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Abstract

We consider the homogenization of a pure Neumann boundary value problem
in perforated domains. Contrary to the usual case, several obstructions occur in
this case. We present an approximation of the domains for which the problem
is well-posed and homogenization can be proved. The main tool is the unfolding
method together with geometrical results used to establish uniform bounds.

Introduction

Consider a pure Neumann problem (i.e., without zero order term) which is tradition-
ally associated with the Fredholm alternative. Its variational formulation in a domain

O is to find u in H1(O) such that

∫
O
A∇u∇v dx =

∫
O
fv dx, ∀v ∈ H1(O), where f is

in L2(O) and A(x) = (aij(x))1≤i,j≤n is an elliptic matrix field. It is well-known that this
problem has a unique solution (up to a constant), provided O is bounded, connected

with Lipschitz boundary and if and only if

∫
O
f(x) dx = 0 (Fredholm alternative).

We are interested in homogenizing this problem whenO is the periodically perforated
domain Ω∗ε defined in (1.5).

In this geometry, the pure homogeneous Neumann problem with a zero order term
was considered in [2] (see its appendix). The case with non homogeneous Neumann
conditions on the boundary of the holes was treated in [4]. Because of the presence of
a zero order term, there is no Fredholm alternative to be considered in these papers.

In the case without zero order term, there are at least two reasons why using the
same geometry fails. First, it is not true in general that Ω∗ε is connected. Second, the
boundary of Ω∗ε can be so irregular that ∇v in L2(Ω∗ε) does not imply v ∈ H1(Ω∗ε) but
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only v ∈ H1
loc(Ω

∗
ε). Consequently, the problem is not well-posed for a general f satisfying

the Fredholm condition.

To avoid these difficulties, we construct a subset C∗ε of Ω∗ε which is connected, and a
Hilbert space W (C∗ε ) on which the approximate problem is well-posed. The set obtained
by “filling the holes” of C∗ε converges to Ω in an appropriate sense (Proposition 1.12 and
Remark 1.11). Furthermore, all the spaces W (C∗ε ) satisfy a Poincaré-Wirtinger inequal-
ity with a uniform constant, the key to obtaining uniform estimates (Theorem1.14).

This construction is rather involved and follows from the considerations of [4] for the
implementation of the unfolding method in the case of perforated domains.

Plan
Section 1 presents a brief summary of this method, with some new results adapted to the
Neumann case. The approximate problem is stated in Section 2. Its homogenization
is performed in Section 3, including corrector results. In the Appendix, we give the
proof of Lemma 1.13. This result is used to show the uniform boundedness of the
Poincaré-Wirtinger constants in Theorem 1.14.

General notations
We follow the general notations of [4]. In particular, ε indicates the generic element of a
bounded subset of R∗+ in the closure of which 0 lies. Convergence of ε to 0 is understood
in this set. Also, c and C denote generic constants which do not depend upon ε.
As usual, 1D denotes the characteristic function of the set D.
For a measurable set D in Rn, |D| denotes its Lebesgue measure.
For simplicity, the notation Lp(O) will be used both for scalar and vector-valued func-
tions defined on the set O, since no ambiguity will arise.
For a set ω with positive finite measure and a function f integrable on ω,Mω(f) denote
the average of f over ω.

We also refer to [4] for an expanded list of references.

1 A brief summary of the unfolding method in per-

forated domains

In this section, we begin by giving the setup and notations for periodically perforated
domains. Then, we briefly recall the results of [4] concerning the periodic unfolding for
such domains.

Let b = (b1, . . . , bn) be a basis in Rn. Set

G =
{
ξ ∈ Rn | ξ =

n∑
i=1

kibi , (k1 , . . . , kn) ∈ ZZn
}
. (1.1)

By Y , we denote the reference cell, which in the simplest case is the open parallelotop
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generated by the basis b,{
y ∈ Rn | y =

n∑
i=1

yibi , (y1 , . . . , yn) ∈ (0 , 1 )n
}
. (1.2)

For the general case of Y having the paving property, we refer to [4].

Let S be a closed strict subset of Y and denote by Y ∗ the part occupied by the
material i.e. Y ∗ = Y \ S. The sets S and Y ∗ are the reference hole and perforated cell,
respectively (see Figure 1).

Figure 1. The Y ∗ = Y \ S
We introduce the following notations :

(Rn)∗ = Rn \
⋃
ξ∈G

(ξ + S), (Rn)∗ε = ε(Rn)∗ = Rn \
⋃
ξ∈G

ε(ξ + S)
.
= Rn \ Sε. (1.3)

By this definition, (Rn)∗ε is Rn εG-periodically perforated by εS.

