

Carbon stable isotope analysis of methylmercury toxin in biological materials by gas chromatography isotope ratio mass spectrometry

Jeremy Masbou, David E Point, Gaël Guillou, Jeroen E Sonke, Benoit

Lebreton, Pierre E Richard

To cite this version:

Jeremy Masbou, David E Point, Gaël Guillou, Jeroen E Sonke, Benoit Lebreton, et al.. Carbon stable isotope analysis of methylmercury toxin in biological materials by gas chromatography isotope ratio mass spectrometry. Analytical Chemistry, 2015, 87, pp.11732-11738. $10.1021/acs.$ analchem.5b02918. hal-01450034

HAL Id: hal-01450034 <https://hal.science/hal-01450034v1>

Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Carbon stable isotope analysis of methylmercury toxin in biological materials by gas chromatography isotope ratio mass spectrometry

JeremyMasbou†‡ , David Point*,†‡ , GaëlGuillou^{‡‡}, Jeroen E. Sonke[†], BenoitLebreton^{‡‡}, Pierre Richard[‡]

†Observatoire Midi-Pyrénées, Géosciences Environnement Toulouse, UMR CNRS 5563/IRD 234/Université Paul Sabatier Toulouse 3, 14 avenue Edouard Belin, 31400 Toulouse, France

‡UMR Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France.

Methylmercury, carbon, compound specific stable isotopic analysis, GC-C-IRMS, biological materials, standard reference materials, marine biogeochemistry

ABSTRACT:A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg into neurotoxic monomethylmercury (CH₃Hg). Humans are exposed to CH₃Hg by consuming marine fish, yet the origin of CH₃Hg in fish is a topic of debate. The carbon stable isotopic composition $(\delta^{13}C)$ embedded in the methyl group of $CH₃Hg$ remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of $CH₃Hg$. Here, we present a compound specific stable isotope analysis (CSIA) technique for the determination of the δ^{13} C value of CH₃Hg in biological samplesby gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consisted first of calibrating aCH3Hg standard solutionfor δ^{13} C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH₃Hg standard solution. The determination of $\delta^{13}C_{CH3Hg}$ values on natural biological samples was performed by combining a $CH₃Hg$ selective extraction, purification and halogenation followed by GC-C-IRMS analysis. Reference δ^{13} C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ¹³C_{CH3Hg} = -22.1 \pm 1.5 ‰, \pm 2SD). This value is similar to the $\bar{\delta}^{13}$ C value of marine algal derived particulate organic carbon $(δ¹³CPOC = -21‰).$

Introduction

The toxicity of mercury (Hg) is directly related to its chemical forms. Biogenic organometallic compounds that are naturally produced in aquatic ecosystems such as methylmercury ($CH₃Hg$) are known to be potent neu-rotoxins^{[1](#page-6-0)} and to bioaccumulate along aquatic food chains^{[2](#page-6-1)}. Marine sea food consumption represents the main source of human CH_{[3](#page-6-2)}Hg exposure³, with socioeconomical costs estimated to several billions of dol-lars/year worldwide⁴[.](#page-6-3)

Methylmercury is thought to be primarily produced by sulfate reducing bacteria³⁻⁷, yetother anaerobic microorganisms hosting specific methylation genes 8 8 , and possi-bly complementary abiotic pathways^{[9](#page-6-6)}may also be at play^{[10](#page-6-7)}. The rapid assimilation of CH₃Hg by primary pro-ducers (phytoplankton)^{[11](#page-6-8)} and further biomagnification along aquatic foodwebs is well documented $12,13$ $12,13$. Yet, understanding where, how and when $CH₃Hg$ is produced at the base of aquatic ecosystems remains a subject of ongoing debate. Lake, coastal and marine sediments have long been identified as important sites for microbial Hg methylation^{[14-16](#page-6-11)}. However, relating elevated open ocean fish CH₃Hg levels to sediment CH₃Hg sources is unrealistic^{[17](#page-6-12)}. Recent marine studies on CH₃Hg provide mounting evidence for in situ water column production of CH_3Hg^{18-21} CH_3Hg^{18-21} CH_3Hg^{18-21} .

Answering fundamental questions on the origin of $CH₃H_g$ is directly driven by the state of Hg metrology. Traditional Hg speciation techniques mostly involve a gas chromatographic (GC) separation coupled to a sensitive Hg detector such Atomic Fluorescence Spectroscopy (AFS) or Inductively Coupled Plasma Mass Spectrometry $(ICP-MS)^{22}$ $(ICP-MS)^{22}$ $(ICP-MS)^{22}$. These techniques have permitted measurement of CH₃Hg concentrations in a wide range of key compartments of the biogeosphere (biota, oceans, atmosphere, food chain, sediments, soils). The increasing use of mass spectrometry in Hg research has allowed researchers to use enriched Hg stable isotopes in laboratory or field tracer studies to quantity the kinetics of Hg transformations and/or its transfer among com-partments^{[23,](#page-7-1)[24](#page-7-2)}. More recently, the analysis of the natural stable isotopic variations of Hg by cold vapor multicollector inductively coupled plasma mass spectrometry (CV-MC-ICPMS) in biogeomatrices provided a new angle on tracking Hg sources and dynamics 25,26 25,26 25,26 25,26 . Until now, most measurements of Hg stable isotope compositions in environmental samples have been performed on total Hg concentrations. Recent analytical developments in the field of Hg compound specific stable isotopic analysis (Hg-CSIA) allow to trace Hg dynamics at the molecular $\text{level}^{27,28}$ $\text{level}^{27,28}$ $\text{level}^{27,28}$ $\text{level}^{27,28}$. No attention has been devoted, however, to the isotopic variations of the carbon atom at the molecular level in the $CH₃Hq$ compound. The isotopic composition of this component may be used to better understand the role of organic matter and to trace the carbon sources at the origin of the formation of $CH₃Hg$.

