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Abstract In this text3, we revisit part of the analysis of anti-entropy in Bailly and
Longo (2009) and develop further theoretical reflections. In particular, we analyze
how randomness, an essential component of biological variability, is associated to
the growth of biological organization, both in ontogenesis and in evolution. This
approach, in particular, focuses on the role of global entropy production and pro-
vides a tool for a mathematical understanding of some fundamental observations
by Gould on the increasing phenotypic complexity along evolution. Lastly, we an-
alyze the situation in terms of theoretical symmetries, in order to further specify
the biological meaning of anti-entropy as well as its strong link with randomness.

Introduction

Notions of entropy are present in different branches of physics, but also in informa-
tion theory, biology … even economics. Sometimes, they are equivalent under suitable
transformations from one (more or less mathematized) domain to another. Sometimes,
the relation is very mild, or may be at most due to a similar formal expressions. For
example, one often finds formulas describing a linear dependence of entropy from a
quantity formalized as ∑𝑖 𝑝𝑖 log(𝑝𝑖), where 𝑝𝑖 is the “probability” of the system to be
in the 𝑖-th (micro-)state. Yet, different theoretical frames may give very different mean-
ings to these formulas: somehow like a wave equation describing water movement has a
similar mathematical formulation as Schrödinger’s wave equation (besides some crucial
coefficients), yet water waves and quantum state functions have nothing to do with each
other. Another element seems though to be shared by the different meanings given to
entropy. The production of entropy is strictly linked to irreversible processes.

But … what is entropy? The notion originated in thermodynamics. The first law of
thermodynamics is a conservation principle for energy. The second law states that the
total entropy of a system will not decrease other than by increasing the entropy of some
other system. Hence, in a system isolated from its environment, the entropy of that
system will tend not to decrease.

More generally, increasing entropy corresponds to energy dispersion. And here we
have the other element shared by the different views on entropy: in all of its instances,

3 Published as: G. Longo and M. Montévil. 2012. “Randomness Increases Order in Biological
Evolution.” In Computation, Physics and Beyond, edited by M. Dinneen, B. Khoussainov, and
A. Nies, 7160:289–308. Lecture Notes in Computer Science. Invited paper, Auckland, New
Zealand, February 21-24, 2012. Springer Berlin / Heidelberg. isbn: 9783642276538. doi:10.
1007/978-3-642-27654-5\_22.
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it is linked to randomness, since diffusions, in physics, are based on random walks. Thus,
energy, while being globally preserved, diffuses, randomly. In particular, heat flows from
a hotter body to a colder body, never the inverse. Only the application of work (the impo-
sition of order) may reverse this flow. As a matter of fact, entropy may be locally reversed,
by pumping energy. For example, a centrifuge may separate two gazes, which mixed up
by diffusion. This separation reduces the ergodicity (the amount of randomness, so to
say) of the system, as well as its entropy.

Living beings construct order by absorbing energy. In Schrödinger’s audacious lit-
tle book, What is life? (Schrödinger 1944), it is suggested that organisms also use order
to produce order, which he calls negentropy, that is entropy with a negative sign. And
this order is produced by using the order of the chromosomes’ a-periodic structure (his
audacious conjecture) and by absorbing organized nutrients (don’t we, the animal, eat
mostly organized fibers?). Of course, a lot can be said, now, against these tentative the-
orizations by the great physicist.

But is really entropy the same as disorder? There is a long lasting and sound critique,
in physics, of the “myth” of entropy as disorder. F. L. Lambert (see Lambert (2007))
is a firm advocate of this critical attitude. This is perfectly fair since entropy is “just”
energy dispersal in physics, regardless of whether the system is open or closed4. Yet, as
explained in Hayflick (2007), “in physics, a lowered energy state is not necessarily disorder,
because it simply results in the identical molecule with a lowered energy state. The fact that such
a molecule might be biologically inactive may not concern the physicist, but it definitely does
concern the biologist ….” In this perspective, it is then sound to relate entropy to disorder
in biological dynamics: a lesser activity of a molecule may mean metabolic instability, or,
more generally, less coherent chemical activities of all sorts. As a consequence, this may
result in less bio-chemical and biological order.

In either case, though, and by definition, entropy has to be related to energy dispersal.
As a matter of fact, the analysis of heat diffusion in animals and humans has a long
history that dates back to the ‘30s (Hardy 1934). Since then, several approaches tried
to bridge the conceptual gap between the purely physical perspective and the biologist’s
concern with organization and with its opposite, disorder, in particular when increasing,
in aging typically (Aoki 1994; Hayflick 2007; Marineo and Marotta 2005; Pezard et al.
1998).

Let’s now summarize the perspective of this paper in a very synthetic way: Evo/devo
processes (Evolution and development or ontogenesis) may be globally understood as
the “never identical iteration of a morphogenetic process”. Randomness is at the core of
that “ never identical iteration”. By adding selection and following Gould’s remarkable
insight, we will in particular understand below the increasing compexity of organisms
along Evolution, as the result of a purely random diffusion in a suitable phase space (and
its defintion is the crucial issue).

4 However, the argument that disorder is an epistemic notion, not suitable to physics, is less
convincing, since classical randomness, at the core of entropy, is also epistemic (see above and
Bailly and Longo (2007)).
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1 Entropy in ontogenesis.

In an organism, the internal entropy production has “in primis” a physical nature, related
to all thermodynamic processes, that is to the transformation and exchange of matter
and energy. Yet, we will add to this a properly biological production for entropy, the
production due to all irreversible processes, including biological (re-)construction, that
is both embryogenesis and cell replacement and repair (ontogenesis, globally).

Observe first that, in a monocellular organism, entropy is mostly released in the
exterior environment and there are less signs of increasing disorder within the cell. Yet,
changes in proteome and membranes are recorded and may be assimilated to aging, see
Lindner et al. (2008) and Nyström (2007). In a metazoan, instead, the entropy produced,
under all of its forms, is also and inevitably transferred to the environing cells, to the tissue, to
the organism, (Bailly and Longo 2009). Thus, besides the internal forms of entropy (or
disorder) production, a cell in a tissue, the structure of the tissue itself … the organism,
is affected by this dispersal of energy, as increasing disorder, received from the (other)
cells composing the tissue (or the organism). Aging, thus, is also or mostly a tissular and
organismic process: in an organism, it is the network of interactions that is affected and
that may have a fall-out also in the cellular activities (metabolism, oxidative stress … ,
see below).

