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ON A THREE DIMENSIONAL VISION BASED COLLISION AVOIDANCE
MODEL

CÉLINE PARZANI AND FRANCIS FILBET

Abstract. This paper presents a three dimensional collision avoidance approach for aerial
vehicles inspired by coordinated behaviors in biological groups. The proposed strategy aims
to enable a group of vehicles to converge to a common destination point avoiding collisions
with each other and with moving obstacles in their environment. The interaction rules lead
the agents to adapt their velocity vectors through a modification of the relative bearing angle
and the relative elevation. Moreover the model satisfies the limited field of view constraints
resulting from individual perception sensitivity.

From the proposed individual based model, a mean-field kinetic model is derived. Simula-
tions are performed to show the effectiveness of the proposed model.

Keywords. collision avoidance, Individual-based models.
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1. Introduction

In this paper we are interested in swarm modelling which represents the collective behavior
of interacting agents of similar size and shape such that insects, birds or aerial vehicles. Inside
the swarm, agents communicate with each other, working together to accomplish tasks and
reach goals. As an example, in the last few years, the use of unmanned aerial vehicles swarm
has been widely developed for numerous applications including monitoring of natural disasters,
industrial accidents, surveillance of crowds, sensing in large environments, search and rescue
missions, searching for sources of pollution, closed observation of protected areas and many
others (see for instance [20] or [19]). Main advantages are that the considered swarm can cover
quickly a large area only requiring one operator or can scan high-risk sites rapidly whereas
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large vehicle cannot. All of these real-world challenges motivate serious investigations on how
to control multiple vehicles cooperating automatically to accomplish a given task.

On the other hand, nature provides great examples of decentralized, coordinated behaviors
in groups of living organisms. Indeed, it is surprising how swarms of insects or flocks of
birds can travel in large, dense groups without colliding (see [1, 2, 3] and [23]). Even in
the presence of external obstacles these agents are able to avoid collisions smoothly and such
biological groups are remarkably effective at maintaining optimized group structure, detecting
and avoiding obstacles and predators, and performing other complex tasks. Observing animals
or pedestrians collective motion, remarkable patterns known as emergent behaviors are achieved
by following simple rules. Such impressive inter-agent coordination is accomplished despite their
natural physiological constraints. Although individual agents have limited sensing capability
and cannot see the whole formation, they can form a flock with no apparent leader, which
implies the lack of a centralized command. This highly coordinated collective behavior emerges
from localized interactions among individuals within the swarm.

In this context, the objective of this paper is to propose a three dimensional model for a swarm
of aerial vehicles inspired by coordinated behaviors of such biological groups. The following key
points will be taken into account. First, the model will be based on a sequence of simple rules
followed by every individual (microscopic level). Then, it will include constraints related to
limited sensor information. Moreover, since many applications occurs in a high density traffic
environment, the model will result in safe paths for all individuals.

To reach our objective, we consider an interacting particle system for the collective behavior of
swarms [4, 5]. In behavioral based methods, all the agents are considered equal and they adopt
behaviors built on informations coming from their only neighborhood. The behavior of an agent
is usually based on simple rules. Thanks to the feedback shared between neighboring agents,
these methods are following a decentralized approach making it easily scalable. According to
[18], in high density traffic situations, it is recommended to use a decentralized coordination,
even if there is less freedom for maneuver. However, it is usually difficult to predict the group
behavior, and the stability of the formation is generally not easy to prove either. These methods
are among the first to have been used in motion planning for multi-agent systems as they are
easily stated and generally efficiently scalable since their rules are supposed to be implemented
independently for each agent.

Safe paths is related to collision avoidance which plays an important role in the context of
managing multiple vehicles. It has been an active area of research in the field of robotics using
the collision cone method [6] and the inevitable collision states approach [14, 17]. The collision
cone approach can be used to determine whether two objects, of irregular shapes and arbitrary
sizes, are on a collision course. It has been the basis for many collision/obstacle avoidance
algorithms [6]. These methods are developed with robotic application with knowledge about
the obstacles (position, velocity, and acceleration) [17]. There have been also some research on
aircraft collision avoidance both from the multiple vehicles and the air traffic control points of
view. All these collision avoidance procedures are based on three steps : see, detect, and avoid
[21]. But most of the algorithms developed for air traffic management are those that guarantee
safe trajectories in a very low density traffic involving only two or three aircraft. Another
approach for collision avoidance is artificial potential based methods where individuals are
treated like charged particles of same charge that repel each other; whereas the destination of
an individual is modeled as a charge of the opposite sign so as to attract or navigate it toward
the destination. The artificial potential methods are susceptible to local minima and require
breaking forces [10, 11].

In this paper, our goal is first to develop a three dimensional dynamical approach describing
the motions of N individual and interacting particles. The model is inspired from the ones
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developed in [8, 7] and [12, 13] for pedestrians collective motion in 2D but here we are concerned
with 3D motion of aerial vehicles or birds which leads to an enhanced but more complex
dynamics. Based on the vision based approach, we propose a model decomposed in two phases
for collision avoidance including both particle to particle and moving obstacles avoidance.