In this study, we developed a new analytical approach to investigate the unexplored carbon isotope side of the CH3Hg toxin cycle. Recent analytical developments

permit the CSIA of light elements (C, H, N, O) by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Examples are the determination of the δ^{13} C values of individual organic compounds: amino acids^{[29](#page-7-7)}, fatty acids^{[30](#page-7-8)}, greenhouse gases^{[31](#page-7-9)}, organ ic anthropogenic contaminants 32 32 32 , but also biogenic or-ganometallic arsenic compounds^{[33](#page-7-11)}. Here, we present the first method for the determination of δ^{13} C values of CH₃Hg using CSIA (δ^{13} C_{CH3Hg})in biological materials.

Experimental Section

Reagents, standards and reference materials

Millipore 18.6 MΩ.cm⁻¹ ultrapure water, bidistilled nitric and hydrochloric acids were used for preparation of all solutions throughout this study. Sodium bromide (NaBr, Ultra grade 99.5%), potassium iodide (KI, ACS grade ≥99%), anhydrous cupric sulphate (CuSO₄, reagent grade 99%+), sodium thiosulfate ($Na₂S₂O₃$, reagent grade 98%), sodium acetate (CH $_3$ COONa, ACS grade 99%+), methanol (CH₃OH, anhydrous 99.8%), toluene (anhydrous 99.8%), hexane (anhydrous ≥95%),sulphuric acid ($H₂SO₄$, ACS grade 95-98%) and anhydrous 99.8% grade iso-octane were purchased from Sigma Aldrich (Milwaukee, WI, USA). Ultra grade glacial acetic acid (CH3COOH, 99%) was purchased from Avantor™ (Netherlands). Sodium tetrapropylborate (NaB $(C_3H_7)_4$) and sodium tetraethylborate $(NaB(C₂H₅)₄)$ obtained fromMerseburgerSpezialchemikalien (Germany) were prepared daily and stored at -18°C until use. All polypropylene or Teflon labware used in this study were acid cleaned. Glass labwarewas cleaned by pyrolysis before use.

The primary CH3Hg reference standard stock solution used in this study was prepared from a methylmercury chloride salt (Sigma Aldrich, Milwaukee, WI, USA), dissolved in a 10% (v/v) methanol/water solution. The relative uncertainty of the concentration of the $CH₃Hg$ standard used in this work was 4.1% (n=10) when calibrated by Cold Vapor Atomic Fluorescence Spectrophotometer against NIST SRM3133^{[28](#page-7-6)}. Inorganic Hg (iHg) NIST SRM 3133 solution was used in this work. Diluted $CH₃Hg$ and iHg standard solutions were prepared in 0.5% w/w bidistilled HCl or 5mMsodium thiosulfate solution for the derivatization and halogenation experiments respectively. TORT-2 a freeze-dried lobster hepatopancreas tissue was obtained from the National Research Council Canada (NRCC). TORT-2 is characterized by a low certified CH₃Hg concentration of 0.163 ± 0.014 µg.g⁻¹ (as CH₃Hg), making it suitable to be used as a "CH₃Hg-blank" control matrix material to investigate the absence of matrix effect of the method. The second biological CRM used in this work was ERM-CE464, a tuna fish reference material representative of 322 Kg of tuna collected in the Adriatic Sea. This material was obtained from the Institute for Reference Materials and Measurements (IRMM, Belgium). ERM-CE464 has an elevated certified CH₃Hg concentration of $5.50\pm0.17 \,\mu$ g.g⁻¹ (as CH₃Hg).

GC-C-IRMS

All δ^{13} C_{CH3Hg}measurements were performed by GC-C-IRMS (Thermo Scientific), consisting of a Trace GC Ultra coupled to Delta V Advantage IRMS with an Isolink GC coupling interface. Instrumental parameters (GC, combustion reactor and IRMS) are detailed in Table S1. A fused silica Agilent DB-5 column was used for the separation of propylated and ethylated $CH₃Hg$ and iHgcompounds. A fused silica Restek RTX-5 column with a lower film thickness was privileged in the case of halogenated CH₃Hg compounds. Data illustrated in the text, figures and tables correspond to triplicate injections of each sample. Methylmercury δ^{13} C values measured in this work are expressed relative to a high purity CO2reference working gas (carbon dioxide N48, Messer France SAS, Puteaux, France), calibrated against reference materials USGS-24, IAEA-CH6, IAEA-600. ¹³C/¹²C ratios are normalized by the Vienna Pee Dee Belemnite (VPDB) reference standard and expressed in δ notation:

$$
\delta^{13} C \, (\%0) = \left(\frac{\left(\frac{13}{12} C \right)_{sample}}{\left(\frac{13}{12} C \right)_{PDB}} - 1 \right) \times 1000
$$

