
HAL Id: hal-01449930
https://hal.science/hal-01449930

Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Particle Filter based Integrated Health Monitoring in
Bond Graph Framework

Mayank Shekhar Jha, Geneviève Dauphin-Tanguy, B S Ould-Bouamama

To cite this version:
Mayank Shekhar Jha, Geneviève Dauphin-Tanguy, B S Ould-Bouamama. Particle Filter based Inte-
grated Health Monitoring in Bond Graph Framework. Bond Graphs for Modelling, Control and Fault
Diagnosis of Engineering Systems, 2017, 978-3-319-47434-2. �hal-01449930�

https://hal.science/hal-01449930
https://hal.archives-ouvertes.fr


Mayank Shekhar JHA (Corresponding Author) 

CRIStAL UMR CNRS 9189, Ecole Centrale de Lille, France 

Email: jha.mayank.jha@gmail.com  

 

Chapter 7 
 

 Particle Filter based Integrated Health Monitoring in 

Bond Graph Framework 

 

Mayank S Jha, G. Dauphin-Tanguy
 
and B. Ould-Bouamama  

 

Abstract This chapter presents a holistic method to addresses the issue of health 

monitoring of system parameters in Bond Graph (BG). The advantages of BGs are 

integrated with Bayesian estimation techniques for efficient diagnostics and prog-

nostics of faults. In particular, BG in Linear fractional transformations (LFT) are 

used for modelling the global uncertain system and sequential Monte Carlo meth-

od based Particle filters (PF) are used for estimation of state of health (SOH) and 

subsequent prediction of the remaining useful life (RUL). In this work, the method 

is described with respect to a single system parameter which is chosen as prognos-

tic candidate. The prognostic candidate undergoes progressive degradation and its 

degradation model is assumed to be known a priori. The system operates in con-

trol feedback loop. The detection of degradation initiation is achieved using BG 

LFT based robust fault detection technique. The latter forms an efficient diagnos-

tic module. PFs are exploited for efficient Bayesian inference of SOH of the prog-

nostic candidate. Moreover, prognostics is achieved by assessment of RUL in 

probabilistic domain. The issue of prognostics is formulated as joint state-

parameter estimation problem, a hybrid prognostic approach, wherein the fault 

model is constructed by considering the statistical degradation model of the prog-

nostic candidate. The observation equation is constructed from nominal part of the 

BG-LFT derived Analytical Redundancy Relations (ARR).  Various uncertainties 

which arise because of noise on ARR based measurements, degradation process, 

environmental conditions etc. are effectively managed by PF. This allows the pro-

duction of effective predictions of the RUL of the prognostic candidate with suita-

ble confidence bounds. The method is applied over a mechatronic system in real 

time and performance is assessed using suitable metrics.  

 

Keywords Prognostics, Bond Graph, Degradation Model, Particle Filters, Re-

maining Useful Life, Robust Fault Detection, Bayesian estimation, Monte Carlo 

7.1 Introduction  

Besides the abrupt faults that have been considered in the previous chap-

ters, incipient system faults and degradations of the system parameters pose 

significant hurdles in efficient maintenance of the system. For example, fa-

tigue enabled wear in turbine blades, incipient leakage in valves of process 
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engineering systems, friction induced jamming of rod in aircraft actuators etc. 

pose great threat to system reliability and safety. Such problems are efficient-

ly resolved when addressed under the realm of so-called condition based 

maintenance (CBM) and prognostics and health management (PHM)[1]. The 

latter represent a predictive maintenance philosophy that has emerged only 

recently on contrary to the traditional strategies based upon preventive and 

corrective maintenance.  

The main feature of CBM is the consideration of the ―actual‖ condition of 

system component for designing maintenance actions rather than on an 

elapsed time or running hours’ basis. Thus, CBM primarily depends upon 

current assessment of system health, or state and involves real time data mon-

itoring and processing. The two basic aspects of CBM are diagnostics and 

prognostics. As seen in the previous chapters, Diagnostics involves detection 

of fault and thereby, identification and quantification of the root cause of a 

problem. Prognostics involves prediction of the future health of the equip-

ment either before or after a problem occurred [1,2]. As stated in [3], prog-

nostics is ―estimation of time to failure and risk for one or more existing and 

future failure modes‖.  

The Remaining Useful Life (RUL) becomes a reliable estimate of the time 

to failure; it denotes how long system can function safely/reliably and within 

the prescribed limits of system functionalities. Thus, assessment of RUL in-

volves predictions in future. In this context, the major motivation remains in 

providing sufficient lead-time between detection of a fault (diagnostic step) 

and occurrence of the system/component failure so that pro-active mainte-

nance actions can be strategized in advance [4].  

RUL prediction is not a trivial task as it involves future predictions which 

not only require precise information of current health, but also remain sensi-

tive to various types of uncertainties to a large degree. These uncertainties in-

volve stochastic evolution of incipient degradations, failure modes, varying 

operational conditions, measurement noise etc. In face of all such uncertain-

ties, the prognostic procedure must be able to accurately assess the rapidity of 

system degradation till failure and novel events that may significantly influ-

ence the assumed/learnt degradation trend. Due to inherent stochastic phe-

nomena and uncertainty involved, evaluation of confidence on RUL predic-

tions is given a significant weightage. In fact, several business decisions are 

based upon confidence limits associated with RUL predictions rather than the 

specific value of RUL itself [5]. In essence, determination of accurate and 

precise RUL estimate forms the core objective of any prognostics procedure.  

On the other hand, the term PHM describes the systems that implement a 

CBM philosophy [4]. However, in the context of PHM, prognostics gains a 

wider meaning encompassing the tasks of fault detection, fault-identification, 

current health assessments, performance monitoring and RUL predictions [1]. 

Thus, diagnostics and prognostics form building blocks of any CBM enabled 

PHM architecture. When these two essential tasks are achieved in an integrat-
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ed manner, such a common paradigm may be given the designation of inte-

grated health monitoring framework [6,7]. 

In BG framework, diagnostics and prognostics task can be achieved in an 

integrated way by exploiting the properties of Analytical Redundancy Rela-

tions (ARRs) and their numerical evaluations or residuals. In this context, due 

to deterministic nature of ARRs, most of the existing works have neglected 

the inherent randomness in damage progression [8-11], which in turn, has led 

to RUL predictions that do not incorporate associated uncertainties and inher-

ent stochasticity.    

This chapter details ARR based integrated health monitoring methodology 

where the benefits of BG in Linear Fractional Transformations (BG-LFTs) 

have been integrated with advantages of Bayesian inference techniques to ob-

tain accurate and precise estimate of parametric health in probabilistic do-

main. The inherent randomness in degradation progression is effectively 

managed by using sequential Monte Carlo based Particle Filters (PF) for es-

timation of state of a system parameter and subsequent RUL prediction in 

probabilistic domain.    

After this Introduction, Sect. 7.2 details various approaches of prognostics, 

BG-LFT method and non-linear Bayesian inference technique using PFs. 

Sect. 7.3 discusses Degradation models (DM). The method of prognostics is 

described in the next section. Sect. 7.4 and 7.5 discuss the integrated health 

monitoring strategy and evaluation metrics, respectively. Sect. 7.6 details the 

application of methodology on a mechatronic system in real system. Sect. 7.7 

draws conclusions.    

7.2 Background and Techniques 

This section discusses different techniques of prognostics. Moreover, BG-LFT 

technique of modelling uncertain systems and associated fault detection technique 

is discussed briefly. The latter is employed for detection of degradation initiation 

for the integrated health monitoring purposes. Additionally, non-linear Bayesian 

filtering using Particle Filters (PF) is described as it plays a significant role in the 

prognostics method presented in this chapter. 

7.2.1 Approaches of Prognostics  

Last decade has witnessed an extensive surge in development of various prog-

nostics techniques and its application in diverse technical domains. Due to the in-

herent versatility, approaches of prognostics have been attempted to be classified 

in different ways [3,1,12,4,13] etc. Here, the authors have preferred to adapt the 

classification presented in [2]. The modified classification groups are presented 

and discussed in brief.  