When dealing with large populations, in both cases one faces the well-known problem of
the curse of dimensionality, term first coined by Bellman precisely in the context of dynamic
optimization: the complexity of numerical computations of the solutions of the above problems
blows up as the size of the population increases. A possible way out is the so-called mean-field
approach, where the individual influence of the entire population on the dynamics of a single
agent is replaced by an averaged one. This substitution principle results in a unique mean-
field equation and allows the computation of solutions, cutting loose from the dimensionality.
Therefore, we perform a mean field limit of the microscopic model to replace self-interactions
between particles by self-consistent fields. The mean field approximation corresponds to the case
where the force itself depends on some average of the distribution function. As a consequence,
binary interactions between particles are not described but instead their global effect on each
particle is taken into account. This approximation is justified especially in the configuration
where the swarm is very closed to the target and therefore identifying binary interaction is very
complex. As a result, we obtain a space-inhomogeneous kinetic PDEs.

The remainder of the paper is organized as follows. In Section 2, we present the individual
agent based model proposed for self-propelled particle swarms including collision avoidance. In
Section 3, the associated mean-field limit is formally derived and analysed. Section 4 is devoted
to numerical experiments of the microscopic model. We conclude with final remarks and future
works in Section 5.

2. Agent-based model for collision avoidance

We are interested in modeling the motion of individuals (vehicles, birds,..) with the objective
to drive each individual of the swarm to a target point xT without colliding with any moving
obstacles or other individuals. Since we consider a swarm we do not explicitly constrain the
relative location of each individual. This section is devoted to the presentation of the micro-
scopic model considering N particles with position xi(t) ∈ R3 and velocity vi(t) ∈ R3, with
1 ≤ i ≤ N . Then, we derive a three-dimensional interacting particle system. The agent-based
model we consider is inspired from the one proposed in [8],[7] and [22] developed for crowd
dynamics. In these references, the heuristic-based model proposes that pedestrians follow a
heuristic rule composed of two phases:

(1) a perception phase;
(2) a decision-making phase.

In the perception phase, the subjects make an assessment of the dangerousness of the possible
encounters in all the possible directions of motion. In the decision-making phase, they turn
towards the direction which minimizes the distance walked towards their target while avoiding
encounters with other pedestrians. Here, we mainly follow the same assumptions to describe
the perception phase, but then the individual changes its velocity in order to minimize the
probability of collision.

2.1. Perception Phase. In this section, we discuss the perception phase. We consider a
particle i ∈ {1, . . . , N} located at a position xi(t) ∈ R3, with a velocity vi(t), interacting with
a collision partner j ∈ {1, . . . , N} located at a position xj(t) ∈ R3, with a velocity vj(t). The
sketch of the binary encounter between these two particles is depicted in Figure 1. We assume
that t = t0 is the time where particle i evaluates the likeliness of a collision with particle j.
This evaluation is made by supposing that each one maintains its velocity vi, (respectively vj)
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Figure 1. Sketch of a binary encounter between two particles in 2D showing
the key distances of the perception phase: the Minimal Distance Dij (distance
between x̄i and x̄j) and the Distance-To-Interaction Di of particle i in its inter-
action with particle j (distance between the current particle position xi and x̄i).
The circle with radius R delimits the safety region for the particle i.

constant. As depicted in Figure 1, we introduce two notable points x̄i and x̄j that we define
just below.

Definition 2.1. The interaction points x̄i (resp. x̄j) of particle i (resp. j) in their interaction
is the point xi(t) on the i-th particle’s trajectory (resp. xj(t) on the j-th particle’s trajectory)
such that |xi(t)− xj(t)| is minimal, i.e..

|x̄i − x̄j| = min
t∈R
|xi(t)− xj(t)|.

Definition 2.2. The interaction between particle i and particle j leads to define three key
quantities associated to perception phase:

• The minimal distance Dij represents the smallest distance which separates the two parti-
cles i and j supposing that they cruise on a straight line at constant velocities vi and vj.
From Definition 2.1, the minimal distance is then the distance between the interaction
points such that

Dij = |x̄i − x̄j|.
• The time-to-interaction τij is the time needed by the subject to reach the interaction

point x̄i from his current position xi = xi(t
0) at time t0, which is counted positive if this

time belongs to the future of the subject and negative if it belongs to the past. Then, τij
is the value of t for which the quantity |xi(t)− xj(t)| is minimal.
• The distance-to-interaction Di is the distance which separates the subjects current po-

sition xi = xi(t
0) to the interaction point x̄i. The distance-to-interaction is counted

positive if the interaction point is reached in the future and negative if the interaction
point was crossed in the past:

Di = sign(t− t0) |xi − x̄i|,
where sign(t) denotes the sign of t.
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Remark 2.3. Notice that the quantities Dij and τij are symmetric with respect to i and j.
Here, we have supposed that each individual has a perfect knowledge of its own and partners

positions and velocities, and we assume that they are able to estimate or to compute the distance-
to-interaction, the minimal distance and the time to interaction with perfect accuracy from the
knowledge of (xi,vi) and (xj,vj).

Let us now compute τij, Di and Dij assuming that a particle i with a phase space position
(xi,vi) can detect an interaction’s partner j located in its perception region with a position xj
and velocity vj.

We follow the same strategy as for two dimensional pedestrian flow [8] and denoting by xi
and xj the positions of the two particles at time t0, we define the distance D(t) between the
two particles at time t ∈ (t0, t0 + δt) by

(2.1) D2(t) = |xj + vj(t− t0)− (xi + vi(t− t0))|2

Therefore, for each particle i and its interaction partner j, we have the following result.

Proposition 2.4. The value of the time to interaction for the particle i, τij is

(2.2) τij = −〈xj − xi , vj − vi〉
|vj − vi|2

,

whereas the distance to interaction Di of particle i and the minimal distance Dij are given by

(2.3)


Di = −〈xj − xi , vj − vi〉

|vj − vi|2
|vi|

Dij =

(
|xj − xi|2 −

(
〈xj − xi , vj − vi〉

|vj − vi|

)2
)1/2

.