CH3Hg selective extraction method (SEM)

The $CH₃H₉$ selective extraction method (SEM) used in this study correspond to an upscaled version of the orig-inal SEM, initially developed for Hg CSIA^{[28](#page-7-6)}.Higher $CH₃Hg$ concentrations were required to reach the mini-
mum amountsneeded for precise mum amountsneeded for δ¹³C_{CH3Hg}measurements by GC-C-IRMS. Briefly, multiple (up to 4) 1g aliquots of the same biological material were extracted separately during 1h (420 rpm lengthwise agitation on a horizontal shaking table) in 50ml centrifuge tubes with 5 ml of acidic sodium bromide (30% w/w NaBr in 4 mol.^{1} H₂SO₄), 10 ml of aqueous cupric sulfate $(2.5\%$ w/w $CuSO_A)$ and 10 ml of toluene. The toluene fractions of each individual sample aliquot were then combined together. The 40mL combined toluene fraction that contains CH₃HgBr was then back-extracted with 4 ml of a 5mM sodium thiosulfate solution to get an aqueous and stable $CH₃Hg-thiosulfate complex. Verifi$ cation of the quantitative extraction and halogenation of CH3Hg and the absence of analytical degradation, while processing up to 4g of biological material, was verified by Gas Chromatography Sector Field Inductively Coupled Plasma Mass Spectrometry (GC-SF-ICP-MS), before GC-C-IRMS analysis(See Table S2 for details)

Derivatization vs. halogenation conditions

The ethylation and propylation conditions used in this work follow the standard procedures used for Hg speciation by GC-ICP-MS 34 34 34 . Briefly, CH₃Hg and iHg standards solutions were derivatized with 0.1 ml of daily prepared $Nab(C_2H_5)_4$ and $Nab(C_3H_7)_4(20$ mg.ml⁻¹) in a 5ml acetate buffer solution (0.1 mol. I^{-1} , pH=3.9) and in the presence 0.5 ml of hexane. Inorganic Hg concentration levels

were spiked at the same Hg level as $CH₃Hg$. Samples were hand-shaken for 5 min, before collecting the hexane phase, which was subsequently stored in GC vials at -20°C before analysis. These operating conditions were found suitable to quantitatively derivatize all Hg compounds in the case of standard solutions at the concentration levels needed for GC-C-IRMS analysis (See FigureS1 for details).

The halogenation conditions used in this work are based on published operating protocols found elsewhere $35,36$ $35,36$ to form a volatile CH₃HgI compound.Briefly, $CH₃H₉I$ is produced by mixing the $CH₃H₉$ standard prepared in a 5mM sodium thiosulfate solution with 0.5 ml of .
a 3 mol.I⁻¹potassium iodide solution. The mixture is vortexed during 30s and then kept in the dark during 10 min. The aqueous CH₃HgI compound is subsequently extracted into 10mL of isooctane by vortexing the solution for 2 minutes. CH₃HgI standard solutions in isooctane were preconcentrated under a stream (0.5 L.min^{-1}) of nitrogen at room temperature. Given that $CH₃Hg$ thiosulfate complexes are also obtained at the end of the SEM, applying the halogenation method to form a $CH₃H₃H₃$ compound was found particularly suitable to determine precise δ^{13} C_{CH3Hg}values for both the CH₃Hg reference standard solution and for biological reference materials.

Figure 1. Operating procedure used for validating the analysis of δ ¹³CCH3Hg on natural biological samples.

Safety considerations

Hg compounds are toxic, and need to be handled only by experienced and well-trained personal, using all safety laboratory measures possible (gloves, glasses, fume hood).

Results and Discussion

Three consecutive steps were taken to develop the method for the determination of $\delta^{13}C_{CH3Hg}$ values in reference standard solution and biological certified reference materials (Figure 1). This procedure consisted of:(i) Establishing reference δ^{13} C values for a CH₃Hg standard solution by comparing different independent derivatization and halogenation procedures; (ii) Validating the

application of the selective extraction method 28 28 28 , by comparing $\delta^{13}C_{CH3Hg}$ values of the primary CH₃Hg standard solution processed with, without SEM, and with spiking the CH₃Hg standard into a natural low $CH₃Hg$ reference material (TORT 2) to ensure the absence of matrix effects;(iii) Establishing a $\delta^{13}C_{CH3Hg}$ preliminary reference valuefor a natural biological Tuna Fish reference material (ERM CE 464).

Calibration of a CH3Hg standard for δ ¹³CCH3Hganalysis

Derivatization (ethylation and propylation) vs. halogenation methods were compared for the same $CH₃Hg$ standard solution (Figure 1). The derivatization method represents an indirect approach for the determination of δ^{13} C_{CH3Hg}values since the isotopic contribution of the exogenous carbon atoms present on the ethyl- and propyl- groups after CH₃Hg derivatization (CH₃Hg(C₂H₅) in the case of ethylation and $CH₃Hg(C₃H₇)$ in the case of propylation) needs to be accounted and corrected for. By adding an inorganic Hg standard to the CH3Hg standard solution before derivatization, the resulting two derivatizediHg compounds in the case of ethylation are $CH_3Hg(C_2H_5)$ and $Hg(C_2H_5)_2$ (Figure 2a), and $CH₃Hg(C₃H₇)$ and $Hg(C₃H₇)₂$ in the case of propylation (Figure 2b).

