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Gaussian Process Regression Model for Distribution
Inputs

François Bachoc, Fabrice Gamboa, Jean-Michel Loubes and Nil Venet

Abstract—Monge-Kantorovich distances, otherwise known as
Wasserstein distances, have received a growing attention in statis-
tics and machine learning as a powerful discrepancy measure for
probability distributions. In this paper, we focus on forecasting
a Gaussian process indexed by probability distributions. For
this, we provide a family of positive definite kernels built
using transportation based distances. We provide a probabilistic
understanding of these kernels and characterize the correspond-
ing stochastic processes. We prove that the Gaussian processes
indexed by distributions corresponding to these kernels can be
efficiently forecast, opening new perspectives in Gaussian process
modeling.

Index Terms—Gaussian process, Positive definite kernel, Krig-
ing, Monge-Kantorovich distance, Fractional Brownian motion.

I. INTRODUCTION

ORIGINALLY used in spatial statistics (see for instance
[1] and references therein), Kriging has become very

popular in many fields such as machine learning or computer
case experiment, as described in [2]. It consists in predicting
the value of a function at some point by a linear combination
of observed values at different points. The unknown function
is modeled as the realization of a random process, usually
Gaussian, and the Kriging forecast can be seen as the posterior
mean, leading to the optimal linear unbiased predictor of the
random process.

Gaussian process models rely on the definition of a co-
variance function that characterizes the correlations between
values of the process at different observation points. As the
notion of similarity between data points is crucial, i.e. close lo-
cation inputs are likely to have similar target values, covariance
functions are the key ingredient in using Gaussian processes,
since they define nearness or similarity. In order to obtain
a satisfying model one need to chose a covariance function
(i.e. a positive definite kernel) that respects the structure of
the index space of the dataset. Continuity of the covariance is
a minimal assumption, as one may ask for properties such
that stationarity or stationary increments with respect to a
distance. These stronger assumptions allow to get a model
where the correlations between data points depend on the
distance between them.

First used in Support Vector (see for instance [3]), positive
definite kernels are nowadays used for a wide range of
applications. There is a huge statistical literature dealing with
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the construction and properties of kernel functions over Rd
for d ≥ 1 (we refer for instance to [4] or [5] and references
therein). Yet the construction of kernels with adequate proper-
ties on more complex spaces is still a growing field of research
(see for example [6], [7], [8]).

Within this framework, we tackle the problem of forecasting
a process indexed by distributions. This situation happens
for instance in numerical code experiments when the prior
knowledge of the process may not be an exact value but rather
a set of acceptable values that will be modeled using a prior
distribution. Hence we observe output values for such proba-
bility distributions and want to forecast the process for other
ones. The first issue is thus to define a covariance function
that enables to compare the similarity between probability
distributions. Several approaches can be considered here. The
simplest method is to compare a set of parametric features
built from the probability distributions, such as the mean or
the higher moments. This approach is limited as the effect
of such parameters do not take into account the whole shape
of the law. Specific kernel should be designed in order to
map distributions into a reproducing kernel Hilbert space in
which the whole arsenal of kernel methods can be extended to
probability measures. This issue has recently been considered
in [9] or [10].

In the past few years, transport based distances such as the
Monge-Kantorovich or Wasserstein distance have become a
growing way to assess similarity between probability measures
and are used for numerous applications in learning and forecast
problems. Since such distances are defined as a cost to
transport one distribution to the other one, they appear to be a
very relevant way to measure similarities between probability
measures. Details on Wasserstein distances and their links with
optimal transport problems can be found in [11]. Applications
in statistics are developed in [12], [13], [14] while kernels have
been developed in [10] or [15].

In this paper, we propose to build covariances in order to
obtain Gaussian processes indexed by probability measures.
We provide a class of covariances which are functions of
the Monge-Kantorovich distance, corresponding to stationary
Gaussian processes. We also give covariances corresponding
to the fractional Brownian processes indexed by probability
distributions, which have stationary increments with respect
to the Monge-Kantorovich distance. Furthermore we show
non-degeneracy results for these kernels. In this framework
we focus on the selection of a stationary covariance kernel
in a parametric model through maximum likelihood, leading
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to consistent and asymptotically normal estimates of the
unknown parameters of the covariance function. We then
consider the Kriging of such Gaussian processes. We prove
the asymptotic accuracy of the Kriging prediction under the
estimated covariance parameters. In simulations, we show
the strong benefit of the studied kernels, compared to more
standard kernels operating on finite dimensional projections
of the distributions. Our results consolidate the idea that the
Monge-Kantorovich distance is an efficient tool to assess
variability between distributions, leading to sharp predictions
of the outcome of a Gaussian process with distribution-type
inputs.

The paper falls into the following parts. In Section II
we recall generalities on the Wasserstein space, covariance
kernels and stationarity of Gaussian processes. Section III is
devoted to the construction and analysis of an appropriate
kernel for probability measures on R. Asymptotic results on
the estimation of the covariance function and properties of the
estimation of the associated Gaussian process are presented
in Section IV. Section V is devoted to numerical applications
while the proofs are postponed to the appendix.

II. GENERALITIES

In this section we recall some basic definitions and proper-
ties of the Wasserstein spaces and of covariance kernels.

a) The Monge-Kantorovich distance: Let us consider the
setW2(R) of probability measures on R with a finite moment
of order two. For two µ, ν in W2 (R) , we denote by Π(µ, ν)
the set of all probability measures π over the product set R×R
with first (resp. second) marginal µ (resp. ν).

The transportation cost with quadratic cost function, or
quadratic transportation cost, between these two measures µ
and ν is defined as

T2(µ, ν) = inf
π∈Π(µ,ν)

∫
|x− y|2 dπ(x, y). (1)

This transportation cost allows to endow the set W2 (R) with
a metric by defining the quadratic Monge-Kantorovich, or
quadratic Wasserstein distance between µ and ν as

W2(µ, ν) = T2(µ, ν)1/2. (2)

A probability measure π in Π(µ, ν) realizing the infimum in
(1) is called an optimal coupling. This vocabulary transfers to
a random vector (X1, X2) with distribution π. We will call
W2(R) endowed with the distance W2 the Wasserstein space.

More details on Wasserstein distances and their links with
optimal transport problems can be found in [16] or [11] for
instance.

b) Covariance kernels: Let us recall that the law of a
Gaussian random process (Xx)x∈E indexed by a set E is
entirely characterized by its mean and covariance functions

M : x 7→ E(Xx)

and
K : (x, y) 7→ Cov(XxXy)

(see e.g. [17]).
A function K is actually the covariance of a random process

if and only if it is a positive definite kernel, that is to say for
every x1, · · · , xn ∈ E and λ1, · · · , λn ∈ R,

n∑
i,j=1

λiλjK(xi, xj) ≥ 0. (3)

In this case we say that K is a covariance kernel.
On the other hand there is no structural constraint on the

mean function of a random process. Hence without loss of
generality we only consider centered random processes in
Section III.