Let now Ω be an open bounded subset of Rn with Lipschitz boundary, and consider
the sets

Ω̂ε = interior

{⋃
ξ∈Ξε

ε
(
ξ+Y

)}
, Λε = Ω\Ω̂ε, where Ξε =

{
ξ ∈ G, ε(ξ+Y ) ⊂ Ω

}
. (1.4)

Figure 2. The sets Ω̂ε (in grey) and Λε (in green)

The set Ω̂ε is the interior of the largest union of ε(ξ + Y ) cells (ξ ∈ G), such that
ε(ξ+Y ) are included in Ω, while Λε is the subset of Ω containing the parts from ε

(
ξ+Y

)
cells intersecting the boundary ∂Ω (see Figure 2).
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The perforated domain Ω∗ε is obtained by removing from Ω the set of holes Sε (see
Figure 3 for the two-dimensional case),

Ω∗ε = (Rn)∗ε ∩ Ω. (1.5)

The following notations will be used (see Figure 3):

Ω̂∗ε = Ω̂ε ∩ Ω∗ε, Λ∗ε = Λε ∩ Ω∗ε. (1.6)

Figure 3. The sets Ω∗ε, Ω̂∗ε (in dark blue) and Λ∗ε (in light green)

For z ∈ Rn, [z]Y denotes the unique (up to a set of measure zero) integer combination∑n
j=1 kjbj of the periods such that z − [z]Y belongs to Y (see Figure 4).

Figure 4. Definition of [z]Y and {z}Y
Set now

{z}Y = z − [z]Y ∈ Y a.e. for z ∈ Rn.

The unfolding operator T ∗ε for functions defined on the perforated domain Ω∗ε was
introduced in [4] as follows:
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Definition 1.1. For any function φ Lebesgue-measurable on Ω̂∗ε, the unfolding operator
T ∗ε is defined by

T ∗ε (φ)(x, y) =

φ
(
ε
[x
ε

]
Y

+ εy
)

a.e. for (x, y) ∈ Ω̂ε × Y ∗,

0 a.e. for (x, y) ∈ Λε × Y ∗.
(1.7)

For φ Lebesgue-measurable on Ω∗ε, we denote T ∗ε (φ|
Ω̂∗ε

) simply by T ∗ε (φ).

This operator maps functions defined on the oscillating domain Ω̂∗ε, to functions de-
fined on the fixed domain Ω×Y ∗. Its main properties are recalled in the two propositions
below (see [4] for their proofs).

Proposition 1.2. For p ∈ [1,+∞[, the operator T ∗ε is linear and continuous from
Lp(Ω∗ε) to Lp(Ω× Y ∗) . For every φ in L1(Ω∗ε) and w in Lp(Ω∗ε),

(i)
1

|Y |

∫
Ω×Y ∗

T ∗ε (φ)(x, y) dx dy =

∫
Ω̂∗ε

φ(x) dx,

(ii) ‖T ∗ε (w)‖Lp(Ω×Y ∗) ≤ | Y |1/p ‖w‖Lp(Ω∗ε).

Proposition 1.3. Let p belong to [1,+∞[.

(i) For w ∈ Lp(Ω),

T ∗ε (w)→ w strongly in Lp(Ω× Y ∗).

(ii) Let wε be in Lp(Ω∗ε) such that ||wε||Lp(Ω∗ε) ≤ C. If

T ∗ε (wε) ⇀ ŵ weakly in Lp(Ω× Y ∗),

then

w̃ε ⇀
|Y ∗|
|Y |
M

Y ∗
(ŵ) weakly in Lp(Ω).

(iii) For wε in Lp(Ω∗ε) such that ‖wε‖Lp(Ω∗ε) is bounded, the following are equivalent:

a) There is w ∈ Lp(Ω) such that

w̃ε ⇀
|Y ∗|
|Y |

w weakly in Lp(Ω).

b) All the weak limit points W in Lp(Ω × Y ∗) of the sequence {T ∗ε (wε)} have the
same average over Y ∗ (this average MY ∗(W ) being just w).

The next results, which will be used in the sequel, are consequences of these propo-
sitions.
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Corollary 1.4. Let p be in [1,∞] and p′ be its conjugate.

(i) Both sequences {1Ω∗ε} and {1Ω̂∗ε
} converge weakly-∗ in L∞(Ω) to the constant

|Y ∗|
|Y |

and consequently

lim
ε→0
|Ω∗ε| = lim

ε→0
|Ω̂∗ε| =

|Y ∗|
|Y |
|Ω|. (1.8)

(ii) Let wε be in Lp(Ω∗ε) such that

w̃ε ⇀
|Y ∗|
|Y |

w weakly in Lp(Ω).

Then,
lim
ε→0
MΩ∗ε(wε) = lim

ε→0
MΩ̂∗ε

(wε 1Ω̂∗ε
) =MΩ(w). (1.9)

In particular, for Ψ in Lp(Ω),

MΩ∗ε(Ψ 1Ω∗ε)→MΩ(Ψ). (1.10)

Proof. (i) Since

T ∗ε (1Ω∗ε) = T ∗ε (1Ω̂∗ε
) = 1Ω̂ε×Y ∗ → 1 strongly in L1(Ω× Y ∗),

statement (i) follows from Proposition 1.3 (ii).

(ii) By Proposition 1.3 (iii), every weak limit point W of the sequence {T ∗ε (we)}
satisfies w =MY ∗(W ). Now, taking the corresponding subsequence,∫

Ω̂∗ε

wεdx =
1

|Y |

∫
Ω×Y ∗

T ∗ε (wε)dx dy →
1

|Y |

∫
Ω×Y ∗

Wdxdy =
|Y ∗|
|Y |
MΩ(w).

This holds for every subsequence. Consequently, for the full sequence, and using (1.8)
above,

lim
ε→0

∫
Ω̂∗ε

wε =
|Y ∗|
|Y |
MΩ(w) and MΩ̂∗ε

(wε)→MΩ(w).