The δ^{13} C values of the exogenous carbon atoms of the ethyl and propyl groups can thus be determined on the Hg(C_2H_5)₂and Hg (C_3H_7)₂peaks. Subsequently a mass balance approach can be considered to estimate the endogenous $\overline{\delta}^{13}$ C values of CH₃Hg.

In the case of ethylation (Figure 2a), $\delta^{13}C_{CH3Hq}$ values can be estimated from the following equation:

$$
\delta^{13} C_{\text{CH}_3\text{Hg}} = 3 \times \delta^{13} C_{\text{CH}_3\text{Hg}(C_2\text{H}_5)} - 2 \times \delta^{13} C_{\text{Hg}(C_2\text{H}_5)}
$$

In the case of propylation (Figure 2b), δ^{13} C_{CH3Hg}values can be estimated from the following equation:

$$
\delta^{13} C_{\text{CH}_3\text{Hg}} = 4 \times \delta^{13} C_{\text{CH}_3\text{Hg}(C_3\text{H}_7)} - 3 \times \delta^{13} C_{\text{Hg}(C_3\text{H}_7)2}
$$

The halogenation method (Figure 2c) represents a direct approach for the determination of δ^{13} C_{CH3Hg}values since no addition of exogenous carbon atoms is required. This approach consists of forming a volatile $CH₃Hg-halide$ compound (CH₃HgI) that can be back-extracted into a solvent and analyzed directly by GC-C-IRMS.

Figure 2. GC-C-IRMS chromatograms of alkylated and halogenated CH3Hg compounds.a) EthylatedCH3Hg ((CH₃Hg(C₂H₅)), b) Propylated CH₃Hg((CH₃Hg(C₃H₇)), and (c) halogenated $CH₃Hg$ (CH₃HgI). Note that in the case of derivatized CH₃Hg compounds, an iHg standardwas also spiked into the solution and co-derivatized with $CH₃Hg$ to allow for the correction of the carbon isotopic compositionof the respective ethyl and propyl groups attached to the CH3Hg molecule. Blank chromatograms of the ethylation, propylation and halogenation experiments are shown in Figure S1.

Derivatization method

The use of typical Sodium Tetraethylborate $(NaB(C₂H₅)₄)$ and Sodium Tetrapropylborate (NaB(C3H7)4)quantities as in Gas Chromatography Inductively Coupled Plasma Mass Spectrometry (GC-ICP-MS) studies(20 mg.mL^{-1} , 0.1mL) was found sufficient to quantitatively derivatize about 21 ug of CH₃Hg (1.2 ug

as C) and 20 µg of iHg (back-extracted into 0.5mL hexane) for precise determination of δ^{13} C_{CH3Hg}values of the CH3Hg standard solution (see Figure S2 for details).

The analysis of the same $CH₃Hg$ standard solution derivatized over a wide rangeof ethylation and propylation reagent quantities lead to similar $\delta^{13}C_{CH3Hg}$ values of -54.5±1.5‰ (±2SD, n=6), and -54.6±1.9‰ (±2SD, n=6) respectively (See Figure S2 for details). This results showed the absence of a significant effect of the amount and type of derivatization agent used on the determination of $\delta^{13}C_{CH3Hg}$ values. A second derivatization of the remaining aqueous solutions did not reveal any residual peaks indicating the quantitative derivatization and backextraction of CH₃Hg into hexane.

We subsequently used the referencederivatizationprotocol as determined above (20 mg.mL $^{-1}$, 0.1mL), and investigated $\delta^{13}C_{CH3Hg}$ values over an analyte mass range of 5-80 µg of $CH₃Hg$ (0.28-4.45 µg as C) while keeping the iHgconcentration constant (20 µg, Figure 3a and 3b). This corresponds to a concentration range of 6- 112ng of CH₃Hg injected into the GC-CIRMS,representing 1-19 ng and 1-25ngof carbon in the case of ethylation and propylation respectively. In terms of isotopic composition, homogenous $\delta^{13}C_{CH3Hg}$ values were observed over theconcentration range considered. The highest precision and reproducibility of the measurements were obtained when iHg/CH₃Hg concentration ratios were in the range of 0.25 to 4, and with a minimum peak intensity of approximately 0.3 Volts. Under these conditions, $\delta^{13}C_{CH3Hg}$ measurements obtained for the same standard solution were found in good agreement using either ethylation -55.1±0.9‰ (±2SD, n=5) and propylation -54.9±1.7‰ (±2SD, n=5). These results indicate that in the case of quantitative derivatization yields and using iHg as an internal standard for correcting the isotopic contribution of the alkyl groups added to $CH₃Hg$ during the derivatization reaction, accurate, precise and reproducible $\delta^{13}C_{CH3Hg}$ measurementscan be achieved.