Positive definite kernels are closely related to negative
definite kernels. A function K : E × E → R is said to be
a negative definite kernel if for every x ∈ E,

K(x, x) = 0 (4)

and for every x1, · · · , xn ∈ E and c1, · · · , cn ∈ R such that∑n
i=1 ci = 0,

n∑
i,j=1

cicjK(xi, xj) ≤ 0. (5)

Example The variogram (x, y) 7→ E(Xx − Xy)2 of any
random field is a negative definite kernel.

If the inequality (3) (resp. (5)) is strict as soon as not
every λi (resp. ci) is null and the xi are two by two distinct,
a positive definite (resp. negative definite) kernel is said to
be nondegenerate. Nondegeneracy of a covariance kernel is
equivalent to the fact that every covariance matrix built with
K is invertible. We will say that a Gaussian random process
is nondegenerate if its covariance function is a nondegenerate
kernel. Nondegeneracy is a necessary condition for classical
Kriging, since the forecast is built using the inverse of the
covariance matrix of the observations. We provide nondegen-
eracy results for some covariance kernels in Section III-C.

c) Stationarity: Stationarity is a property of random
processes that is standard in the Kriging literature. Roughly
speaking, a stationary random process behaves in the same
way at every point of the index space. It is also an enjoyable
property for technical reasons. In particular it is a key assump-
tion for the proofs of the properties of Kriging estimator we
give in Section IV.

We say that a random process X indexed by a metric space
(E, d) is stationary if it has constant mean and for every
isometry g of the metric space we have

Cov(Xg(x), Xg(y)) = Cov(Xx, Xy). (6)

Let us notice in particular that if the covariance of a random
process is a function of the distance, equation (6) is verified.
This is the assumption we make in Section IV.

One can also found the assumption of stationarity for
the increments of a random process. Many classical random
processes have stationarity increments, such as the fractional
Brownian motion. We prove the existence of fractional Brow-
nian motion indexed by the Wasserstein space in Section III.
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We will say that X has stationary increments starting in
o ∈ E if X is centred, Xo = 0 almost surely, and for every
isometry g we have

Cov
(
Xg(x) −Xg(o)

)
= Cov (Xx −Xo) . (7)

Let us remark that the definitions we gave are usually called
“in the wide sense”, in contrast with stationarity definitions “in
the strict sense”, which asks for the law of the process (or its
increments) to be invariant under the action of the isometries,
and not only the first and second moments. Since we are only
dealing with Gaussian processes those definitions coincides.

III. COVARIANCE KERNELS FOR PROBABILITY
DISTRIBUTIONS ON THE REAL LINE

In this section we provide covariance kernels on the Wasser-
stein space. In particular we obtain generalisations of some
classical Gaussian random processes.

We start with the following theorem which is crucial to
obtain the covariance kernels given in Sections III-A and III-B.
In Section III-C we give nondegeneracy results for the kernels
obtained in in Section III-A.

Theorem III.1. The function W 2H
2 is a negative definite

kernel if and only if 0 ≤ H ≤ 1.

One can find in [10] a version of this result for absolutely
continuous distributions inW2(R). The proof given here holds
for any distribution of W2(R). In short (see the appendix for
a detailed proof of Theorem III.1), we consider H = 1 and
the well-known optimal coupling (see [11])

(Zµ)µ∈W2(R) := (F−1
µ (U))µ∈W2(R), (8)

where F−1
µ defined as

F−1
µ (t) = inf{u, Fµ(u) ≥ t},

denotes the quantile function of the distribution µ and U is
an uniform random variable. This coupling can be seen as a
(non-Gaussian !) random field indexed by W2(R). As such,
its variogram

(µ, ν) 7→ E(Zµ − Zν)2 (9)

is a negative definite kernel. Furthermore it is equal to
W 2

2 (µ, ν) since the coupling (Zµ) is optimal (see (1)). The
proof ends with the use of the following classical lemma.

Lemma III.2. If K is a negative definite kernel then KH is
a negative definite kernel for every 0 ≤ H ≤ 1.

See e.g. [18] for a proof Lemma III.2.

Remark In [7], Istas defines the fractional index of a metric
space E

βE := sup
{
β > 0 | dβ is negative definite

}
. (10)

It is in general a difficult problem to find the fractional index of
a given space. Theorem III.1 states that the fractional exponent
βW2(R) of the Wasserstein space is equal to 2.

A. Fractional Brownian motion kernels

We first consider the family of kernels

KH,σ(µ, ν) =
1

2

(
W 2H

2 (σ, µ) +W 2H
2 (σ, ν)−W 2H

2 (µ, ν)
)
,

(11)
where 0 < H ≤ 1 and σ ∈ W2(R).

Let us recall a result of Schoenberg we will use to prove
that the functions given by (11) are covariance kernels. We
refer to [18] for details and a proof of the result.

Theorem III.3 (Schoenberg). Given a set X , two functions
K,R : X×X → R, and o ∈ X such that for every x, y ∈ X ,

K(x, x) = 0

and
R(x, y) = K(x, o) +K(y, o)−K(x, y),

the function R is a positive definite kernel if and only if K is
a negative definite kernel.

From Theorem III.3 and Theorem III.1, the following is
immediate.

Theorem III.4. For every 0 ≤ H ≤ 1 and a given σ ∈ W2(R)
the function KH,σ is a covariance function on W2(R).

The centered Gaussian process (Xµ)µ∈W2(R) such that{
EXµ = 0,

Cov(Xµ, Xν) = KH,σ(µ, ν)
(12)

is the H-fractional Brownian motion with index spaceW2(R)
and origin in σ. It is the only Gaussian random process such
that 

EXµ = 0,

E(Xµ −Xν)2 = W 2H
2 (µ, ν),

Xσ = 0 almost surely.

(13)

From (13) it is easy to check that X has stationary in-
crements. Such a process is a generalization of the seminal
fractional Brownian motion on the real line. The fractional
Brownion motion is well known for its parameter H governing
the regularity of the trajectories : small values of H correspond
to very irregular trajectories while greater values give steadier
paths. Moreover for H > 1/2 the process exhibits long-range
dependence (see [19]).

We may want a process that follows more closely the
behavior of µ ∈ W2(R). Consider the random process

Yµ := X(µ−m(µ)) +m(µ),

where m(µ) :=
∫
xdµ(x) denotes the mean of the distribu-

tion µ. We then have{
E(Yµ) = m(µ),

Cov(Yµ, Yν) = KH,σ(µ, ν)−m(µ)m(ν),
(14)

which is equivalent to
E(Yµ) = m(µ),

E(Yµ − Yν)2 = W 2H
2 (µ, ν),

Yσ = m(σ) almost surely.