Moreover, the effect of the accumulation of entropy during life contributes, mathe-
matically, to its exponential increase in time. Thus, with aging, this increase exceeds the
reconstructive activities, which oppose global entropy growth in earlier stages of life (this
theory, articulated in four major life periods, is proposed in Bailly and Longo (2009)).
Now, we insist, entropy production, in all its forms, implies increasing disorganization of
cells, tissues, and the organism. This, in turn, may be physically and biologically imple-
mented by increasing metabolic instability, oxidative effects, weakening of the structure
and coherence of tissues (matrix, collagene’s links, tensegrity) … and many more forms
of progressive disorganization (Demetrius 2004; d’Alessio 2004; Sohal and Weindruch
1996; Olshansky and Rattan 2005). Of course, there may be other causes of aging, but
the entropic component should not be disregarded and may also help in proposing a
unified understanding of different phenomena.

Our second observation is that entropy production is due to all irreversible processes,
both the thermodynamic ones and the permanent, irreversible, (re-)construction of the
organism itself. This generating and re-generating activity, from embryogenesis to repair
and turnover, is typically biological and it has been mathematically defined as “anti-
entropy” (see Bailly and Longo (2009) and below5). In other words, irreversibility in
biology is not only due to thermodynamic effects, related to the production of energy,
typically, but also to all processes that establish and maintain biological organization —

5 The word anti-entropy has already been used, apparently only once and in physics, as the math-
ematical dual of entropy: its minimum coincides with the entropy maximum at the equilibrium,
in mixture of gases at constant temperature and volume (Duffin and Zener 1969). This is a spe-
cific and a very different context from ours. Our anti-entropy is a new concept and observable
with respect to both negentropy and the mathematical dual of entropy: typically, it does not
add to an equal quantity of entropy to give 0 (as negentropy), nor satisfies minimax equations,
but it refers to the quantitative approach to “biological organization”, as opposing entropy by
the various forms of biological morphogenesis, replacement and repair.
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that is, it is concomitantly due to entropy production and its biological opposite, anti-
entropy production: embryogenesis, for example, is an organizing and highly irreversible
process “per se”. And it produces entropy not only by the thermodynamic effects due to
energy dispersion, but also, in our view, by the very biological constitutive activities.

Cell mitosis is never an identical “reproduction”, including the non-identity of pro-
teomes and membranes. Thus, it induces an unequal diffusion of energy by largely random
effects (typically, the never identical bipartition of the proteome). That is, biological
reproduction, as morphogenesis, is intrinsically joint to variability and, thus, it produces
entropy also by lack of (perfect) symmetries. By this, it induces its proper irreversibility, be-
yond thermodynamics.

As a comparison, consider an industrial construction of computers. The aim is to
produce, in the same production chain, identical computers. Any time a computer is
doubled, an identical one (up to observability) is produced and “organization” (locally)
grows, at the expenses of energy. Entropy is then produced, in principle, only by the
required use and inevitable dispersal of energy, while the construction “per se” just in-
creases organization, along the production chain. Moreover, if, in the construction chain
of computers, one destroys the second computer, you are back with one computer and
you can iterate identically the production of the second. The process can be reverted (de-
stroy one computer) and iteratable (produce again an identical machine), by importing
a suitable amount of energy, of course. Imperfection should be (and are for 99% of the
machine ) below observability and functionality: they are errors and “noise”.

As we said, it is instead a fundamental feature of life that a cell is never identical to the
“mother” cell. This is at the core of biological variability, thus of diversity, along Evolution
as well as in embryogenesis (and ontogenesis, as permanent renewal of the organism,
never identically). In no epistemic nor objective way this may be considered a result of
errors nor noise: variability and diversity are the main “invariants” in biology, jointly to
structural stability, which is never identity, and, jointly, they all make life possible.

Thus, while producing new order (anti-entropy), life, as iteration of a never identical
and an always slightly disordered morphogenetic process, generates also entropy (disor-
der), by the reproductive process itself. In a metazoan, each mitosis produces two slightly
different cells, both different also from the “mother” cell: the asymmetry is a form of
disorder and, thus, of entropy growth, within the locally increasing order. And this, of
course, in addition to the entropy due to free energy consumption. It is this variability
that gives this further, and even more radical, form of irreversibility to all biological dy-
namics (in Evolution and ontogenesis). There is no way to neither revert nor iterate an
evolutionary or embryognetic process: if you kill a cell after mitosis, you are not back to
the same original cell and this cell will not iterate its reproduction, identically6.

6 The incompetent computationalist (incompetent in Theory of Computation), who would say
that also computers are not identical and misses the point: the theory of programming is based
on identical iteration of software processes on reliable hardware, i.e. functionally equivalent
hardware (and it works, even in computer networks, see the analysis of primitive recursion
and portability of software in Longo (2009))). Any biological theory, instead, must deal with
variability, by principle. As recalled above, variability as never identical iteration, in biology, is
not an error.
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It should be clear that this theoretical frame concerning the overall increase of en-
tropy in biology says nothing about how this disorganization takes place in the various
processes, nor anything about its “timetable”. The analyses of the detailed phenomena
that implement it in ontogenesis are ongoing research projects. So far, we could apply
these principles to an analysis of growing complexity in Evolution, as summarized next.

2 Randomness and Complexification in Evolution.

Available energy production and consumption are the unavoidable physical processes
underlying reproduction and variability. At the origin of life, bacterial reproduction was
(relatively) free, as other forms of life did not contrast it. Diversity, even in bacteria,
by random differentiation, produced competition and a slow down of the exponential
growth (see diagram 3). Simultaneously, though, this started the early variety of live, a
process never to stop.

Gould, in several papers and in two books (Gould 1989, 1997), uses this idea of
random diversification in order to understand a blatant but too often denied fact: the
increasing “complexification” of life. The increasing complexity of biological structures
has been often denied in order to oppose finalistic and anthropocentric perspectives,
which viewed life as aiming at Homo sapiens as the “highest” result of the (possibly in-
telligent) evolutionary path.