Halogenation method

With only a single carbon atom present in $CH₃Hgl$, a significantly higher concentration of the CH₃Hg standard was required to reach the sensitivity level required for precise measurements (123 μ g of CH₃Hg in a 5mM sodium thiosulfate solution quantitatively back-extracted as CH₃HgI into 10 mL isooctane (see $35,36$ $35,36$ $35,36$, and experimental section for details). The injection of this solution (37 ng of CH₃Hg; 2 ng as C) led to a δ^{13} C_{CH3Hg} value of -53.7±0.8‰ (±2SD, n=3).

The evaporation of the isooctane solution under $N₂$ to different preconcentration levels analyzed by GC-C-IRMS showed a linear relationship (Figure 3c, $R^2 = 0.99$) between CH₃HgI peak intensity and the corresponding amount of carbon injected. Identical δ^{13} C_{CH3Hg} values were also measured for the different preconcentrated sub fractions (Figure 3c).These results confirmed the absence of CH3HgI loss and isotope fractionation artifact

Figure 3. Influence of the concentration of CH3Hg on δ ¹³CCH3Hgvalues obtained after a) ethylation, b)propylationand c) halogenation of the same CH3Hg standard. Consensus mean values (plain line) and their uncertainty(dashed lines (±2SD)) are based on all measurements in the case of direct $\delta^{13}C_{CH3Hq}$ determinations (CH₃HgI), and at peak intensities starting 0.3V In the case of estimated $\delta^{13}C_{CH3Hg}$ determinations by derivatization.

Further, a second halogenation step performed on the remaining aqueous phase after the initial halogenation of the CH₃Hg standard solution did not reveal any residual CH3HgI peak, also confirming the quantitative transfer of CH3HgI into the organic phase prior to GC-C-IRMS analysis. The similar $\delta^{13}C_{CH3Hg}$ values obtained over a $CH₃H_g$ I concentration range of 37 to 283 ng of $CH₃H_g$ $(2-16$ ng as C) led to a mean value of $-54.0\pm0.7\%$ $((\pm 2SD, n=4), Fig 3c)$ for the CH₃Hg reference standard.

In summary, the comparison of the $\delta^{13}C_{CH3Hg}$ valuesobtained for the same $CH₃Hg$ standard solution showed similar valuesgiven uncertainties between indirect ethylation (-55.1±0.9‰ (±2SD)) and propylation (- 54.9±1.7‰ (±2SD)) approaches and the direct halogenation (-54.0±0.7‰ (±2SD)) method. The precision of $\delta^{13}C_{CH3Hg}$ values by the halogenation method appeared also to be significantly better relative to the propylation and ethylation methods. This difference is related to the larger uncertainty budgets of the indirect propylation and ethylation methods where carbon CSIA of two individual Hg compounds needs to be combined for estimating the endogenous composition of the carbon atom present in CH3Hg. These results were also confirmed during a long-term reproducibility experiment (See TableS4for details). Given all uncertainties and the long-term $\delta^{13}C_{CH3Hg}$ measurements obtained by the three independent methods, a $\delta^{13}C_{CH3Hg}$ reference value of - $53.8\pm1.1\%$ ($\pm 2SD$) was proposed for the CH₃Hg standard solution used in this study.

Method validation for δ¹³C_{CH3Hg} measurements on biological samples

Accurate δ^{13} C_{CH3Hg}measurements in biological samples require a quantitative extraction and purification of CH3Hg from the initial sample matrix to the intermediate sodium thiosulfate fraction, but also a quantitative transfer of CH₃Hg from the sodium thiosulfate fraction to
the final organic phase prior to GC-C-IRMS the final organic phase prior to GC-C-IRMS analysis.Complementary experiments conducted by GC- SF -ICP-MS showed that the $CH₃Hg$ selective extraction method (SEM) we intially developped for Hg CSIA^{[28](#page-7-6)}was able to answer these needs (see Table S2 for details). While our standard SEM protocol^{[28](#page-7-6)}was found to quantitatively extract and preconcentrate CH3Hg from several grams of biological material, preliminary attempts to derivatize the intermediate $CH₃Hg$ -thosulfate complex were found unsuccessful. The strong CH₃Hg-S bond is known to inhibit the derivatizationprocess^{[37](#page-7-15)}, leading to low transfer yields towards the organic phase. On the contrary, the halogenation method hadpreviously been shown to successfully extract $CH₃Hg$ in the presence of sodium thiosulfate and to quantitatively form a $CH₃Hgl$ compound that can be back extracted into an organic solvent^{[35](#page-7-13)}.

Table 1. Validationand application of the SEM for $\bar{\mathfrak{d}}^{13} \mathsf{C}_{\mathsf{CH3Hg}}$ measurements in biological materials.