(15)
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Remark Let us notice that for H = 1 and σ = δ0 we have
E(Yµ) = E(F−1

µ (U)) and

Cov(YµYν) = Cov(F−1
µ (U)F−1µ(U)).

In some sense, Y is the Gaussian process that mimics the sta-
tistical properties of the optimal coupling (F−1

µ (U))µ∈W2(R),
while the process X stays centered and converts the mean
m(µ) into variance.

B. Stationary kernels

We recall that a C∞ function F : R+ → R+ is said to be
completely monotone if for every n ∈ N and x ∈ R+,

(−1)nF (n)(x) ≥ 0.

Here F (n) denotes the derivative of order n of F . For every
positive λ, x 7→ e−λx is completely monotone. Furthermore
F is completely monotone if and only if it is the Laplace
transform of a positive measure µF with finite mass on R+,
that is to say

F (x) =

∫
R+

e−λxdµF (λ).

We are interested in completely monotone functions because
of the following result:

Theorem III.5 (Schoenberg). Let F : R+ → R+ be a
completely monotone function, and K a negative definite
kernel. Then (x, y) 7→ F (K(x, y)) is a positive definite kernel.

We refer to [18] for more details on completely monotone
functions and a proof of Theorem III.5. We use this result to
give stationary kernels on W2(R):

Theorem III.6. For every completely monotone function F
and 0 < H ≤ 1 the function

(µ, ν) 7→ F
(
W 2H

2 (µ, ν)
)

(16)

is a covariance function on W2(R). Furthermore a Gaussian
random process with constant mean and covariance (16) is
stationary in law.

Example As we have seen e−λx is a completely monotone
function of x for every positive λ. As a consequence the
functions

e−λW
2H
2 (µ,ν) (17)

are covariances of stationary processes for every λ > 0
and 0 < H ≤ 1. Other examples of completely monotone
functions include x−λ for positive values of λ and log

(
1 + 1

x

)
.

C. Nondegeneracy results

To show the nondegeneracy of the kernel W 2H
2 , we adapt

a proof from [20].

Theorem III.7. The kernel W 2H
2 is nondegenerate if and only

if 0 < H < 1.

The idea of the proof is to consider W2(R) × R endowed
with the product distance

d((µ, s), (ν, t)) =
(
W2(µ, ν)2 + |s− t|2

)1/2
.

We assume the degeneracy of the kernel W 2H
2 on W2(R) and

deduce that d2H is not negative definite on W2(R) × R, in
contradiction with the following result.

Lemma III.8. The function d2H is a negative definite kernel
if and only if 0 ≤ H ≤ 1.

From Theorem III.7 we deduce the nondegeneracy of the
fractional Brownian motion on W2(R).

Corollary III.9. For every σ ∈ W2(R), The H-fractional
Brownian field indexed by W2(R) with origin in σ is nonde-
generate if and only if 0 < H < 1.

At this point we have obtained enough covariances func-
tions to consider parametric models that fit practical datasets.
Section IV addresses the question of the selection of the best
covariance kernel amongst a parametric family of stationary
kernels, together with the prediction of the associated Gaussian
process. In Section V we carry on simulations we the following
parametric model:

{
Kσ2,`,H = σ2e

(
−W2H

2
`

)
, (σ2, `,H) ∈ C × C ′ × [0, 1]

}
,

(18)
where C,C ′ ⊂ R are two compact sets.

IV. GAUSSIAN PROCESS MODELS WITH DISTRIBUTION
INPUTS

A. Maximum Likelihood and prediction

Let us consider a Gaussian process Y indexed by W2(R),
with zero mean function and unknown covariance function K0.
Most classically, it is assumed that the covariance function K0

belongs to a parametric set of the form

{Kθ; θ ∈ Θ}, (19)

with Θ ⊂ Rd and where Kθ is a covariance function, hence
K0 = Kθ0 for some θ0 ∈ Θ.

Typically, the covariance parameter θ is selected from a
data set of the form (µi, yi)i=1,...,n, with yi = Y (µi). Several
techniques have been proposed for constructing an estimator
θ̂ = θ̂(µ1, y1, ..., µn, yn), in particular maximum likelihood
(see e.g. [21]) and cross validation [22]–[24]. In this paper,
we shall focus on maximum likelihood, which is widely used
in practice and has received a lot of theoretical attention.

Maximum Likelihood is based on maximizing the Gaussian
likelihood of the vector of observations (y1, ..., yn). The
estimator is θ̂ML ∈ argminLθ with

Lθ =
1

n
ln(detRθ) +

1

n
ytR−1

θ y, (20)

where Rθ = [Kθ(µi, µj)]1≤i,j≤n
Given the maximum likelihood estimator θ̂ML, the value

Y (µ), for any input µ ∈ W2(R), can be predicted by plugging
(see for instance in [21]) θ̂ML in the conditional expectation
(or posterior mean) expression for Gaussian processes. More
precisely, Y (µ) is predicted by Ŷθ̂ML

(µ) with

Ŷθ(µ) = rtθ(µ)R−1
θ y (21)



5

and

rθ(µ) =

 Kθ(µ, µ1)
...

Kθ(µ, µn)

 .
Note that Ŷθ(µ) is the conditional expectation of Y (µ) given
y1, ..., yn, when assuming that Y is a centered Gaussian
process with covariance function Kθ.

B. Asymptotic properties

In spatial statistics, there is a fair amount of literature
addressing the asymptotic properties of covariance parameter
estimators, and of predictors using incorrect, or estimated
covariance parameters. To our knowledge, most of the existing
results address Gaussian processes indexed by Rd. In this set-
ting, two main asymptotic frameworks are under consideration:
fixed-domain and increading-domain asymptotics [21]. Under
increasing-domain asymptotics, as n → ∞, the observation
points x1, ..., xn ∈ Rd are so that mini6=j ||xi − xj || is lower
bounded. Under fixed-domain asymptotics, the observation
points x1, ..., xn remain in a fixed bounded subset of Rd. Typ-
ically, under increasing-domain asymptotics, all (identifiable)
covariance parameters are estimated consistently by maximum
likelihood, with asymptotic normality [25]–[30]. Also, predict-
ing with estimated covariance parameters is asymptotically
optimal [29]. On the other hand, in general, under fixed-
domain asymptotics, not all covariance parameters can be
consistently estimated [21], [31] but the parameters which
can not be estimated consistently do not have an asymptotic
impact on prediction [32]–[34]. Some results on prediction
with estimated covariance parameters are available in [35]. We
remark, finally, that the above increasing-domain asymptotic
results hold for fairly general classes of covariance functions,
while fixed-domain asymptotic results currently have to be
derived for specific covariance functions and on a case-by-
case basis.