Probabilistic life-usage models: These approaches depend upon the statisti-

cal information collected to assess the historical failure rate of the components and 

develop life-usage models [14-16]. Various functions can be applied to model sta-
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tistical failure data such as exponential, normal, lognormal, Weibull functions etc. 

[17]. Moreover, the RUL is described as a probability density function (PDF) 

[4,2]. Accurate assessment of RUL demands huge sets of failure database and 

extensive testing. 

Data Driven Prognostics: The data associated with system functionality, 

degradation patterns etc. are exploited using machine learning techniques to 

extract system signals, and features which can be used to obtain behavior of 

damage progression, health index etc. Broadly, two major strategies can be 

identified as discussed below.  

Degradation Trend extrapolation and time series predictions: In broad 

terms, the signals that indicate the state of the system are mapped as function 

of time and extrapolated in future using various techniques until a pre-fixed 

failure threshold is reached/crossed [18]. Mainly time series forecasting tech-

niques are borrowed for this purpose such as:  linear/non-linear regression 

techniques, auto-regressive models [19], exponential smoothing techniques [20], 

autoregressive moving average (ARMA), Autoregressive integrated moving aver-

age (ARIMA) [21]. The ARMA models and associated variants prove efficient for 

short-term predictions. Due to noise and inefficient uncertainty management, they 

prove less reliable for long term predictions. 

Learning damage progression: The degradation trends, failure patterns etc. 

are learnt for training mathematical models. The latter in turn is used to mod-

el the relationship between damage progression and RUL. Employment of arti-

ficial neural networks (ANNs) and their numerous variants fall under this catego-

ry. Feed-forward ANNs are extensively employed to estimate the current 

degradation index (state) by using system features (extracted signals, feature pat-

tern etc.) as inputs. Then, one step-ahead prediction is generated by using previous 

state of degradation values (degradation index). The next iteration uses this predic-

tion to produce long term predictions [22]. Major drawback in this context is that 

the efficiency of predictions remain limited in face of variable degradation 

trends, novel failure modes etc. As such, accurate RUL predictions are not 

obtained on individual component unit to unit basis, but rather over large sets 

of component population. A comprehensive updated review of data-driven tech-

niques can be found in [23,24]. 

Model Based Prognostics:  Under this category, physics-of-failure models or 

degradation models (DM) are typically used to assess the damage progression and 

state of health (SOH). These DMs are derived from the first principles of physics. 

As such, they possess the capability of attaining maximum accuracy and versatili-

ty (scope of adaptation under varying degradation trend). There is a clear under-

standing of the underlying degradation process. There exists vast literature such 

as: fatigue models for modelling initiation and propagation of cracks in structural 

components [25], electrolytic overstress ageing [26], Arrhenius equation for pre-

diction of resistance drift [27], physics inspired power model [28] or log-linear 

model for degradation of current drain [29], physics-inspired exponential degrada-

tion model for aluminum electrolytic capacitors [30] etc.  
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Given the behavioral model of damage progression, the current SOH is popu-

larly obtained in probabilistic domain with the help of Bayesian estimation tech-

niques. Based upon the current SOH estimate, prediction of RUL is done. Such a 

probabilistic framework involving recursive Bayesian techniques efficiently ad-

dresses the main issues related to SOH under variable degradation; efficient man-

agement of uncertainty, environmental noise, future loading conditions, associated 

confidence limits for RUL predictions [31-34]. Filter for estimation and prediction 

process is chosen based upon the modelling hypothesis and desired performances 

[35]. Well-known Kalman filter, an optimal estimator for linear systems has been 

used for prognostics in [26]. Extended Kalman filter (EKF) or unscented Kalman 

filter may also be used for joint state-parameter estimation as presented in [36] 

and [37] respectively. However, they remain restricted to additive Gaussian noise. 

Additionally, EKF being sub-optimal diverges quickly if the initial estimate of 

state is different from the reality by big measure or the model considered for esti-

mation is not correct [38].  

Set in Monte-Carlo framework, PFs form a suitable filter choice in this context 

[39,40]. PF can be applied to non-linear systems corrupted with non-Gaussian 

noises, for which optimal solutions may be unavailable or intractable. Comprehen-

sive comparison of filters for prognostic purposes are found in [23], [35,38]. Re-

cently, PFs have been extensively for prognostic purposes [41]. Significant works 

include prediction of end of life (EOL) in lithium-ion batteries [42], battery health 

monitoring [43], prediction of battery grid corrosion [44], estimation and predic-

tion of crack growth [45], fuel cell prognostics [46], application to damage prog-

nostics in pneumatic valve [47,31], estimation-prediction of wear as concurrent 

damage problem in centrifugal pumps with a variance control algorithm [33], em-

ployment in distributed prognosis [34], uncertainty management for prognostics 

[48]. Particle filters attract considerable attention [49], owing to the ever growing 

efforts being made for betterment in performances and computational efficiency, 

such as the use of correction loops [50], fixed–lag filters [51], kernel smoothing 

method [52] etc.   

The major issue in this type of approach is the accurate and reliable modelling 

of underlying degradation progression. Often, such accurate degradation models 

are not available.  

Hybrid Prognostics: The problem of non-availability of highly accurate degra-

dation models is alleviated by fusing the advantages of model based and data-

driven techniques. This way, there is significant amelioration in the overall prog-

nostic approach [53,46]. The basic philosophy remains in capturing the damage 

progression using DMs that can be: (i) based upon physics of failure, first princi-

ples of behavioral physics (ii) derived using machine learning techniques, (iii) ob-

tained statistically by finding a mathematical model that best fits a given set of 

degradation data such as: linear model ( )D t at b  , logarithmic model 

( ) ln( )D t a t b  , power model ( ) aD t bt , exponential model ( ) atD t b e  with 

( )D t as an index representing the degradation (change, percentage change etc.) 
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and a and b as the model parameters. In this context, significant works are: obtain-

ing capacitance loss DM using non-linear least square regression [26], relevance 

vector machine regression performed over ageing tests data [38], DM approximat-

ed by a linear part and logarithmic/exponential part [46] and residual based statis-

tical DM [53]. Once the DM has been obtained with acceptable accuracy, recur-

sive Bayesian techniques as discussed previously can be employed to estimate 

SOH and obtain subsequent RUL predictions. This way, benefits of Bayesian es-

timators are integrated with data-driven approaches to learn the DM as the current 

information arrives sequentially. 

7.2.2 Prognostics in BG framework 

Almost all of the existing attempts in BG framework for prognostics have been 

ARR based and deterministic in nature. Moreover, DMs are considered determin-

istic so that the SOH and subsequent RUL predictions are obtained deterministi-

cally [8-11,54,7]. Being restricted in deterministic domain, the randomness asso-

ciated with variable damage progression, novel events, noises etc. are simply 

ignored that does not lead to an efficient management of the latter in prognostica-

tion process and render RUL predictions without confidence limits.  Recently, 

[53] proposed a methodology of hybrid prognostics where the benefits of Bayesi-

an filtering techniques and BG enabled ARRs are integrated for efficient prognos-

tics in probabilistic domain. In fact, this chapter is inspired by the work detailed in 

[53].  

7.2.3 Bond Graph in Linear Fractional Transformations  

BG-LFT is an efficient and systematic way of representing parametric uncer-

tainty over nominal models. An uncertainty on a parameter value θ can be intro-

duced under either an additive form or a multiplicative one, as shown in (7.1) and 

(7.2) respectively. 

nθ = θ ±Δθ; θ 0 
 

n θ θ

n

Δθ
θ = θ ( 1 ± δ  );    δ =

θ
 

(7.1) 

 

(7.2) 

where θ  and θδ  are respectively, the absolute and relative deviations around the 

nominal parametric value θ n . When the element characteristic law is written in 

terms of 
1

θ
, (7.2) becomes: 

1/θ 1/θ

n n

1 1 -Δθ
= .(1+δ );  δ = 

θ θ θ +Δθ
 

(7.3) 



7 

Representation on BG 

The representation technique is illustrated briefly by taking a pedagogical ex-

ample of R-element in resistance causality. The characteristic law corresponding 

to R-element in the linear case (see Fig. 7.1) is given as, 

.R Re R f  (7.4) 

In case of uncertainty on R, (7.4) becomes  

(1 ). . . .R n R R n R R n R Rn Runce R f R f R f e e        (7.5) 

Constitutive equation (7.5) can be represented as uncertain R-element as shown 

in Fig. 7.1(b), wherein a modulated source MSe is introduced. The latter is associ-

ated with auxiliary input wR and a virtual effort sensor associated with auxiliary 

output zR. It must be noted that negative (-) sign appears in the BG-LFT represen-

tation (see Fig. 7.1) due to the convention of power conservation. Moreover, the 

symbols *De  represent virtual detectors. The virtual detectors are used to repre-

sent the information exchange/transfer.  