Biological reference material* (mass extracted (g))	$CH3Hg$ spike concentration	SEM replicates** (n)	SEMCH ₃ Hg recovery $(\% \pm SD)$ ***	Amount of $CH3Hg$ injected (ng) , $(ng. as C)$	Peak Intensi- m/z 44 (mV)	$\delta^{13}C_{CH3Hg}$ ±2SD $(%o)****$
	$20 \mu g$	3	$107+7$	306(17)	488	$-53.8+0.4$
TORT-2 $(0.4 g)$	$20 \mu g$		$108 + 5$	391 (22)	567	$-54.2+0.4$
TORT-2 $(3 q)$	$20 \mu g$		$93+7$	378 (21)	527	$-54.4+0.4$
ERM-CE464 (4g)	۰	4	$103 + 6$	253(15)	492	-22.1 ± 1.5

* TORT-2: 0.163 μ g.g⁻¹(asCH₃Hg) certified concentration, ERM-CE464: 5.50 μ g.g⁻¹ (asCH₃Hg)certified concentration

** Number of independent SEM replicates performed

*** Determined by external calibration based on a CH₃HgI standard calibration curve (non-processed by the SEM)

**** Average values and their uncertainties are based on the triplicate injection of each SEM replicate

The quantitative halogenation of $CH₃Hg$ in 5mM thiosulfate solution was also confirmed in this study by GC-SF-ICP-MS measurements (See Table S2 for details), performed on the same solvent fractions as those analyzed by GC-C-IRMS. For these reasons, the halogenation method has been chosento process the biological SEM extracts of CH₃Hg in thiosulfate prior toδ¹³C_{CH3Hg}measurements by GC-C-IRMS.

We subsequently tested first the combined influence of the SEM and halogenation methods on the reference CH3Hg standard previously calibrated for δ^{13} C_{CH3Hg}measurements. Results in Table 1 show that extracting 20 μ g of CH₃Hg by the SEM, followed by halogenation and preconcentration of the isooctane phase resulted in a $\delta^{13}C_{CH3Hg}$ value of -53.8±0.4‰ $((\pm 2SD)$, n=3). This value is similar, given uncertainties with the reference value obtained for the same CH₃Hg standard not processed by the SEM (-53.8±1.1‰). $CH₃Hg$ standard recovery obtained after the SEM was 107±7% (n=3). This confirmed the quantitative extraction, purification, halogenation and preconcentrationof CH3Hg prior to GC-C-IRMS analysis. These results also indicated the absence of carbon isotope fractionation artifacts associated with the SEM when processing matrix-free $CH₃Hg$ standard solutions.

In a second step, we investigated the ability of the SEM-halogenation method to handle the same $CH₃$ Hg amount as processed above, but in the presence of a virtually "MeHg-blank" sample tissue matrix. Variable amounts (0.4 and 3 g) of the NRCC-TORT-2 certified reference material, for which no $CH₃Hq$ peaks could be detected (<15mV) were spiked with 20 µg of the previously δ¹³Cisotopically characterized CH₃Hg standard. As shown in Table 2, no matrix effects were observed to influence CH₃Hg spike recovery (93-108%) during the extraction, halogenation, and evaporation steps. The uncertainty budget of the $CH₃Hg$ recovery values reflects the combined influence of the uncertainty on the CH₃Hg concentration in both the standard solution and the biological reference materials (See experimental section), but also theslight increase in CH3Hg signal due to the progressive

evaporation of the few μL of CH3HgI hexane solution occurring in the GC vial during the triplicate injection and analysis of each sample. This source of uncertainty could be eventually reduced by using a Programmed Temperature Vaporizing Injector (PTV) allowing to increase the sensitivity by injecting more sample and evaporating the hexane solution directly into the injector. However, and because of the absence of isotope fraction during the evaporation and preconcentration of CH3HgI in the hexane phase (Figure 3c), this source of uncertainty has no influence on the precision and accuracy on the δ^{13} C_{CH3Hg} measurements. Methylmercury δ^{13} C analysis performed for the different tissue sample masses to $CH₃Hg$ spike concentrationratio conditions yield to similarδ¹³C values relative to the reference CH₃H_g standard solution. This results confirmed the absence of isotope fractionation bias associated with the SEM when processing biological matrices for accurate .
δ¹³Cmeasurements.

δ ¹³CCH3Hgvalues for ERM-CE464 tuna fish material

The ERM-CE464 tuna fish freeze dried reference material was prepared in 1989 by the Institute for Reference Materials and Measurements (IRMM) from 322 Kg of dorsal muscle orignating from several tuna fish individuals collected in the Adriatic basin of the Mediterranean Sea. ERM-CE464 is characterized by a high CH₃Hg content (5.50±0.17 μ g.g⁻¹ as CH₃Hg), and represents an ideal candidate material for applying the method developed in this study to establish a representative $CH_3Hg \delta^{13}C$ value. We prepared and analyzed 4 g (n=4) of ERM-CE464 (representing approximately 22 μ g of CH₃Hg), in the same way as the CH3Hg reference solution and TORT-2 spiking experiments (Table 2). Recovery of CH₃Hg from ERM-CE464 was 103±6%. A δ¹³C_{CH3Hg} value of -22.1±1.5‰ (±2SD) was obtained for the n=4 independent SEMhalogenation extractions.

