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REGULARIZATION AND MINIMIZATION OF
CODIMENSION-ONE HAEFLIGER STRUCTURES

GAËL MEIGNIEZ

Dedicated to Paul Schweitzer.

Abstract. On compact manifolds of dimensions 4 and more, we
give a proof of Thurston’s existence theorem for foliations of codi-
mension one; that is, they satisfy some h-principle in the sense
of Gromov. Our proof is an explicit construction not using the
Mather homology equivalence. Moreover, the produced foliations
are minimal, that is, all leaves are dense. In particular, there exist
minimal, C∞, codimension-one foliations on every closed manifold
of dimension at least 4 whose Euler characteristic is zero.

1. Introduction

W. Thurston gave, in two famous papers [18] [19], some general meth-
ods to make foliations on closed manifolds. The results and the proofs
pertain with no doubt to M. Gromov’s homotopy principle; however,
the techniques differ from Gromov’s; also, the role of formal data falls
to some rather elaborate objects previously introduced by A. Haefliger,
the Γ-structures.

We are interested in the case of codimension one. See section 2
below for the Haefliger structures of codimension one (Γ1-structures).
Practically, one may think of them as the singular foliations of codi-
mension one with Morse-type singularities; which is the generic case.
A concordance between two Γ1-structures on M means a Γ1-structure
on M × [0, 1].

In this introduction, to fix ideas, we restrict consideration to the
closed manifolds; to the smooth (C∞) differentiability class; and to the
co-oriented case: all hyperplane fields, foliations, and Γ1-structures, are
understood to be co-oriented. See section 6 for a more general result.

theorem 1.1. (Thurston [19]) On a closed manifold M , let ξ be a
Γ1-structure, and let τ be a hyperplane field. Then, there is on M a
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2 GAËL MEIGNIEZ

codimension-one foliation which is concordant to ξ (as a Γ1-structure)
and homotopic to τ (as a hyperplane field).

The proof given in [19] follows a scheme of construction in three
steps. First, one makes on M a foliation with “holes”; that is, parts
of the manifold remain nonfoliated. Second, one fills the holes; that
is, one extends the foliation into them. The filling argument is con-
structive, substantial, and remains amazing four decades later. Third,
in order to correct the concordance class of the foliation as a Haefliger
structure, one changes the foliation, in some ball in M , for another
piece of foliation, given by the Mather homology equivalence [13].

In general, the produced foliation has some compact leaves, because,
while filling the holes, some kind of Reeb components are created inside
([19], p. 264); and because there will in general also be some compact
leaves in the piece given by the Mather homology equivalence.

Notoriously, the subsequent study of foliations was strained by the
belief that Thurston had ”cleaned out” and even ”killed” the subject
[20] (as a doctoral student, I was still told so in Paris in the mid 80’s).
It was believed, and became a paradigm, that, in codimension one,
the Mather homology equivalence was unavoidable in the proof of the
h-principle. However, in 1976, Thurston himself did not write so. He
called his step 3 “a nuisance” and wrote: “ Currently, step 3 seems
to involve some nonelementary background about classifying spaces for
Haefliger structures and groups of diffeomorphisms.” [19]

The present paper gives a constructive proof, not involving such
background, of the existence theorem for codimension-one foliations,
on closed manifolds of dimension at least 4. Moreover, the constructed
foliations are minimal, that is, all the leaves are dense in M .

theorem A. On a closed manifold M of dimension at least 4, let ξ
be a Γ1-structure, and let τ be a hyperplane field. Then, there is on
M a minimal codimension-one foliation which is concordant to ξ (as a
Γ1-structure) and homotopic to τ (as a hyperplane field).

corollary 1.2. Every closed, connected manifold of dimension at
least 4 and whose Euler characteristic is zero, admits a minimal, smooth,
codimension-one foliation.

For example, S5 does, as well as S3×S2, and S3×S1, and connected
sums such as (S2×S2)](S3×S1)](S3×S1). Of course, this contrasts with
the Novikov closed leaf theorem in dimension 3. Our Corollary answers
some classical questions raised by Lawson and Schweitzer [12][17].
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Recall that P. Schweitzer proved that on every closed manifold of
dimension at least 4, every augmented Γ1-structure can be homotoped
to some foliation of class C1 without compact leaf [17].

In dimension 3, one already has a constructive proof of the h-principle
for codimension-one foliations by elementary means, not using Mather’s
homology equivalence [11]. The constructed foliation has a precise geo-
metric form, associated to some open book decomposition of the man-
ifold.

Overview of the proof of Theorem A, and organization of the paper.
In section 3, one proves Corollary 1.2. To this end, one first easily

makes on M a Morse-singular Γ1-structure ξ whose leaves are dense,
and whose set of singularities is partitioned into pairs; in each pair the
two singularities are of successive Morse indices i, i+1; they are joined
by an arc A transverse to ξ, called a cancellation arc. One can then
cancel the pair, much like in elementary Morse theory, at the price of
the apparition of a nonfoliated hole parallel to A. Then, one fills the
holes and gets a minimal codimension-one foliation F . The difficulty
lies in the filling of the holes.

In section 4, one fixes the concordance class of F as a Γ1-structure.
Actually, the methods of section 3 produce, at the same time as a holed
foliation, a holed concordance between the given Γ1-structure and the
holed foliation. One fills the holes in the concordance at the same time
as the holes in the foliation.

In section 5, one fixes the homotopy class of F as a hyperplane field.
The method is inspired by the elementary Pontryagin-Thom theory for
the homotopy classes of mappings Mn → Sn−1. We choose a vector
field ∇ which is a pseudogradient for ξ (definition 5.1 below). Given
a nonsingular vector field V on M , we consider in M the set of the
points where V and ∇ are nonpositively colinear. This is generically a
curve bounded by the singularities; it comes with a framing. One can
arrange that this curve is actually a collection of arcs, each of which is
transverse to ξ and bounded by two singularities of successive indices;
and that the framing is hyperbolic. We take these arcs for cancellation
arcs. With some care, after one has cancelled the singularities and
filled the holes, the output foliation F admits naturally a negatively
transverse vector field which is homotopic to V .