 

 
Fig. 7.1  R-element in resistance causality. (b): uncertain R-element in re-

sistance causality in LFT form. 

 

Similarly, parametric uncertainty on the other passive elements can be repre-

sented. The technique remains similar for various other BG elements.  

BG-LFT based robust fault detection 

 

Fault diagnosis in BG-LFT framework is mainly dependent upon ARR genera-

tion [55]. ARRs are constraint relationships involving only known variables. In 

the context of BG modeling, an : ( ( ), ( ), ( ), ( ) ) 0ARR f t t t t θSSe SSf Se Sf , , 

where θ is vector of system parameters.  

Generation of Uncertain ARRs: The generation of robust analytical redundancy 

relations from an observable bond graph model is explained by the following 

steps: 
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1
st
 Step: Preferred derivative causality is assigned to the nominal model and detec-

tors De (Df) are dualized to SSe (SSf) ; wherever possible. The BG-LFT model is 

constructed. 

2
nd

 Step: The candidate ARRs are generated from ―1‖ or ―0‖ junction, where pow-

er conservation equation dictates that sum of efforts or flows, respectively, is 

equal to zero, as:  

 for 0-junction: 

,. 0i i n i is f Sf s w      
(7.6) 

 for 1-junction: 

 ,. 0i i n i is e Se s w      
(7.7) 

with s being the sign rendered to the bond due to energy convention, iw is the 

uncertain effort (flow) brought by the multiplicative parametric uncertainty δ
i
as-

sociated with i
th

 system parameter θ i , at 1(0) junction.  

 

3
rd

 Step: The unknown effort or flow variables are eliminated using covering caus-

al paths from unknown variables to known (measured) variables (dualized detec-

tors), to obtain the ARRs which are sensitive to known variables as, 

 , , , , , , , , , ,n n n n n n iR Se Sf SSe SSf R C I TF GY RS w      (7.8) 

 where subscript n represents the nominal value of the corresponding BG element. 

 

Generation of Adaptive Thresholds: The ARR derived in (7.8) consists of two per-

fectly separable parts due to the properties of the BG-LFT model: a nominal part 

noted r shown in (7.9) and an uncertain part noted ib w  shown in (7.10).   

 , , , , , , , , ,n n n n n nr Se Sf SSe SSf R C I TF GY RS   (7.9) 

 , , , , , , , , , , , , , , ,

i

i n n n n n n R I C TF GY RS

b w

w Se Sf SSe SSf R C I TF GY RS      



 


 

 

(7.10) 

The uncertain part generates the adaptive threshold over the nominal part. From 

(7.8), (7.9) and (7.10), following may be obtained: 

0

i

r b

r b w

 

   
 

   (7.11) 

The thresholds are formed in form of envelop as: 
a r a       (7.12) 

where  

| |ia w     (7.13) 
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The use of absolute values to generate the thresholds of normal operation en-

sures the robustness of this algorithm to false alarms. BG-LFT technique is well 

developed and detailed in literature. Readers are referred to [56,55] for details. 

 

7.2.4 Non-Linear Bayesian Inference using Particle Filters 

Consider a dynamic system whose state at time step kt is represented by the 

vector kx . The evolution of the system state is described by a state-space model, 

1 1( , )k k k k x xf v  

 ,k k k ky wh x  

  (7.14) 

  (7.15) 

 where, 

 :kf             is a non-linear state transition function. 

  :kh             is observation function describing the sequence 

of measurements ky , obtained sequentially at successive time steps kt . 

 k v     is the process noise sequence of known distribution assumed 

independent and identically distributed (i.i.d). 

 k w      is i.i.d measurement noise sequence of known distribution. 

Equations (7.14) and (7.15) can be equivalently represented as, 

1 1 1( , ) ( | )k k k k k kp   x x x xf v  

  1, ( | )k k k k k kp  y x y xh w  

   (7.16) 

   (7.17) 

 where 1( | )k kp x x  represents the state transition probability, 1( | )k kp y x  is the 

likelihood function which signifies the probability of the observation of ky , given 

the current estimate of kx . 

Objective of filtering procedure is to obtain estimates of kx , based upon all of 

the available measurement sequences 1: { , 1, 2,.... }k k k k y y . From the perspec-

tives of Bayesian inference, the objective remains in recursively calculation of the 

distribution of the state kx , given the set of observations 1:ky up to time kt , with 

some degree of belief. Construction of PDF 1:( | )k kp x y , known as the filtered pos-

terior state PDF, provides all the information about kx , inferred from the meas-

urements 1:ky and the initial state PDF 0( )p x . The latter 0( )p x is assumed to be 

known. Given 1 1 1( | )k kp  x y at time 1kt  , theoretically, the posterior state can be 

estimated in a recursive way via two sequential steps: prediction and update. 

 

Prediction: Application of Chapman-Kolmogorov equation over 1 1: 1( | )k kp  x y at 

time k-1 gives the estimation of prior state PDF 1: 1( | )k kp x y at time kt  as, 
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1: 1 1 1: 1 1 1: 1

1 1 1: 1 1

( | ) ( | , ) ( | )

( | ) ( | )

k k k k k k k

k k k k k

p p p

p p d

    

   









x y x x y x y

x x x y x
 

(7.18) 

Here, 1( | )k kp x x is obtained from (7.16), where the system is assumed to  follow 

1
st
 order Markov dynamics. 

Update: Bayes rule is used to update the prior as the new measurement ky  ar-

rives, to obtain the posterior distribution of kx as, 

1: 1

1:

1: 1

( | ) ( | )
( | )

( | )

k k k k

k k

k k

p p
p

p






x y y x

x y
y y  

 
(7.19) 

with the normalizing constant being, 

1: 1 1: 1( | ) ( | ) ( | )k k k k k k kp p p d  y y x y y x x  (7.20) 

This step incorporates the latest measurement into a priori state PDF 

1: 1( | )k kp x y  to estimate the posterior state PDF 1:( | )k kp x y . The exact Bayesian 

solution obtained from recurrence relations (7.18) and (7.19), form the basis of op-

timal Bayesian inference. This procedure remains tractable and produces best re-

sults for ideal systems such as linear Gaussian state space models. For the latter, it 

leads to the formation of classical Kalman filter. In general, optimal and closed 

form solutions for non-linear systems with non-Gaussian noises, cannot be analyt-

ically determined. For non-linear state space models with additive Gaussian nois-

es, sub-optimal Extended Kalman filter (EKF) has been developed. To obtain op-

timal solutions for non-linear systems, one resorts to Monte Carlo Methods. One 

such popular method is described below. 

Particle filter (PF) is a type of Sequential Monte Carlo method [40], used for 

obtaining recursive Bayesian inferences via Monte Carlo simulations. Basic phi-

losophy rests in representing the posterior state PDF by a set of random samples 

or ―particles‖ where each of the particles has an associated weight based upon 

which, the state estimates are computed [57]. Sequential importance sampling 

(SIS) PF is one of the most popular PFs in which posterior state PDF 
0: 1:( | )k kp x y  

by a set of N number of weighted particles [39], 

 0: 1
( ), w

N
i i

k k i
x  (7.21) 

where 0:{ , 1,... }i

k i Nx is the set of particles representing the state value with cor-

responding associated importance weights as{w , 1,... }i

k i N . Moreover,

0 : { , 0,...., }k j j k x x is the set of all states up to time k. It should be noted that 

these weights are the approximations of the relative posterior probabilities of the 

particles and are normalized such that, 

w 1i

k

i

       (7.22) 

The posterior PDF is approximated as, 
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0: 1 : 0: 0:

1

( | ) w . ( )
N

i i

k k k k k

i

p 


 x y x x  
   (7.23) 

where  denotes the Dirac delta function. This gives discrete weighted approxi-

mation to the true posterior state distribution 0: 1:( | )k kp x y . As N tends to large 

numbers, the Monte Carlo approximation becomes an equivalent representation to 

the posterior state PDF.  

