖αt(a)− a‖2

)
= 0.

(2) Writing P = sNM (A)′′, there exists a nonzero projection p ∈ Z(P ) such that the pMp-

M -bimodule pL2(M̃ ⊖M) is left Pp-amenable.

Proof. Denote by eM : L2(M̃ ) → L2(M) the orthogonal projection and write e⊥M = 1 − eM .
One of the following properties holds.

(1) For every ε > 0, there exists a t0 > 0 such that for every t ∈ R with |t| ≤ t0, we have
lim supn ‖(e⊥Mαt ⊗ id)(ξn)‖2 ≤ ε.

(2) There exists an ε > 0 and a sequence tk ∈ R such that limk tk = 0 and such that for
every k, we have lim supn ‖(e⊥Mαtk ⊗ id)(ξn)‖2 > ε.

We prove that the first (resp. second) of these properties implies the first (resp. second) con-
clusion in the proposition.

Assume that (1) holds. By [Po06, Lemma 2.1], the following transversality condition holds for
every t ∈ R and ξ ∈ L2(M ⊗Mop).

‖(α2t ⊗ id)(ξ)− ξ‖2 ≤ 2‖(e⊥Mαt ⊗ id)(ξ)‖2 .
Choose ε > 0. We can then take a t0 > 0 such that for every t ∈ R with |t| ≤ t0, we have
lim supn ‖(αt ⊗ id)(ξn)− ξn‖2 ≤ ε. Fix t ∈ R with |t| ≤ t0. We prove that ‖αt(a)− a‖2 ≤ 2

√
ε



10 RÉMI BOUTONNET, CYRIL HOUDAYER, AND STEFAAN VAES

for every a ∈ U(A), so that the first conclusion of the proposition indeed holds. Fix a ∈ U(A).
Because

lim
n
〈(αt(a)⊗ a) (αt ⊗ id)(ξn), (αt ⊗ id)(ξn)〉 = 1

and because lim supn ‖(αt ⊗ id)(ξn)− ξn‖2 ≤ ε, we get that

lim sup
n

|1− 〈(αt(a)⊗ a)ξn, ξn〉| ≤ 2ε .

But the left hand side equals

lim sup
n

|1− 〈(αt(a)a∗ ⊗ 1)ξn, ξn〉| = |1− τ(αt(a)a
∗)| .

So, we have proved that |1− τ(αt(a)a
∗)| ≤ 2ε. Then also,

‖αt(a)− a‖22 = 2Re(1− τ(αt(a)a
∗)) ≤ 4ε .

Next assume that (2) holds. We start by proving the following claim : for every x ∈ M and
every δ > 0, we have that for small enough t ∈ R

lim sup
n

‖(x⊗ 1)(αt ⊗ id)(ξn)− (αt ⊗ id)((x⊗ 1)ξn)‖2 < δ .

Indeed, it suffices to observe that the left hand side equals

lim sup
n

‖((α−t(x)− x)⊗ 1)ξn‖2 = ‖α−t(x)− x‖2

and that ‖α−t(x) − x‖2 → 0 as t → 0. Then also for every T ∈ M ⊗alg M
op and every δ > 0,

we have that for small enough t ∈ R

lim sup
n

‖(αt ⊗ id)(ξn)T − (αt ⊗ id)(ξnT )‖2 < δ .

We construct a subnet ζi of the net ζj,n = (e⊥Mαtj ⊗ id)(ξn) such that ε ≤ ‖ζi‖2 ≤ 1 for every i

and such that for every partial isometry v ∈ sN 0
M(A) and every x ∈M , we have

lim
i

‖(v ⊗ 1)ζi − (1⊗ vop)ζiS(v, i)‖2 = 0 , lim
i
‖(v∗ ⊗ 1)ζi − (1⊗ v)ζiS(v, i)

∗‖2 = 0 ,

lim sup
i

‖(x⊗ 1)ζi‖2 ≤ ‖x‖2 ,
(3.8)

where the S(v, i) are elements in the unit ball of M ⊗alg M
op. The index set of the net ζi is

given by i = (F ,G, δ) where F is a finite set of partial isometries in sN 0
M (A), G ⊂M is a finite

subset and δ > 0. Given i = (F ,G, δ) and using the notation of (3.1), we take k large enough
such that for every v ∈ F , we have that

lim sup
n

‖(v⊗1)ξn−(1⊗vop)ξnT (v, k)‖2 < δ and lim sup
n

‖(v∗⊗1)ξn−(1⊗v)ξnT (v, k)∗‖2 < δ .