Conclusions

In this work, we tested three techniques (propylation, ethylation, halogenation) to determine ${}^{13}C/{}^{12}C$ isotopic ratios of the carbon atom present in the methyl group of the CH₃Hg compound in a commercial CH₃Hg salt. A CH₃Hg δ^{13} C reference value of -53.8±1.1‰ (±2SD) was established for the commercial CH₃Hg salt. The halogenation method was shown to yield the highest precision. Following our previously developed CH3Hg selective extraction method (SEM), we further show that the CH₃Hg SEM is not only relevant for Hg-CSIA^{[28](#page-7-6)} but also now for C-CSIA of CH3Hg in biological samples. We found a δ^{13} C_{CH3Hg}value of -22.1±1.5‰ (±2SD) for the Adritic Sea tuna fish ERM-CE464 certified reference material. The tuna fish $\delta^{13}C_{CH3Hg}$ value apperared closely related to Adriatic and Atlantic derived particulate organic matter $\delta^{13}C_{\text{POC}}$ of -21/-22‰^{[38-41](#page-7-16)}, but different from that of Terrestrial Organic Matter $(-27/-28\%)$ ^{[42](#page-7-17)} and from sediments of the Adriatic Sea^{[38](#page-7-16)}. Assuming that CH₃Hg δ^{13} C fractionation is probably limited during CH₃Hg biomagnification in marine food chains since CH₃Hg is mostly preserved in fish tissues and efficiently transferred from one trophic level to the next, this would suggest that fresh marine algal organic matter is the most likely carbon source at the origin of bioaccumulatedCH3Hg in tuna fish from this region.

We previously found Hg-CSIA derived δ^{202} Hg and Δ^{199} Hg compositions of 0.62±0.11‰ and 2.34±0.11‰ for $EM-CE$ 464^{[28](#page-7-6)}. These combined two dimensional (2D) C and Hg isotope compositions open up new opportunities to improve our knwoledge of the mercury cycle and to investigate the question of the origin of CH3Hg in marine ecosystems.

ASSOCIATED CONTENT

Supporting Information

The Supporting information file containsTable S1: GC-C-IRMS instrumental conditions, Table S2: Quantitative extraction and halogenation efficiency of the SEM on natural biological material determined by GC-SF-ICP-MS, Table S3: GC-SF-ICP-MS instrumental conditions, Table S4: Summary of $\delta^{13}C_{CH3Hg}$ values obtained for the CH3Hg primary standard solution, comparing short term and long term measurements,Figure S1. GC-C-IRMS blank chromatograms, Figure S2: Influence of the amount and type of derivatizing agent in solution on the derivatization efficiency of CH3Hg and iHg, and associated influence on $\delta^{13}C_{\text{CH3Hg}}$ values. "This material is available free of charge via the Internet at http://pubs.acs.org."

AUTHOR INFORMATION

Corresponding Author

[* david.point@ird.fr](mailto:david.point@ird.fr)

Author Contributions

‡These authors performed the measurements and supervised the method development.The manuscript was writ-

ten through contributions of all authors. / All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

This work is supported by the CNRS MI « Instrumentation aux limites » Project 2D ORGANOMETAL grant and the Observatoire Midi Pyrénées (OMP) internal stable isotope funding to DP. JM is grateful to the "Ministére de l'EnseignementSupérieuret de la Recherche" for his Doctoral Fellowship (EcoleDoctorale ED SDU2E/UPS). A. Baya is thanked for technical assistance on the $CH₃Hg$ sample preparation and extraction.

REFERENCES

(1) Choi, A. L.; Grandjean, P. *Environ. Chem.***2008**, *5*, 112-120.

(2) Mason, R. P.; Reinfelder, J. R.; Morel, F. M. M. W*ater, Air, Soil Pollut.***1995**, *80*, 915-921.

(3) Sunderland, E. M.; Mason, R. P. *Global Biogeochem. Cycles***2007**, *21*.

(4) Trasande, L.; Landrigan, P. J.; Schechter, C. *Environ. Health Perspect.***2005**, *113*, 590.

(5) Compeau, G.; Bartha, R. *Appl. Environ. Microbiol.***1985**, *50*, 498-502.

(6) Benoit, J. M.; Gilmour, C. C.; Mason, R. P. *Appl. Environ. Microbiol.***2001**, *67*, 51-58.

(7) Ranchou-Peyruse, M.; Monperrus, M.; Bridou, R.; Duran, R.; Amouroux, D.; Salvado, J. C.; Guyoneaud, R. *Geomicrobiol. J.* **2009**, *26*, 1-8.

(8) Parks, J. M.; Johs, A.; Podar, M.; Bridou, R.; Hurt, R. A.; Smith, S. D.; Tomanicek, S. J.; Qian, Y.; Brown, S. D.; Brandt, C. C.; Palumbo, A. V.; Smith, J. C.; Wall, J. D.; Elias, D. A.; Liang, L. *Science***2013**, *339*, 1332-1335.

(9) Celo, V.; Lean, D. R. S.; Scott, S. L. *Sci. Total Environ.***2006**, *368*, 126-137.

(10) Hintelmann, H. In *Organometallics in Environment and Toxicology*; The Royal Society of Chemistry, 2010, pp 365-401.

(11) Mason, R. P.; Reinfelder, J. R.; Morel, F. M. M. *Environ. Sci. Technol.***1996**, *30*, 1835-1845.

(12) Atwell, L.; Hobson, K. A.; Welch, H. E. *Can. J. Fish. Aquat. Sci.***1998**, *55*, 1114-1121.

(13) Watras, C. J.; Back, R. C.; Halvorsen, S.; Hudson, R. J. M.; Morrison, K. A.; Wente, S. P. *Sci. Total Environ.***1998**, *219*, 183-208.