Importance Sampling 

Obtaining the particle weight(s) is not a trivial task. It becomes virtually impos-

sible to sample from a posterior state 0: 1:( | )k kp x y without a closed form distribu-

tion. To resolve this issue, principle of importance sampling is used [39].  Here, a 

proposal distribution     , known as importance density, is chosen such that 

( ) ( )p x q x  and ( )q x is a PDF from which samples can be easily drawn. For ex-

ample, if a set of samples ix               is generated from the proposal dis-

tribution ( )q x , then the weighted approximation of the density ( )p x  is given as, 

1

( ) w . ( )
N

i i

i

p x x x


   
(7.24) 

where normalized weight can be obtained as, 

( )
w

(x )

i
i

i

p x

q
  

(7.25) 

For a set of samples 0:{ , 1,... }i

k i Nx , this leads to weights being defined as, 

0: 1:

0: 1:

( | )
w

( | )

i k k

k

k k

p

q


x y

x y
 

(7.26) 

For online implementation, a recursive estimation procedure is sought. In other 

words, distribution 0: 1:( | )k kp x y  at time kt must be estimated from 
0: 1 1: 1( | )k kp  x y  at 

time 1kt  , in a sequential manner. To this end, a constraint on importance density is 

placed so that it is factorable as,  

0: 1: 0: 1 1: 0: 1 1: 1( | ) ( | , ) ( , )k k k k k k kq q q  x y x x y x y  (7.27) 

Then, the new state 0:

i

kx  0: 1 1:( | , )k k kq x x y can be appended with existing samples 

0: 1

i

k x  0: 1 1: 1( | )k kq  x y to obtain new sets of samples 0:

i

kx  0: 1:( | )k kq x y . This is fol-

lowed by update of particle weights. The posterior state PDF is expressed as, 

1

0: 1: 0: 1 0 : 1

1: 1

( | ) ( | )
( | ) ( | )

( , )

k k k k

k k k k

k k

p p
p p

p



 




y x x x

x y x y
y y

 

 
(7.28) 

Then, using (7.26), (7.27) and (7.28), particles are updated recursively as, 



12 

0: 1:

0: 1:

0: 1 0 : 1 1

0: 1 1: 0: 1 1: 1

1

1

0: 1 1:

( | )
w

( | )

( | ) ( | ) ( | )

( | , ) ( , )

( | ) ( | )
w

( | , )

i k k

k

k k

k k k k k k

k k k k k

i k k k k

k

k k k

p

q

p p p

q q

p p

q

  

  













x y

x y

x y y x x x

x x y x y

y x x x

x x y

 

 

 

 
(7.29) 

In SIS PF, the importance density is set equal to a priori PDF of state i.e. 

0 : 0 : 1 1 1( | ) ( | ) ( | )k k k k k k kq p f   x x x x x x . This translates to the fact that new 

particles can be generated from the previous set of particle by simulating the state 

transition function 1( | )k k kf x x . Moreover, assumption of Markov dynamics im-

plies that 0: 1 1: 1( | , ) ( | , )i i i i

k k k k k kq q x x y x x y . This renders the whole procedure 

suitable for online implementation as only the filtered estimate 1:( | )k kp x y is re-

quired at each step. Thus, only
i

kx and 1:ky  should be stored and the previous state 

path up to 0: 1

i

k x can be neglected. Weight update step (7.29) can be modified as, 

1

1

0: 1 1:

1

( | ) ( | )
w w

( | , )

w ( | )

i i i

i i k k k k

k k i i

k k k

i i

k k k

p p

q

p













y x x x

x x y

y x

 

 
(7.30) 

Then, the posterior filtered PDF 1:( | )k kp x y is approximated as, 

1: 0: 0:

1

( | ) w . ( )
N

i i

k k k k k

i

p 


 x y x x  
(7.31) 

This simplified algorithm can be used for recursive estimation of state as the ob-

servations arrive sequentially. The likelihood functions of the new observations

( | )i

k kp y x , result in evaluation of weights of particles constituting the next state 

estimate. 

Particle Degeneracy and Resampling 

 During the propagation steps, the approximation density is adjusted through 

re-weighting of the particles. Previous steps lead to an inevitable situation where 

due to increase in weight variance, the importance weights become increasingly 

skewed. After few iterations, all but one particle have negligible weights (particle 

degeneracy) [57]. To avoid the latter, a new swarm of particles are resampled 

from the approximate posterior distribution obtained previously in the update 

stage, constructed upon the weighted particles [58]. The probability for a particle 

to be sampled remains proportional to its weight.  This way, particles with smaller 

weights (signifying less contribution to estimation process) are discarded and par-

ticles with large weights are used for resampling. To resolve this issue, the stand-

ard SIS is accompanied by a resampling step (referred to as Sampling-Importance 
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resampling (SIR) PF [39]. The different ways of resampling can be referred in 

[59]. In this work, SIR PF is employed for estimation of SOH and RUL predic-

tions. In general, the particles are forced in the region of high likelihood by multi-

plying high weighted particles and abandoning low weighted particles. In other 

words, resampling step involves elimination of those particles that have small 

weights so that focus shifts on the particles with large weight. This step results in 

generation of a new set of particles *

0: 1
( ), w

N
i i

k k i
x  by resampling N times without 

replacement from the discrete approximation of 1:( | )k kp x y   as, 

0:
1: 0 :( )

1

( | ) w . ( )
k

N
i

k k k k

i

p d


 x
x y x  

   (7.32) 

such that 
*( ) wi i i

k k kPr  x x . The new set of particles represents i.i.d from (7.32) 

and thus, the particle weights are reset again as w 1/i

k N .   

7.3 Degradation Models  

DMs capture the underlying degradation of a given component/subsystem with 

time, environmental and operational conditions etc. DMs can be obtained based 

upon physics of degradation or statistical approaches [60] and [61]. Given a prog-

nostic candidate (system parameter) θd
, the associated DM can be expressed as, 

θθ ( ) ( ( ), ( )) ; θ ( 0) θ
dd d d d d

nt g t t t  γ v  (7.33) 

where (.)dg denotes the linear/non-linear degradation progression function (DPF) 

obtained from the corresponding DM. It models the way the degradation progress-

es in θ ( )d t . Moreover, ( )d t γ  
 

  
presents the vector of degradation progres-

sion parameters (DPP), θ ( )
d

t v  
 

   is the associated process noise vector and 

θd

n denotes nominal value of θd
. 

7.3.1 Obtaining Degradation Model in BG framework 

In BG framework, the DM of a system parameter θd θ , θ     can be ob-

tained from the time evolution profile of the respective ARR to which it is sensi-

tive, assuming that the rest of the system parameters sensitive to the same ARR, 

do not undergo any kind of progressive fault or degradation [8],[62]. Here, con-

sider the point valued part of the d
th

 I-ARR, ( )dr t
 

such that with \ θ ( )d t θ θ ,

0, ( ) 0dt r t  , 

 1( ) θ ( ), , ( ), ( ), ( ), ( )d d d

nr t t t t t t  θ SSe SSf Se Sf  
  (7.34) 

where, sub-script n denotes nominal value. The computed values of ( )dr t at time 

sample points gives an implicit relation of the degradation profile of θ ( )d t in time. 
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Assuming that implicit function theorem is satisfied [63], (7.34) gives a real val-

ued function d  such that, 

 θ ( ) ( ), , ( ), ( ), ( ), ( )d d

d nt r t t t t t  θ SSe SSf Se Sf  
  (7.35) 

Equation (7.35) is a function of system measurements inputs (known varia-

bles), signal derivative(s) etc., it is always corrupted with noise. It should be noted 

that residual based DM should be obtained prior to prognostics. This routine can 

be performed offline i.e. prior to the phase when system’s health monitoring is of 

interest.  