In this section, we aim at extending some of the asymptotic
results listed above, holding for Gaussian processes with vec-
tor input, to Gaussian processes with probability distribution
input. We address increasing-domain asymptotics since, as
discussed above, this enables to obtain results which are signif-
icantly more general, with respect to the covariance functions
addressed, than their fixed-domain asymptotic counterparts.

We thus extend the contributions of [29] in the case of
Gaussian processes with probability distribution input. We
show that the proof techniques of [29] can be adapted to this
case, to prove the consistency and asymptotic normality of
maximum likelihood, and that this estimator yields asymptoti-
cally optimal predictions. The main innovations of this section
compared to [29] are that we allow for triangular arrays of
observation points. In particular, we do not assume, contrary
to [29], a specific structure for the observation points. Also,
we show in Lemma A.1 how sums of covariances, over the
observation points, can be controlled for distribution inputs.

The conditions for this section are listed below.

Condition IV.1. We consider a triangular array of obser-
vation points {µ1, ..., µn} = {µ(n)

1 , ..., µ
(n)
n } so that for all

n ∈ N and 1 ≤ i ≤ n, µi has support in [i, i + K] with a
fixed K <∞.

Condition IV.2. The model of covariance function {Kθ, θ ∈
Θ} satisfies

∀θ ∈ Θ, Kθ(µ, ν) = Fθ (W2(µ, ν))

and
sup
θ∈Θ
|Fθ(t)| ≤

A

1 + |t|1+τ

with a fixed A <∞, τ > 1.

Condition IV.3. We have observations yi = Y (µi), i =
1, · · · , n of the centered Gaussian Process Y with covariance
function Kθ0 for some θ0 ∈ Θ.

Condition IV.4. The sequence of matrices Rθ =
(Kθ(µi, µj))1≤i,j≤n satisfies

λinf(Rθ) ≥ c

for a fixed c > 0, where λinf(Rθ) denotes the smallest
eigenvalue of Rθ.

Condition IV.5. ∀α > 0,

lim inf
n→∞

inf
‖θ−θ0‖≥α

1

n

n∑
i,j=1

[Kθ(µi, µj)−Kθ0(µi, µj)]
2
> 0.

Condition IV.6. ∀t ≥ 0, Fθ(t) is continuously differentiable
with respect to θ and we have

sup
θ∈Θ

max
i=1,··· ,p

∣∣∣∣ ∂∂θiFθ(t)
∣∣∣∣ ≤ A

1 + t1+τ
,

with A, τ as in Condition IV.2.

Condition IV.7. ∀t ≥ 0, Fθ(t) is three times continuously
differentiable with respect to θ and we have, for q ∈ {2, 3},
i1 · · · iq ∈ {1, · · · p},

sup
θ∈Θ

max
i=1,··· ,p

∣∣∣∣ ∂

∂θi1
· · · ∂

∂θiq
Fθ(t)

∣∣∣∣ ≤ A

1 + |t|1+τ
.

Condition IV.8. ∀(λ1 · · · , λp) 6= (0, · · · , 0),

lim inf
n→∞

1

n

n∑
i,j=1

(
n∑
k=1

λk
∂

∂θk
Kθ0 (µi, µj)

)2

> 0.

Condition IV.1 mimics the increasing-domain asymptotic
framework of the case of vector inputs. In particular, the
observation measures µi and µj yield a large Wasserstein
distance when |i− j| is large.

Condition IV.2 imposes that the covariance functions in the
parametric model decrease fast enough with the Wasserstein
distance. This condition is standard in the case of vector inputs,
and holds in our setting, for the power exponential covariance
function of (18).

Condition IV.3 means that we address the well-specified
case [22], [23], where there is a correct covariance parameter
θ0 to estimate.

Condition IV.4 is technically necessary for the proof tech-
niques of this paper. It implies, in particular, that the input
measures µ1, ..., µn are two-by-two distinct. In the case of
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Gaussian processes on Rd, Condition IV.4 is assumed in most
of the increasing-domain asymptotic literature. In [29], [36]
it is shown that this condition indeed holds for Gaussian
processes on Rd, for many stationnary covariance functions,
thanks to Fourier transform techniques. We consider as an
open problem to extend these tools to tackle Condition IV.4
in the present setting of Gaussian processes on W2(R).

Condition IV.5 means that there is enough information in
the triangular array {µ1, ..., µn} to differentiate between the
covariance functions Kθ0 and Kθ, when θ is bounded away
from θ0. We believe that Condition IV.5 is easy to check, for
specific instances of the triangular array {µ1, ..., µn}, as it only
involves an explicit sum of covariance values.

Conditions IV.6 and IV.7 are standard regularity and asymp-
totic decorrelation conditions for the covariance model. They
hold, in particular for the power exponential covariance model
of (18).

Finally, Condition IV.8 is interpreted as an asymptotic local
linear independence of the p derivatives of the covariance
function, around θ0. Since this condition involves an explicit
sum of covariance function derivatives, we believe that it
can be checked for specific instances of the triangular array
{µ1, ..., µn}, with moderate effort.

We now provide the first result of this section, showing that
the maximum likelihood estimator is asymptotically consis-
tent.

Theorem IV.9. Let θ̂ML be as in (20). Under Conditions IV.1
to IV.5, we have as n→∞

θ̂ML
P−→ θ0.

In the next theorem, we show that the maximum likeli-
hood estimator is asymptotically Gaussian. In addition, the
rate of convergence is

√
n, and the asymptotic covariance

matrix M−1
ML of

√
n(θ̂ML − θ0) (that may depend on n) is

asymptotically bounded and invertible, see (22).

Theorem IV.10. Let MML be the p× p matrix defined by

(MML)i,j =
1

2n
Tr

(
R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

)
,

with Rθ as in (20). Under Conditions IV.1 to IV.8 we have
√
nM

1/2
ML

(
θ̂ML − θ0

)
L−→

n→∞
N (0, In).

Furthermore,

0 < lim inf
n→∞

λmin(MML) ≤ lim sup
n→∞

λmax(MML) < +∞.
(22)

In the next theorem, we show that, when using the maxi-
mum likelihood estimator, the corresponding prediction of the
values of Y are asymptotically equal to the predictions using
the true covariance parameter θ0. Note that, in the increasing-
domain framework considered here, the mean square predic-
tion error is typically lower-bounded, even when using the
true covariance parameter. Indeed, this occurs in the case of
Gaussian processes with vector input, see Proposition 5.2 in
[29].