Proof. On the one hand, the value of the time to interaction for the particle i, is obtained
minimizing the quadratic function of time (2.1) such that

D2(t) = |vj − vi|2
(

(t− t0) +
〈xj − xi , vj − vi〉
|vj − vi|2

)2

+ |xj − xi|2 −
〈xj − xi , vj − vi〉2

|vj − vi|2
,

hence it gives

τi,j = −〈xj − xi , vj − vi〉
|vj − vi|2

.

Then, the distance to interaction Di of particle i is given by the distance traveled by this
particle during the time to interaction, i.e Di = τij|vi| where τij is given by Definition 2.2. This
leads to

(2.4) Di = −〈xj − xi , vj − vi〉
|vj − vi|2

|vi|.

On the other hand, the minimal distance Dij is given by the minimal value of (2.1), i.e.
Dij = D(t0 + τij), which leads to

Dij =
(
|xj − xi|2 −

(〈xj − xi , vj − vi〉
|vj − vi|

)2)1/2
.

�
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The objective of the perception phase is to describe the configuration corresponding to a
potential collision of the particle i with the surrounding particles. From the definitions of
the minimal distance and time-to-interaction, we consider that a collision may occur between
particle i and particle j when the following conditions are satisfied.

• First, we need τij > 0 that means that we observe in the future.
• Second, if we define a safety zone for the particle i delimited by the circle of radius R

as depicted in Figure 1 then collision will occur if Dij ≤ R.

Combining these two conditions mean that in the future, the trajectories of each particle will
encounter inside the safety zone. Therefore, we define the set of particles which may interact
with a particle i located at (xi,vi) ∈ R3 × R3 at time t0, as

Ii(t0) =
{
j ∈ {0, . . . , N}, τij > 0, Dij ≤ R

}
.

However, some restrictions related to the perception sensitivity of the individual (vision, sensors,
etc) has also to be taken into account. As a consequence, considering a test particle i interacting
with another particle j ∈ Ii(t0), we restrict the set of potential partner collision to those
belonging to the “vision cone” of particle i denoted Ci. This region is represented for instance
as the blue area in Figure 2 and model the set of positions for the particle j ∈ Ii(t0) that are
seen by the particle i. Let us now define the “vision cone” Ci precisely.

Definition 2.5. Introducing a threshold number κ ∈ [0, 1], the “vision cone” Ci for the particle
i is the cone centered at xi with angle cos−1(κ) about the direction vi.

To summarize the perception phase, for each particle i we define the set of interaction’s
partners as the set

(2.5) Ki(t0) =
{
j ∈ Ii(t0), xj ∈ Ci

}
.

So we now detail the Decision Making Phase in order to model collision avoidance.

2.2. Decision Making Phase. First let us emphasize that the three dimensional swarm mod-
eling is quite different from the two dimensional case encountered in collision avoidance for
pedestrians or robots [22]. Indeed, in the three dimensional case, particles cannot suddenly
stop or brake!

Here we consider the motion of a particle i ∈ {1, . . . , N} with position and velocity (xi,vi) ∈
R3×R3, which interacts with a particle j ∈ {1, . . . , N} located at (xj,vj) ∈ R3×R3. Depending
on the position of the interaction points (x̄i, x̄j) ∈ R3 × R3, the collision avoidance procedure
leads to consider three configurations:

• Safe configuration (illustrated in Figure 2-(a)), where the particle i does not change its
direction and continues its cruse ;
• Blind configuration (illustrated in Figure 2-(b)), where a collision is likely, but particle
i does not see j, hence it continues its cruse ;
• Unsafe configuration (illustrated on Figure 2-(c)), where the particle i has detected an

interaction’s partner j and both of them modify their direction.

To describe more precisely this turning process, we introduce the local frame of the particle
i ∈ {1, . . . , N} centred at position xi ∈ R3, and denoted by (eρi , eφi , eθi) with ρi = |vi|,
θi ∈ (0, 2π) the azimuthal angle and φi ∈ (0, π) the polar angle. Hence we have

ρi eρi = vi.

The collision avoidance model proposed below is based on the situation where a particle
i ∈ {1, . . . , N} interacts with another one j ∈ Ki(t0) and will modify its direction but preserve
its speed. To determine this turning rate and the rotation axis, we need to define some indicators
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Figure 2. Depending on the cone definition of the particle i, several config-
urations occur: (a) safe configuration where the two particles do not interact
(b) blind configuration where i does not interact with j, but j is expected to
change its direction (c) unsafe configuration where two particles will change their
direction.

on occurrence of collisions. The first indicator of the dangerousness of the collision is the time
τij, which indicates the remaining time before a collision occurs. The second indicator measured
by particle i, is the time derivative of the relative bearing angle or azimuthal angle αij ∈ (0, 2π)
and the relative polar angle βij ∈ (0, π) formed in its own frame between the direction vi and
the position xj of particle j ∈ K(t0).

To define rigorously these two angles and their time derivative we need to consider the frame
(eρi , eφi , eθi) of the particle i at position xi ∈ R3 with velocity vi ∈ R3. Then we can define the
relative bearing angle αij ∈ (0, 2π) and the relative polar angle βij ∈ (0, π).