Finally, section 6 gives the theorem in its full generality.

We would like to stress the aspects in which our proof follows Thurston,
and where we actually depart from him.

We use Morse singularities where he uses round ones; this is not great
a difference. The holes that we get, are just the same as his. To fill the
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holes, we use his method, but two critical differences. First, he puts
some kind of Reeb components into the holes; we don’t; this difference
is of course necessary to obtain a minimal foliation. Second, in the
induction process called by him “rolling up the holes”, he uses the n-
dimensional torus T n; we use Sn−1 × S1 instead. Our construction is
more symmetric and more functorial, because Sn−1×S1 is, in Sn×S1,
the fixed point set of an involution; while T n in T n+1 is not. This
additional symmetry and functoriality is critical in our section 4, to fill
the holes of the holed concordance, and thus get a genuine concordance,
without any call to the Mather homology equivalence. The methods
of our section 5 to fix the homotopy type of the hyperplane field are
completely different from Thurston’s “inflation”.

It is a pleasure to thank François Laudenbach for sharing his inter-
rogations about the actual status of the Mather homology equivalence
in Thurston’s construction of codimension-one foliations; and for his
listening and observations. I thank the referees, whose critiques and
suggestions led to improve the precision of some proofs, and the read-
ability of the paper.

1.0.1. Conventions, vocabulary and notation. One denotes by Dk the
compact unit ball in Rk, and by Sk−1 the unit sphere ∂Dk. In partic-
ular, D1 is the interval [−1,+1]. A basepoint is generally written ∗.
Also, one sometimes regards D2 as the unit disk in C, and uses the
basepoint 1 in S1 = ∂D2.

In any product X × Y , where Y is an interval or a circle, the pro-
jection to the second factor is called the height function. The foliation
that it defines is the height foliation. The unit vector field negatively
parallel to Y is the height gradient.

By whirling a foliation F in a domain diffeomorphic to some product
X × D1 where F is the height foliation, we mean changing F in
this domain for the suspension of some representation of π1X into the
diffeomorphisms of D1.

The stabilization of a foliated manifold (V,F ) by a manifold X is
the foliated manifold (X × V, pr∗2F ).

Most figures evoke three-dimensional situations; however, recall that
this low dimension is excluded in the text. I have sometimes pointed
under which aspects the dimension reduction may be misleading. In
general, plain (resp. dotted) lines represent some curves tangential
(resp. transverse) to the foliation. A dotted arrow indicates the trans-
verse orientation.
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2. Morse cancellation for Γ1-structures

In this preliminary section, we give a version, adapted to Γ1-structures,
of the classical Morse Cancellation Lemma for a pair of critical points
of a Morse function [15][16]. We first give a version of the classical
Lemma, in order to make precise the place where the function is actu-
ally changed.

Let f be a Morse function on an n-manifoldM ; let s, s′ be two critical
points of respective Morse indices i and i + 1, such that f(s) < f(s′);
let f(s) < t < f(s′); let ∇ be a negative pseudogradient for f on M .
Assume that every pseudogradient line arriving at s or starting from s′

reaches f−1(t). Write W s(s) and W u(s′) for the stable and the unstable
manifolds respectively; consider the disks Ds := W s(s) ∩ f−1[f(s), t]
and Du := W u(s′)∩ f−1[t, f(s′)], and the attachment spheres ∂Ds and
∂Du. The classical cancellation position can be stated as follows: in
f−1(t), the spheres ∂Ds and ∂Du meet transversely in a single point.
If they do, we call Ds and Du a cancellation pair of disks for f at s
and s′.

observation 2.1. In this situation, the germ of f along Ds ∪ Du is
completely determined, up to composition by two diffeomorphisms at
the source and at the target, by n and i. This follows easily from the
following relative Morse Lemma (not found in the literature, but the
proof is an exercise): Let 0 ≤ m ≤ n; let f be the germ of a function
at 0 in Rn, such that f(0) = 0 and df(0) = 0. Assume that d2f(0) and
d2f(0)|Rm are both nondegenerate. Then, f is conjugate to d2f(0) by
the germ of a diffeomorphism of Rn preserving Rm.

example 2.2. We shall use the two following elementary examples
several times, as models. We give the explicit formulas, in view of
some future computations. Fix an index 0 ≤ i ≤ n− 1.

1) One has on Rn the usual, polynomial function of degree 3 with a
pair of points in cancellation position:

(1) Pi(x) := Qn
i (x1, . . . , xn−1) + x3n − 3xn

where

Qn
i (x1, . . . , xn−1) := −

i∑
j=1

x2j +
n−1∑
j=i+1

x2j

Of course, Pi has exactly two critical points s := (0, . . . , 0,+1), s′ :=
(0, . . . , 0,−1). Define the disk Ds (resp. Du) by xn ≥ 0 (resp. xn ≤ 0)
and f(x) ≤ 0 (resp. f(x) ≥ 0) and x1 = · · · = xi = 0 (resp. xi+1 =
· · · = xn−1 = 0). Obviously, Ds and Du form a cancellation pair of
disks for Pi at s and s′, tangential to the Euclidean gradient of Pi.
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2) A variant will be more practical, being conjugate to xn on some
neighborhood of the infinity. Write Br ⊂ Rn for the ball ‖x‖ ≤ r. Let
r ≥ 1 be so large that Ds and Du are interior to Br. Choose some
smooth plateau function φ on [0,+∞), equal to −1 on [0, r], equal to
+1 on some neighborhood [R,+∞) of +∞, and such that 0 ≤ φ′ < 2/3.
Consider on Rn the function

fi(x) := Qn
i (x1, . . . , xn−1) + x3n + 3φ(‖x‖)xn

On the ball Br, the function fi, being equal to Pi, has the same critical
points s, s′ and the same cancellation pair of disks. Outside this ball,
the function fi is noncritical. Indeed, for every 1 ≤ j ≤ n− 1, one has