On the other hand,

∫
Ω∗ε

wεdx−
∫

Ω̂∗ε

wεdx =

∫
Ω

w̃ε1Ω∗ε\Ω̂∗ε
dx which goes to zero by equicon-

tinuity since |Ω∗ε \ Ω̂∗ε| → 0.

Consequently, MΩ∗ε(wε)→MΩ(w) making use of (1.8) again.

To state corrector results, we will make use of the averaging operator U∗ε , the adjoint
of T ∗ε . Its definition and properties are recalled below.

Definition 1.5. For p in [1,+∞], the averaging operator U∗ε : Lp(Ω× Y ∗) 7→ Lp(Ω∗ε) is
defined as

U∗ε (Φ)(x) =


1

|Y |

∫
Y

Φ
(
ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)
dz a.e. for x ∈ Ω̂∗ε,

0 a.e. for x ∈ Λ∗ε.
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Proposition 1.6. (Properties of U∗ε ). Suppose that p is in [1,+∞[.
(i) Let {Φε} be a bounded sequence in Lp(Ω×Y ∗) such that Φε ⇀ Φ weakly in Lp(Ω×Y ∗).
Then

Ũ∗ε (Φε) ⇀
|Y ∗|
|Y |
M

Y ∗
(Φ) weakly in Lp(Ω).

(ii) Let {Φε} be a sequence such that Φε → Φ strongly in Lp(Ω× Y ∗). Then

T ∗ε (U∗ε (Φε))→ Φ strongly in Lp(Ω× Y ∗).

(iii) Let wε be in Lp(Ω∗ε). Then, the following assertions are equivalent:

(c) T ∗ε (wε)→ ŵ strongly in Lp(Ω× Y ∗) and

∫
Λ∗ε

|wε|p → 0,

(d) ‖wε − U∗ε (ŵ)‖Lp(Ω∗ε) → 0.

In [4], the following geometrical hypothesis was introduced for the set Y ∗:

Hypothesis (Hp) The open set Y ∗ satisfies the Poincaré-Wirtinger inequality for the
exponent p (p ∈ [1,+∞]) and for every vector bi, i ∈ {1, . . . , n}, of the basis of G, the
interior of Y ∗ ∪ (bi + Y ∗)) is connected.

As a consequence, the following compactness result holds;

Theorem 1.7. Under Hypothesis (Hp), suppose that wε in W 1,p(Ω∗ε) satisfies

‖wε‖W 1,p(Ω∗ε) ≤ C.

Then, there exist w in W 1,p(Ω) and ŵ in Lp(Ω;W 1,p
per(Y

∗)) with MY ∗(ŵ) ≡ 0, such that,
up to a subsequence,

(i)

{
T ∗ε (wε)→ w strongly in Lploc(Ω;W 1,p(Y ∗)),

T ∗ε (wε) ⇀ w weakly in Lp(Ω;W 1,p(Y ∗)),

(ii) T ∗ε (∇wε) ⇀ ∇w +∇yŵ weakly in Lp(Ω× Y ∗).

This compactness result is essential for homogenization problems. Since the unfold-
ing operator T ∗ε transforms functions defined on the oscillating domain Ω∗ε into functions
defined on the fixed domain Ω × Y ∗, there is no need of any extension operator to the
whole of Ω. Therefore, regularity hypotheses on the boundary ∂S insuring the existence
of such extension operators, are not required (contrary to the “classical” methods, cf.
references in [4]).

It follows from the considerations in [4] that under Hypothesis (Hp), there exists a
finite ρ(Y ) ≥ 2 diam(Y ) such that Proposition 1.12 below holds. To state this Proposi-
tion, we introduce the following notations (see Figure 4):

Ω̃ε
.
=
{
x ∈ Ω | dist(x, ∂Ω) > ερ(Y )

}
, Ω̃∗ε = Ω∗ε ∩ Ω̃ε. (1.11)
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Figure 4. The set Ω̃∗ε (in dark blue)

It is easily seen that Ω̃ε ⊂ Ω̂ε,, where Ω̂ε is defined by (1.4). Moreover, for ε small

enough, the set Ω̃ε is connected due to the fact that Ω is connected with Lipschitz
boundary.

Remark 1.8. In [4], it can be seen that if Y is a parallelotop, then ρ(Y ) = 2 diam(Y ).
In general, ρ(Y ) can be explicitly computed and is related to the number of b-parallelotops
needed to cover Y .

Proposition 1.9. Suppose that hypothesis (Hp) holds. Then, the set Ω̃∗ε is included in
a single connected component of Ω∗ε.

Proof. To show this result, one first notes that Ω̃∗ε is included in the set Ω̂∗∗ε introduced

in the appendix of [4]. Furthermore, Ω̂∗∗ε is connected and is included in Ω∗ε. Note that

if Y is a parallelotop, Ω̂∗∗ε coincides with Ω̂∗ε.

Definition 1.10. The connected component of Ω∗ε containing Ω̃∗ε is denoted C∗ε .

Remark 1.11. All the connected components of Ω∗ε, others than C∗ε , lie near the bound-
ary of Ω. Therefore, in some sense, C∗ε is the “main” connected component of Ω∗ε.

Proposition 1.12. Suppose that hypothesis (Hp) holds.