Using the claim in the previous paragraph, we then take j large enough such that

lim sup
n

‖(x⊗ 1)(αtj ⊗ id)(ξn)− (αtj ⊗ id)((x⊗ 1)ξn)‖2 < δ

for all x ∈ F ∪ G and such that

lim sup
n

‖(αtj ⊗ id)(ξn)T (v, k) − (αtj ⊗ id)(ξnT (v, k))‖2 < δ

for all v ∈ F . We finally take n large enough such that the vector ζi = (e⊥Mαtj⊗id)(ξn) together
with S(v, i) := T (v, k) satisfies ε ≤ ‖ζi‖2 ≤ 1 and

‖(v ⊗ 1)ζi − (1⊗ vop)ζiS(v, i)‖2 < 3δ , ‖(v∗ ⊗ 1)ζi − (1⊗ v)ζiS(v, i)
∗‖2 < 3δ ,

‖(x⊗ 1)ζi‖2 < ‖x‖2 + 2δ

for all v ∈ F and all x ∈ G. So we have found the net ζi satisfying (3.8).

Denote P = sNM(A)′′ and define S as the commutant of the right M -action on L2(M̃ ⊖M).
Taking a subnet of the net ζi, we may assume that the net of positive functionals S → C :
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T 7→ 〈(T ⊗ 1)ζi, ζi〉 converges weakly∗ to a positive functional Ω on S. By (3.8), we get for all
T ∈ S and all partial isometries v ∈ sN 0

M(A) that

Ω(Tv) = lim
i
〈(Tv ⊗ 1)ζi, ζi〉 = lim

i
〈(T ⊗ vop)ζiS(v, i), ζi〉

= lim
i
〈(T ⊗ 1)ζi, (1⊗ v)ζiS(v, i)

∗〉 = lim
i
〈(T ⊗ 1)ζi, (v

∗ ⊗ 1)ζi〉
= lim

i
〈(vT ⊗ 1)ζi, ζi〉 = Ω(vT ) .

Since ‖ζi‖2 ≥ ε for all i, also Ω(1) ≥ ε, so that Ω is nonzero. By (3.8), we get that Ω(x∗x) ≤
τ(x∗x) for all x ∈M . The Cauchy-Schwarz inequality then implies that

|Ω(Tv)− Ω(Tw)|2 ≤ Ω(TT ∗) ‖v − w‖22 and |Ω(vT − wT )|2 ≤ ‖v − w‖22 Ω(T ∗T )

for all T ∈ S and v,w ∈ M . Since Ω(Tv) = Ω(vT ) when v is a partial isometry in sN 0
M(A),

taking linear combinations and ‖ · ‖2-limits, it follows that Ω is a nonzero P -central functional
on S. Since Ω|M ≤ τ , the restriction of Ω to M is normal. Denote by p ∈ M the support
projection of Ω|M . Then, p ∈ P ′ ∩ M . Since A ⊂ P and A′ ∩ M ⊂ P , it follows that

p ∈ Z(P ). As in [OP07, Theorem 2.1], we conclude that the pMp-M -bimodule pL2(M̃ ⊖M)
is left Pp-amenable. �

Propositions 3.6 and 3.7 will be key to prove that free Araki–Woods factors are strongly solid.
We also have the following consequence.

Theorem 3.8. Let Γ be a countable group with the CMAP that admits a proper 1-cocycle
into an orthogonal representation that is weakly contained in the regular representation. Then,

M = L(Γ) is stably strongly solid: for every diffuse amenable von Neumann subalgebra A ⊂M ,

we have that sNM(A)′′ remains amenable.

Proof. This follows immediately from Propositions 3.6 and 3.7 by using the s-malleable defor-
mation associated with a 1-cocycle in [Si10]. �

We needed the following well known lemma.

Lemma 3.9. Let (A, τ) be a tracial von Neumann algebra. Denote by EZ : A → Z(A) the

unique trace preserving conditional expectation. If x, y ∈ A+ satisfy EZ(x) = EZ(y), then there

exists a sequence of elements ak ∈ A such that

∑

k

aka
∗
k = x and

∑

k

a∗kak = y .