Yet, it is a fact that, under many reasonable measures, an eukaryotic cell is more
“complex” than a bacterium; a metazoan, with its differentiated tissues and its organs,
is more “complex” than a cell … and that, by counting also neurons and connections,
cell networks in mammals are more complex that in early triploblast (which have three
tissues layers) and these have more complex networks of all sorts than diplobasts (like
jellyfish, a very ancient animal). This non-linear increase can be quantified by counting
tissue differentiations, networks and more, as hinted by Gould and more precisely pro-
posed in Bailly and Longo (2009), that we will extensively summarize and comment,
next. The point is: how to understand this change towards complexity without invoking
global aims? Gould provides a remarkable answer based on the analysis of the asymmetric
random diffusion of life. Asymmetric because, by principle, life cannot be less complex
than bacterial life7. So, reproduction by variability, along evolutionary time and space,
randomly produces, just as possible paths, also more complex individuals. Some happen to
be compatible with the environment, resist and proliferate (a few even very successfully)
and keep going, further and randomly producing also more complex forms of life. Also,
since the random exploration of possibilities may, of course, decrease the complexity, no
matter how this is measured. Yet, by principle: any asymmetric random diffusion propa-
gates, by local interactions, the original symmetry breaking along the diffusion. Thus there is
no need for a global design or aim: the random paths that compose any diffusion, also
in this case help to understand a random growth of complexity, on average. On average,
as, of course, there may be local inversion in complexity; yet, the asymmetry randomly
forces to the “right”. This is beautifully made visible by figure 1, after Gould (1989),

7 Some may prefer to consider viruses as the least form of life. The issue is controversial, but it
would not change at all Gould’s and ours perspective: we only need a minimum which differs
from inert matter.
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page 205. The image explains the difference between a random, but oriented develop-
ment (on the right, 1b), and the non-biased, purely random diffusive bouncing of life
expansion on the left wall, on the left 1a.

t

(a) Passive trend, there are more trajectories
near 0.

t

(b) Driven trend, the trajectories have a drift
towards an increased mean.

Figure 1: Passive and driven trends. In one case, the boundary condition, materialized by
a left wall, is the only reason why the mean increases over time, and this increase is
therefore slow. In the case of a driven trend, or biased evolution, however, it is the rule
of the random walk that leads to an increase of the mean over time (there is an intrinsic
trend in evolution). Gould’s and our approach are based on passive trends, which means
that we do ume that there is an intrinsic bias for increasing complexity in the process of
evolution.

Of course, time runs on the vertical axis, but … what is in the horizontal one? Any-
thing or, more precisely, anywhere the random diffusion takes place or the intended
phenomenon “diffuses in”. In particular, the horizontal axis may quantify “biological
complexity” whatever this may mean. The point Gould wants to clarify is in the differ-
ence between a fully random vs. a random and biased evolution. The biased right image
does not apply to evolution: bacteria are still on Earth and very successfully. Any finalis-
tic bias would instead separate the average random complexification from the left wall.

Note that, in both cases, complexity may locally decrease: tetrapodes may go back to
the sea and lose their podia (the number of folding decreases, the overall body structure
simplifies). Some cavern fishes may loose their eyes, in their new dark habitat; others,
may lose their red blood cells (Ruud 1954). Thus, the local propagation of the original
asymmetry may be biologically understood as follows: on average, variation by sim-
plification leads towards a biological niches that has more chances to be already occu-
pied. Thus, global complexity increases as a purely random effect of variability and on the
grounds of local effects: the greater chances, for a “simpler” organism, to bump against
an already occupied niche. Thus, more complex variants have just slightly more proba-
bilities to survive and reproduce — but this slight difference is enough to produce, in
the long run, very complex biological organisms. And, of course, variability and, thus,
diversity are grounded on randomness, in biology. No need for finalism nor a priori
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“global aim” nor “design” at all, just a consequence of an original symmetry breaking in
a random diffusion on a very peculiar phase space: biomass times complexity times time
(see figure 3 for a complete diagram)8.

Similarly to embryogenesis, the complexification is a form of local reversal of en-
tropy. The global entropy of the Universe increases (or does not decrease), but locally, by
using energy of course, life inverses the entropic trend and creates organization of in-
creasing complexity. Of course, embryogenesis is a more canalized process, while evolu-
tion seems to explore all “possible” paths, within the ecosystem-to-be. Most turn out to
be incompatible with the environment, thus they are eliminated by selection. In embryo-
genesis increasing complexity seems to follow an expected path and it is partly so. But
only in part as failures, in mammals say, reach 50% or more: the constraints imposed,
at least, by the inherited dna and zygote, limit the random exploration due to cell mi-
tosis. Yet, their variability, joint to the many constraints added to development (first, a
major one: dna), is an essential component of cell differentiation. Tissue differentiation
is, for our point of view, a form of (strongly) regulated/canalized variability along cell
reproduction.

Thus, by different but correlated effects, complexity as organization increases, on av-
erage, and reverts, locally, entropy. We called anti-entropy, Bailly and Longo (2009), this
observable opposing entropy, both in evolution and embryogenesis; its peculiar nature
is based on reproduction with random variation, submitted to constraints. As observed
in the footnote above, anti-entropy differs from negentropy, which is just entropy with
a negative sign, also because, when added to entropy, it never gives 0, but it is realized
in a very different singularity (different from 0): extended criticality (Bailly and Longo
2011; Longo and Montévil 2011). In the next section, we will use this notion to provide
a mathematical frame for a further insight by Gould.

3 (Anti-)Entropy in Evolution.

In yet another apparently naïve drawing, Gould proposes a further visualization of the
increasing complexity of organisms along Evolution. It is just a qualitative image that
the paleontologist draws on the grounds of his experience. It contains though a further
remarkable idea: it suggests the “phase space” (the space of description) where one can
analyze complexification. It is bio-mass density that diffuses over complexity, that is, fig-
ure 2 qualitatively describes the diffusion of the frequency of occurrences of individual
organisms per unity of complexity.

This is just a mathematically naive, global drawing of the paleontologist on the basis
of data. Yet, it poses major mathematical challenges. The diffusion, here, is not along
a spatial dimension. Physical observables usually diffuse over space in time; or, within
other physical matter (which also amounts to diffusing in space). Here, diffusion takes

8 By our approach, proposed in Bailly and Longo (2009), we provide a theoretical/mathematical
justification of the ZFEL principle in McShea and Brandon (2010), at the core of their very
interesting biological analysis: “ZFEL (Zero Force Evolutionary Law, general formulation): In
any evolutionary system in which there is variation and heredity, there is a tendency for diversity
and complexity to increase, one that is always present but may be opposed or augmented by
natural selection, other forces, or constraints acting on diversity or complexity.”
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Figure 2: Evolution of complexity as understood by Gould. This illustration is borrowed from
(Gould 1997), page 171. This account is provided on the basis of paleontological obser-
vations.

place over an abstract dimension, “complexity”. But what does biological complexity ex-
actly mean? Hints are given in Gould (1997): the addition of a cellular nucleus (from
bacteria to eukaryotes), the formation of metazoa, the increase in body size, the forma-
tion of fractal structures (usually — new — organs) and a few more…. In a sense, any
added novelty provided by the random “bricolage” of Evolution and at least for some
time compatible with the environment, contributes to complexity. Only a few organisms
become more complex over time, but, by the original symmetry breaking mentioned
above, this is enough to increase the global complexity. Of course, the figure above is
highly unsatisfactory. It gives two slices over time where the second one is somewhat in-
consistent: where are dinosaurs at present time? It is just a sketch, but an audacious one
if analyzed closely. Mathematics may help us to consistently add the third missing di-
mension: time.