(a) For every function w in W 1,p
loc (C∗ε ) with ∇w ∈ Lp(C∗ε ), its restriction w 1Ω̃∗ε

belongs

to Lp(Ω̃∗ε) (and not only to Lploc(Ω̃
∗
ε)).

(b) For every function ϕ in W 1,p(Ω̃∗ε), there exist two functions ϕ1 in W 1,p(Ω̃ε) and

ϕ2 ∈ W 1,p(Ω̃∗ε) and a constant Cp independent of ε, such that

(i) ϕ = ϕ1 + ϕ2, a.e. in Ω̃∗ε,

(ii) ‖ϕ1‖Lp(Ω̃ε)
≤ Cp‖ϕ‖Lp(Ω̃∗ε), ‖∇ϕ1‖Lp(Ω̃ε)

≤ Cp‖∇ϕ‖Lp(Ω̃∗ε),

(iii) ‖ϕ2‖Lp(Ω̃∗ε) ≤ εCp‖∇ϕ‖Lp(Ω̃∗ε), ‖∇ϕ2‖Lp(Ω̃∗ε) ≤ Cp‖∇ϕ‖Lp(Ω̃∗ε).

(1.12)
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Proof. (a) This follows from the fact that under (Hp), the set Ω̂∗∗ε itself satisfies the
Poincaré-Wirtinger inequality (but the corresponding constant may not be uniformly

bounded with respect to ε). Thus, w belongs to Lp(Ω̂∗∗ε ).

(b) This corresponds to the decomposition w = Q∗ε(w)+R∗ε(w), as introduced in Section
3.2.2 of [4] (see Propositions 3.6 – 3.8).

In the Appendix, the following result is proved:

Lemma 1.13 (Poincaré-Wirtinger inequality). Assume that Ω is a bounded domain
with Lipschitz boundary. Then there exist δ0 > 0 and a common Poincaré-Wirtinger
constant Cp for all the sets Ω̃ε for ε ∈]0, δ0], i.e.

∀φ ∈ W 1,p(Ω̃ε), ||φ−MΩ̃ε
(φ)||Lp(Ω̃ε)

≤ Cp||∇φ||[Lp(Ω̃ε)]
,

where C is independent of ε.

As a combination of the two previous statements, the sets Ω̃∗ε satisfy the Poincaré-
Wirtinger inequality with a constant independent of ε.

Theorem 1.14 (Poincaré-Wirtinger inequality for perforated domains). There is a con-

stant Cp independent of ε such that for every function ϕ in W 1,p(Ω̃∗ε),

‖ϕ−MΩ̃∗ε
(ϕ)‖Lp(Ω̃∗ε) ≤ Cp‖∇ϕ‖Lp(Ω̃∗ε). (1.13)

Proof. Using (b) of Proposition 1.12, we decompose ϕ = ϕ1 +ϕ2 and apply Lemma 1.13
to ϕ1:

‖ϕ1 −MΩ̃ε
(ϕ1)‖Lp(Ω̃ε)

≤ Cp‖∇ϕ1‖Lp(Ω̃ε)
.

Taking the average over Ω̃∗ε gives

‖MΩ̃∗ε
(ϕ1)−MΩ̃ε

(ϕ1)‖Lp(Ω̃ε)
≤ Cp‖∇ϕ1‖Lp(Ω̃ε)

,

hence,
‖ϕ1 −MΩ̃∗ε

(ϕ1)‖Lp(Ω̃ε)
≤ 2Cp‖∇ϕ1‖Lp(Ω̃ε)

≤ C ′p‖∇ϕ‖Lp(Ω̃∗ε).

Also by (1.13)(iii),

‖ϕ2‖Lp(Ω̃∗ε) + |MΩ̃∗ε
(ϕ2)| ≤ εCp‖∇ϕ‖Lp(Ω̃∗ε),

from which the result follows.

The main convergence result in this section is the following:
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Theorem 1.15. Let p be in ]1,+∞] and wε in W 1,p
loc (Ω∗ε) satisfying

‖∇wε‖Lp(C∗ε ) ≤ C, (1.14)

and such that MΩ̃∗ε
(wε) = 0. Then, up to a subsequence (still denoted ε), there are two

functions w in W 1,p(Ω) and ŵ in Lp(Ω;W 1,p
per(Y

∗)), such that

T ∗ε (wε1Ω̃ε
) ⇀ w weakly in Lp(Ω× Y ∗) ∩ Lploc(Ω;W 1,p(Y ∗)),

T ∗ε
(
(∇wε) 1C∗ε

)
⇀ ∇w +∇yŵ weakly in Lp(Ω× Y ∗).

For p = +∞, the weak convergences above are replaced by weak-∗ convergences.

Proof. Note first that according to Proposition 1.12 (a) and (1.14), MΩ̃∗ε
exists so that

hypothesis MΩ̃∗ε
(wε) = 0 makes sense. Then, using Theorem 1.14, we deduce that

‖wε‖W 1,p(Ω̃∗ε) is bounded. It follows that, up to a subsequence, there existW in Lp(Ω×Y ∗)
and F in [Lp(Ω× Y ∗)]n such that

T ∗ε (wε1Ω̃ε
) ⇀W weakly in Lp(Ω× Y ∗),

T ∗ε
(
(∇wε) 1C∗ε

)
⇀ F weakly in Lp(Ω× Y ∗).