Definition 2.6 (relative azimuthal and polar angles). Consider the local frame (eρi , eφi , eθi)
centered in at xi of the particle i ∈ {1, . . . , N}, and denote by j ∈ Ki(t0) its collision partner
located at (xj,vj) ∈ R6. We define

• the relative bearing or azimuthal angle αij ∈ (0, 2π) is the azimuthal angle of point xj
in the frame (eρi , eφi , eθi) centered at xi;
• the relative polar angle βij ∈ (0, π) is the polar angle of point xj in the frame (eρi , eφi , eθi)

centered at xi.

We also introduce the unit vector kij of the line connecting the two particles and the distance
dij between the agents. These quantities are defined by the following relations:

(2.6)


dij(t) = |xj(t)− xi(t)|,

kij(t) =
xj(t)− xi(t)

dij(t)
,

Now let us compute the time derivative of αij and βij which will be a key indicator in the
collision avoidance process.

Lemma 2.7. Assume that particles (i, j) are at time t0 at positions xi and xj, and move with
constant velocity vi and vj. Then

(2.7) β̇ij =
1

|xj − xi|
〈vj − vi, eβij〉, sin βij α̇ij =

1

|xj − xi|
〈vj − vi, eαij

〉,
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eρi

eφi

eθi

xi•

xj •

αij

βij

Figure 3. Definition of the relative bearing angle αij ∈ (0, 2π) as the azimuthal
angle of point xj in the frame (eρi , eφi , eθi) centered at xi and of the relative polar
angle βij ∈ (0, π) as the polar angle of point xj in the frame (eρi , eφi , eθi) centered
at xi.

where

(2.8)

 eβij = cos βij cosαij eρi + cos βij sinαij eφi − sin βij eθi ,

eαij
= − sinαij eρi + cosαij eφi .

Proof. By the definition of the relative bearing angle αij ∈ (0, 2π) and the relative polar angle
βij ∈ (0, π) , we can write:

kij = sin βij cosαij eρi + sin βij sinαij eφi + cos βij eθi .

Taking the time derivative of this relation and using the fact that (eρi , eθi , eφi) is constant since
the motion of the particle i is supposed rectilinear with constant speed vi, it leads to

k̇ij = β̇ij [ cos βij cosαij eρi + cos βij sinαij eφi − sin βij eθi ]

+ sin βij α̇ij [− sinαij eρi + cosαij eφi ] ,

where we recognize the expression of the two unit vectors (eαij
, eβij) constructed by writing the

point xj in spherical coordinate in the frame of particle i, that is, eβij = cos βij cosαij eρi + cos βij sinαij eφi − sin βij eθi ,

eαij
= − sinαij eρi + cosαij eφi .

Hence we have

k̇ij = β̇ij eβij + sin βij α̇ij eαij
.
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Figure 4. Vision cones for each particle (Ci in blue and Cj in red) for the
two considered configurations: (a) cooperative interactions, (b) non cooperative
interactions

On the other hand, taking the time derivative of the first equation (2.6), and after some easy
computations, we find

k̇ij =
d

dt

(
xj − xi
dij(t)

)
,

=
1

dij
[ (vj − vi) − 〈vj − vi , kij〉kij ] ,

=
1

dij

[
〈vj − vi, eαij

〉 eαij
+ 〈vj − vi , eβij〉 eβij

]
.

Identifying these two relations, we get

β̇ij =
1

dij
〈vj − vi, eβij〉, sin βij α̇ij =

1

dij
〈vj − vi, eαij

〉,

which gives rise to formula (2.7) for the derivative of the relative bearing and polar angles. �

The proposed control scheme is based on gyroscopic forces but adapted to the constraints due
to the perception region. On the one hand we consider the situation where the two particles see
each other, then they cooperate to avoid to collide (cooperative interaction represented in Figure
4-(a)). On the other hand, we describe the interaction of one particle with an obstacle or another
particle which do not deviate from its trajectory (non-cooperative interaction represented in
Figure 4-(b)).

2.2.1. Cooperative interactions. Assume that at time t = t0, both particles are such that (i, j) ∈
Kj(t0)×Ki(t0). Then the two particles will rotate in order to avoid to collide along a rotation



10 CÉLINE PARZANI AND FRANCIS FILBET

axis defined by a vector field rij which has to be determined such that
dvi
dt

= ωij vi ∧ rij,

dvj
dt

= ωij vj ∧ rij,

where ωij > 0 defines the rotation frequency.
In the present situation the two interaction points x̄i and x̄j are relatively close and the two

particles need to rotate in order to avoid to collide. Hence both particles (xi,vi) and (xj,vj)
will rotate along the axis defined by the vector rij in order to increase the minimal distance
Di,j given in (2.1) such that

D2
ij = |xj − xi|2 −

(
|xj − xi|
|vj − vi|

)2

〈vj − vi,kij〉2.

To increase the minimal distance Dij we need to decrease the quantity |〈vj − vi,kij〉|, that
is to increase the magnitude of the time derivative of the relative bearing and polar angle
(sin βij α̇ij, φ̇ij) given in Lemma 2.7. The time derivative of these angles indicate that the
collision is very likely when it is small.

Thus, we write the vector rij in the basis (kij, eβij , eαij
) as

(2.9) rij = r1ij kij + r2ij eβij + r3ij eαij

and determine the values of (r1ij, r
2
ij, r

3
ij) in order to increase the magnitude of (sin βij α̇ij, β̇ij). In

the next lemma, we determine the relationship between the rotation axis which tends to increase
the time derivative of the bearing and polar angles and therefore, decreases the likeliness of the
collision. We follow the same strategy as [7] for two dimensional problems.