Proof. The result follows from a maximality argument and the equality EZ(a
∗a) = EZ(aa

∗)
for all a ∈ A. �

Remark 3.10. By Proposition 3.3, for the same groups Γ as in Theorem 3.8, the group von
Neumann algebraM = L(Γ) has the following property: for every diffuse abelian von Neumann
subalgebra A ⊂ M , the quasi-normalizer QNM (A)′′ is amenable. However, we leave open the
question whether QNM (A)′′ is amenable for every diffuse amenable subalgebra A ⊂ M . Note
here that in specific case of the free group factorsM = L(Fn) and using free entropy dimension,
it was proved in [Vo95] that for a diffuse abelian A ⊂ M , the ∗-algebra QNM (A) cannot be
dense in M . In [Ha15], this result was generalized to arbitrary diffuse amenable subalgebras
A ⊂M .



12 RÉMI BOUTONNET, CYRIL HOUDAYER, AND STEFAAN VAES

3.4. Relative stable strong solidity. In Proposition 3.6, we showed how to adapt the weak
compactness of [OP07] so as to cover the stable normalizer sNM(A)′′ rather than the normalizer
NM (A)′′. In exactly the same way, the methods of [PV11, Section 5.1] can be extended to the
stable normalizer. As a consequence, one obtains the following improvement of [PV11, Theorem
1.6].

Theorem 3.11. Let Γ be a countable group with the CMAP that admits a proper 1-cocycle
into an orthogonal representation that is weakly contained in the regular representation. Assume

that Γ y (B, τ) is any trace preserving action on the tracial von Neumann algebra (B, τ). Put

M = B⋊Γ and let A ⊂M be a von Neumann subalgebra that is amenable relative to B. Then

at least one of the following statements holds.

(1) A ≺M B.

(2) sNM(A)′′ remains amenable relative to B.

As a consequence of Theorem 3.11, also the results of [Io12, Va13] on the normalizer of sub-
algebras A of amalgamated free products M = M1 ∗B M2 generalize to the stable normalizer
sNM(A)′′.

On the other hand, it is not clear to us whether Proposition 3.6 and Theorems 3.8 and 3.11
remain valid if we replace CMAP by weak amenability because so far, we were unable to extend
the methods of [Oz10, Section 4] to the stable normalizer.

4. Proof of the Main Theorem

The following general lemma will be the key to deduce strong solidity results for type III factors
from structural results of their continuous core.

Lemma 4.1. Let Q ⊂ M be any inclusion of σ-finite von Neumann algebras with faithful

normal conditional expectation EQ : M → Q. Let ϕ ∈ M∗ be any faithful state such that

ϕ ◦ EQ = ϕ. Then for any u ∈ NM(Q) and any t ∈ R, we have u∗σ
ϕ
t (u) ∈ Q ∨ (Q′ ∩M).

Proof. Put ϕu := ϕ ◦Ad(u) and note that Q is globally invariant under the modular automor-

phism groups σϕ and σϕu . Put ψ := ϕ|Q and ψu := ϕu|Q. Observe that σψut (x) = σ
ϕu
t (x) and

σ
ψ
t (x) = σ

ϕ
t (x) for every t ∈ R and every x ∈ Q. By [Co72, Théorème 1.2.1], there exists a

σ-strongly continuous map R → U(Q) : t 7→ wt such that σψut = Ad(wt) ◦ σψt for every t ∈ R.

By [Co72, Lemme 1.2.3(c)], we have σϕut = Ad(u∗σϕt (u)) ◦ σϕt for every t ∈ R. Since

wt σ
ϕ
t (x)w

∗
t = σ

ϕu
t (x) = (u∗σϕt (u))σ

ϕ
t (x) (u

∗σ
ϕ
t (u))

∗

for every x ∈ Q, it follows that w∗
t (u

∗σ
ϕ
t (u)) ∈ Q′ ∩ M . Therefore, we have u∗σϕt (u) ∈

Q ∨ (Q′ ∩M) for every t ∈ R. �

Proof of the main theorem. First, observe that every free Araki–Woods factor is contained with
expectation in a free Araki–Woods factor of type III1. Indeed, for any orthogonal representation
U : R y HR, we have the following inclusion with expectation

Γ(HR, U)′′ ⊂ Γ(HR ⊕ L2
R(R), U ⊕ λ)′′,

where λ : R y L2
R
(R) is the regular representation and Γ(HR⊕L2

R
(R), U⊕λ)′′ is a free Araki–

Woods factor of type III1. Since strong solidity is preserved under taking diffuse subalgebras
with expectation, we may assume that M := Γ(HR, U)′′ is a free Araki–Woods factor of type
III1.