(1.15)

But Theorem 1.7 applied in every relatively compact open subset ω of Ω implies that, up
to a subsequence, there exist w in W 1,p

loc (Ω) and ŵ in Lploc(Ω;W 1,p
per(Y

∗)) withMY ∗(ŵ) ≡ 0,
with

T ∗ε (wε1Ω̃ε
) ⇀ w weakly in Lp(ω;W 1,p(Y ∗)),

T ∗ε
(
(∇wε) 1C∗ε

)
⇀ ∇w +∇yŵ weakly in Lp(ω;Lp(Y ∗)),

(1.16)

for all ω. The above convergences imply w(x) = W (x, .) and ∇w =MY ∗(F ) in Lp(Ω).
It then follows that w belongs to W 1,p(Ω) and ŵ to Lp(Ω;W 1,p

per(Y
∗)).

For p = +∞, the proof is similar, using the weak-∗ compactness criterion in L∞

spaces.

2 A Neumann problem in perforated domains with

Fredholm alternative

In this section, we would like to consider the homogenization of the Neumann prob-
lem whose variational formulation is

Find uε in V (Ω∗ε) such that

∫
Ω∗ε

Aε∇uε∇v dx =

∫
Ω∗ε

fεv dx, ∀v ∈ V (Ω∗ε), (2.1)

where fε is given in L2(Ω∗ε). For any bounded open set O , V (O) denotes the space

V (O)
.
= {w ∈ H1(O),MO(w) = 0}. (2.2)
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Here, Aε(x) = (aεij(x))1≤i,j≤n is given in M(α, β,Ω∗ε) where the latter denotes the set of

the n×n matrices B = B(x), B = (bij)1≤i,j≤n ∈ (L∞ (Ω∗ε))
n×n such that for any λ ∈ Rn

and a.e. on Ω∗ε,
(B(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ β|λ|.

Existence and uniqueness of the solution for (2.1) follows by Lax-Milgram’s theorem,
provided that Ω∗ε is connected and that the Poincaré-Wirtinger inequality holds for
H1(Ω∗ε) (which implies that V (Ω∗ε) is a Hilbert space for the norm |v|V (Ω∗ε)

.
= |∇v|L2(Ω∗ε)).

Under such conditions, without loss of generality, one can assume that MΩ∗ε(fε) = 0
since the test functions have zero average. Indeed, it is standard that this problem
corresponds to the following formulation in the sense of distributions:{

−div (Aε∇uε) = fε −MΩ∗ε(fε) in Ω∗ε
Aε∇uε · nε = 0 on ∂Ω∗ε.

(2.3)

If MΩ∗ε(fε) = 0, this is expressed in a variational form on the whole of H1(Ω∗ε) as

Find wε in H1(Ω∗ε) such that

∫
Ω∗ε

Aε∇wε∇v dx =

∫
Ω∗ε

fεv dx, ∀v ∈ H1(Ω∗ε).

This latter problem has many solutions wε, all differing by a constant from the unique
solution of (2.1), provided it exists. In this framework, the Fredholm alternative applies
and the corresponding condition is again MΩ∗ε(fε) = 0.

However, there are multiple reasons why this presentation does not work.
It is not true in general that Ω∗ε is connected, which precludes that it satisfies the
Poincaré-Wirtinger inequality. Figure 5 gives an example a disconnected Ω∗ε for a very
smooth Ω.

Figure 5. Example of a disconnected set Ω∗ε ; in blue is the set C∗ε
Furthermore, the boundary of Ω∗ε can be so irregular that there can be functions with

gradient in L2(Ω∗ε) which are not integrable in Ω∗ε. Consequently, the space V (Ω∗ε) does
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not make sense. These difficulties are specific to the case of the Fredholm alternative
(they do not appear, for example, in [2] and [4]) and the main contribution of this paper
is to give a way to overcome them.

Due to Propositions 1.9 and 1.12, a “natural” candidate for domain on which to
consider the approximate problem for (2.1) is the set C∗ε introduced in Definition 1.10.
With appropriate assumptions on the right hand side fε, one can expect that there is a
unique solution to the approximate problem (2.7) below in the space

W (C∗ε )
.
= {ϕ ∈ H1

loc(C∗ε ),∇ϕ ∈ L2(C∗ε ), and MΩ̃∗ε
(ϕ) = 0}. (2.4)

Indeed, due to (a) of Proposition 1.12, there exists a constant Cε (not necessarily
bounded with respect to ε) such that for all ϕ in W (C∗ε ),

‖ϕ‖L2(Ω̃∗ε) ≤ Cε‖∇ϕ‖L2(C∗ε ), (2.5)

so that W (C∗ε ) is a Hilbert space when endowed with the norm

‖ϕ‖W (C∗ε )
.
= ‖∇ϕ‖L2(C∗ε ).

Uniform estimates can now be obtained under the hypothesis

fε belongs to L2(C∗ε ),vanishes outside Ω̃∗ε and satisfies MΩ̃∗ε
(fε) = 0. (2.6)

Theorem 2.1 (Existence and priori estimates for a proper approximation). Suppose
that Hypothesis (H2) is satisfied and (2.6) holds. Then, there is a unique function uε
in W (C∗ε ), solution of∫

C∗ε
Aε(x)∇uε(x)∇ϕ(x) dx =

∫
C∗ε
fε(x)ϕ(x)dx (2.7)

for all ϕ in W (C∗ε ).