Theorem IV.11. Under Conditions IV.1 to IV.8 we have

∀µ ∈ W2(R),
∣∣∣Ŷθ̂ML

(µ)− Ŷθ0(µ)
∣∣∣ = oP(1),

with Ŷθ(µ) as in (21).

V. SIMULATION STUDY

A. Overview of the simulation procedure

In this section, we investigate various Gaussian process
models, for predicting simulated scalar outputs corresponding
to distributional input. We compare the covariance functions
of this paper, operating directly on the input probability dis-
tributions, to more classical covariance functions operating on
projections of these probability measures on finite dimensional
spaces.

We address the input-output map given by, for a distribution
ν on R,

F (ν) =
m1(ν)

0.05 +
√
m2(ν)−m1(ν)2

,

where mk(ν) =
∫
R x

kdν(x).
We first simulate independently n = 100 learning distri-

butions ν1, ..., ν100 as follows. First, we sample uniformly
µi ∈ [0.3, 0.7] and σi ∈ [0.001, 0.2], and compute fi,
the density of the Gaussian distribution with mean µi and
variance σ2

i . Then, we generate the function gi with value
fi(x) exp(Zi(x)), x ∈ [0, 1], where Zi is a realization of a
Gaussian process on [0, 1] with mean function 0 and Matérn
5/2 covariance function with parameters σ = 1 and ` = 0.2
(see e.g. [37] for the expression of this covariance func-
tion). Finally, νi is the distribution on [0, 1] having density
gi/(

∫ 1

0
gi). In Figure 1, we show the density functions of 10 of

these n sampled distributions. From the figure, we see that the
learning distributions keep a relatively strong underlying two
dimensional structure, driven by the randomly generate means
and standard deviations. At the same time, because of the
random perturbations generated with the Gaussian processes
Zi, these distributions are not restricted in a finite-dimensional
space, and can exhibit various degrees of asymmetries.

From the learning set (νi, F (νi))i=1,...,n, we fit three Gaus-
sian process models, which we call “distribution”, “Legendre”
and “PCA”, and for which we provide more details below.
Each of these three Gaussian process models provide a con-
ditional expectation function

ν → F̂ (ν) = E(F (ν)|F (ν1), ..., F (νn))

and a conditional variance function

ν → σ̂2(ν) = var(F (ν)|F (ν1), ..., F (νn)).

We then evaluate the quality of the three Gaussian pro-
cess models on a test set of size nt = 500 of the form
(νt,i, F (νt,i))i=1,...,nt , where the νt,i are generated in the same
way as the νi above. We consider the two following quality
criteria. The first one is the root mean square error (RMSE),

RMSE2 =
1

nt

nt∑
i=1

(
F (νt,i)− F̂ (νt,i)

)2

,
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Fig. 1. Probability density functions of 10 of the randomly generated learning
distributions for the simulation study.

which should be minimal. The second one is the confidence
interval ratio (CIR) at level α ∈ (0, 1),

CIRα =
1

nt

nt∑
i=1

1
{∣∣∣F (νt,i)− F̂ (νt,i)

∣∣∣ ≤ qασ̂(νt,i)
}
,

with qα the
(

1
2 + α

2

)
quantile of the standard normal distribu-

tion. The CIRα criterion should be close to α.

B. Details on the Gaussian process models

The “distribution” Gaussian process model is based on the
covariance functions discussed before, operating directly on
probability distributions. In this model, the Gaussian process
has mean function zero and a covariance function of the form

Kσ2,`,H(ν1, ν2) = σ2 exp

(
−W2(ν1, ν2)2H

`

)
.

We call the covariance parameters σ2 > 0, ` > 0 and
H ∈ [0, 1] the variance, correlation length and exponent.
These parameters are estimated by maximum likelihood from
the training set (νi, F (νi))i=1,...,n, which yields the estimates
σ̂2, ˆ̀, Ĥ . Finally, the Gaussian process model for which the
conditional moments F̂ (ν) and σ̂2(ν) are computed is a
Gaussian process with mean function zero and covariance
function Kσ̂2,ˆ̀,Ĥ .

The “Legendre” and “PCA” Gaussian process models are
based on covariance functions operating on finite-dimensional
linear projections of the distributions. These projection-based
covariance functions are used in the literature, in the general
framework of stochastic processes with functional inputs, see
e.g. [38], [39]. For the “Legendre” covariance function, for a
distribution ν with density fν and support [0, 1], we compute,
for i = 0, ..., o− 1

ai(ν) =

∫ 1

0

fν(t)pi(t)dt,

where pi is the i− th normalized Legendre polynomial, with∫ 1

O
p2
i (t)dt = 1. The integer o is called the order of the

decomposition. Then, the covariance function operates on the
input vector (a0(ν), ..., ao−1(ν)) and is of the form

Kσ2,`0,...,`o−1,H(ν1, ν2) =

σ2 exp

−{o−1∑
i=0

[
|ai(ν1)− ai(ν2)|

`i

]}H .

The covariance parameters σ2 ≥ 0, `0 > 0, ..., `o−1 >
0, H ∈ (0, 1] are estimated by maximum likelihood, from the
learning set (a0(νi), ..., ao−1(νi), F (νi))i=1,...,n. Finally, the
conditional moments F̂ (ν) and σ̂2(ν) are computed as for the
“distribution” Gaussian process model.

For the “PCA” covariance function, we discretize each of
the n probability density functions fνi to obtain n vectors
vi = (fνi(j/(d − 1)))j=0,...,d−1, with d = 100. Then, we let
w1, ..., wo be the first o principal component vectors of the set
of vectors (v1, ..., nn). For any distribution ν with density fν ,
we associate its projection vector (a1(ν), ..., ao(ν)) defined as

ai(ν) =
1

d

d−1∑
j=0

fν(i/(d− 1))(wi)j .

This procedure corresponds to the numerical implementation
of functional principal component analysis presented in Sec-
tion 2.3 of [40]. Then, the covariance function in the “PCA”
case operates on the input vector (a1(ν), ..., ao(ν)). Finally,
the conditional moments F̂ (ν) and σ̂2(ν) are computed as for
the “Legendre” Gaussian process model.

C. Results

In Table I we show the values of the RMSE and CIR0.9

quality criteria for the “distribution”, “Legendre” and “PCA”
Gaussian process models. From the values of the RMSE
criterion, the “distribution” Gaussian process model clearly
outperforms the two other models. The RMSE of the “Leg-
endre” and “PCA” models slightly decreases when the order
increases, and stay well above the RMSE of the “distribution”
model. Note that with orders 10 and 15, despite being less
accurate, the “Legendre” and “PCA” models are significantly
more complex to fit and interpret than the “distribution”
model. Indeed these two models necessitate to estimate 12
and 17 covariance parameters, against 3 for the “distribution”
model. The maximum likelihood estimation procedure thus
takes more time for the “Legendre” and “PCA” models than
for the “distribution” model. We also remark that all three
models provide appropriate predictive confidence intervals, as
the value of the CIR0.9 criterion is close to 0.9. Finally,
“Legendre” performs slightly better than “PCA”.