7.3.2 Methodology of Hybrid Prognostics  

In this section, the methodology for prognostics is described. Following as-

sumptions are made: 

 Only system parameters are considered uncertain. Sensors are considered 

non-faulty;  

 A single system parameter (prognostics candidate) is assumed to be un-

der progressive degradation. In fact, it is assumed that single mode of 

degradation affects the system parameter. 

 The system parameter (prognostics candidate) that undergoes degradation 

is assumed to be known a priori. The issue of isolation or isolability of 

the prognostic (faulty) candidate is assumed resolved. Let θ ( )d t θ  be 

such prognostic candidate. 

 Degradation model (DM) of θ ( )d t θ  is assumed to be known a priori. 

 For an ARR derived, only one system parameter sensitive to it (known a 

priori) varies with time. 

 Noise associated with measurements (residuals) is assumed normally dis-

tributed Gaussian in nature.  

Objectives are: 

 Reliable estimation of prognostic candidate’s SOH and state of hidden 

degradation parameters that accelerate or vary the degradation progres-

sion. 

 Reliable prediction of the RUL of the prognostic candidate. 

7.3.3 Robust detection of Degradation Initiation 

The problem of detecting the degradation beginning is treated as robust fault 

detection problem. The BG –LFT enabled fault detection method presented in 

Sect. 7.2.3 is exploited in form of an efficient diagnostic module. To this end, fol-

lowing steps are taken. 

Step 1: Preferred derivative causality is assigned to nominal model and sensors are 

dualized. 

Step 2: BG-LFT model of the nominal system is obtained.  
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Step 3:   ARR sensitive to θd is derived. Let the ARR be R(t) and the associated 

residual (numerical evaluation of ARR) be ( )dr t . 

Step 4: Robust thresholds are derived as explained in Sect. 7.2.3. Degradation ini-

tiation is detected when the residual goes out of the BG-LFT thresholds. The cor-

responding pseudo algorithm is given in Table 7-1.  

 

Table 7-1 Detection of degradation 

Algorithm 1: Detection of Degradation Initiation 

Input: ( )dr k , ( )iw t   

Output:  degradation detection  

if  ( ) ( )d

ir k w t  and ( ) ( )d

ir k w t  

  degradation detection  false 

  else 

   degradation detection   true 

end if 

 

7.3.4 Fault Model Construction 

This section describes the fault model constructed for estimating the state of the 

prognostic candidate which denotes the state of health of the parameter. 

State Equation  

The parameter under degradation θ ( )d t is included as a tuple  θ , ,d d dgγ to 

model the damage progression in state space form. Here, ( )d t γ  
 

  
 is the vec-

tor of hidden parameters (DPP) that influence the speed of degradation significant-

ly. The fault model for is constructed in state –space form by considering the pa-

rameter θd
as the state variable augmented with the DPP vector as, 

( ) ( ( ), ( ))dd d dt t t
x

x f x v  (7.36) 

where, ( ) θ ( ), ( )
T

d d dt t t   γx is the augmented state vector,
d

f is state transition 

function following the Markov dynamics and d 
x

v  
 

  is the process noise vec-

tor. 

ARR based Observation equation  

The nominal residual used for detection of degradation initiation can be further 

exploited used for SOH estimation if the corresponding ARR expression is altered 

to obtain the observation equation. To this end, following theorem is enunciated. 
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Theorem: Under the single degradation hypothesis, assuming that the nominal 

part ( )d

nr t  of an ARR derived from the BG-LFT model can be expressed as a lin-

ear combination of non-linear functions of degradation candidate parameter 

θ ( )d t , the measurement of the θ ( )d t  can be obtained from ( )d

nr t . 

 

Proof: Let θ ( )d t be the degradation candidate and \ θ ( )d t θ θ . Assuming the 

nominal part ( )d

nr t can be expressed as, 

 ( ) , ( ), ( ), ( ), ( ) A (θ )d T d

n n nr t t t t t  θ φSSe SSf Se Sf  
(7.37) 

where | 1,2...i i m  ,
1

1 2A [ ... ]m T

ma a a   is a vector of known (measured system 

variables) with ( ,SSe( ), ( ), ( ), ( ))i i na t t t t  θ SSf Se Sf  and  

1

1 2(θ ( )) [ (θ ( )), (θ ( )),.... (θ ( ))]m d d d d T

mt t t t   φ is the vector of non-linear func-

tions of θ ( )d t . Then, 0t  power conservation at the BG junction where the 

corresponding ARR is derived, gives, 

   : ( ) ,SSe( ), ( ), ( ), ( ) A θ ( ) 0d T d

nARR r t t t t t t   θ φSSf Se Sf  
(7.38) 

or, 

 
 

 

 

( ) , ( ), ( ), , ,

A (θ ) A (θ ( )) A (θ ) 0

( ) ( ) A (θ ( )) (θ ) 0

( ) A (θ ( )) (θ )

d

n

T d T d T d

n n

d d T d d

n n

d T d d

n n

r t t t Se Sf

t

r t r t t

r t t

 

   

   

  

 θ SSe SSf

φ φ φ

φ φ

φ φ

 

 

 

 

 (7.39) 

Thus, state of θ ( )d t  can be linked implicitly with measurements obtained by the 

nominal part ( )d

nr t .  

Corollary: When (θ ) (θ ) θd d d

n n n φ , the vector 1A a ,

1 1( , ( ), ( ), , )na t t Se Sf   θ SSe SSf , can be understood as a coefficient func-

tion linking the fault value to the residual. It can be found as, 

 

 
 

1

( )

θ ( )

d

n

d

r t
a

t





 

(7.40) 

           

Thus, observation equation can be formed as, 

 ( ) ( ) A (θ ( )) (θ )d d T d d

n ny t r t t   φ φ  (7.41) 
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In this work noise is considered additive, i.i.d., drawn from a zero mean normal 

distribution and is assumed uncorrelated to ( )d tx . Observation equation is formed 

from (7.41) as,  

where dh     is a nonlinear observation function obtained from (7.41) and ( )dw t  
2(0, )dw

 . Moreover, the standard deviation dw
 is approximated from residual 

measurements during the degradation tests.  

Thus, the nominal residual can provide information of damage and SOH of the 

prognostic candidate. 

7.3.5 State of Health Estimation  

In discrete time step    , the fault model can be described as, 

1 1( , )dd d d

k k k k 
x

x f x v  

 d d d d

k k k ky w h x  

(7.43) 

(7.44) 

The initial state PDF 1 1 1(θ , | )d d d

k k kp y  γ is assumed to be known a priori. Estima-

tions of θ ,d d

k kγ are obtained Bayesian framework as explained in Sect. 7.2.4. The 

latter is obtained as PDF 0:(θ , | )d d d

k k kp yγ , at discrete time k , based upon the histo-

ry of measurements till time k, 0:

d

ky .The arriving measurement
d

ky , is assumed 

conditionally independent of the state process. The likelihood function becomes 

as, 

     
2

21
| θ , exp 2

2
d
k

d
k

d d d d d d

k k k k k w

w

p y y h x 
 

  γ  
(7.45) 

Estimation procedure using PF (see Sect. 7.2.4) is carried out such that the state 

PDF is approximated by set of discrete weighted samples or particles,

 , ,

1
(θ , ), w

N
d i d i i

k k k i
γ , where N is the total number of particles. For  i

th
 particle at 

time k, 
,θd i

k

,d i

kγ  are the joint estimate of  the state. In PF, the posterior density at 

any time step k is approximated as, 

0 : (θ , )
1

(θ , | ) w . ( θ )d d
k k

N
d d d i d d

k k k k k k

i

p y d d


 γ
γ γ  

(7.46) 

where 
(θ , )

( θ )d d
k k

d d

k kd d
γ

γ denotes the Dirac delta function located at (θ , )d d

k kγ and 

sum of the weights
1

w 1
N

i

k

i

 . In this work, SIR PF is employed, owing to the eas-

iness of importance weight evaluation [39]. Firstly, it is assumed that the set of 

random samples (particles)  , ,

1 1 1 1
(θ , ), w

N
d i d i i

k k k i   
γ are available as the realizations of 

 ( ) ( ) ( )d d d dy t h t w t x  (7.42) 
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posterior probability 1 1 0 : 1(θ , | )d d d

k k kp y  γ at time 1k  . Then, three significant 

steps are followed as illustrated in Fig. 7.2.  