(2)
∂fi
∂xj

= xj
(
± 2 + 3‖x‖−1xnφ′(‖x‖)

)
which is zero iff xj = 0; while

(3)
∂fi
∂xn

= 3(x2n + φ(‖x‖)) + 3‖x‖−1x2nφ′(‖x‖)

which is positive wherever |xn| > 1. Finally, outside BR one has fi =
xn ◦ Fi, where Fi is the self-diffeomorphism of Rn defined by

Fi(x) :=
(
x1, . . . , xn−1, Q

n
i (x1, . . . , xn−1) + x3n + 3xn

)
lemma 2.3. Let f be a Morse function on a manifold M ; let s, s′ be
two critical points of successive indices admitting a cancellation pair of
disks Ds,Du; let N be a sufficiently small neighborhood of Ds ∪Du in
M .

Then, N admits a noncritical function g equal to f close to ∂N .
Moreover, every connected component of every level set of g in N ,

meets ∂N .

This version of the Cancellation Lemma is implicit in [10]. However,
we give another proof, fitting the needs of our sections 4 and 5.

Proof of Lemma 2.3. By Observation 2.1, it is enough to verify the
Lemma for one standard model. Fix a large positive constant C, and
consider on Rn the function f(x) := C−1fi(Fi

−1(Cx)) (see Example
2.2, (2)). For C large enough, f equals xn on U := Rn \ (Dn−1 ×
[−1,+1]); the critical points of f are a pair s, s′ of indices i, i+ 1 such
that f(s) < 0 < f(s′); and this pair is in cancellation position. That
is, f admits on Rn a descending pseudogradient ∇, equal to −∂/∂xn
on U ; in f−1(0), the boundaries of the disks Ds := W s(s)∩f−1[f(s), 0]
and Du := W u(s′) ∩ f−1[0, f(s′)] meet transversely in a single point.
Write (∇τ )τ∈R for the flow of this pseudogradient.
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It is well-known that the level set f−1(0) is diffeomorphic with the
once-punctured product of spheres L := (Sn−i−1 × Si) \ (∗, ∗). This
can be seen with elementary Morse theory: indeed, f−1(0) results
from f−1(−1) = Rn−1 by an elementary surgery along the attachment
sphere W u(s) ∩ f−1(−1). But this sphere is unknotted in f−1(−1):
it bounds an i-disk which is the image, through the flow of ∇, of
(∂Du) \ (∂Ds ∩ ∂Du). For the same reason, the attachment fram-
ing is trivial. So, f−1(0) is diffeomorphic with L; and they will be
identified. The diffeomorphism carries ∂Ds (resp. ∂Du) to Sn−i−1 × ∗
(resp. ∗ × Si).

Recall also that in L, every neighborhood of the bouquet (Sn−i−1 ×
∗) ∪ (∗ × Si) can engulf, by an isotopy in L, any compact subset of
L. This follows also from the elementary Morse theory, applied to the
canonical Morse function on Sn−i−1 × Si.

Let N be any compact neighborhood of Ds∪Du in Rn, with smooth
boundary ∂N . We have to show that f |(Rn \N) extends inside N as
a function without critical points. Shrinking N , we can arrange that
N ⊂ f−1(−1,+1). After an isotopy of the embedding of N into Rn

which does not change f |N , we can moreover assume that ∂N ∩f−1(0)
is contained in U (since N ∩ L can engulf (Dn−1 × [−1 + 1]) ∩ L). Let
ε > 0 be so small that

∂0N := (∂N) ∩ f−1[−ε,+ε]
is contained in U . Put

∂+N := (∂N) ∩ f−1[ε, 1]

∂−N := (∂N) ∩ f−1[−1,−ε]
Obviously, ∂+N (resp. ∂−N) is disjoint from W u(s′) (resp. W s(s)).

In other words, for every x ∈ ∂+N (resp. x ∈ ∂−N), the negative (resp.
positive) half of the pseudogradient line through x hits Rn−1× 1 (resp.
Rn−1× (−1)). Let K be the union of the pseudogradient arcs between
∂+N and Rn−1 × 1, together with the pseudogradient arcs between
∂−N and Rn−1× (−1). The singularities s, s′ do not lie in the compact
set K: we can rescale ∇ to arrange that moreover, ∇ · f = −1 on a
neighborhood of K. Then, the identity

f ◦ ∇τ = f − τ
holds, for every τ ∈ R (resp. τ ≤ 0, resp. τ ≥ 0), on a neighborhood
of ∂0N (resp. ∂+N , resp. ∂−N).

For x ∈ N close to ∂N and for 0 ≤ h ≤ 1, put

φh(x) := ∇−hf(x)/ε(x)
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So,

f ◦ φh = (1 + h/ε)f

As a first consequence, (φh) induces an isotopy of embeddings of ∂N
into Rn. Also, φ1(∂N) ⊂ U . One extends (φh) by an isotopy of
embeddings of N into Rn, denoted by (φ̄h), coinciding with (φh) close
to ∂N . On N , the function

g := (1 + h/ε)−1xn ◦ φ̄1

is noncritical, and coincides with f close to ∂N .
Obviously, every connected component of every level set of g in N

meets ∂N . �

Next, we recall the notion of a codimension-one Haefliger structure —
more briefly a Γ1-structure — on an n-manifold M . Recall that in this
section, the smooth (C∞) differentiability class and the co-orientability
are understood.

definition 2.4. [4][5] On the manifold M , a (smooth, co-oriented)
Γ1-structure is a foliation ξ of codimension one on some neighborhood
of M × 0 in M ×R, transverse to each fibre x×R; or more precisely,
the germ along M × 0 of such a foliation.