Let Q ⊂ M be any diffuse amenable von Neumann subalgebra with expectation. We want to
prove that P := NM (Q)′′ is amenable. Fix a faithful state ψ ∈ M∗ such that Q is globally
invariant under the modular automorphism group σψ. Observe that Q′ ∩ M , NM (Q)′′ and
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NM (Q ∨ (Q′ ∩ M))′′ are all globally invariant under the modular automorphism group σψ.
Since M is solid by [Oz03, VV05] (see also [HR14, Theorem A]), Q′ ∩M is amenable and so
is Q = Q ∨ (Q′ ∩M). Observe that Q′ ∩M = Z(Q). Since the inclusion NM (Q)′′ ⊂ NM (Q)′′

is with expectation, it suffices to prove that NM(Q)′′ is amenable. Therefore, without loss of
generality, we may further assume that Q = Q, that is, Q′ ∩M = Z(Q).

Now, assume by contradiction that P = NM (Q)′′ is not amenable. Then there exists a nonzero
central projection z ∈ Z(P ) such that Pz has no amenable direct summand. Since Z(P ) ⊂
Q′ ∩M = Z(Q), we have z ∈ Z(Q). Then we have Qz ⊂ zMz, (Qz)′ ∩ zMz = Z(Qz) and
NzMz(Qz)

′′ = Pz has no amenable direct summand. Since zMz ∼=M , we may replace Q ⊂M

by Qz ⊂ zMz and assume without loss of generality that P = NM(Q)′′ has no amenable direct
summand.

Claim. We have cψ(P ) ⊂ Ncψ(M)(cψ(Q))′′.

Since λψ(t) ∈ U(cψ(Q)), we have λψ(t) ∈ Ncψ(M)(cψ(Q)) for every t ∈ R. Let now u ∈
NM (Q). Then we have πψ(u)πψ(Q)πψ(u)

∗ = πψ(Q) ⊂ cψ(Q). Moreover since Q′ ∩ M =

Z(Q), Lemma 4.1 shows that we have uσψt (u
∗) ∈ U(Q) for all t ∈ R. Therefore, we have

πψ(u)λψ(t)πψ(u)
∗ = πψ(uσ

ψ
t (u

∗))λψ(t) ∈ πψ(Q)λψ(t) ⊂ cψ(Q) for all t ∈ R. Altogether, we
have that πψ(u)cψ(Q)πψ(u)

∗ ⊂ cψ(Q). Replacing u ∈ NM(Q) by u∗ ∈ NM(Q), we obtain
πψ(u)

∗cψ(Q)πψ(u) ⊂ cψ(Q) and hence πψ(u)cψ(Q)πψ(u)
∗ = cψ(Q). Since

cψ(P ) =
∨

{πψ(u), λψ(t) | u ∈ NM (Q), t ∈ R} ,
we finally have cψ(P ) ⊂ Ncψ(M)(cψ(Q))′′. This proves the claim.

Since P has no amenable direct summand, cψ(P ) has no amenable direct summand either
by [BHR12, Proposition 2.8]. The above claim further implies that Ncψ(M)(cψ(Q))′′ has no
amenable direct summand. Denote by ϕ = ϕU the free quasi-free state on M and put M0 :=
cϕ(M), Q0 := Πϕ,ψ(cψ(Q)) and P0 := Πϕ,ψ(Ncψ(M)(cψ(Q))′′) = NM0

(Q0)
′′.

Since Q is diffuse, [HU15, Lemma 2.5] and the paragraph following [HU15, Theorem 2.2] imply
that pQ0p ⊀M0

Lϕ(R) for any nonzero finite trace projection p ∈ Πϕ,ψ(Lψ(R)). Take such a
projection p ∈ Πϕ,ψ(Lψ(R)) ⊂ Q0, so that

(4.1) pQ0p ⊀M0
Lϕ(R).