 

Prediction:  The particles are propagated through system model by: sampling from 

the system noise 1
d

k

x
v  and simulation of system dynamics shown in (7.43). 

This leads to new set of particles which are nothing but the realizations of predic-

tion distribution 0 : 1(θ , | )d d d

k k kp y γ . 

 

Update: As the new measurement 
d

ky  arrives, a weight w i

k is associated to each of 

the particles based on the likelihood of observation
d

ky made at time k as, 

, , , ,

1

w ( | θ , ) / ( | θ , )
N

i d d i d i d d j d j

k k k k k k k

j

p y p y


 γ γ  
(7.47) 

 

Resampling: There exist many types of resampling techniques [59]. In this work, 

systematic resampling is preferred owing to its simplicity in implementation, O(N) 

computational time and modular nature. The resampling method is well detailed in 

literature and thus, not described here. 

 

The prediction, update and resample procedures form a single iteration step; they 

are applied at each time step k. 

 
Fig. 7.2 Illustration of estimation process in Particle Filters 

 

The pseudo algorithm is provided in Table 7-2. 
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Table 7-2 SIR Particle Filter for SOH estimation 

Algorithm 2: Estimation using SIR filter 

Inputs:  , ,

1 1 1 1
(θ , ), w

N
d i d i i

k k k i   
γ ,

d

ky  

Output:  , ,

1
(θ , ), w

N
d i d i i

k k k i
γ  

for i=1 to N do 
,d i

kγ  , ,

1( | )d i d i

k kp γ γ  

,θd i

k  , , ,

1 1(θ | θ , )d i d i d i

k k kp  γ  

i

kw  , ,( | θ , )d d i d i

k k kp y γ  

end for 

1

N
i

k

i

W w


  

for i=1 to N do 

/i i

k kw w W  

end for 

   , , , ,

1 1
(θ , ), w RESAMPLE (θ , ), w

N N
d i d i i d i d i i

k k k k k ki i 
γ γ  

 

7.3.6 RUL Prediction  

The critical/failure value θd

fail of θ ( )d t  must be fixed beforehand. Once the pos-

terior PDF 0 :(θ , | )d d d

k k kp yγ has been estimated at time step k, it should be projected 

in future in such a way that information about EOL at time step k, kEOL  is ob-

tained depending upon the actual SOH. Then, RUL at time k, can be obtained as, 

k kRUL EOL k   (7.48) 

Obviously, such a projection of degradation trajectory in future has to be done in 

absence of measurements. Thus, this process remains outside the domain of tradi-

tional Bayesian filtering techniques.  In practice, one of the efficient ways to 

achieve such a projection is to propagate the posterior PDF 0 :(θ , | )d d d

k k kp yγ using 

the DM inspired state model (7.43) until the failure horizon θd

fail  is reached. The 

latter may take
dl time steps so that θ = θd d

fail at a time
dt l . This calls for compu-

tation of the predicted degradation state 0 :(θ , | )d d

d d d

kk l k l
p y

 
γ as [40], 
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      

0 :

1

1 1 0 :

1

(θ , | )

... θ , | θ , (θ , | ) θ ,

d d

d d

d d d

kk l k l

k l k l
d d d d d d d d d

j j j j k k k j j

j k j k

p y

p p y d

 

  

 

  

   

γ

γ γ γ γ
 

(7.49) 

Obtaining this integral numerically is computationally very expensive. 

 PFs can be employed for optimal estimation of the latter under certain assump-

tions. [50] reviews various methods for computation of (7.49). In [40], it is pro-

posed that weights of the particles from time step k until k+
dl  can be kept con-

stant for
dl step ahead computation. This is based on the assumption that error 

generated/accumulated by keeping the weights same, is negligible compared to 

other error sources, such as settings of process noise, measurement noise, random 

walk variance, model inaccuracy etc. [41].  

In our context, as illustrated in Fig. 7.3, RUL predictions can be achieved by pro-

jecting the current SOH estimation into future [31-33,46].  Once the particles

 , ,

1
(θ , ), w

N
d i d i i

k k k i
γ , constituting the realizations of the current joint state-

parameter estimate 0 :(θ , | )d d d

k k kp yγ
 
are obtained, each of the particles is propagat-

ed into future to obtain a 
dl -step ahead state distribution with 

dl =1,…
dT k , 

where 
dT is the time until SOH remains less than failure value i.e. time until 

θ θd

d d

failk l
 .  For 

dl -step ahead state distribution, each of the particles is propa-

gated using the state equation of the fault model. Here, for the i
th 

particle, the cor-

responding weight during the 
,d il -step propagation is kept equal to weight w i

k at 

time of prediction k. Then, for i
th

 particle, 
, ,i d i d i

kRUL k l k l    and the corre-

sponding PDF is obtained as, 

0 : ( )
1

( | ) w ( )
i

i
k

N
d i

k k k kRUL
i

p RUL y dRUL


   (7.50) 

 The associated pseudo algorithm is provided in Table 7-3. 
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Fig. 7.3 Schematic illustration of RUL prediction process  

 

 

Table 7-3 RUL Prediction 

Algorithm 3: RUL Prediction 

Inputs:  , ,

1
(θ , ), w

N
d i d i i

k k k i
γ   

Variable: l 

Outputs:  
1

, w
N

i i

k k i
RUL


 

for i=1 to N do 

 l=0 

  while 
,θ θd i d

k l fail  do 

  
,

1

d i

kγ  , ,

1( | )d i d i

k kp γ γ  

  
,

1θd i

k  , , ,

1(θ | θ , )d i d i d i

k k kp  γ  

  1l l    

  end while 
i

kRUL l  

end for 

 
1

, w
N

i i

k k i
RUL


 0 :( | )d

k kp RUL y  

 

7.4 Integrated Health Monitoring 

The degradation initiation is detected by BG-LFT based robust fault detection 

technique, as discussed in Sect. 7.3.3. The initial value of SOH of prognostic can-

didate is set as: 

θ ~ (θ θ ,θ θ ) ;
d

d d d

t t n l n u dU t t       (7.51) 
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where, dt  is the time when degradation is detected as fault. The associated uncer-

tainty interval limits  Δθ ,Δθl u decide the bounds of the uniform distribution.  

The complete algorithm is shown in Table 7-4. Fig. 7.4 shows the schematic de-

scription of the methodology presented in this chapter. 

 

Table 7-4 Integrated Health Monitoring of Prognostic candidate 

Algorithm 4: Health monitoring of 0θd
  

while system is running do 

 Detect the beginning of degradation using Algorithm 1 

  if fault detection =true then 

  //set initial conditions 

   

0

0

0

θ ~ (θ θ ,θ θ )

0

( )

d d d

n l n u

d

d d

n

U

y r k

  





γ  

   do SOH Estimation using Algorithm 2 

   do RUL prediction using Algorithm 3 

 end if 

end while 

 

 

 
Fig. 7.4 Schematic description of the Health Monitoring Methodology 
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7.5 Evaluation Metrics 

In this section, evaluation metrics are provided to assess prognostic perfor-

mance. For details, readers  referred to [5] and [33]. 

Root mean square error (RMSE) metric expresses the relative estimation accuracy 

as: 

2
*

*

( )
RMSE X k

mean X X
Mean

X

  
   
   

 

 

(7.52) 

where, for a specie X , 
*X  denotes its corresponding true value. kMean denotes the 

mean over all values of k. This metric is useful in assessing the estimation perfor-

mance. 