Then, for every manifold N and every smooth mapping F : N →M ,
one has on N a pullback Γ1-structure F ∗(ξ).

vocabulary 2.5. The singularities of ξ are the points of M where
M × 0 is not transverse to ξ. Write their set as Sing(ξ) ⊂ M . The
restriction of ξ to M×0 induces a foliation on M \Sing(ξ). One makes
no distinction between “foliation” and “regular Γ1-structure”.

A concordance between two Γ1-structures ξ0, ξ1 on M , is a Γ1-
structure on the manifold M × [0, 1] whose restriction to M × i is
ξi, for i = 0, 1.

Every real-valued function f defines on its domain a co-oriented Γ1-
structure ξ: the pullback through f of the regular Γ1-structure on the
real line. One also calls f a first integral of ξ. Obviously, every Γ1-
structure admits a local first integral in a neighborhood of every point.

A Γ1-structure is qualified Morse if its local first integrals are Morse
functions.

For example, on the compact unit disk Dk ⊂ Rk, one has two Morse
Γ1-structures ξkcan and −ξkcan, defined respectively by the functions x 7→
‖x‖2 and x 7→ −‖x‖2.

Now, consider a Morse Γ1-structure ξ on an n-manifold M .
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definition 2.6. A stable (resp. unstable) k-disk for ξ at a singularity
s of index i, is the image of an embedding F : Dk → M such that
F (0) = s, and that F ∗(ξ) = ξkcan (resp. F ∗(ξ) = −ξkcan).

definition 2.7. (See Figure 11 below) A cancellation pair of disks
(Ds,Du) for ξ at its singularities s and s′, of respective indices i and
i+ 1 (where 0 ≤ i ≤ n− 1), is as follows:

(1) Ds is a stable (n−i)-disk at s and Du is an unstable (i+1)-disk
at s′;

(2) Ds ∩Du = ∂Ds ∩ ∂Du is a single point x;
(3) ∂Ds and ∂Du are transverse at x in the leaf of ξ through x.

lemma 2.8. (Cancellation) Under these hypotheses, let N be a small
enough open neighborhood of Ds ∪Du in M .

Then, N admits a (regular) foliation N equal to ξ close to ∂N .
Moreover, no leaf of N is relatively compact in N .

Indeed, obviously, ξ admits a first integral in a small neighborhood
of Ds ∪Du; and this first integral admits a pseudogradient tangential
to Ds and Du . Lemma 2.3 applies.

3. Making a minimal foliation.

Let M be a closed connected manifold of dimension n ≥ 4 whose
Euler characteristic is zero. In this section, the aim is to construct a
minimal foliation of codimension one and class C∞ on M . The smooth
(that is, C∞) differentiability class is understood; and all Γ1-structures
are understood to be co-oriented.

The construction will be in three steps. First, one will make a mini-
mal Morse Γ1-structure on M . Then, the singularities will be canceled
by pairs, at the price of some domains in M left nonfoliated — the
so-called holes. Third, the holes will be filled, that is, the foliation will
be extended inside them. The two first steps are easy.

3.1. First step: making a minimal Morse Γ1-structure. The con-
struction of a minimal Morse Γ1-structure on every manifold of dimen-
sion at least 3 is not difficult, and already known [1]. Here, we give a
construction which fits the needs of section 4.

One starts with any Morse Γ1-structure ξ on M , for example the one
defined by some Morse function.

Then, one gets rid of local extrema, that is, singularities of extremal
indices 0 and n (Figure 1). Consider for example some singularity
s of ξ of index 0. Close to s, one creates a pair of singularities s′,
s′′ of respective indices 1 and 2. Now, ξ admits a local first integral
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Figure 1. Replacement of a singularity of index 0 by
one of index 2 and a Reeb component.

f which is a self-indexed Morse function, such that f−1([0, 3/2]) ∼=
Dn−1 × S1 contains exactly two critical points of f : s and s′. Let
D := f−1([0, 1/3]) , a small stable n-disk at s (Definition 2.6). Choose
for s′ an unstable 1-disk D′ ∼= D1 such that f(∂D′) = {1/3, 2/3}. One
cancels s and s′ using the pair (D,D′) (Lemma 2.8).

One can remark that, here, the cancellation process amounts, in
the solid torus f−1([0, 3/2]), to change ξ for an n-dimensional Reeb
component. Of course, the compact toric leaves will be destroyed in
the sequel of the construction.
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Figure 2. Minimizing plug.

As a whole, s has been replaced by s′′, which is of index 2, and a Reeb
component. In the same way, every singularity of index n is replaced
by one of index n− 2, and a Reeb component.

Then, ξ being free of local extrema, it admits a total transversal,
that is, a finite disjoint union of compact arcs Aj embedded in M
transversely to ξ, and such that every leaf meets at least one of them.
One will make ξ minimal by the following modification in some small
neighborhood Nj of each arc Aj (Figure 2).