SinceM is a type III1 factor,M0 is a type II∞ factor and hence there exists a unitary u ∈ U(M0)
such that upu∗ ∈ Lϕ(R). Therefore, up to conjugating Q0 (and P0) by a unitary in U(M0), we
may assume that p ∈ Lϕ(R). We still have (4.1).

By [HR10, Theorem A], M has the CMAP and so does M0 by [AD93, Lemma 4.6 and The-
orem 4.9]. Following [HR10, Section 4.1], we know that N := pM0p admits an s-malleable

deformation in the sense of Popa such that the N -N -bimodule L2(Ñ ⊖N) is weakly contained
in the coarse N -N -bimodule L2(N) ⊗ L2(N). Then [HR10, Theorem 4.3] and (4.1) imply
that this deformation does not converge uniformly on U(pQ0p). Put P1 := sNpM0p(pQ0p)

′′

and observe that pP0p ⊂ P1. Proposition 3.7 implies that there exists a nonzero projection

q ∈ Z(P1) such that the qNq-N -bimodule qL2(Ñ ⊖ N) is left P1q-amenable. Therefore, the
coarse qNq-N -bimodule is left P1q-amenable by [PV11, Corollary 2.5] which further implies
that P1q is amenable by [PV11, Proposition 2.4]. This however contradicts the fact that P0

has no amenable direct summand. �

5. Further remarks on stable strong solidity

In this section, we clarify the relationship between stable strong solidity and strong solidity.
Lemma 3.4(3) shows that if the infinite amplification M ⊗ B(ℓ2(N)) of a diffuse σ-finite von
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Neumann algebra M is strongly solid then M is stably strongly solid. We will show that the
converse is also true. First, we prove the following useful lemma.

Lemma 5.1. Let (M,Tr) be any semifinite von Neumann algebra endowed with a fns trace.

Assume that N ⊂M is a subalgebra with expectation EN :M → N such that N ′ ∩M ⊂ N .

Then Tr is semifinite on N and Tr ◦ EN = Tr.

Proof. Since M is semifinite and N ⊂ M is with expectation, N is a semifinite von Neumann
algebra. Denote by TrN a fns trace on N and define a fns weight ϕ on M by the formula
ϕ := TrN ◦ EN . Denote by h the unique positive self-adjoint operator affiliated with M such
that ϕ = Tr(h ·) (see [PT72, Theorem 5.12]).

Note that N centralizes both weights Tr and ϕ. Then for all t ∈ R, the Radon–Nikodym
derivative (Dϕ : DTr)t = hit commutes with N . This shows that hit ∈ N ′ ∩M = Z(N) for all
t ∈ R and hence h is affiliated with the center Z(N) of N . Since ϕ is semifinite on N and h
is a nonsingular operator affiliated with Z(N), also Tr is semifinite on N . Since ϕ ◦ EN = ϕ,
also Tr ◦ EN = Tr. �

Corollary 5.2. Let M be any diffuse σ-finite von Neumann algebra. Then the following facts

are true:

(1) M is solid if and only if its infinite amplification M ⊗ B(ℓ2(N)) is solid.

(2) M is stably strongly solid if and only if its infinite amplification is strongly solid.

Proof. First, observe that a direct sum of von Neumann algebras is solid (resp. (stably) strongly
solid) if and only if each direct summand is solid (resp. (stably) strongly solid). Next, any solid
von Neumann algebra with diffuse center is amenable. Also, the notions of stable strong
solidity and strong solidity coincide for properly infinite von Neumann algebras by Lemma
3.4(2, 3). Therefore, we only need to consider the case where M is a II1 factor. Denote by
M∞ := M ⊗ B(ℓ2(N)) the infinite amplification of M equipped with the canonical fns trace
Tr := τ ⊗ TrB(ℓ2(N)).

(1) If M∞ is solid then M is solid as well since M ⊂ M∞ is with expectation and solidity is
preserved under taking diffuse subalgebras with expectation. Assume now that M is solid and
take a diffuse subalgebra N ⊂M∞ with expectation. Take a diffuse abelian subalgebra A ⊂ N

with expectation. To prove that N ′ ∩M∞ is amenable, it is sufficient to prove that A′ ∩M∞

is amenable since N ′ ∩M∞ ⊂ A′ ∩M∞ is with expectation.