It satisfies the following estimates with a constant C independent of ε:

‖∇uε‖L2(C∗ε ) ≤ C‖fε‖L2(Ω∗ε),

‖uε‖L2(Ω̃∗ε) ≤ C‖fε‖L2(Ω∗ε).
(2.8)

Proof. Existence and uniqueness of the solution uε follow immediately from the Lax-
Milgram theorem but this does not give a uniform estimate, unless Cε in (2.5) is bounded.

To obtain a uniform estimate, we start with the straightforward inequality

α‖∇uε‖2
L2(C∗ε ) ≤ ‖fε‖L2(Ω̃∗ε)‖uε‖L2(Ω̃∗ε).

Since MΩ̃∗ε
(uε) = 0, by Proposition 1.14, ‖uε‖L2(Ω̃∗ε) ≤ C2‖∇uε‖L2(C∗ε ), from which (2.8)

follows.
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3 Homogenization result

Theorem 3.1. Suppose that hypotheses (H2) and (2.6) hold. Assume furthermore that

the extension by 0 of fε to Ω, denoted f̃ε, satisfies

f̃ε ⇀
|Y ∗|
|Y |

f weakly in L2(Ω)1. (3.1)

Assume that for some matrix A,

T ∗ε
(
Aε
)
→ A a.e. in Ω× Y ∗.

Let uε be the solution of Problem (2.7). Then, there exist u in V (Ω) and û in L2(Ω;H1
per(Y

∗)),
satisfying

(i) T ∗ε ((uε) 1Ω̃∗ε
) ⇀ u weakly in L2(Ω;H1(Y ∗)),

(ii) T ∗ε (∇uε1C∗ε ) ⇀ ∇u+∇yû weakly in L2(Ω× Y ∗),
(3.2)

and the pair (u, û) is the unique solution in of the problem

MΩ(u) = 0, MY ∗(û) = 0

1

|Y |

∫
Ω×Y ∗

A(x, y)
[
∇u(x) +∇yû(x, y)

][
∇Ψ(x) +∇yΦ(x, y)

]
dxdy

=
|Y ∗|
|Y |

∫
Ω

f(x) Ψ(x) dx,

∀Ψ ∈ V (Ω), ∀Φ ∈ L2(Ω; H1
per(Y

∗)),

(3.3)

Proof. Using estimates (2.8), convergences (3.2) follow from Theorem 1.15. This is up to
a subsequence, but as usual, the uniqueness of the solution of the limit problem implies
that the whole sequence converges.

At this point, the proof is somewhat standard when using unfolding. For complete-
ness, we now give its outline.

First, unfold the left-hand side of (2.7) using as test function

vε(x)
.
= Ψ(x) + ε ϕ(x)ψ

(x
ε

)
−MΩ̃∗ε

(
ε ϕ(x)ψ

(x
ε

))
where Ψ is in C∞(Ω) with MΩ(Ψ) = 0, ϕ is in D(Ω) and ψ = ψ(y) is in H1

per(Y
∗). It

then follows by Proposition 1.3 (i) and (1.10) that

T ∗ε (vε)→ Ψ strongly in L2(Ω× Y ∗),

T ∗ε
(
ϕψ
( ·
ε

))
→ Φ strongly in L2(Ω× Y ∗), with Φ(x, y) = ϕ(x)ψ(y).

(3.4)

Since
∇vε(x) = ∇Ψ(x) + ϕ(x)(∇yψ)

(x
ε

)
+ ε∇ϕ(x)ψ

(x
ε

)
,

1following the normalization of Proposition 1.3 (iii)
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by Proposition 1.3 (i),

T ∗ε (∇vε)→ ∇Ψ +∇yΦ strongly in L2(Ω× Y ∗). (3.5)

This gives∫
C∗ε
Aε∇uε∇vε dx =

1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε)T ∗ε
(
(∇uε)1C∗ε

)
T ∗ε (∇vε) dx dy

+

∫
Λ∗ε

Aε∇uε∇vε dx

→ 1

|Y |

∫
Ω×Y ∗

A(x, y)
[
∇u0(x) +∇yû0(x, y)

][
∇Ψ(x) + φ(x)∇ψ(y)

]
dx dy,

(3.6)

since ∣∣ ∫
Λ∗ε

Aε∇uε∇vε dx
∣∣ ≤ C|Λ∗ε|1/2‖∇vε‖L∞(Ω)‖∇uε‖L2(Ω∗ε) → 0

Concerning the right-hand side of (2.1), we see that

lim
ε→0

∫
Ω∗ε

fε vε dx = lim
ε→0

∫
Ω

f̃ε vε dx =
|Y ∗|
|Y |

∫
Ω

f Ψ dx, ∀Ψ ∈ C∞(Ω). (3.7)

Equation (3.3) follows from the density of the functions of C∞(Ω) with zero average
in V (Ω) and that of the tensor product D(Ω)⊗H1

per(Y
∗) in L2(Ω;H1

per(Y
∗)).

Finally, by Corollary 1.4, MΩ(u) = 0, which implies the uniqueness for the solution
of (3.3).

The homogenized limit problem can now be made explicit.

Theorem 3.2. The homogenized formulation associated with Theorem 3.1, under the
hypotheses therein, is −div (A0∇u) =

|Y ∗|
|Y |

f in Ω,

MΩ(u) = 0.