The neighborhood Nj is identified with Dn−1 × D1, in such a way
that Aj = 0 × [−1/4,+1/4]; and that ξ|Nj is the height foliation (see
1.0.1). A Morse function f is made on Nj, from the height function,
by creating two pairs of singularities (s1, s2) and (s′1, s

′
2) of respective

indices 1 and 2 and 1 and 2, in cancellation position. The function f is
still the height function close to ∂Nj. One makes f(s1), f(s′1) < −1/2
and f(s2), f(s′2) > 1/2. The domain f−1[−1/2,+1/2] is diffeomorphic
to L× [−1/2,+1/2], where L is obtained from Dn−1 by two elementary
surgeries of index 1.
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Two diffeomorphisms α, α′ of the interval [−1/2,+1/2], both flat
on the identity at ±1/2, are chosen such that they commute, and that
every orbit in the open interval (−1/2,+1/2) under the group generated
by α and α′ is dense there. One has the representation

π1L→ Diff+[−1/2,+1/2] : γ 7→ (α)(aγ)(α′)(a
′γ)

where a and a′ are Poincaré-dual in L to the stable attachment spheres
of s1 and s′1, respectively.

Then, we whirl f between the singularities. That is, we define a
Morse Γ1-structure ξplg onNj by f , except in the domain f−1[−1/2,+1/2],
where ξplg is the suspension of the above representation. One can ar-
range that ξplg coincides with the height foliation close to ∂Nj.

Every leaf of ξplg in f−1(−1/2,+1/2) is dense there.
Having changed ξ to ξplg inside each Nj, we obtain a new Morse Γ1-

structure ξmin on M . Every leaf of ξmin meets some solid cylinder Nj

in its open subset f−1(−1/2,+1/2), and is dense there. So, every leaf
of ξmin is locally dense. So, every leaf of ξmin is dense in M .

3.2. Second step: canceling the singularities. The second step of
the construction of a minimal foliation on M is to cancel the singu-
larities of the minimal Morse Γ1-structure ξmin, at the price of leaving
some nonfoliated holes.

First, we modify ξmin by creating if necessary some pairs of new
singularities of indices 1 and 2, 2 and 3, . . . , n− 2 and n− 1, in order
that the singularities of ξmin can be abstractly matched into pairs of
successive indices. This is possible, since χ(M) = 0. We don’t require,
at the moment, any cancellation position; two matched singularities
can be very distant in the manifold. Still denote by ξmin the resulting
minimal Morse Γ1-structure.

Consider one of the pairs s, s′ of matched singularities. Their indices
are respectively i ≥ 1 and i + 1 ≤ n− 1. By the Morse Lemma, there
are a small stable (n− i)-disk Ds at s, and a small unstable (i+1)-disk
Du at s′, disjoint from Ds. The leaves of ξmin being dense, one has in
M an embedded arc A, positively transverse to ξ, from some boundary
point of Ds to some boundary point of Du, and otherwise disjoint from
Ds and Du. We are going to force the condition of Lemma 2.8, that is,
the existence of a pair of cancellation disks intersecting once on their
boundaries, by a whirl (see paragraph 1.0.1) of ξmin close to A, at the
price of a hole. We call A a “cancellation arc”.

A small open neighborhood U of A is identified with Rn = Rn−i−1×
Ri ×R, in such a way that

• ξmin|U is the height foliation, defined by the last coordinate xn;
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Figure 3. Before and after the whirl.

• Ds ∩ U = Rn−i−1 × 0× (−∞,−1/2];
• Du ∩ U = 0×Ri × [1/2,+∞).

(Figure 3, left). One considers in Rn−1 = Rn−i−1 ×Ri the unit bidisk
∆ := Dn−i−1 ×Di and its corner Σ := Sn−i−2 × Si−1. Every loop γ in
Rn−1\Σ has a linking number `(γ) with Σ, that is, the algebraic number
of intersections of γ with Dn−i−1×Si−1. One chooses a diffeomorphism
φ of R, whose support is compact and contained in (−1,+1), and such
that φ(−1/2) = +1/2 (in the next paragraph, more conditions will be
imposed on φ, to be able to fill the holes). One gets a representation
ρ(γ) := φ`(γ) of the fundamental group of Rn−1 \Σ into Diffc(R). The
suspension of ρ gives a foliation ξwhl on Rn \ (Σ×D1), well-defined up
to a vertical isotopy, “vertical” meaning parallel to the xn-axis.

We can arrange that ξwhl is the height foliation on Rn\(∆×D1) and
on 0 ×Ri ×R. In restriction to Rn−i−1 × 0 ×R, the foliation ξwhl is
the image of the height foliation by some vertical, compactly supported
isotopy Φ. The boundaries ∂(Du ∩ U) and ∂Φ(Ds ∩ U) meet at the
point (0, . . . , 0, 1/2), transversely in the leaf of ξwhl through this point.

The set that remains nonfoliated is Σ×D1, but it is better to regard
as nonfoliated the interior of its small tubular neighborhood Hn

i
∼=
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D2 ×Σ×D1, called a hole (figure 3, right). The boundary ∂Hn
i splits

into a horizontal boundary D2×Σ×±1 and a vertical boundary (∂D2)×
Σ×D1. Both horizontal components D2 ×Σ×±1 are tangent to ξwhl

and without holonomy. On the other hand, the vertical boundary is
transverse to ξwhl; and ξwhl induces on (∂D2) × Σ ×D1 a structure of
foliated D1-bundle above the base (∂D2) × Σ; the monodromy above
the loop ∂D2 is φ (due to the whirl), while the monodromy above any
loop in Σ is the identity of D1.

At the price of leaving this nonfoliated hole, s can be cancelled with
s′. Precisely, let us think again of U ∼= Rn as an open subset in M .
Extending Φ to the whole of Ds by the identity, one gets an embedding
Φ of Ds into M \Hn

i , isotopic to the identity: the small disk Ds pushes
a pseudopod along the arc A until it touches the boundary of Du.
Extending ξwhl by ξmin outside U , one gets a Morse Γ1-structure on
M \Hn

i , for which Φ(Ds) and Du form a cancellation pair (Definition
2.7). Cancel s with s′ (Lemma 2.8).