SinceA is abelian, we have A ⊂ A′∩M∞ := Q and henceQ′∩M∞ ⊂ Q. Then Lemma 5.1 implies
that the semifinite trace Tr onM∞ remains semifinite on Q. Since Q is diffuse, Tr|Q is semifinite
and Tr(1) = +∞, we may take a sequence of pairwise orthogonal projections pn ∈ Q such that
Tr(pn) = 1 for all n and

∑
n pn = 1. Then for all n, we have that pnQpn = (Apn)

′ ∩ pnM∞pn.
Since pnM∞pn ∼= M is solid, we have that pnQpn is amenable for all n and we conclude that
Q is amenable.

(2) Lemma 3.4(3) shows the “if” part. Let us show the “only if” part. Assume that M is
stably strongly solid and take a diffuse amenable subalgebra Q ⊂M∞ with expectation.

By (1), M∞ is solid and hence Q := Q ∨ (Q′ ∩M∞) is also diffuse amenable and NM∞
(Q)′′

is contained with expectation inside NM∞
(Q)′′. Hence replacing Q by Q if necessary, we may

assume that Q′ ∩ M∞ ⊂ Q. Then Lemma 5.1 implies that the semifinite trace Tr on M∞

remains semifinite on Q.

Take a sequence of pairwise orthogonal projections pn ∈ Q such that Tr(pn) = 1 for all n and∑
n pn = 1. Since pnM∞pn ∼= M is stably strongly solid, we have that sNpnM∞pn(pnQpn)

′′

is amenable for all n. Hence pn(NM∞
(Q)′′)pn ⊂ pn(sNM∞

(Q)′′)pn = sNpnM∞pn(pnQpn)
′′ is

amenable for all n and we conclude that NM∞
(Q)′′ is amenable as well. �
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89–102.

[Kr75] W. Krieger, On ergodic flows and the isomorphism of factors. Math. Ann. 223 (1976), 19–70.
[MV13] N. Meesschaert, S. Vaes, Partial classification of the Baumslag-Solitar group von Neumann algebras.

Doc. Math. 19 (2014), 629–645.
[MvN43] F. Murray, J. von Neumann, Rings of operators. IV. Ann. of Math. 44 (1943), 716–808.
[Oz03] N. Ozawa, Solid von Neumann algebras. Acta Math. 192 (2004), 111–117.
[Oz10] N. Ozawa, Examples of groups which are not weakly amenable. Kyoto J. Math. 52 (2012), 333–344.
[OP07] N. Ozawa, S. Popa, On a class of II1 factors with at most one Cartan subalgebra. Ann. of Math. 172

(2010), 713–749.
[PT72] G. Pedersen, M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras. Acta Math.

130 (1973), 53–87.
[Po01] S. Popa, On a class of type II1 factors with Betti numbers invariants. Ann. of Math. 163 (2006),

809–899.
[Po03] S. Popa, Strong rigidity of II1 factors arising from malleable actions of w-rigid groups, I. Invent. Math.

165 (2006), 369–408.
[Po06] S. Popa, On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21 (2008),

981–1000.
[PV11] S. Popa, S. Vaes, Unique Cartan decomposition for II1 factors arising from arbitrary actions of free

groups. Acta Math. 212 (2014), 141–198.
[Sh96] D. Shlyakhtenko, Free quasi-free states. Pacific J. Math. 177 (1997), 329–368.
[Sh97a] D. Shlyakhtenko, Some applications of freeness with amalgamation. J. Reine Angew. Math. 500

(1998), 191–212.
[Sh97b] D. Shlyakhtenko, A-valued semicircular systems. J. Funct. Anal. 166 (1999), 1–47.
[Sh02] D. Shlyakhtenko, On the classification of full factors of type III. Trans. Amer. Math. Soc. 356

(2004), 4143–4159.
[Si10] T. Sinclair, Strong solidity of group factors from lattices in SO(n, 1) and SU(n, 1). J. Funct. Anal.

260 (2011), 3209–3221.
[Ta03] M. Takesaki, Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences, 125. Operator

Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin, 2003. xxii+518 pp.
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91405 Orsay, FRANCE

E-mail address: cyril.houdayer@math.u-psud.fr

Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, BELGIUM

E-mail address: stefaan.vaes@wis.kuleuven.be