(3.8)

The homogenized matrix A0 = (a0
ij)1≤i,j≤n is elliptic and defined by

a0
ij =MY ∗

(
aij −

n∑
k=1

aik
∂χj
∂yk

)
=MY ∗(aij)−MY ∗

( n∑
k=1

aik
∂χj
∂yk

)
. (3.9)

where the corrector functions χj ∈ L∞(Ω;H1
per(Y

∗)) (j = 1, . . . , n), are, for a.e. x in Ω,
the solutions of the cell problems

−
n∑

i,k=1

∂

∂yi

(
aik(x, y)

(∂χj(x, y)

∂yk
− δjk

))
= 0 in Y ∗,

n∑
i,k=1

aik(x, y)
(∂χj(x, y)

∂yk
− δjk

)
ni = 0 on ∂S,

MY ∗(χj)(x, ·) = 0, χj(x, ·) Y -periodic,

(3.10)
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Proof. Taking Ψ = 0 in problem (3.3) yields

û(x, y) =
n∑
i=1

∂u

∂xi
(x)χi(x, y). (3.11)

Inserting into (3.3) with Φ = 0 gives the result.

Under an additional hypothesis on fε one also obtains the strong convergence of the
energy.

Proposition 3.3. Suppose that hypotheses of Theorem 3.1 hold. Assume furthermore
that

T ∗ε (fε) is compact in L2(Ω× Y ∗). (3.12)

Then

lim
ε→0

∫
C∗ε
Aε∇uε∇uε dx =

1

|Y |

∫
Ω×Y ∗

A
[
∇u+∇yû

] [
∇u+∇yû

]
dx dy (3.13)

Consequently,

T ∗ε (∇uε1C∗ε )→ ∇u+∇yû strongly in L2(Ω× Y ∗). (3.14)

Proof. Let F be a strong limit point of T ∗ε (fε) in L2(Ω×Y ∗) (which exits by assumption
(3.12)). According to Proposition 1.3 (iii), MY ∗(F ) = f .

Applying Proposition 1.2 (i), it follows that∫
Ω̃∗ε

fε uε dx =
1

|Y |

∫
Ω×Y ∗

T ∗ε (fε)T ∗ε (uε) dx dy.

Consequently,

lim
ε→0

∫
Ω̃∗ε

fε uε dx =
|Y ∗|
|Y |

∫
Ω

f u dx

for the considered subsequence associated to F . But this result holds independently of
F , hence holds for the whole sequence {ε}. The proof of (3.13) is now complete, since,
on the one hand, by 2.7, ∫

C∗ε
Aε∇uε∇uε dx =

∫
Ω̃∗ε

fε uε dx,

while on the other, by (3.3),

1

|Y |

∫
Ω×Y ∗

A
[
∇u+∇yû

] [
∇u+∇yû

]
dx dy =

|Y ∗|
|Y |

∫
Ω

f u dx.

The strong convergence (3.14) follows now by Lemma 5.8 of [4], taking into account
that Aε 1C∗ε converges almost everywhere to A.
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Corollary 3.4 (Corrector results). As ε→ 0,∥∥∥∇uε −∇u− n∑
i=1

U∗ε
( ∂u
∂xi

)
U∗ε (∇yχi)

∥∥∥
L2(C∗ε )

→ 0. (3.15)

In the case where the matrix field A does not depend on x, the following corrector result
holds: ∥∥∥uε − u− ε n∑

i=1

Qε
( ∂u
∂xi

)
χi

({ ·
ε

}
Y

)∥∥∥
H1(Ω̃∗ε)

→ 0. (3.16)

Proof. By construction, for i = 1, . . . , n, the function χi belongs to L∞(Ω;H1(Y ∗)).

Due to convergence (3.14) (note that Λε ∩ Ω̃∗ε = ∅) , Proposition 1.6 (iii) gives∥∥∇uε1C∗ε − U∗ε (∇u+∇yû)
∥∥
L2(Ω∗ε)

→ 0. (3.17)

By Proposition 1.3 (i) and (3.11) this implies∥∥∥∇uε1C∗ε −∇u− n∑
i=1

U∗ε
( ∂u
∂xi
∇yχi

)∥∥∥
L2(Ω∗ε)

→ 0, (3.18)

and gives convergence (3.15).

If A does not depend on x, this becomes∥∥∥∇uε1C∗ε −∇u− n∑
i=1

U∗ε
( ∂u
∂xi

)
∇yχi

({ ·
ε

}
Y

)∥∥∥
L2(Ω∗ε)

→ 0, (3.19)

From (3.19), the proof of convergence (3.16) follows along the lines of that (5.31) in
[4], taking also into account the fact that MΩ̃∗ε

(uε) = 0 and (1.13).

4 Appendix

The aim of this section is to prove Lemma 1.13. The notation Ωε in this section
corresponds to Ω̃ε of the previous sections.

Let p in (1,+∞). From now on, Ω is a bounded open set with Lipschitz boundary in
Rn . It is well-known (see [3]) that this is equivalent to the fact that Ω has the uniform
cone property which we recall below. In this definition, a cone is the convex envelope
of the union of the origin and a closed ball which does not contain the origin.