Lemma 2.8. Assume that two particles (i, j) ∈ {1, . . . , N}2 are such that (i, j) ∈ Kj(t0)×Ki(t0)
and consider the time derivative of the relative bearing and polar angles (sin βij α̇ij, β̇ij) given
in (2.7) and the rotational axis rij given by (2.9) is such that r1ij ∈ R,

(2.10) −
ωij r

3
ij

β̇ij
≤ 2 and

ωij r
2
ij

sin(βij) α̇ij
≤ 2.

Then, (sin βij α̇ij, β̇ij) is solution to the following system

(2.11)


dβ̇ij
dt

=
(
ωij r

1
ij + cos βij α̇ij

)
sin βij α̇ij + λ3ij β̇ij,

d

dt
(sin βij α̇ij) = −

(
ωij r

1
ij + cos βij α̇ij

)
β̇ij + λ2ij sin βij α̇ij,

with 
λ3ij :=

(
2 +

ωij r
3
ij

β̇ij

) (
|vj − vi|
|xj − xi|

)2

τij ∈ R+,

λ2ij :=

(
2−

ωij r
2
ij

sin βij α̇ij

) (
|vj − vi|
|xj − xi|

)2

τij ∈ R+.

As a consequence of the non-negativity of (λ2ij, λ
3
ij), we also have

1

2

d

dt

(
β̇2
ij(t) + | sin βij α̇ij(t)|2

)
≥ min(λ2ij, λ

3
ij)
(
β̇2
ij(t) + | sin βij α̇ij(t)|2

)
.
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Proof. Let us consider the expression of (sin βij α̇ij, β̇ij) given by (2.7). Then we compute the
time derivative of both quantities

dβ̇ij
dt

=
1

|xj − xi|
(
〈v̇j − v̇i , eβij〉 + 〈vj − vi , ėβij〉

)
− 1

|xj − xi|3
〈vj − vi , xj − xi〉 〈vj − vi , eβij〉

and

d

dt
(sin βij α̇ij) =

1

|xj − xi|
(
〈v̇j − v̇i, eαij

〉 + 〈vj − vi, ėαij
〉
)

− 1

|xj − xi|3
〈vj − vi , xj − xi〉 〈vj − vi , eαij

〉.

Now we observe that 
ėαij

= −α̇ij
[
cos βij eβij + sin βij kij

]
,

ėβij = α̇ij cos βij eαij
− β̇ij kij,

hence using the definition of the unit vector kij in (2.6) and the definition of τij in (2.2), it

yields for the time derivative of the relative polar angle β̇ij,

dβ̇ij
dt

= ωij
〈(vj − vi) ∧ rij , eβij〉

|xj − xi|
+ cos βij sin βij α̇

2
ij + 2

(
|vj − vi|
|xj − xi|

)2

τij β̇ij,

then for the time derivative of sin βij α̇ij,

d

dt
(sin βij α̇ij) = ωij

〈(vj − vi) ∧ rij , eαij
〉

|xj − xi|
− cos βij β̇ij α̇ij + 2

(
|vj − vi|
|xj − xi|

)2

τij sin βij α̇ij.

Therefore, from the definition of rij in (2.9) and using that 〈a , b ∧ c〉 = 〈b , c ∧ a〉, we get 〈(vj − vi) ∧ rij , eβij〉 = r1ij 〈vj − vi , eαij
〉 − r3ij 〈vj − vi , kij〉,

〈(vj − vi) ∧ rij , eαij
〉 = −r1ij 〈vj − vi , eβij〉 + r2ij 〈vj − vi , kij〉,

it gives using (2.7), the following system of equations

dβ̇ij
dt

=
(
ωij r

1
ij + cos βij α̇ij

)
sin βij α̇ij +

(
2 +

ωij r
3
ij

β̇ij

) (
|vj − vi|
|xj − xi|

)2

τij β̇ij,

d

dt
(sin βij α̇ij) = −

(
ωij r

1
ij + cos βij α̇ij

)
β̇ij +

(
2−

ωij r
2
ij

sin βij α̇ij

) (
|vj − vi|
|xj − xi|

)2

τij sin βij α̇ij.

From the assumption (2.10), we get the non-negativity of the last coefficients. Therefore,

multiplying the first equation of (2.11) by β̇ij and the second one by sin βij α̇ij, it gives that

1

2

d

dt

(
β̇2
ij(t) + | sin βij α̇ij(t)|2

)
= λ3ij |β̇ij|2 + λ2ij |sin βij α̇ij|

2 ≥ 0.

Hence the result follows. �
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Applying Lemma 2.8, we observe that we can choose rij orthogonal to the unit vector kij
since this direction does not have any effect on the variation of |β̇ij|2 + |sin βij α̇ij|2.

Thus, the simplest choice is for any frequency ωij > 0,

rij := −(vj − vi) ∧ kij
|xj − xi|

,

we easily verify that 
r2ij = 〈rij , eβij〉 = − sin βij α̇ij,

r3ij = 〈rij , eαij
〉 = β̇ij,

hence, it gives
dβ̇ij
dt

= (2 + ωij)

(
|vi − vj|
|xi − xj|

)2

τij β̇ij + cos βij sin βij α̇
2
ij,

d

dt
(sin βij α̇ij) = (2 + ωij)

(
|vi − vj|
|xj − xi|

)2

τij sin βij α̇ij − cos βij β̇ij α̇ij.

and for

Eij :=
1

2

(
β̇2
ij(t) + | sin βij α̇ij(t)|2

)
,

we have
dEij
dt

= λij Eij,

with

λij := 2 (2 + ωij)

(
|vi − vj|
|xi − xj|

)2

τij > 0.