Our interpretation for these results is that, because of the
nature of the simulated data (νi, F (νi)), working directly
on distributions, and with the Wasserstein distance, is more
appropriate than using linear projections. Indeed, in particular,
two distributions with similar means and small variances are
close to each other with respect to both the Wasserstein
distance and the value of the output function F . However,
if the ratio between the two variances is large, the probability
density functions of the two distributions are very different
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model RMSE CIR0.9

“distribution” 0.094 0.92
“Legendre” order 5 0.49 0.92

“Legendre” order 10 0.34 0.89
“Legendre” order 15 0.29 0.91

“PCA” order 5 0.63 0.82
“PCA” order 10 0.52 0.87
“PCA” order 15 0.47 0.93

TABLE I
VALUES OF DIFFERENT QUALITY CRITERIA FOR THE “DISTRIBUTION”,

“LEGENDRE” AND “PCA” GAUSSIAN PROCESS MODELS. THE
“DISTRIBUTION” GAUSSIAN PROCESS MODEL IS BASED ON COVARIANCE
FUNCTIONS OPERATING DIRECTLY ON THE INPUT DISTRIBUTIONS, WHILE
“LEGENDRE” AND “PCA” ARE BASED ON LINEAR PROJECTIONS OF THE

INPUT DISTRIBUTIONS ON FINITE-DIMENSIONAL SPACES. FOR
“LEGENDRE” AND “PCA”, THE ORDER VALUE IS THE DIMENSION OF THE

PROJECTION SPACE. THE QUALITY CRITERIA ARE THE ROOT MEAN
SQUARE ERROR (RMSE) WHICH SHOULD BE MINIMAL AND THE

CONFIDENCE INTERVAL RATIO (CIR0.9) WHICH SHOULD BE CLOSE TO
0.9. THE “DISTRIBUTION” GAUSSIAN PROCESS MODEL CLEARLY

OUTPERFORMS THE TWO OTHER MODELS.

from each other, with respect to the L2 distance. Hence,
linear projections based on probability density functions is
inappropriate in the setting considered here.

VI. CONCLUSION

To design a proper covariance kernel, it is necessary to take
into account the geometry of the input space. Indeed the kernel
summarizes the interactions between the locations where the
process is observed, by defining a notion of correlation.

When it comes to the set of distributions, the Wasserstein
and transport related distances have proved to provide a
relevant geometry. Hence Theorem III.1 enables to design a
kernel well fitted to model interactions between distributions.

This idea has been used in various applications. We have
contributed to a probabilistic understanding of transport related
kernels and their applications to forecast Gaussian processes,
and provided a way to fit a proper model to data, with control
of both the accuracy of the fitting and the precision of the
forecast.

This method covers distributions on the real line R which
enables us to deal with one-dimensional functional inputs.
Section V shows the efficiency of this method with interesting
performance improvements.

We believe that our paper tackles an important issue for
signal processing and data science experts willing to forecast
processes with probability distribution input, in a world where
uncertainty must be taken into account.

APPENDIX
PROOFS

A. Proofs of Section III

Proof of Theorem III.1. For any µ ∈ W2(R) we denote by
F−1
µ the quantile function associated to µ. It is well known

that given a uniform random variable U on [0, 1], F−1
µ (U)

is a random variable with law µ, and furthermore for every
µ, ν ∈ W2(R):

W 2
2 (µ, ν) = E

(
F−1
µ (U)− F−1

ν (U)
)2
, (23)

that is to say the coupling of µ and ν given by the ran-
dom vector (F−1

µ (U), F−1
ν (U)) is optimal. Consider now

µ1, · · · , µn ∈ W2(R) and c1, · · · , cn ∈ R such that∑n
i=1 ci = 0. We have

n∑
i,j=1

cicjW
2
2 (µi, µj)

=

n∑
i,j=1

cicj E
(
F−1
µi

(U)− F−1
µj

(U)
)2

=

n∑
i,j=1

cicj E
(
F−1
µi

(U)
)2

+

n∑
i,j=1

cicj E
(
F−1
µj

(U)
)2

− 2

n∑
i,j=1

cicj E
(
F−1
µi

(U)F−1
µj

(U)
)
.

Using
∑n
i=1 ci = 0 the first two sums vanish and we obtain

n∑
i,j=1

cicjW
2
2 (µi, µj)

=− 2

n∑
i,j=1

cicj E
(
F−1
µi

(U)F−1
µj

(U)
)

=− 2E

(
n∑
i=1

ciF
−1
µi

(U)

)2

≤ 0,

which proves that W 2H
2 is a negative definite kernel for 0 ≤

H ≤ 1.
Let us now consider H > 1. Using (1) it is clear that for

every x, y ∈ R, W2(δx, δy) = |x − y|. It is well known (see
e.g [7]) that |x − y]2H is not a negative definite kernel on R
for H > 1, hence the same is true for W 2H

2 .

Proof of Theorem III.6. From Theorem III.1 and III.5, (16) is
positive definite, hence it is a covariance kernel. Furthermore
as a function of the distance W2 it is obviously invariant under
the action of any isometry ofW2(R), so that the second claim
holds.

Proof of Theorem III.7. Let us fix 0 < H < 1 and assume
that W 2H

2 is degenerate. There exists µ1, · · · , µn ∈ W2(R)
and c1, · · · , cn ∈ R such that

∑n
i=1 ci = 0 and

n∑
i,j=1

cicjW
2H
2 (µi, µj) = 0. (24)

In W2(R) × R we now consider the points Pi = (µi, 0) for
1 ≤ i ≤ n and Pn+1 = (µn, ε) with ε > 0. We also set c′i = ci
for every 1 ≤ i ≤ n − 1 and c′n = c′n+1 = cn/2. Notice that
we have

n+1∑
i=1

c′i = 0.
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Now
n+1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj)

=

n−1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj) + 2

n−1∑
i=1

c′ic
′
nd

2H(Pi, Pn)

+ 2

n−1∑
i=1

c′ic
′
n+1d

2H(Pi, Pn+1) + 2c′nc
′
n+1d

2H(Pn, Pn+1).