(14) Olson, B. H.; Cooper, R. C. *Nature***1974**, *252*, 682- 683.

(15) Gilmour, C. C.; Henry, E. A.; Mitchell, R. *Environ. Sci. Technol.***1992**, *26*, 2281-2287.

(16) Merritt, K. A.; Amirbahman, A. *Earth-Sci. Rev.***2009**, *96*, 54-66.

(17) Mason, R. P. *Trace Metals in Aquatic Systems*; Wiley. com, 2013.

(18) Mason, R. P.; Fitzgerald, W. *Deep Sea Res., Part I* **1993**, *40*, 1897-1924.

(19) Sunderland; M., E.; Krabbenhoft; P., D.; Moreau; W., J.; Strode; A., S.; Landing; M., W. *Global Biogeochem. Cycles***2009**, *23*.

(20) Cossa, D.; Heimbürger, L.-E.; Lannuzel, D.; Rintoul, S. R.; Butler, E. C. V.; Bowie, A. R.; Averty, B.; Watson, R. J.; Remenyi, T. *Geochim. Cosmochim. Acta***2011**, *75*, 4037-4052.

(21) Heimbürger, L.-E.; Cossa, D.; Marty, J.-C.; Migon, C.; Averty, B.; Dufour, A.; Ras, J. *Geochim. Cosmochim. Acta***2010**, *74*, 5549-5559.

- (22) Bloom, N.; Fitzgerald, W. F. *Anal. Chim. Acta* **1988**, *208*, 151-161.
- (23) Monperrus, M.; Tessier, E.; Amouroux, D.; Leynaert, A.; Huonnic, P.; Donard, O. *Mar. Chem.***2007**, *107*, 49-63.
- (24) Hintelmann, H.; Evans, R. D.; Villeneuve, J. Y. *J. Anal. At. Spectrom.***1995**, *10*, 619-624.
- (25) Blum, J. D.; Popp, B. N.; Drazen, J. C.; Anela Choy, C.; Johnson, M. W. *Nat. Geosci.***2013**, *6*, 879-884.
- (26) Point, D.; Sonke, J. E.; Day, R. D.; Roseneau, D. G.;
- Hobson, K. A.; Vander Pol, S. S.; Moors, A. J.; Pugh, R. S.; Donard, O. F. X.; Becker, P. R. *Nat. Geosci.***2011**, *4*, 188-194.
- (27) Epov, V. N.; Rodriguez-Gonzalez, P.; Sonke, J. E.; Tessier, E.; Amouroux, D.; Bourgoin, L. M.; Donard, O. F.
- X. *Anal. Chem.***2008**, *80*, 3530-3538. (28) Masbou, J.; Point, D.; Sonke, J. E. *J. Anal. At. Spectrom.***2013**.
- (29) Larsen, T.; Ventura, M.; Andersen, N.; O'Brien, D. M.; Piatkowski, U.; McCarthy, M. D. *Plos One***2013**, *8*,
- e73441.
- (30) Meier-Augenstein, W. *Anal. Chim. Acta***2002**, *465*, 63- 79.
- (31) Merritt, D. A.; Hayes, J. M.; Marais, D. J. D. *J. Geophys. Res.: Atmos.***1995**, *100*, 1317-1326.
- (32) Schmidt, T.; Zwank, L.; Elsner, M.; Berg, M.; Meckenstock, R.; Haderlein, S. *Anal. Bioanal. Chem.***2004**, *378*, 283-300.
- (33) Wuerfel, O.; Diaz-Bone, R. A.; Stephan, M.; Jochmann, M. A. *Anal. Chem.***2009**, *81*, 4312-4319. (34) Point, D.; Alonso, J. I. G.; Davis, W. C.; Christopher,
- S. J.; Guichard, A.; Donard, O. F.; Becker, P. R.; Turk, G.
- C.; Wise, S. A. *J. Anal. At. Spectrom.***2008**, *23*, 385-396. (35) Uthe, J. F.; Solomon, J.; Grift, B. *J. - Assoc. Off. Anal.*
- *Chem.***1972**, *55*, 583-589.
- (36) Wagemann; R.; Trebacz; E.; Hunt; R.; Boila; G. *Environ. Toxicol. Chem.***1997**, *16*, 1859-1866.
- (37) Clarisse, O.; Hintelmann, H. *J. Environ. Monit.***2006**, *8*, 1242-1247.
- (38) Faganeli, J.; Pezdic, J.; Ogorelec, B.; Misˇicˇ, M.; Najdek, M. *Cont. Shelf Res.***1994**, *14*, 365-384.
- (39) Tagliabue, A.; Bopp, L. *Global Biogeochem. Cycles***2008**, *22*.
- (40) Hofmann, M.; Wolf-Gladrow, D. A.; Takahashi, T.; Sutherland, S. C.; Six, K. D.; Maier-Reimer, E. *Mar. Chem.* **2000**, *72*, 131-150.
- (41) Fry, B.; Sherr, E. B. In *Stable Isotopes in Ecological Research*, Rundel, P. W.; Ehleringer, J. R.; Nagy, K. A., Eds.; Springer New York, 1989, pp 196-229.
- (42) Fry, B. In *Stable Isotope Ecology*; Springer New York, 2006, pp 40-75.