A simple form of diffusion equation of 𝑞 in time 𝑡 over space 𝑥 is:

𝜕𝑞
𝜕𝑡

= 𝐷
𝜕2𝑞
𝜕𝑥2

+ 𝑄(𝑡, 𝑥) (1)

where 𝑄(𝑡, 𝑥) is a source term describing the situation at the origin of the process. Yet,
in our case, the diffusion of this strange quantity, 𝑚, a bio-mass density, takes place over
an even more unusual “space”, biological complexity, whatever the latter may mean.
In Bailly and Longo (2009), we dared to further specify Gould’s hints for biological
complexity, as a quantity 𝐾 = 𝛼𝐾𝑐 + 𝛽𝐾𝑚 + 𝛾𝐾𝑓 where 𝛼, 𝛽, and 𝛾 are the respective
“weights” of the different types of complexity within the total complexity. The details
are in Bailly and Longo (2009), let’s just summarize the basic ideas. So, 𝐾𝑐 (“combinato-
rial” complexity) corresponds to the possible cellular combinatoric;𝐾𝑚 (“morphological”
complexity) is associated to the forms which arise (connexity and fractal structures); 𝐾𝑓
(“functional” complexity) is associated to the relational structures supporting biological
functions (metabolic and neuronal relations). We will discuss this approach in section 4.
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𝐾 is a tentative quantification of complexity as anti-entropy, in particular in biologi-
cal evolution: the increase of each of its components (more cellular differentiation, more
or higher dimensional fractal structures, richer networks … yield a more “complex” in-
dividual). Of course, many more observables and parameters may be taken into account
in order to evaluate the complexity of an organism: Bailly and Longo (2009) provides
just a mathematical basis and a biological core for a preliminary analysis (an application
to ontogenesis as an analysis of C. Elegans development is also presented). They suffice
though for a qualitative (geometric) reconstruction of Gould’s curve, with a sound ex-
tension to the time dimension.

As mentioned above, anti-entropy opposes, locally, to entropy: it has the same di-
mension, yet it differs from negentropy, since it does not sum up to 0, in presence of an
equal quantity of entropy. It differs also from information theoretic frame, where ne-
gentropy has been largely used, as negentropy (= information) is independent from coding
and Cartesian dimensions. This is crucial for Shannon as well as for Kolmogorof-Chaitin
information theories. Anti-entropy, instead, as defined above, depends on foldings, sin-
gularities, fractality … it is a geometric notion, thus, by definition, it is sensitive to codings
(and to dimension).

The next step is to adapt eq. 1 to these new dimensions. Just use Gould’s observables
and parameters, 𝑚 and 𝐾 , that we specified some more, and write:

𝜕𝑚
𝜕𝑡

= 𝐷
𝜕2𝑚
𝜕𝐾2 + 𝑄(𝑡, 𝐾) (2)

But what is here𝑄(𝑡, 𝐾), the source term? In order to instantiate𝑄 by a specific function,
but also in order to see the biological system from a different perspective (and get to the
equation also by an “operatorial approach”), we then gave a central role, as an observable,
to the “global entropy production”.

Now, in physics, energy, 𝐸, is the “main” observable, since Galileo inertia, a principle
of energy conservation, to Noether’s theorems and Schrödinger’s equation. Equilibria,
geodetic principles etc directly or indirectly refer to energy and are understood in terms
of symmetry principles (see Bailly and Longo (2011)). At least since Schrödinger and
his equation, in (quantum) physics, one may view energy as an operator and time as a
parameter9.

As hinted above, in biology, also constitutive processes, such as anti-entropy growth
(the construction and reconstruction of organization), produce entropy, since they also
produce some (new) disorder (recall: at least the proteome, after a mitosis, is non-
uniformly and randomly distributed in the new cells). In these far form equilibrium,
dissipative (possibly even non-stationary) processes, such as Evolution and ontogenesis,
energy turns out to be just one (very important) observable, a parameter to be precise.
One eats (and this is essential) and gets fatter: production and maintenance of organiza-
tion requires energy, but it yields a different observable, one that has a different dimen-
sion, tentatively defined by 𝐾 above, as organization. Typically, in allometric equations,

9 In short, Schrödinger transforms an equation with the structure 𝐸 = 𝑝2

2𝑚
+ 𝑉(𝑥), where 𝑉(𝑥)

is a potential, by associating 𝐸 and 𝑝 to the differential operators 𝜕/𝜕𝑡 and 𝜕/𝜕𝑥, respectively,
seeBailly and Longo (2009)
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so relevant in biology, energy or mass appear as a parameter. Thus, in our approach, the
key observable is organization that is formed or renewed (anti-entropy production).

Moreover, entropy, as associated to all irreversible processes, from energy flows to
anti-entropy production, is the observable which summarizes all ongoing phenomena;
by its irreversibility, it is strongly linked (conjugated) to time.

In summary, we proposed to change the conceptual frame and the conceptual prior-
ities: we associated the global entropy production 𝜎 to the differential operator given by
time, 𝜕/𝜕𝑡 (Schrödinger does this for energy, which is conjugated to time, in quantum
physics). Thus, our approach allows to consider biological time as an “operator”, both
in this technical sense and in the global perspective of attributing to time a key consti-
tutive role in biological phenomena, from evolution to ontogenesis. But how to express
this global observable?