We now use

d2H(Pi, Pn+1) =
(
W2(µi, µn)2 + ε2

)H
=W2(µi, µn)2H +O

(
ε2
)

to obtain
n+1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj)

=

n−1∑
i,j=1

cicjW
2H
2 (µi, µj) + 2

n−1∑
i=1

ci
cn
2
W 2H

2 (µi, µn)

+ 2

n−1∑
i=1

ci
cn
2
W 2H

2 (µi, µn) +
c2n
2
ε2H +O

(
ε2
)

=

n−1∑
i,j=1

cicjW
2H
2 (µi, µj) + 2

n−1∑
i=1

cicnW
2H
2 (µi, µn)

+
c2n
2
ε2H +O

(
ε2
)

=

n∑
i,j=1

cicjW
2H
2 (µi, µj) +

c2n
2
ε2H +O

(
ε2
)
.

Finally using (24) and H < 1 we obtain

n+1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj) =
c2n
2
ε2H + o

(
ε2H

)
,

which is positive for ε small enough. This shows that d2H is
not negative definite, in contradiction with Lemma III.8. In
the end W 2H

2 is nondegenerate for every 0 < H < 1.
We now use the same argument as in the end of the proof

of Theorem III.1. Since W 2H
2 (δx, δy) = |x−y|2H and |x−y|2

and |x − y|0 are degenerate kernels on R, W 0
2 and W 2

2 are
degenerate kernels.

Proof of Lemma III.8. For H = 1 we have

d2((µ, s), (ν, t)) = W2(µ, ν)2 + |s− t|2

hence d2 is negative definite as the sum of two negative definite
kernels. From Lemma III.2 we get that d2H is a negative
definite kernel for every 0 ≤ H ≤ 1.

For H > 1 we notice that d2H(µ, x)(µ, y) = |x − y|2H
and use again the fact that |x− y|2H is not a negative definite
kernel to conclude that d2H is not negative definite.

Proof of Corollary III.9. Let X = (Xµ)µ∈W2(R) denote the
H-fractional Brownian field indexed by W2(R) with origin in

σ. Assume X is degenerate: there exist λ1, · · · , λn ∈ R and
µ1, · · · , µn ∈ W2(R) such that

n∑
i=1

λnXµn = 0 almost surely.

Since Xσ = 0 almost surely, setting µn+1 = σ and λn+1 =
−
∑n
i=1 λi, it is clear that

n+1∑
i=1

λnXµn
= 0 almost surely,

which implies

n+1∑
i,j=1

λiλjW
2H
2 (µi, µj) = E

(
n+1∑
i=1

λnXµn

)2

= 0.

Since
∑n+1
i=1 λi = 0 this shows that W 2H

2 is degenerate, in
contradiction with Theorem III.7. Therefore X is nondegen-
erate for every 0 < H < 1.

The degeneracy of the 0-fractional and the 2-fractional
Brownian field indexed by W2(R) is a direct consequence
from the degeneracy of W 0

2 and W 2
2 .

B. Proofs of Section IV

1) Proofs:

Proof of Theorem IV.9. We have θ̂ML ∈ argminLθ with

Lθ =
1

n
ln(detRθ) +

1

n
ytR−1

θ y.

From Lemma A.2 we have that

sup
θ∈Θ

λmax(Rθ) and sup
θ∈Θ

max
i=1,··· ,p

λmax

(
∂

∂θi
Rθ

)
are bounded as n → ∞. Hence we can proceed as in the
beginning of the proof of Proposition 3.1 in [29] to obtain

sup
θ∈Θ
‖Lθ − E(Lθ)‖ = oP(1). (25)

Following again the proof of Proposition 3.1 in [29] we obtain
the existence of a positive a such that

E(Lθ)− E(Lθ0) ≥ c 1

n
‖Rθ −Rθ0‖2.

Hence from Condition IV.5 and (25) we have ∀α > 0,

P
(∥∥∥θ̂ML − θ0

∥∥∥ ≥ α) −→
n→∞

0

and so
θ̂ML

P−→
n→∞

θ0.

Proof of IV.10. From Lemma A.2 and Condition IV.4 we have
for every n ∈ N,

∣∣∣(MML)i,j

∣∣∣ ≤ A for a fixed A <∞.
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In addition, for any λ1, · · · , λp ∈ R such that
∑p
i=1 λ

2
i = 1,

p∑
i=1

λiλj (MML)i,j

=
1

2n
Tr

(
R−1
θ0

(
p∑
i=1

λi
∂Rθ0
θi

)
R−1
θ0

(
p∑
i=1

λj
∂Rθ0
θj

))

=
1

2

∣∣∣∣∣R−1/2
θ0

(
p∑
i=1

λi
∂Rθ0
∂θi

)
R
−1/2
θ0

∣∣∣∣∣
2

≥B

∣∣∣∣∣
p∑
i=1

λi
∂Rθ0
∂θi

∣∣∣∣∣
2

with a fixed B > 0, since for every n

λmin

(
R−1
θ0

)
=

1

λmax(Rθ0)
≥ B > 0

from Lemma A.2. Hence from Condition IV.8 we obtain

lim inf
n→∞

λmin(MML) > 0.

Hence (22) is proved. Let us now assume that

√
nM

1/2
ML

(
θ̂ML − θ0

)
�
��L−→

n→∞
N (0, In). (*)

Then there exists a bounded measurable function g : Rp →
R, ξ > 0 and a subsequence n′ such that along n′ we have

∣∣∣E [g (√nM1/2
ML(θ̂ML − θ0)

)]
− E(g(U))

∣∣∣ ≥ ξ,
with U ∼ N (0, Ip).

In addition, by compactness, up to extracting another sub-
sequence we can assume that

MML →
n→∞

M∞,

where M∞ is a symmetric positive definite matrix.
Now the remaining of the proof is similar to the proof of

Proposition 3.2 in [23]. We have

∂

∂θi
Lθ =

1

n

(
Tr

(
R−1
θ

∂Rθ
∂θi

)
− ytR−1

θ

∂Rθ
∂θi

R−1
θ y

)
Hence, exactly as in the proof of Proposition D.9 in [23] we
can show √

n
∂

∂θi
Lθ0

L−→
n→∞

N (0, 4M∞).

Let us compute

∂2

∂θi∂θj
Lθ0 =

1

n
Tr

(
−R−1

θ0

∂Rθ0
∂θi

R−1
θ0

Rθ0
∂θj

+R−1
θ0

∂2Rθ0
∂θi∂θj

)
+

1

n
yt
(

2R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

R−1
θ0
−R−1

θ0

∂2Rθ0
∂θi∂θj

R−1
θ0

)
y.

We have

E
(

∂2

∂θi∂θj
Lθ0

)
= 2MML,

and from Condition IV.4 and Lemma A.3,

Var

(
∂2

∂θi∂θj
Lθ0

)
−→
n→∞

0.

Hence
∂2

∂θi∂θj
Lθ0

P−→
n→∞

2M∞.