On the other hand, assessment of RUL predictions is possible if the actual RUL or 

RUL ground truth is known. The terms RUL ground truth and true RUL, are used 

interchangeably in this chapter.  A fairly good idea of true RUL can be obtained 

beforehand from the corresponding DM, under the assumption that degradation 

proceeds with uniform speed. Obviously, the hidden DPPs influence the actual 

speed and SOH. As such, in reality, true RUL can only be estimated with certain 

degree of belief. In this chapter, it is assumed that degradation progresses with 

uniform speed. As such, for evaluation purposes, true RUL is assessed from DM. 

A detailed discussion on this subject and RUL evaluation metrics can be found in 

[64,5]. 

Alpha-Lambda( α  ) metric [5]: An accuracy cone is formed by choosing 

such that [0,1]  , followed by generation of accuracy cone (envelope) over true 

RUL at time instant k, 
*

kRUL , as 
* *[(1 ) , (1 ) ]k kRUL RUL   . Clearly, value of 

signifies the degree of uncertainty associated with
*

kRUL , allowed for assessment 

of RUL predictions. Fig. 7.5 shows ground truth RUL line and  cone that enve-

lopes it. The estimated RUL PDFs must have significant amount of probability 

mass within the  -cone, to be accepted as ―true‖ predictions.   Then, accuracy of 

RUL predictions can be efficiently assessed by relative accuracy (RA) metric. The 

latter is explained by first recalling the fact that RUL predictions are obtained as 

PDFs (see Fig. 7.3). In this work, RUL PDFs are represented using box plot repre-

sentation. As shown in Fig. 7.5, the box plot representation is capable of denoting 

the PDF’s mean, median, 5
th

 and 95
th

 percentiles of distribution data and the asso-

ciated outliers. At a particular prediction instant k, the RUL prediction accuracy 

for θd is evaluated by relative accuracy (RA) metric as, 

*

*

Median ( )
RA 1

k k

k

k

RUL p RUL

RUL

 
  
 
 

 

RA Mean (RA )k kp  

(7.53) 

 

 
(7.54) 
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where
*

kRUL denotes the true RUL at time k for θd . The overall accuracy is deter-

mined by RA  as shown in (7.53), where RAk
is averaged over all the prediction 

points.  

 
Fig. 7.5 Illustration of Box plot representation and α   accuracy cone 

7.6 Application on Mechatronic System in Real Time 

This section describes the application of the method over a mechatronic system 

[53] shown in Fig.7.6. Real time implementation is achieved through 20 SIM 

4C 2.1. The SOH estimation and RUL prediction algorithms are written in Matlab 

Function Block in Simulink. The embedded code is generated through Simulink 

Coder in Matlab2013a
®
.  

7.6.1 Nominal System 

The functional schematic model of the mechatronic system [65], is shown in 

Fig.7.6. The designation of system variables and associated values are listed in 

Table 7-5. The system consists of the Maxon® servo motor that provides the con-

trolled actuation (rotation) to disks. The high stiffness transmission belt provides 

torque the transmission ratio of 
beltk to the motor disk. The motor disk is connect-

ed to load disk through a flexible shaft that constitutes the drive train. The shaft is 

modelled as spring-damper element. The friction in the bearings of the motor disk 

and load disk are modelled as viscous friction. Friction arising due to belt is 

lumped with viscous friction coefficient at motor disk Mdb . The setup is equipped 

with motor encoder and load encoder that measure angular position of motor shaft 

and load disk (2000 pulses per revolution) respectively. Angular position motor 

disk is obtained by dividing the motor encoder counts by belt ratio. The BG model 

of the nominal system in integral causality is given in Fig.7.9. Only the mon-

itorable part is used for analysis. The system is considered operating in feedback 

closed loop with Proportional-Integral (PI) controlled input voltage. The control 
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input from PI controller (controlled variable: motor speed m ) modulates the input 

voltage MSe: UPI .  

 

Table 7-5 Details of system variables 

For experiments, a mechanical lever type arrangement is fabricated as shown in 

Fig. 7.7 which introduces frictional torque Mech over the motor disk by suspension 

of load in form of sand. The associated frictional torque is due to Coulomb friction 

existing between the surfaces (  being friction coefficient). It is modulated by the 

suspended load M as, 

.

( / | |)

Mech mech Md

mech Md Md

f r

f Mg



  




 

 

(7.55) 

with Mdr  as the radius of the motor disk. In the BG model, it is incorporated as 

non-linear resistance element R: Mdb . The corresponding characteristic equation 

becomes as, 

. ( ). / | |Md MdR b M t r g    (7.56) 

8 8( ) . ( ). ( / | |)Md Md Md Md Mde R f b M t r g        (7.57) 

Parameter 

θ  

Designation  Nominal Value  

θ n  

Multiplicative 

 Uncertainty 

        θ   

sk  Spring constant of the shaft 1.786 N.m/rad 10% 

sb  Damping coefficient of shaft 45.11 10  N.m/rad 10% 

km Torque constant  43.89 10 Nm/A - 

beltk  Teeth ratio (motor disk and 

motor shaft) 

3.75 - 

La Rotor inductance  31.34 10 H - 

Ra Rotor resistance 1.23   - 

Jm  Rotor inertia 6 26.76 10 kg.m / rad   20% 

mf  Motor friction coefficient 62 10  N.m.s/rad 20% 

MdJ  Motor disk rotational inertia 4 29.07 10 kg.m / rad   10% 

Mdb  Viscous friction in motor disk 35.025 10 N.m.s/rad  20% 

LdJ  Load disk rotational inertia 3 21.37 10 kg.m / rad  20% 

Ldb
 

Viscous friction in load disk 52.5 10 N.m.s/rad 20% 

1 : mSSf 
 

 Motor velocity measurement - - 

2 : LdSSf 
 

Load disk velocity measure-

ment  

- - 


  Friction coefficient  0.27 10% 
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Involving only non-destructive experiments,  is assumed undergoing no wear.  

 

 
Fig.7.6 Mechatronic torsion bar 1.0 system 

 

 
Fig. 7.7 Fabricated mechanical lever type arrangement for load (mass) suspension 

 

 

 
Fig.7.8 Schematic model of the mechatronic system 
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Fig.7.9 BG model (preferred integral causality) of the nominal system 

 

 
Fig.7.10 BG-LFT Model of monitorable part of the system 

 

7.6.2 BG-LFT Model and ARR generation 

 

The BG-LFT model constructed in preferred derivative causality is shown in 

Fig.7.10. Both the sensors are dualized and impose corresponding flows as 

1 2( ) [ : , : ]T

m Ldt SSf SSf Y . C element remains in integral causality with the ini-

tial condition given by the flow at respective 0-junction, provided by encoder 

readings as
10 9 13 ( / )m belt Ldf f f k     . Moreover, electrical torque : PIMSe 

is the PI controlled input to the monitorable part of the system and is given as: 

 
 ( / )

.
: . . 1

PI m m Ra La t

PI m m m

U k
MSe k i k e

Ra


  


    

(7.58) 

where, PIU is the PI controlled voltage input and mi is the motor stator current.  

Following the steps described in Sect. 7.2.3, an ARR can be generated from the 

detectable junction 11 of Fig.7.10 as, 

1 1( ) iR r t w   (7.59) 

where,  
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1 , ,

, ,
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( )

sgn( / )
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( ) ( )
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Md n Md n n n Md m belt
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 Robust thresholds over the residual can be formed as (see Sect. 7.2.3), 

1 1 1( )a r t a    (7.62) 

where, 

1 | |ia w  (7.63) 

Remark: Only one I-ARR has been derived in this work. This serves the purpose 

of demonstration. Following similar steps, another independent ARR(s) can be de-

rived. 