In a footnote to Schrödinger (1944), Schrödinger proposes to analyze his notion of
negative entropy as a form of Gibbs free energy 𝐺. We applied this idea to our anti-
entropy 𝑆−, where 𝑆− = −𝑘𝐾 (𝑘 is a positive dimensional constant and 𝐾 is the phe-
notypic complexity). Now, 𝐺 = 𝐻 − 𝑇𝑆, where 𝑇 is temperature, 𝑆 is entropy and
𝐻 = 𝑈 +𝑃𝑉 is the system’s enthalpy (𝑈 is the internal energy, 𝑃 and 𝑉 are respectively
pressure and volume). By definition, the metabolism 𝑅 has the physical dimension of a
power and corresponds to the difference between the fluxes of generalized free energy 𝐺
through the surface Σ:

𝑅 =[𝐽𝐺(𝑥) − 𝐽𝐺(𝑥 + 𝑑𝑥)] = −𝑑𝑥(Div 𝐽𝐺) (3)

Locally the conservation (or balance) equation is expressed in the general form:

𝑅 = −Div 𝐽𝐺 =
𝑑𝐺
𝑑𝑡

+ 𝑇𝜎 (4)

where 𝜎 represents the speed of global production of entropy, that is 𝜎 is the entropy
produced by all irreversible processes, including the production of biological organi-
zation or anti-entropy. Thus, the global balance of metabolism for the “system of life”
(the biosphere) has the following form, where 𝑆− and 𝑆+ are anti-entropy and entropy,
respectively:

𝑅 =
𝑑𝐻
𝑑𝑡

− 𝑇 
𝑑𝑆−

𝑑𝑡
+
𝑑𝑆+

𝑑𝑡 
+ 𝑇𝜎 ≃ 𝑎

𝑑𝑀
𝑑𝑡

− 𝑇 
𝑑𝑆−

𝑑𝑡
+
𝑑𝑆+

𝑑𝑡 
+ 𝑇𝜎 (5)

where 𝐻 ≃ 𝑎𝑀, for a mass 𝑀 and a coefficient 𝑎, which has the magnitude of a speed
squared.

𝑇𝜎 is a crucial quantity: it contains our 𝜎, modulo the temperature 𝑇 , since 𝑅 is
a power. 𝑇𝜎 corresponds to the product of forces by fluxes (of matter, of energy —
chemical energy, for instance — etc.). Now, a flux is proportional to a force, thus to a
mass, and hence 𝑇𝜎 is proportional to a mass squared. It can then be written, up to a
coefficient 𝜁𝑏 and a constant term 𝑇𝜎0 as:

𝑇𝜎 ≈ 𝜁𝑏𝑀2 + 𝑇𝜎0 (6)



Randomness Increases Order in Biological Evolution 11

Figure 3: Time evolution of mass repartition over anti-entropy. The initial condition is a
finite mass at almost 0 anti-entropy, thus having the shape of a pulse.

𝜁𝑏 is a constant that depends only on the global nature of the biological system under
study and it is 0 in absence of living matter.

Without entering into further details, by using as “state function” a bio-mass diffusion
function over complexity 𝐾 , that is the bio-mass density 𝑚(𝑡, 𝐾) in 𝑡 and 𝐾 , the opera-
torial approach applied to equation 6 gave us the equation, with a linear source function
𝛼𝑏𝑚:

𝜕𝑚
𝜕𝑡

= 𝐷𝑏
𝜕2𝑚
𝜕𝐾2 + 𝛼𝑏𝑚 (7)

Its solution, bellow, yields the diagram in figure 3.

𝑚(𝑡, 𝐾) =
𝐴

√𝑡
exp(𝑎𝑡) exp(−𝐾2/4𝐷𝑡) (8)

In summary, by skipping all the technical details in Bailly and Longo (2009), we could
derive, by mathematics and starting from Gould’s informal hints, a general understand-
ing as well as the behavior of the “Evolution of complexity function” w. r. to time. And
this fits data: at the beginning the linear source term gives an exponential growth of
free bacteria. Then, they complexify and compete. Of course, this diagram, similarly
to Gould’s, is a global one: it only gives a qualitative, geometric, understanding of the
process. It is like looking at life on Earth from Sirius. Analogously to Gould’s diagram,
the “punctuated equilibria”, say, and the major extinctions are not visible: the insight is
from too far and too synthetic to appreciate them. It only theoretically justifies Gould’s
proposal and soundly extends it to time dependence, by mathematically deriving it from
general principles: the dynamics of a diffusion by random paths, with an asymmetric
origin. Its source is given by an exponential growth. Life expansion is then bounded,
canalized, selected in the interaction with the ever changing, co-constituted ecosystem.
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The core random complexification persists, while its “tail” exponentially decreases, see
equation 8 and figure 3. In that tail, some neotenic big primates, with a huge neural
network, turn out to be the random complexification of bacteria, a result of variability
and of the immense massacres imposed by selection.

Another (important) analogy can be made with Schrödinger’s approach (his famous
equation, not his book on life) and further justifies the reference to it for the analysis
of this (rather ordinary) diffusion equation. Schrödinger dared to describe the deter-
ministic evolution of the wave function in Quantum Mechanics as the dynamics of a
law of probability (and this gives the intrinsic indetermination of the quantum system).
We synthetically represented Biological Evolution as the dynamics of a potential of vari-
ability, under the left wall constraint. Again, this idea is essentially Gould’s idea in his
1996 book: he sees Evolution just as an asymmetric diffusion of random variability. We
just made this point explicit and developed some computations as a consequences of the
analogy with the determination in Quantum Mechanics and the operatorial approach
of Schrödinger.

4 Anti-entropy as a measure of symmetry changes

In Longo and Montévil (2011), we proposed to understand biological phenomena, in
comparison and contrast with physical theories, as a situation where the theoretical sym-
metries are “constantly” broken. We will now show that such considerations allows us
to interpret anti-entropy, somewhat in the spirit of Boltzmann’s approach of physical
entropy. In Bailly and Longo (2009), premises of these aspects are considered from a
strictly combinatorial point of view, leading to a “constructive” definition of the three
components of anti-entropy, we recalled in section 3. To show how symmetries come
into play we will analyze now these components.
Combinatorial complexity, 𝐾𝑐: For a total number of cells 𝑁 and for a number 𝑛𝑗 of

cells of cell type 𝑗, the combinatorial complexity is defined as:

𝐾𝑐 = log
⎛
⎜⎜⎜⎜⎝
𝑁!

∏
𝑗 𝑛𝑗!