Having done so for each pair of matched singularities, one gets a
(regular) foliation ξhol on Mhol := M minus the holes. Finally, ξhol
is also minimal, in the sense that all of its leaves are dense in Mhol.
Indeed, clearly the minimality property of ξmin was preserved through
the whirl, and through the cancellation of the singularities (thanks to
the last sentence of Lemma 2.8).

3.3. Third step: filling the holes. Here, much is borrowed from
Thurston [19]; but there are also some substantial differences. A com-
plete account is necessary as well for the sake of sections 4 and 5. I
shall indicate the places where we depart significantly from [19].

vocabulary 3.1. In a general way, by a hole we mean a compact
manifold H with boundary and corners, together with, along ∂H, a
germ H of foliation of codimension one in H. Filling the hole means
extending this germ by a foliation F inside H. We are also interested
to fill it without interior leaf: every leaf of F meets ∂H.

Most holes will have the following standard forms. One has H =
B × D1 (straight hole) or H = B × S1 (round hole), where B is a
compact connected manifold whose boundary is nonempty, smooth and
connected. In the straight case, on some neighborhood of B×∂D1, the
germ H is the height foliation. In both cases, H |(∂B) × D1 (resp.
H |(∂B)×S1) is a foliated D1 (resp. S1)-bundle, that is, the suspension
of some representation

ρ : π1∂B → Diffc(−1,+1) (resp. D̃iff+(S1))
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(where ˜ stands for the universal cover). For every loop γ in ∂B, we
also refer to ρ(γ) as the monodromy of the hole above γ. We call a
standard hole discal if its base splits as a product B = D2 ×X, where
X is a closed manifold.

Here are the relevant examples of standard holes, and their diagnos-
tics.

(i) In case ρ is extended by some representation

ρ̄ : π1B → Diffc(−1,+1) or D̃iff+(S1)

then of course we fill H by the suspension of ρ̄, and this filling is without
interior leaves.

(ii) Every φ ∈ Diffc(−1,+1) defines a 3-dimensional straight discal
hole D2 × D1 whose monodromy above ∂D2 is φ. By Reeb’s global
stability theorem, this standard hole cannot be filled unless φ is the
identity.

(iii) More generally, consider a straight discal hole D2×X×D1, where
X is a closed manifold; the monodromy being trivial above π1X, and
nontrivial above the loop (∂D2) × ∗, which is compressible in B. In
other words, H is the X-stabilization (see 1.0.1) of example (ii). Then,
by an easy generalization of Reeb’s global stability theorem, H cannot
be filled (exercise). Unfortunately, every hole Hn

i left by paragraph 3.2
falls to this case. Following Thurston, one will enlarge Hn

i by a worm
gallery (see further down) and then be able to fill the enlarged hole.

(iv) Actually, the method to fill each enlarged Hn
i will be to divide

it into smaller holes which will fall either to the suspension case (i)
above, or to the two following ones.

vocabulary 3.2. Say that some subset of D1 brackets some other
one, if they are disjoint and if every point of the second lies between
two points of the first.

Let r ≥ 1. Write Tr := (S1)r for the r-torus. Given r+1 commuting
diffeomorphisms φ, ψ1, . . . , ψr ∈ Diffc(−1,+1), consider the (r + 3)-
dimensional straight discal hole

H := D2 ×Tr ×D1

whose monodromy is φ over ∂D2 and ψk over the k-th S1 factor (1 ≤
k ≤ r).

lemma 3.3. (Filling the hole D2 ×Tr ×D1) Assume that:

(i) φ = [α, β] is a commutator in Diffc(−1,+1);
(ii) The supports of ψ1, . . . , ψr are pairwise disjoint, and their

union brackets the supports of α and β.
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Figure 4. Filling a hole under a bracketting hypothe-
sis. Here r = 1. The figure may be misleading because
the slice D2 × D1 has been represented as a rectangle;
and the Morse function f in this slice, with its two singu-
larities s1, s2 of respective indices 1 and 2 in cancellation
position, has been represented as a Morse function on
the rectangle with two singularities of respective indices
0 and 1 in cancellation position.

Then, H is fillable without interior leaves.

Except ”without interior leaves”, this is due to Thurston [19]. Our
construction differs from his, in order to avoid to create interior com-
pact leaves. We shall essentially need only the cases r = 1, 2.

Proof. (Figure 4) By condition (ii), there exist two points −1 < c1 <
c2 < +1, neither of which is a common fixed point for ψ1,. . . , ψr, and
between which the supports of α and β lie. So, there is a finite union
K ⊂ (c1, c2) of compact subintervals such that the supports of α and
β are contained in the interior of K, and the supports of ψ1,. . . , ψr, in
D1 \K.
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One endows the solid cylinder D2 ×D1 with the Morse function f
obtained from the height function by creating two singularities s1 =
(z1, y1), s2 = (z2, y2) of respective indices 1 and 2, in cancellation po-
sition. One arranges that f(s1) = c1 and f(s2) = c2. Stabilizing f by
Tr, one gets the mapping:

F : H = D2 ×Tr ×D1 → Tr ×D1 : (z, θ, y) 7→ (θ, f(z, y))

One endows Tr ×D1 with the suspension S (ψ1, . . . , ψr) of ψ1, . . . , ψr.
Since ψ1, . . . , ψr are the identity onK, one can arrange that S (ψ1, . . . , ψr)
is the height foliation in restriction to Tr×K. Since c1, c2 are not com-
mon fixed points of ψ1,. . . , ψr, one can arrange that S (ψ1, . . . , ψr) is
transverse to both tori Tr × c1 and Tr × c2 (the hypothesis that the
supports of ψ1, . . . , ψr are pairwise disjoint makes this point partic-
ularly immediate). Then, the mapping F is transverse to the folia-
tion S (ψ1, . . . , ψr). Indeed, F is a submersion, except on both tori
(z1 × Tr × y1) ⊂ H and (z2 × Tr × y2) ⊂ H, which F respectively
maps diffeomorphically onto Tr × c1 and Tr × c2, both transverse to
S (ψ1, . . . , ψr). Consequently, F ∗(S (ψ1, . . . , ψr)) is a (regular) folia-
tion on H.