Fig. 7.11 shows the residual profile under nominal conditions, wherein the re-

sidual is well within the envelope formed by thresholds. Fig. 7.12 shows the effect 

of adding load (or frictional toque) in a discrete way on the system. Md is con-

trolled at 30 rad/s. Addition of load leads increase in frictional torque and degrada-

tion in speed. Due to action of PI controller, the motor disk speed is maintained at 

set reference value of 30rad/s.   However, the residual 1 ( )r t is sensitive to the vari-

ation in PI enabled input voltage PIU . As such, the residual captures the variation 

of disk speed due to load suspension. Saturation limit PIU  is reached around t=65s 

when the total load suspended is 1.6 Kg. Thereafter, controller is unable to com-

pensate the change in Md . With addition of more load thereafter (t>65s), motor 

disk speed decreases rapidly and stops at around t=70s. For safety reasons, the 

disk is stopped momentarily, after which the suspended load is removed.  
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Fig. 7.11  Residual 1 ( )r t  under nominal conditions 

 

 

 
Fig. 7.12 (a) Addition of Load (b). Motor disk speed (c) Nominal residual 1 ( )r t

(d) Input voltage (PI controlled) 

 

7.6.3 Degradation model: Offline Phase 

The experiments performed are non-destructive in nature. Here, load in form of 

sand of M Kg is suspended in a uniform manner until a prefixed limit of failM  is 

reached. In this context, ( )M t is treated as a system parameter under degradation, 

the prognostic candidate. 

The experiments were conducted in two distinct phases:  
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 Offline Phase: Mass is suspended uniformly. As explained in Sect. 7.3.1, 

variations of ( )M t are obtained from the evolution of 1 ( )r t . Then, statistical tech-

niques such as (curve fitting) are used to obtain DM of ( )M t . 

 Online health monitoring: In real time, load is added in a similar manner 

under similar environmental conditions as offline phase, until the prefixed failure 

value ( )M t is reached. In real time, estimation of ( )M t and associated DPPs, and 

subsequent RUL predictions are obtained. 

Exponential Variation of Load 

Load is varied uniformly in an exponential manner. Eight experiments are car-

ried out in total. Fig. 7.13 (a) shows the experimental data and Fig. 7.13 (b) shows 

the exponential fit over the experimental data mean. This way, an exponential DM 

is obtained as, 

1

1 1 1

( )

1

( ) ( , )Md M

t

n M

b t g M v

M e v


 

 
 

 

(7.64) 

where 
1(.)g is the DM , θ = ( )d M t , DPP vector 1[ ]d d  γ and normally dis-

tributed process noise
2

1 1( ) ~ (0, )M Mv t  . 

 
Fig. 7.13 Exponential variation of mass. (a) experimental data (b). Exponential 

fit over experimental data mean 

 

The DM provides an approximate true value of DPP, 
*

1  =0.05 Kg/s.  Regression 

residuals provide standard deviation of the process noise 1Mv ,
4

1 8x10M
  Kg. 
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7.6.4 Health Monitoring: Online Phase 

In the online phase, environmental conditions are kept unaltered. It is recalled that 

( )M t is treated as a system parameter under degradation, the prognostic candi-

date. 

Failure value is prefixed at 1.8failM Kg . Load is varied in the similar manner un-

til failM  is reached.    

Fault Model 

In discrete time step k, the tuple ( 1g , ( )M t , 1 ) is formulated in state space as, 

1, 1

1 1, 1

1, 1, 1 1, 1

. k t

k k M k

k k k

M M e v


  

 

 

 

 

 
 

 

(7.65) 

where 
1

2

1, ~ (0, )k   is an normally distributed artificial random walk noise add-

ed to the DPP 1,k for a suitable convergence. The magnitude of this noise should 

be sufficiently large for a desirable convergence of estimations and small enough 

for a good estimation accuracy. Usually, this noise is tuned with the help of simu-

lations or multiple offline testing. Readers are referred to [53] for a simplified var-

iance adaption scheme proposed in this context. 

Observation equation is constructed from the ARR derived (Sect. 7.6.2) using the 

Theorem given in Sect. 7.3.4.  The 1:ARR R can be decomposed as,  

 
 
1,

1 1 1,

( )
: ( ) ( ) ( ( ) ). 0

n

n n

r t
R r t r t M t M

M


   


 

 

(7.66) 

Then, observation equation can be constructed as, 

,

1, 1, , 1, 1,

sgn( )
( ) ( )

n Md Md k

k n k k k n k

belt

g r
y r w t M M w

k

  
     

 
 

 

(7.67) 

so that the nominal part of the ARR 1, ( )nr t can be used to obtain the measurement 

of the state variables. Here,
2

1, 1~ (0, )k ww   models noise manifesting in the re-

sidual measurements. Approximate value of 1w is determined from 1 ( )r t values 

during degradation tests.  

State of Health Estimation  

Fig. 7.14 shows the profile of residual under exponential degradation. The degra-

dation initiation is detected when the residual goes outside the threshold envelope 

at around t=22s, after which prognostic module is triggered.  
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Fig. 7.14 Nominal residual 2, ( )nr t  while system is under degradation (expo-

nential case) 

Estimation of SOH:  The estimation of suspended load M  is shown in Fig. 7.15. 

The estimation of SOH is performed with number of particles N=50, sample time 

t =0.1s, initial random walk variance noise 
1

2

, 0k  = 4 x 10
-6

 and standard devia-

tion 1w =5x10
-3 

V. For estimation of SOH, particle filter assumes measurement 

noise variance 9 times that of measurement variance
1

2

w
 . This is done to counter 

sample impoverishment problem during the estimation process [59,47]. The esti-

mation is achieved with 3.78%MRMSE  . This indicates a high accuracy in esti-

mation performance.  

 
Fig. 7.15  Estimation of SOH of prognostic candidate 

 

Fig. 7.16 shows the estimation of DPP 1 , achieved with 1RMSE =7.6%. The 

convergence is achieved very quickly with large initial estimation spread. This is 

due to a high artificial noise variance set for the desirable quick convergence. It 

should be noted that RMSE obtained via experiments is higher than those ob-
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tained via simulations, as the true speed of degradation 
*

1 , does not remain per-

fectly constant in reality. Also, lesser number of particles are employed here used 

so that RUL predictions may be achieved in real time without significant data loss. 

With higher number of particles, greater accuracy may be achieved. 

 
Fig. 7.16 Estimation of DPP  

 

 Fig. 7.17 shows the RUL prediction with 0.2  .The RUL distributions ob-

tained until t = 32s, are not good predictions and suffer with large variance spread 

due to a large corresponding spread in 1̂  (see Fig. 7.16). This makes their utility 

virtually null. However, after t = 32 s, with significant improvement in estimation 

of DPP, the RUL distributions are well within accuracy cone such that more than 

50% of RUL probability mass lies within accuracy cone. Ignoring the initial peri-

od of convergence, the overall prediction performance is obtained with

97.02%RA  .  

 
Fig. 7.17 RUL Predictions 
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7.7 Conclusions 

 Prognostics is the science of assessing the end of life of a system/component 

and prediction of the remaining useful life of the same. Due to various kinds of 

uncertainties that manifest in form of parametric uncertainties, environmental 

conditions, sensor noises, uncertain future conditions etc., RUL prediction be-

comes a very challenging issue. In this work, benefits of BG-LFT modelling based 

robust fault detection are integrated with the advantages of Bayesian estimation 

method for efficient prognostics. In particular, particle filters are exploited for op-

timal estimations of actual state of the prognostic candidate and subsequent RUL 

predictions. In this chapter, a single system parameter is chosen as the prognostic 

candidate and RULs are obtained with respect to that parameter. As such, the 

work presented here paves the future path for development of efficient system lev-

el prognostics in BG framework.  

 The ARR based BG-LFT technique is employed for robust detection of degra-

dation beginning. The same ARR is then exploited for prognostic purposes. Being 

sensitive to the control inputs, nominal residual is able to capture the parametric 

degradation profile even while the system outputs remain in feedback closed loop 

regime. This aspect renders the approach appropriate for system level health man-

agement. Approximation of noise distribution present in residuals can be difficult 

or impossible, due to presence of derivative or integral terms in the ARR function 

arguments. As such, Particle filter algorithms form the best choice in this regard as 

they are not restricted by non-Gaussian noises. Moreover, degradation of non-

linear nature can be efficiently estimated using Particle filters.  Additionally, this 

method also demonstrates that fusion of BG-LFT framework and Monte Carlo 

framework leads to efficient management of various types of uncertainties. While 

parametric uncertainties are modelled and managed by using BG-LFT for efficient 

detection of degradation initiation; degradation process noise, measurement (re-

sidual) noise etc. are efficiently accounted for, by PF for estimation of SOH and 

RUL predictions.  
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