Definition 4.1. The bounded open set Ω has the uniform cone property whenever there
exist a finite open cover {Uj}1≤j≤N of ∂Ω, and a corresponding family {Cj} of cones,
each isometric to some fixed cone C, such that,

(i) for some strictly positive constant δ1,
{
x ∈ Ω | dist(x, ∂Ω) < δ1

}
⊂

N⋃
j=1

Uj,

(ii) for every j,
⋃

x∈Ω∩Uj

(
x+ Cj

)
⊂ Ω.
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Let Ωδ denote the set

Ωδ =
{
x ∈ Ω | dist(x, ∂Ω) > δ

}
.

Lemma 4.2. There exists δ0 > 0 such that all the sets Ωδ for δ ∈ (0, δ0], satisfy a
uniform cone property (with a cone which depends only on δ0).

Proof. Since Ω has the uniform cone property, there exist δ1 and a finite open cover
{Uj}1≤j≤N of ∂Ω satisfying (i) and (ii) of Definition 4.1. Set

δ2 = diameter C, δ3
.
= min

x∈∂Ω
max
j
dist(x, ∂Uj) δ0

.
=

1

3
min

{
δ1, δ2, δ3

}
.

Since ∂Ω is compact, δ3 is strictly positive. We use the notations of the figure below.

Let now C ′ = 1
3
C and C ′j = 1

3
Cj (which is isometric to C ′) and consider the following

open sets:

j ∈ {1, . . . , N}, U ′j =
{
x ∈ Uj | dist(x, ∂Uj) > δ0

}
.

By the definition of δ3, if follows that the family {U ′j}1≤j≤N still covers ∂Ω.

Clearly, for δ ∈ (0, δ0] the set
{
x ∈ Ωδ | dist(x, ∂Ωδ) < δ0

}
is included in

N⋃
j=1

U ′j. This is

condition (i) of definition 4.1.

To prove condition (ii), let j be in {1, . . . , N} and x in Ωδ ∩ U
′
j. One can see that

Vj
.
= {z ∈ Rn, dist(z, x+ C ′j) < δ} ⊂

⋃
y∈B(x;δ)

(
y + Cj

)
.
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Furthermore, due to the uniform cone property the latter is included in Ω. Thus the set
x+ C ′j is included in Ωδ. This proves the inclusion⋃

x∈Ωδ∩U
′
j

(
x+ C ′j

)
⊂ Ωδ,

and the proof of Lemma 4.2 is complete.

Corollary 4.3. From Lemma 4.2, for any ε ∈ (0, δ0] and each p ∈ (1,∞), there exists
a continuous extention operator Pε from W 1,p(Ωε) into W 1,p(Ω), i.e. such that for all
φ ∈ W 1,p(Ωε)

Pε(φ) ∈ W 1,p(Ω), Pε(φ)|Ωε = φ.

The norm ‖Pε‖ is bounded uniformly with respect to ε.

We can now give the proof of Lemma 1.13.

Proof of Lemma 1.13. Since Ω is bounded and connected with Lipschitz boundary, it
has a Poincaré-Wirtinger constant C0. Let φ be in W 1,p(Ωε). We apply the Poincaré-
Wirtinger inequality to the extension Pε(φ) of φ to get

||Pε(φ)−MΩ

(
Pε(φ)

)
||Lp(Ω) ≤ C0||∇Pε(φ)||[Lp(Ω)]n ≤ C0‖Pε‖||∇φ||[Lp(Ωε)]n .

Here MΩ

(
Pε(φ)

)
is the mean value of Pε(φ) over Ω. Let C be a common upper bound

for 2C0‖Pε‖, ε ∈ (0, δ0]. Then,

||φ−MΩ

(
Pε(φ)

)
||Lp(Ωε) ≤ ||Pε(φ)−MΩ

(
Pε(φ)

)
||Lp(Ω) ≤

1

2
C||∇φ||[Lp(Ωε)]n .

Taking the mean value over Ωε implies ||MΩ(φ)−MΩ

(
Pε(φ)

)
||Lp(Ωε) ≤ 1

2
C||∇φ||[Lp(Ωε)]n ,

which, when added to the previous inequality, ends the proof.

We end this section by a result which could be of interest by itself.

Lemma 4.4. Let {uε} be a sequence of functions belonging to W 1,p(Ωε) and satisfying

||uε||W 1,p(Ωε) ≤ C,

where the constant does not depend of ε. Then (up to a subsequence) there is a function
u ∈ W 1,p(Ω) with

uε1Ωε −→ u strongly in Lp(Ω).

Proof. We start by extending uε by using the extension operator Pε. So there exist a
subsequence, still denoted ε, and a function u ∈ W 1,p(Ω) such that

Pε(uε) ⇀ u weakly in W 1,p(Ω),

Pε(uε) −→ u strongly in Lp(Ω).
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Since the measure |Ω \ Ωε| goes to zero, the above strong convergence in Lp(Ω) yields

lim
ε→0

∫
Ω\Ωε
|Pε(uε)|p = 0

Therefore,∫
Ω

|u|p = lim
ε→0

∫
Ω

|Pε(uε)|p = lim
ε→0

∫
Ω

|uε1Ωε|p + lim
ε→0

∫
Ω\Ωε
|Pε(uε)|p = lim

ε→0

∫
Ω

|uε1Ωε |2

and this concludes the proof.
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