In D2 ×D1, the domain f−1(K) is diffeomorphic to the product of
K with the compact orientable surface of genus one bounded by one
circle. The fundamental group of this surface being non-abelian free
on two generators, the suspension of α and β gives a foliation S (α, β)
of this domain.

The foliation F filling H is defined as two pieces: in F−1(Tr ×K)
one takes the suspension S (α, β) stabilized by the r-torus; and in the
complement, F is F ∗(S (ψ1, . . . , ψr)). Obviously, F fills the hole,
i.e. coincides along ∂H with the given germ. Moreover, F has no
leaf interior to H. This is immediate in view of its trace on every 3-
dimensional slice D2 × θ × D1, for θ in Tr. Every leaf of this trace,
being either a level set of f or a leaf of the suspension S (α, β), meets
the boundary (∂D2)× θ ×D1. �

Lemma 3.3 has a round variant. To avoid irrelevant complications,
we consider Diff∗+(S1), the group of the orientation-preserving diffeo-
morphisms of the circle fixing the basepoint. Its virtue is to be con-

tained both in Diff+(S1) and in D̃iff+(S1). Given r+1 diffeomorphisms
φ, ψ1, . . . , ψr ∈ Diff∗+(S1), consider the (r+ 3)-dimensional discal hole

H := D2 ×Tr × S1

whose monodromy is φ over ∂D2 and ψk over the k-th S1 factor (1 ≤
k ≤ r).
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lemma 3.4. (Filling the hole D2 ×Tr × S1) Assume that:

(i) φ = [α, β] is a commutator in Diff∗+(S1);
(ii) The supports of ψ1, . . . , ψr are pairwise disjoint, and their

union is nonempty and disjoint from the supports of α and β.

Then, H is fillable without interior leaves.

Proof. Much like in the straight case. By condition (ii), there exists
a finite union K ⊂ S1 of compact subintervals such that the supports
of α and β are contained in the interior of K, and the supports of
ψ1, . . . , ψr, in S1 \K. By (ii) there are two points c1, c2 on S1, both not
common fixed points of ψ1, . . . , ψr, and which lie in a same connected
component of S1 \ K. Arrange that c2 < c1 in this interval endowed
with the orientation induced from S1.

One endows the solid torus D2 × S1 with the S1-valued Morse func-
tion f , obtained from the height function, that is, the second projec-
tion, by creating two singularities s1, s2 of respective indices 1 and 2,
in cancellation position. One arranges that f(s1) = c1 and f(s2) = c2.
The level set f−1(y) has genus 1 (resp. 0) in case y lies in the connected
component of S1 \ {c1, c2} containing (resp. not containing) K.

Just as in the straight case, F being the r-torus-stabilization of f ,
we fill F−1(Tr × K) by the r-torus-stabilized suspension of α and β;
and we fill the complement by the suspension of ψ1, . . . , ψr pulled back
through F . �

Now, let us come back to the construction of a minimal foliation
on M . The cancellation of the singularities (paragraph 3.2) has left
a minimal foliation ξhol with some standard, discal holes of the form
Hn
i
∼= D2 × Σ × D1, where 1 ≤ i ≤ n − 2 and Σ = Sn−i−2 × Si−1.

The monodromy is φ 6= id over ∂D2 (compressible monodromy), and
the identity over any loop in Σ. As already mentioned, Hn

i is never
fillable.

However, ξhol being minimal, the complement Mhol of the holes in M
contains an embedded arc joining the ceiling D2 × Σ× (+1) of Hn

i to
its floor D2×Σ× (−1), transversely to ξhol (worm path). One enlarges
Hn
i by a small tubular neighborhood W ∼= Dn−1×D1 of this arc (worm

gallery), obtaining a new hole Hn
i ∪W . Its germ of foliation along the

portion Sn−2×D1 of its boundary, the one that bounds W , is of course
the height foliation. Actually, in the sub-extremal cases i = 1 or n− 2,
the hole not being connected, we add two disjoint worm galleries: one
to each of the two connected components.

proposition 3.5. Let n ≥ 4, and 1 ≤ i ≤ n−2, and φ ∈ Diffc(−1,+1).
Then the hole Hn

i whose compressible monodromy is φ, enlarged by a
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worm gallery (or by two worm galleries in case i = 1 or n−2) is fillable
without interior leaf.

Thurston fills the same holes with some kind of Reeb components
inside [19]. We shall prove Proposition 3.5 in case φ is a commutator
[α0, β0] in Diffc(−1,+1).

On the one hand, this case is enough to complete the proof of
theorem A: in the whirl previous to the cancellation of each pair of
matched singularities (3.2), take care to choose for φ a commutator in
Diffc(−1,+1). Write MHOLED for M minus the enlarged holes, and
ξHOLED for ξ|MHOLED, an obviously minimal foliation. Applying 3.5,
extend ξHOLED inside each enlarged hole, obtaining a foliation F on M .
By the last words of Proposition 3.5, every leaf of F meets MHOLED,
so its closure contains MHOLED. Every leaf being locally dense, every
leaf is dense in M .

On the other hand, our argument generalizes straightforwardly for a
product of commutators, and thus actually proves Proposition 3.5 in all
cases, since Diff∞c (R) is perfect (Mather [13], using previous results by
Epstein [2] and Herman [6][7][8]; see also [3]). But we don’t need to use
this “nonelementary background about groups of diffeomorphisms”.