2.2.2. Non-cooperative interactions. Consider at time t = t0 two particles (i, j) ∈ {1, . . . , N}2
such that j ∈ Ki(t0) but i /∈ Kj(t0). Then only the particle i will rotate in order to avoid
collision along a rotation axis defined by a vector field rij which has to be determined such that

dvi
dt

= ωij vi ∧ rij,

dvj
dt

= 0.

Therefore we apply the same strategy as the one presented below to determine the condition
for which the time derivative of the polar angle β̇ij and sin βij α̇ij will increase. Hence we prove
the following result.

Lemma 2.9. Assume that two particles (i, j) ∈ {1, . . . , N}2 are such that j ∈ Ki(t0) and i /∈
Kj(t0) and consider the time derivative of the relative bearing and polar angles (sin βij α̇ij, β̇ij)
given in (2.7) and the rotational axis rij given by (2.9) is such that r1ij = 0,

(2.12)
cosαij ωij r

3
ij

β̇ij
≥ 0 and

cosαij ωij r
2
ij

α̇ij
≤ 0.
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Then, (sin βij α̇ij, β̇ij) is solution to the following system

(2.13)


dβ̇ij
dt

= cos βij sin βij α̇
2
ij + η3ij β̇ij,

d

dt
(sin βij α̇ij) = − cos βij α̇ij β̇ij + η2ij sin βij α̇ij,

with 
η3ij :=

(
2 τij

(
|vj − vi|
|xj − xi|

)2

+ |vi| sin βij
cosαij ωij r

3
ij

β̇ij

)
∈ R+,

η2ij :=

(
2 τij

(
|vj − vi|
|xj − xi|

)2

− |vi|
cosαij ωij r

2
ij

α̇ij

)
∈ R+.

As a consequence of the non-negativity of (η2ij, η
3
ij), we also have

1

2

d

dt

(
β̇2
ij(t) + | sin βij α̇ij(t)|2

)
≥ min(η2ij, η

3
ij)
(
β̇2
ij(t) + | sin βij α̇ij(t)|2

)
.

Proof. We proceed as in the proof of Lemma 2.8, hence we get

dβ̇ij
dt

= −ωij
〈vi ∧ rij , eβij〉
|xj − xi|

+ cos βij sin βij α̇
2
ij + 2

(
|vj − vi|
|xj − xi|

)2

τij β̇ij,

and for the time derivative of sin βij α̇ij,

d

dt
(sin βij α̇ij) = −ωij

〈vi ∧ rij , eαij
〉

|xj − xi|
− cos βij β̇ij α̇ij + 2

(
|vj − vi|
|xj − xi|

)2

τij sin βij α̇ij.

Furthermore, from the expression of eβij and eαij
in (2.8) and choosing r1ij = 0, we get that 〈vi ∧ rij , eβij〉 = − r3ij 〈vi , kij〉 = − |vi| cosαij sin βij r

3
ij,

〈vi ∧ rij , eαij
〉 = r2ij 〈vi , kij〉 = |vi| cosαij sin βij r

2
ij.

It gives the following system of equations

dβ̇ij
dt

= cos βij sin βij α̇
2
ij +

(
2 τij

(
|vj − vi|
|xj − xi|

)2

+ |vi| sin βij
cosαij ωij r

3
ij

β̇ij

)
β̇ij,

d

dt
(sin βij α̇ij) = − cos βij α̇ij β̇ij +

(
2 τij

(
|vj − vi|
|xj − xi|

)2

− |vi|
cosαij ωij r

2
ij

α̇ij

)
sin βijα̇ij.

From the assumption (2.12), we get the non-negativity of the last coefficients. Therefore,

multiplying the first equation of (2.13) by β̇ij and the second one by sin βij α̇ij, it gives that

1

2

d

dt

(
β̇2
ij(t) + | sin βij α̇ij(t)|2

)
= η3ij |β̇ij|2 + η2ij |sin βij α̇ij|

2 ≥ 0.

�
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We choose rij such that

rij := − cosαij
|xj − xi|

(vj − vi) ∧ kij

and 
r2ij = 〈rij , eβij〉 = − cosαij sin βij α̇ij,

r3ij = 〈rij , eαij
〉 = cosαij β̇ij,

hence, we can apply Lemma 2.9 and the particle i ∈ {1, . . . , N} will deviate from j ∈ Ki(t0)
whereas j will continue its free motion.

2.2.3. Collision avoidance model. Finally, taking into account all the interactions between par-
ticles at time t = t0, the force field applied for collision avoidance is given by the sum of
interactions as

(2.14) Fself(xi,vi) =
1

#Ki(t0)
∑

j∈Ki(t0)

ωij vi ∧ rij,

with a rotational axis rij given by

(2.15) rij := −(vj − vi) ∧ kij
|xj − xi|

,

whereas the frequency ωij > 0 is chosen as 1/|τij|

(2.16) ωij =
8π

|rij|
H(αij) exp(−τij),

with the function H corresponds to either cooperative or non-cooperative actions as explained
above,

H(αij) =

{
1, if i ∈ Kj(t0),
cosαij, else.

Remark 2.10. Note that in the particular case where kij is colinear to vj − vi, the vector
rij = 0. Therefore, in that case we choose it as

rij = ez.