⎞
⎟⎟⎟⎟⎠ (9)

A classical combinatorial point of view consists in saying that it is the number of
ways to classify 𝑁 cells in 𝑗 categories each of sizes 𝑛𝑗. More precisely, we recog-
nize, inside the logarithm, the cardinal, 𝑁!, of the symmetry group 𝑆𝑁 , that is the
group of transformations, called permutations, that exchange the labels of 𝑁 ele-
ments. Similarly, 𝑛𝑗! is the number of permutations among 𝑛𝑗 units, which has the
biological meaning of permutations of cells within a cell type: in other words, per-
muting cells within the same cell type is a combinatorial invariant of the complexity
of an organism. Thus, the group of permutations leaving the cell types invariants is
the group 𝐺𝑡𝑦𝑝𝑒 = ∏𝑆𝑛𝑗, that is the group obtained as direct product of the sym-
metries corresponding to permutations within each cell type. Formally, this group
corresponds to the change of labels in each cell type, which can all be performed in-
dependently and conserve the classification by cell types. The cardinal of this group
is ∏𝑗 𝑛𝑗!.
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Then, the number of cell type configurations is the number of orbits generated by
the right action of 𝐺𝑡𝑦𝑝𝑒 on 𝑆𝑁 . In other words, a cell type configuration is first
given by a permutation of J1,𝑁K, which gives the random determination for 𝑁
cells. Moreover, these transformations must be computed modulo any transforma-
tion of𝐺𝑡𝑦𝑝𝑒 that gives the same configuration (as we said, cells within each cell type
are combinatorially equivalent — we will discuss below this hypothesis, in more
biological terms). Lagrange theorem then gives the number of remaining trans-
formations 𝑁!/∏𝑗 𝑛𝑗!, which is the number of possible configurations. Clearly, an
organism with just one cell type (typically, a unicellular being) has combinatorial
complexity 0. As a result, this measure of combinatorial complexity depends on the
total number 𝑁 of cells, but is actually a measure of the symmetry breaking induced by
the differentiation in cell types.
Let’s compare the situation with Boltzmann approach of entropy. If one has a num-
ber of microscopic phase space states Ω having the same energy, the corresponding
entropy is defined as 𝑆 = 𝑘𝑏 log(Ω). In the case of gases, one considers that the par-
ticles are indiscernible. This means that one does not count twice situations which
differ only by permuting particles. In other words one formally understands the sit-
uation by saying that labels attached to particles are arbitrary. Thus, more soundly,
𝑆 is defined by 𝑆 = 𝑘𝑏 log(Ω) − 𝑘𝑏 log(𝑁! ) > 0. This symmetry by permutation re-
duces the size of the microscopic possibility space, and, as a result, entropy.
In our approach, we have 𝐾𝑐 = log(𝑁! ) − ∑𝑖 log(𝑛𝑖! ) which is greater than 0, as
soon as there is more than one cell type. Thus, the increase of the possibility space
(the diversity or the differentiations) increases the complexity. More precisely, the
complexity, as absolute value of anti-entropy, is decreased by the remaining symme-
tries, quantified by the term∑

𝑖 log(𝑛𝑖! ). We understand then that anti-entropy can
be analyzed, at least in this case, as an account of how much biological symmetries
are broken by the cascade of differentiations. Formally, we can sum the situation up
by saying that the combinatorial complexity and its contribution to anti-entropy are
based on a group of transformations, 𝑆𝑁 , and a subgroup, 𝐺𝑡𝑦𝑝𝑒. The biologically
relevant quantity is then the ratio of sizes of the groups 𝑆𝑁 and 𝐺𝑡𝑦𝑝𝑒.

Morphological complexity, 𝐾𝑚: This complexity is associated to the geometrical de-
scription of biologically relevant shapes. It is computed in particular by counting
the number of connex areas. Note that this number corresponds to space symmetry
breakings for motions covering this space — or ergodic motions. Then, one has to
consider the number of shape singularities, in the mathematical sense, where sin-
gularities are invariants by action of diffeomorphisms. The fractal-like structures are
particularly relevant since they correspond to an exponential increase of the num-
ber of geometrical singularities with the range of scales involved. Thus, fractal-like
structures lead to a linear growth of anti-entropy with the order of magnitudes where
fractality is observed.

Functional complexity, 𝐾𝑓 (the last quantity proposed in Bailly and Longo (2009)):
This quantity is given by the number of possible graphs of interaction. As a result,
the corresponding component of anti-entropy is given by the choice of one graph
structure (with distinguished nodes) among the possible graphs. This involves the
selection of the structure of possible graphs and, correspondingly, which resulting
graphs are considered equivalent. In terms of symmetries, we first have a symmetry
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among the possible graphs which is reduced to a smaller symmetry, by the equiva-
lence relation. For example, in Bailly and Longo (2009), the case is considered where
the number of edges is fixed, so the considered symmetry group is engendered by
the transformations which combine the deletion of an edge and the creation of an-
other one. The orbits preserve the total number of edges, so that the orbit of a graph
with ⟨𝑘⟩𝑁 edges are the graphs with this number of edges.

We understand then that anti-entropy, or at least its proposed decomposition in
Bailly and Longo (2009), is strictly correlated to the amount of symmetry changes. We
will now look more closely at the case of combinatorial complexity since it involves only
the groups of permutations and their subgroups, but at the same time will also allow us
to express a crucial conceptual and mathematical point.

We indeed encounter a paradox in the case of combinatorial complexity. On one side,
we have an assumption that cells of the same cell type are symmetric (interchangeable).
On the other, in section 1, we stressed that each cell division consists in a symmetry
change. This apparent paradox depends on the scale we use to analyze the problem,
as well as on the “plasticity” of the cells in a tissue or organ, as the possibility to be
interchanged and/or to modify their individual organization. Typically, one can assume
that liver cells function statistically (what matters is their average contribution to the
function of the organ), while neurons may have strong specific activities, yet they may
also deeply modify their structure (change number, forms and functionality of synaptic
connections, for example). Thus, we will next consider the individual contribution of
cells to the combinatorial complexity of an organism at different scales.

If we consider an organism with a large number of cells,𝑁 , and the proportion 𝑞𝑗 for
cell type 𝑗we get two different quantities for the combinatorial complexities,𝐾𝑐1 and𝐾𝑐2:

𝐾𝑐1
𝑁

=
log(𝑁! )
𝑁

≃ log(𝑁)
𝐾𝑐2
𝑁

=
log 

𝑁!
∏𝑗(𝑞𝑗𝑁)!

𝑁
≃

𝑗
𝑞𝑗 log(1/𝑞𝑗) (10)

We propose to understand the situation as follows. Basically, both levels of cellular indi-
viduation are valid; but they have to be arranged in the right order. Cellular differentia-
tion is the first and main aspect of the ability of cells to individuate in a metazoan, so we
can assume that the main determinant of combinatorial complexity is 𝐾𝑐2. It is only af-
ter this contribution that the further process of cellular individuation occurs. The latter
leads to a mean contribution which is∑𝑗 𝑎𝑗 𝑞𝑗 log(𝑞𝑗𝑁) − 1 per cell, where 𝑎𝑗 quantifies
the ability of each cell type to change their organization. It seems reasonable to expect
that the 𝑎𝑗 are high in the cases, for example, of neurons or of cells of the immune sys-
tem. On the contrary, the 𝑎𝑗 should be especially low for red blood cells. The reason for
this is not only their lack of dna, but also their relatively simple and homogeneous cy-
toplasmic organization. Similarly, liver cells may have statistically irrelevant changes in
their individual structure.