Moreover,
∂3

∂θi∂θj∂θk
Lθ can be written as

1

n
Tr(Aθ) +

1

n
ytBθy,

where Aθ and Bθ are sums of products of the matrices R−1
θ

or
∂

∂θi1
· · · ∂

∂θiq
Rθ with q ∈ {0, · · · , 3} and i1, · · · , iq ∈

{1, · · · p}.
Hence from Condition IV.4 and from Lemmas A.2 and A.3

we have

sup
θ∈Θ

∥∥∥∥ ∂3

∂θi∂θj∂θj

∥∥∥∥ = oP(1).

Following exactly the proof of Proposition D.10 in [23] we
can show that

√
n(θ̂ML − θ0)

L−→
n′→∞

N (0,M−1
∞ ).

Moreover since MML →
n→∞

M∞ we have

√
nM

1/2
ML(θ̂ML − θ0)

L−→
n′→∞

N (0, Ip).

This is in contradiction with (*) and conclude the proof.

Proof of Theorem IV.11. From Theorem IV.9 it is enough to
show for i = 1, · · · , p that

sup
θ∈Θ

∣∣∣∣ ∂∂θi Ŷθ(µ)

∣∣∣∣ = OP(1).

From a version of Sobolev embedding theorem (see Theorem
4.12, part I, case A in [41]), there exists a finite constant AΘ

depending only on Θ such that

sup
θ∈Θ

∣∣∣∣ ∂∂θi Ŷθ(µ)

∣∣∣∣ ≤ Aθ ∫
Θ

∣∣∣∣ ∂∂θi Ŷθ(µ)

∣∣∣∣p+1

+AΘ

q∑
j=1

∫
Θ

∣∣∣∣ ∂∂θj ∂

∂θi
Ŷθ(µ)

∣∣∣∣p+1

dθ.

Therefore in order to prove the Theorem it is sufficient to show
that for wθ(µ) of the form rθ(µ) or ∂

∂θi
rθ(µ) or ∂

∂θi
∂
∂θj

rθ(µ),
and for Wθ equal to a product of the matrices R−1

θ or ∂
∂θi
Rθ

or ∂
∂θi

∂
∂θj

Rθ, we have∫
Θ

∣∣wtθ(µ)Wθy
∣∣p+1

dθ = OP(1).

From Fubini theorem for positive integrants we have

E
[∫

Θ

∣∣wtθ(µ)Wθy
∣∣p+1

θ

]
=

∫
Θ

E
(∣∣wtθ(µ)Wθy

∣∣p+1
)
dθ.

Now there exists a constant cp+1 so that for X a centred
Gaussian random variable,

E
(
|X|p+1

)
= cp+1 (Var(X))

(p+1)/2
,

hence
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E
(∫

Θ

∣∣wtθ(µ)Wθy
∣∣p+1

dθ

)
=cp+1

∫
Θ

(
Var

(
wtθ(µ)Wθy

))(p+1)/2
dθ

=cp+1

∫
Θ

(
wtθ(µ)WθRθ0W

t
θwθ(µ)

)(p+1)/2
dθ.

Now from Lemma A.2 and Lemma A.3 there exists A <∞
such that

sup
θ∈Θ

λmax (WθRθ0Wθ) ≤ A.

Thus

E
(∫

Θ

∣∣wtθWθy
∣∣p+1

dθ

)
≤ Acp+1

∫
Θ

∥∥wtθ(µ)
∥∥(p+1)/2

dθ.

Finally for some q ∈ {0, 1, 2} and for i1, · · · , iq ∈ {1, · · · p}
we have

sup
θ∈Θ

∥∥wtθ(µ)
∥∥2

= sup
θ∈Θ

n∑
i=1

(
∂

∂θi1
· · · ∂

∂θiq
Fθ(W2(µ, µi))

)2

≤ C
n∑
i=1

∣∣∣∣ ∂

∂θi1
· · · ∂

∂θiq
Fθ(W2(µ, µi)

∣∣∣∣ ,
with C <∞ coming from Condition IV.2.

Using Lemma A.1 we see that this quantity is bounded,
which finishes the proof.

2) Technical lemmas:

Lemma A.1.

sup
µ∈W2(R)

sup
θ∈Θ

n∑
i=1

|Kθ(µi, µj)|

is bounded as n→∞.

Proof. Let µ ∈ W2(R) and i∗ ∈ argmink∈{1,···n}W2(µk, µ).
For every j ∈ {1, · · · , n}, W2(µ, µj) ≥ W2(µ, µi∗). More-
over from the triangle inequality we have

W2(µ, µj) ≥W2(µj , µi∗)−W2(µi∗ , µ),

hence

W2(µ, µj) ≥
W2(µj , µi∗)

2
.

Let us define

rµ := sup
θ∈Θ

n∑
i=1

Fθ(W2(µi, µ)

From Condition IV.2 we have

rµ ≤
n∑
i=1

A

1 +W2(µi, µ)1+τ
≤

n∑
i=1

A

1 +
(
W2(µj ,µi∗ )

2

)1+τ .

Now

W 2
2 (µj , µi∗) =

∫ 1

0

∣∣qµj
(t)− qµi∗ (t)

∣∣2 dt,

where for every t ∈ [0, 1]

qµ(t) = inf{x ∈ R| Fµ(x) ≥ t}.

Notice that from Condition IV.1 for every t ∈ [0, 1],

qµi
(t) ∈ [i, i+K].

If |j − i∗| ≥ K we have

∀t ∈ R, |qµi∗ (t)− qµj
(t)| ≥ |j − i∗| −K

so that
W2(µi∗ , µj) ≥ |j − i∗| −K.

Hence

rµ ≤ 2AK +
∑

j, |j−i∗|≥k

A

1 +
(
|j−i∗|−K

2

)1+τ

≤ 2AK +

+∞∑
j=−∞

A

1 +
∣∣ j

2

∣∣1+τ <∞.

Lemma A.2. Under Conditions IV.1 to IV.4,

sup
θ∈Θ

λmax(Rθ)

and

sup
θ∈Θ

max
i=1···p

λmax

(
∂

∂θi
Rθ

)
are bounded as n→∞.

Proof.

sup
θ∈Θ

λmax(Rθ) ≤ sup
θ∈Θ

max
i=1···p

n∑
j=1

|Fθ(W2(µi, µj))|

is bounded as n→∞ from Lemma A.1. The proof is similar
for

sup
θ∈Θ

max
i=1···p

λmax

(
∂

∂θi
Rθ

)
.

In a similar way we also obtain the following Lemma.

Lemma A.3. ∀q ∈ {2, 3}, ∀i1, · · · , iq ∈ {1, · · · p},

sup
θ∈Θ

λmax

(
∂

∂θi1
· · · ∂

∂θiq
Rθ

)
is bounded as n→∞.
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