2.3. Avoidance of obstacles and influence of the target. Using the same strategy as the
one described below, obstacles O ⊂ R3 are treated as particles, where the particle interacts
with the closest point belonging to the intersection of the obstacle and the vision cone of the
particle i at time t0,

xO = arg min
x∈∂O∩K(t0)

d
(
xi(t

0),x
)
,

whereas v0 ∈ R3 is the given velocity of the obstacle. Then the collision avoidance follows the
same process as before except that the obstacle does not deviate.

On the other hand, a force Fi = −∇V (xi) is applied to steer particle i to its destination.
The potential V is the distance function

V (xi) = ‖xi − xT‖,
where xT represents the location of the target, whereas a friction term is added to control the
speed of the particle i ∈ {1, . . . , N}. Hence the particle i is directed by the sum of the gradient
of the potential field −∇V (xi) and the friction force in the following manner

Fext(xi,vi) = −∇V (xi) − σi vi,

where σi represents the friction coefficient.
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2.4. Influence of the noise. Obviously, the motion of particles is not fully deterministic.
When some decisions need to be made in front of several alternatives, the response of the
subjects is subject-dependent. The simplest way to model this inherent uncertainty consists in
adding a Brownian motion in velocity

dvi =
√

2d ◦ dBi
t,

where
√

2d is the noise intensity and where dBi
t are standard white noises in 3D, which are

independent from one particle to another one. The circle means that the stochastic differential
equation must be understood in the Stratonovich sense. The integration of this stochastic
differential equation generates a Brownian motion [?]. This stochastic term adds up to the
previous ones.

2.5. Agent-based model for collision avoidance. Finally from the requirements defined in
the perception and decision making phases, we get the following model constructed from the
force field Fself

i and Fext
i ,

(2.17)


dxi
dt

= vi,

dvi =

 1

#Ki(t)
∑

j∈Ki(t)

ωij vi ∧ rij − ∇V (xi) − σ vi

 dt + ν
√

2d ◦ dBi
t,

where ωij are given in (2.15)-(2.16).
Note that in the two dimensional case, the interactions occur in the horizontal plane and the

rotation axis is parallel to Oz, hence we recover the model proposed for pedestrian in [8, 7].

Proposition 2.11. Consider the solution (xi,vi)1≤i≤N to the agent-based model (2.17) without
noise (ν = 0). Then the energy given by

E(t) :=
N∑
i=1

(
|vi|2

2
+ V (xi)

)
,

satisfies the following estimate

dE
dt
≤ −

N∑
i=1

σi |vi|2.

Proof. Simply multiply the second equation of (2.17) by vi and integrate by part. By orthogo-
nality property, we get the energy estimate. �

3. Mean field kinetic model

We now introduce a statistical description of the system. Instead of using the exact positions,
velocities of particles, we rather describe the system in terms of the probability distribution
f(t,x,v). Specifically, f(t,x,v) dx dv is the probability of finding particles in a small physical
volume dx about point x, within a velocity neighborhood dv of velocity v at time t.

If the force term is due to purely external causes or smoothly depends on the distribution
function f , it can be shown that f(t,x,v) satisfies the following kinetic equation:

(3.18) ∂tf + v · ∇xf − ∇xV · ∇vf + ∇v · (v ∧ Ωf f) = ∇v · (ν∇vf + σvf),

where Ωf corresponds to the interaction term in (2.17) and is given by

Ωf (x,v) = − ω
ρf

∫
K(x,v)

(v −w) ∧ x− y

|x− y|2
H

(
〈y − x , v〉
|y − x| |v|

,
〈x− y , w〉
|y − x| |w|

)
f(t,y,w) dw dy ,
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where H is the function characterizing the kind of interaction (cooperative or non-cooperative)
and is given by

H(ξ1, ξ2) =

{
1, if ξ2 ≥ cos−1(κ),
ξ1, else,

whereas K(x,v) represents the intersection of the dangerous zone and the vision cone

(3.19) K(x,v) = I(x,v) ∩
{

(y,w) ∈ R6,
〈x− y , v〉
|x− y| |v|

≥ cos−1(κ)

}
,

with I(x,v) given by

(3.20) I(x,v) =
{

(y,w) ∈ R6, D(x− y,v −w) ≤ R, τ(x− y,v −w) > 0
}
,

and the function D and τ corresponds to

(3.21)


D(z,u) =

(
|z|2 −

(
z.

u

|u|

)2
)1/2

,

τ(z,u) = − z.u

|u|2
.

Finally ρf is given by

ρf (x,v) =

∫
K(x,v)

f(t,y,w) dy dw.

4. Numerical experiments

In this section we present simulations to show the effectiveness of the collision avoidance
procedure proposed in this paper. We choose a smooth external potential V such that

V (x) =
1

4

(
1 + |x− xT |2

)1/2
and the friction coefficient is fixed to σ = 1/4. Furthermore to emphasize the effect of the
collision avoidance process we neglect the noise and set ν = 0 in our simulations.

4.1. Collision avoidance in the horizontal plane. We first consider the simple situation
where all particles move in a direction parallel to the horizontal plane. Initially, all the particles
are located in a circle and want to move on the opposite direction. Therefore in this very specific
situation, the collision point of all particles is the center of the circle.

We consider the microscopic model (2.17) without any noise ν = 0 and choose R = 1. For
the vision cone given in Definition 2.5 we take κ = 2π/3 whereas the axis of rotation and the
turning frequency are given in (2.14)-(2.16).