Thus, the contribution of cell types to anti-entropy derives first from the formation
of new cell types, while considering the ability of cells to reproduce, with changes, within
a cell type as a further important (numerically dominant) aspect of their individuation
process. Note that this analysis does not suppose that a cell type for a cell is irreversibly
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determined, but it means that the contribution of cell type changes to anti-entropy are
understood as changes of 𝐾𝑐2.

We can then provide a refined version of 𝑆−𝑐 , where 𝑎𝑐𝑡 is the “weight” accorded to
the formation of different cell types:

𝑆−𝑐
−𝑁𝑘𝑏

= 𝑎𝑐𝑡
𝑗
𝑞𝑗 log(1/𝑞𝑗) +

𝑗
𝑎𝑗 𝑞𝑗 log(𝑞𝑗𝑁) − 1 (11)

= 𝑎𝑐𝑡 − ⟨𝑎𝑗⟩ log(1/𝑞𝑗) + ⟨𝑎𝑗⟩ − 𝑎𝑗 log(1/𝑞𝑗) + ⟨𝑎𝑗⟩ log(𝑁) (12)

where ⟨𝑥⟩ is the mean of 𝑥 among all cells (so that the contribution of each cell type is
proportional to its proportion in the organism). Both equations 11 and 12 are biologi-
cally meaningful. The terms in equation 11 correspond, by order of appearance, to the
contribution of the categorization by cell types and to the contribution of individuation
among a cell type. In equation 12, we have obtained terms that can be assimilated to 𝐾𝑐1
(last term) and to 𝐾𝑐2 (first term), the latter being positive only if 𝑎𝑐𝑡 − ⟨𝑎𝑗⟩ > 0, mean-
ing that the contribution associated to cell types is positive only if it is greater than the
mean cellular individuation. This is logical since cell types make a positive contribution
to the complexity only if the amount of cellular diversity they introduce is greater than
the one that cellular individuation alone would introduce.

Last but not least, the second term has the sign of an anti-correlation between 𝑎𝑗 and
log(1/𝑞𝑗), meaning that this term is positive when there are many low complexity cell
types10 and few high complexity cell types. More precisely, using the Cauchy-Schwartz
equality case, we get that maximizing (and minimizing) this term (everything else being
kept constant), leads to ⟨𝑎𝑗⟩−𝑎𝑗 ∝ log(1/𝑞𝑗)− ⟨log(1/𝑞𝑗)⟩. Then this optimization a priori
leads to maximizing the variance of information (in informational terms), at constant
entropy (=mean information).

Here, the issue derived from looking with an increasing finer resolution at the indi-
viduation potential. However, the reciprocal situation can also occur. Let’s consider the
functional complexity, understood as the possibility of interactions between cells (the
paradigmatic example is neurons). Then, by assuming that there are 𝑁 neurons with
⟨𝑘⟩ average number of synapses for each neuron (where ⟨𝑘⟩ is between 103 and 104 for
humans), as presented in Bailly and Longo (2009), we get:

𝑁𝐺 = 
𝑁2 

⟨𝑘⟩𝑁


𝐾𝑓1

𝑁
≃ ⟨𝑘⟩ log(𝑁) (13)

However, if we postulate that any graph of interaction is possible, then we get a total
number of possible interactions which corresponds to a choice between interaction or
10 In theory of information, log(1/𝑞𝑗) is the information associated to 𝑗: it quantifies its scarcity.

If one assume that 𝑎𝑗 = ⟨𝑎𝑗⟩ ± 𝑎 and that we keep the mean complexity of cells, the anti-
correlation is typically obtained when we have more low complexity cell types, with fewer cells,
than high complexity cell types (which have therefore more cells). If one consider again the 𝑎𝑗
as a degree of freedom, the same result can be achieved high complexity cell types with very
high complexity and therefore a high number of bellow average complexity cell types.
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no interaction for each entry of the interaction matrix (𝑁2 cells). However, the latter is
symmetric; and we do not count the self-interactions (because they correspond to the
complexity of the cell) so we obtain𝑁(𝑁 −1)/2 binary choices, so 2𝑛(𝑛−1)/2 possibilities:
𝐾𝑓2/𝑁 ≃ 𝑁/2.

There is two main lines of reasoning we can follow to understand the situation. The
first is to look at the time structure of symmetry changes. Indeed, the symmetry changes
occur as a temporal cascade. As a result, the temporal hierarchy of individuation is cru-
cial. Here, we can refer to some phenomena concerning the graph of interaction of neu-
rons. A crude description of the formation of neural networks is the following. First, a
large number of “disordered” connections take place. Only after, the functional organi-
zation really increases by the decay of unused synapses (see for example Luo and O’Leary
(2005). Then, the “bigger” symmetry group involved in the description is of the form
𝐾𝑓1, with ⟨𝑘⟩mean number of connections; but then this symmetry group is reduced to
obtain a smaller symmetry group with ⟨𝑙⟩ mean number of connections. This operation
can be seen as a change of symmetry groups, from the transformations preserving the
number of connections with ⟨𝑘⟩𝑁 connections to those preserving ⟨𝑙⟩𝑁 connections.

Of course there are many other possible components for a measure of biological
complexity. This proposal, defined as anti-entropy, provides just a tentative backbone
for transforming the informal notion of “biological organizational complexity” into a
mathematical observable, that is into a real valued function defined over a biological
phenomenon. It should be clear that, once enriched well beyond the definition and the
further details given in Bailly and Longo (2009), this is a proper (and fundamental)
biological observable. It radically differs from the rarely quantified, largely informal,
always discrete (informally understood as a map from topologically trivial structures
to integer numbers) notion of “information”, still dominating in molecular circles, see
Longo et al. (2012) for a critique of this latter notion.

5 Theoretical consequences of this interpretation

In the section above, we have been focused on technical aspects of the “microscopic” defi-
nition of anti-entropy. Using this method, we have seen that anti-entropy can mainly be
understood in terms of symmetry changes. We will now consider the theoretical mean-
ing of this situation in a more general way. As we exposed in Longo and Montévil (2011),
we propose to understand biological systems as characterized by a cascade of symmetry
changes. Now, our understanding of a “biological trajectory”, a philogenetic and onto-
genetic path, as a cascade of symmetry changes yields a proper form of randomness to
be associated to the construction and maintenance of biological organization. This per-
spective is particularly relevant for us, since it links the two theoretical approaches of
the living state of matter that our team has introduced: anti-entropy (Bailly and Longo
2009) and extended criticality (Bailly and Longo 2008; Longo and Montévil 2011).

More precisely, in phylogenesis, the randomness is associated to the “choice” of
different organizational forms, which occurs even when the biological objects are con-
fronted with remarkably similar physical environment and physiological constraints. For
example, the lungs of birds and mammals have the same function in similar conditions;
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but they have phylogenetic histories which diverged long ago and, extremely different
structures.

This example is particularly prone to lead to approximate common symmetries, since
it relates to a vital function (respiration and therefore gas exchanges) shared by a wide
class of organisms. It is noteworthy that numerous theoretical studies have analyzed
lungs by optimality principles (Horsfield 1977; West, Brown, and Enquist 1999; Gheo-
rghiu et al. 2005). However, the optimality principles differ in these studies (minimum
entropy production, maximum energetic efficiency, maximum surface/volume ratio, …).
Accordingly, even among mammals, structural variability remains high. For example,
Nelson, West, and Goldberger (1990) describe the differences in the geometrical scal-
ing properties of human lungs on one side, and of rats, dogs and hamsters lungs on the
other side. Moreover, Mauroy et al. (2004) show that the criteria of energetic optimality
and of robustness for the gas exchanges, with respect to geometric variations, are incom-
patible. More generally, optimization criteria are not particularly theoretically stable. In
particular robustness is a relative notion: it depends on the property considered as well
as on the transformations with respect to which we expect it to be robust (Lesne 2008).

Similarly, the theoretical symmetries constituted in ontogenesis are the result of the
interactions with the environment and of the developmental trajectory already followed
at a given time. In our perspective, this trajectory must then be understood as a history of
symmetry changes. And, of course, the situation at a given moment does not “determine”
the symmetry changes that the object will undergo. This is a crucial component of the
randomness of the biological dynamics, as we consider that random events are associated
to symmetry changes. These events are given by the interplay of the organism with its
own physiology (and internal milieu) and with its environment, the latter being partially
co-constituted by the theoretical symmetries of the organism, since the relevant aspects
of the environment depend also on the organism.

In other terms, the conservation, in biology, is not associated to the biological proper
observables, the phenotype, and the same (physical) interface (e.g. energy exchange) with
the environment may yield very different phenotypes; thus, there is no need to preserve a
specific phenotype. In short, the symmetry changes occurring in an organism can only be
analyzed in terms of the previous theoretical symmetries (biology is, first, an historical
science) and the differences of the possible changes can be associated to different forms
of randomness.

In the cases of symmetry breakings, the symmetry change corresponds to the passage
to a subgroup of the original symmetry group. As a result, the theoretical possibilities are
predefinable (as the set of subgroups of the original group). This typically occurs in the
case of physical phase transitions, and the result is then a randomness associated to the
choice of how the symmetry gets broken. For example, if an organism has an approxi-
mate rotational symmetry, this symmetry can be broken in a subgroup, for example by
providing a particular oriented direction. We then have a rotational symmetry along an
axis. This can again be broken, for example into a discrete subgroup of order 5 (starfish).

Another situation corresponds to the case where the symmetry changes are consti-
tuted on the basis of already determined theoretical symmetries (which can be altered in
the process). This can be analyzed as the formation of additional observables which are
attached to or the result of already existing ones. Then these symmetry changes are as-
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sociated with already determined properties, but their specific form is nevertheless not
predetermined. A typical example is the case of physically non-generic behaviours that
can be found in the physical analysis of some biological situations, see Lesne and Victor
(2006). From the point of view of the theoretical structure of determination, it is then a
situation where there are predetermined attachment points, prone to lead the biological
system to develop its further organization on them. The form of the biological response
to these organizational opportunities of complexification is not, however, predetermined
and then generates an original form of randomness. This theoretical account is close to
the notion of next adjacent niche, proposed in Kauffman (2002); however, we empha-
size, here, that the theoretical determination of these next organizational possibilities is
only partially predetermined. For example imagine that a biological dynamic has ap-
proximately certain symmetries, which leads to a non-generic singular point; then it
is possible (and maybe probable) that this point will be stabilized in evolution, in an
unknown way.

The former case is constituted, in a sense, by a specific organizational opportunity.
We can, however, consider cases where such opportunities are not theoretical predeter-
mined. Now, the constitution of symmetry changes should be understood as even more
random, and the associated predictability is extremely low. Gould’s most quoted exam-
ple of “exaptation’, the formation of the bones of the internal hear from the double jaw
of some tetrapods, some two hundred million years ago can fit in this category.

We have seen that the symmetry changes lead to a strong form of randomness. This
randomness and its iterative accumulation are, however, the very fabric of biological
organization. Therefore, we have a theoretical situation where order (biological orga-
nization) is a direct consequence of randomness. Its global analysis allowed us to give
mathematical sense to Gould’s evolutionary complexification along evolution, as a con-
sequence of the random paths of a asymmetric diffusion (sections 2 and 3). A finer (or
local) analysis suggested a way to understand also ontogenetic changes in these terms,
that is as a random dynamics of symmetry changes. This situation should be not con-
fused with the cases of order by fluctuations or statistical stabilization (for example, by
the central limit theorem). In our case, indeed, the order is not the result of a statisti-
cal regularization of random dynamics into a stable form, which would transform them
into a deterministic frame. On the contrary, the random path of a cascade of symmetry
changes yields the theoretical symmetries of the object (its specific phenotypes), which
also determine its behaviour.

In this context, the irreversibility of these random processes is taken into account by
entropy production. The latter, or more precisely a part of the latter, is then associated to
the ability of biological objects to generate variability, thus adaptability. In ontogenesis,
this point confirms our analysis of the contribution of anti-entropy regeneration to en-
tropy production, in association with variability, including cellular differentiation. This
situation is also consistent with our analysis of anti-entropy as a measure of symmetry
changes. Notice that the symmetry changes, considered as relevant with respect to anti-
entropy, may be taken into account, for example, in the coefficients corresponding to the
individuation capacity of different cell types in our discussion above (see section 4).
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