Since the motion occurs in the horizontal plane, we expect the axis of rotation rij to be
colinear to the unit vector ez. In Figure 5, we present the numerical results with two, theree,
four and nine particles and observe that the present model preserves perfectly the symmetry.
Furthermore, due to the perception phase, the collision is anticipated which seems to guarantee
a smooth trajectory and not a brutal change of direction.

These numerical results reproduce the classical trajectories as in [24]. The particles moves in
a straight line to its own target, then when it approaches the collision point, it starts to rotate
anf finally deviates again to reach the target point.
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(a) (b)

(c) (d)

Figure 5. Collision avoidance in the horizontal plan. space trajectory
in the horizontal plane for (a) 2 particles, (b) 3 particles, (c) 4 particles and (d)
9 particles.

4.2. Influence of the vision cone. We now still consider the motion in the horizontal plane,
but now the particles are almost aligned to the Ox axis and move initially along this line where
the particle behind has a larger speed than the one in front of it, that is, for a small parameter
ε = 10−6, we choose x1(0) = (−4, ε, 0) and v1(0) = (1, 0, 0), whereas x2(0) = (−2, 0, 0) and
v2(0) = (1/2, 0, 0).

Furthermore, for each particle the target is also on the same lign. Thus, it is expected
that the particle (x1,v1) turns in order to avoid a collision with (x2,v2) whereas due to the
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restriction of the vision cone, the second particle doe not see the first one, hence it continues
its cruise in a straight line.

Finally we consider also the same situation with three particles with x3(0) = (−6, 2 ε, 0) and
v3(0) = (2, 0, 0).

We present the numerical experiment in Figure 6 for two and three particles. In the first
situation, we observe that indeed the first particle deviates in order to avoid the collision,
whereas in the presence of three particles, the first one deviates much more in order to avoid
the collision with the second and the third ones. The particle located in the front does not see
the other one coming from behind and does not deviate. This is a simple illustration of the
influence of the vision’s cone.

(a) (b)

Figure 6. Influence of the vision’s cone. space trajectory in the horizontal
plane for (a) 2 particles and (b) 3 particles.

4.3. Collision avoidance in 3D. We then consider the situation where all particles move in
a three dimensional space. All the particles are initially located in a ball and want to move on
the opposite direction with respect to the center of the ball. Therefore in this situation, the
collision point of all particles is the center of the ball.

We consider the microscopic model (2.17) without any noise ν = 0 and choose R = 1, and
for the vision cone given in Definition 2.5 we take κ = 2π/3 whereas the axis of rotation and
the turning frequency are given in (2.14)-(2.16).

In that case we recover a situation similar to the previous case but in three dimensions and
the axis of rotation is no more colinear to the ez unit vector. Thanks to the turning operator,
the collision is avoided and the particles have a smooth trajectory in 3D as it can be shown in
Figure 7 for two or three particles. With more particles we recover the same kind of results as
for the motion in the horizontal plane.

4.4. Moving around obstacles. In this last example, we consider the motion of particles in
presence of fixed obstacles. The collision avoidance process follows the line of Section 2.2.2 with
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(a) (b)

Figure 7. Collision avoidance in 3D. space trajectory in three dimension
for (a) 2 particles and (b) 3 particles.

non-cooperative interactions. Now the frequency is chosen larger than for collision avoidance
between particles

(4.1) ωiO =
16π

|riO|
cos(αiO) exp(−τiO),

where O represents the point of coordinate xO defined as

xO = arg min
x∈∂O∩K(t0)

d (xi(t),x) .

The particles are attracted to the target xT = (7, 7, 0), whereas the obstacles are represented
by two balls B(x0, 1/2) and B(x1, 1) with x0 = (2, 2, 0) and x1 = (5, 5, 0).

We represent in Figure 8 the space trajectory at different time. The particles are initially
located on a sphere centered in (−1,−1, 0) with a random velocity. On the one hand we observe
that due to the attractive potential, all particles choose the same direction and thanks to the
collision avoidance operator, they do not collide. On the other hand, when they approach the
obstacle they deviate and remains relatively far from the obstacles. Finally at time t = 20, all
particles are moving around the target point.

5. Conclusion and Perspectives

In this article, we have proposed a three dimensional dynamical model for collision avoidance
based on previous works in two dimension for pedestrian flows [8, 7, 22]. This individual based
model relies on a vision-based framework: the particles analyze the scene and react to the
collision threatening partners by changing their direction of motion. We have also proposed a
kinetic version of this individual based model and perform some numerical experiments which
illustrate the ability of the microscopic model to avoid collisions in three dimension.

In a future work, the approach developed in Section 3, which is based on a mean field model,
will be investigated to study the collision avoidance process in the presence of many vehicles.
Indeed for a large number of particles, sensors are not able to distinguish each individual but
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t = 05 t = 10

t = 15 t = 20

Figure 8. Moving around obstacles. space trajectory in three dimension
at different time t = 5, 10, 15 and 20.

only clouds of particles are detected, the application of mean field models may contribute on
the design of efficient algorithms since the sum of interacting particles is replaced by a self
consistent force.

On the other hand, more precise models can be applied to describe the motion in three
dimension of vehicles as multi-agent dynamics where each agent is described by its position and
body attitude. More precisely, each agent travels in a given direction and its frame can rotate
around it adopting different configurations. In this manner, the frame attitude is described by
three orthonormal axes giving rotation matrices [9].
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