3.3.1. First proof of Proposition 3.5 in dimension 4. In dimension n =
4 there are two possible indices, i = 1 or 2. The holes H4

1 and H4
2 being

isomorphic by reversing the co-orientation of the foliation, we consider
the case i = 1. Let H4 be one of the two connected components of
H4

1 . So, H4 ∼= D2 × S1 ×D1 is a straight discal hole whose base B is
the solid torus D2 × S1. Note that Lemma 3.3 does not apply directly
to H4, since the monodromy over the second factor S1 is trivial: its
support does not bracket the support of φ. Following Thurston, we
shall subdivide H4 into subholes with more monodromy (Figure 5).
Consider in B the core V0 := 0× S1, and

V1 := {z ∈ D2/|z| = 1/2} × 1

(recall that D2 is the unit disk in C and that 1 is the basepoint on
S1; in other words, V1 is the meridian of V0); and we split B into three
domains: two disjoint small compact tubular neighborhoods N0, N1 of
V0, V1; and the complement C := B \ Int(N0 ∪ N1). In the base, V0
bounds, modulo ∂B, the annulus W0 := [0, 1] × S1; while V1 bounds
the 2-disk

W1 := {z ∈ D2/|z| ≤ 1/2} × 1

which meets V0 at its center.
Recall that φ is a commutator [α0, β0] in Diffc(−1,+1), and choose

some α1, β1 in Diffc(−1,+1) whose supports are disjoint from those of
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Figure 5. Splitting of the base B of the hole H4, and
definition of the representation ρ. The monodromy over
a few loops is indicated.

α0, β0, and such that the support of φ1 := [α1, β1] brackets those of
α0, β0 (see before Lemma 3.3). In particular, φ1 commutes with φ.
One fills up C ×D1 with the suspension of the representation

ρ : π1C → Diffc(−1,+1) : γ 7→ φ(W ∗0 γ)φ
(W ∗1 γ)
1

whereW ∗
j γ denotes of course the algebraic intersection number between

the loop γ and the hypersurface Wj. Obviously, ρ represents π1(∂B)
as needed: ρ(∂D2 × 1) = φ and ρ(1 × S1) = id. It remains to fill the
two discal sub-holes N0 ×D1 and N1 ×D1 (union a worm gallery).

In restriction to ∂N0
∼= (∂D2) × S1, the representation ρ associates

φ to the factor ∂D2, compressible in N0; and φ1 to the factor S1,
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incompressible in N0. Since the support of φ1 brackets those of α0, β0,
Lemma 3.3 applies, here r = 1, and fills the sub-hole N0 ×D1.

On the other hand, in restriction to ∂N1
∼= (∂D2) × S1, the repre-

sentation ρ associates φ1 to the factor ∂D2, compressible in N1; and φ
to the factor S1, incompressible in N1. So, Lemma 3.3 does not apply
to N1 ×D1.

But remember the worm gallery W (Figure 6). The sub-torus N1

is inessential in B, in the sense that N1 is contained in a 3-ball D
embedded into the base. After an isotopy in H4, one can assume that
D × ±1 coincide with the entrance and the exit of the gallery. We
extend the hole N1×D1 through W , obtaining an extended round hole
Hrnd

∼= N1 × S1. We keep the remainder of W filled with the height
foliation, and so, the germ of foliation along ∂Hrnd is the suspension of
two commuting diffeomorphisms φ̄, φ̄1 of the circle. Here D1 is regarded
as embedded into S1 and, for every ψ ∈ Diffc(−1,+1), one denotes by
ψ̄ ∈ Diff∗+(S1) its extension by the identity. So, φ̄1 = [ᾱ1, β̄1]. Lemma
3.4 applies to the round hole N1 × S1, and fills it, taking r = 1, taking
φ̄1 for φ, and taking φ̄ for ψ1.

Obviously, no interior leaf has been created in H4 ∪W . The first
proof of Proposition 3.5 in dimension 4 is complete.

3.3.2. Proof of Proposition 3.5 for the almost extremal indices. The
preceding 4-dimensional construction is a pattern for the proof of Propo-
sition 3.5 in all dimensions n ≥ 4. The generalization is more direct in
the case where the index of the hole is almost extremal: i = 1 or n− 2.
The hole Hn

n−2 being isomorphic to Hn
1 , we consider Hn

1 . Let Hn be
one of the two connected components of Hn

1 , thus a straight discal hole
whose base is B := D2 × Sn−3.

lemma 3.6. For every k ≥ 0, there is an embedding

ek : Sk × S1 → Int(D1 × Sk+1)

such that the mapping pr2 ◦ ek : Sk × S1 → Sk+1 is of degree one.

Proof. One embeds Sk × S1 into Sk+2 as the boundary of a tubular
neighborhood of a circle. One regards D1 × Sk+1 as the complement,
in Sk+2, of two small (k + 2)-balls, one interior to this neighborhood,
the other exterior to this neighborhood. �

Here, we depart from [19], where an analogous lemma is used, except
that the (k+1)-torus appears instead of Sk×S1. (For the present pur-
pose, the difference is anecdotal; but it will become critical in section
4).
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Figure 6. The hole H4 and its worm gallery. The di-
mension reduction may be misleading here, because we
have figured the solid torus N0

∼= D2×S1 as the annulus
D1× S1, and the solid torus N1

∼= D2× S1 as two disks,
D2 × S0.
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Now, we begin to fill Hn. Write V := Sn−4 × S1 and let j0 : V → B
be en−4 followed by the canonical inclusion D1 × Sn−3 ⊂ D2 × Sn−3.
Put V0 := j0(V ). The mapping

pr2 ◦ j0 : V → Sn−3

being of degree one, V0 together with 1 × Sn−3 bound an orientable
compact hypersurface W0 in B (recall that 1 is the basepoint in ∂D2).
Of course, the bundle normal to V0 in B is trivial. One writes X0 :=
j0(S

n−4×1); one writes W1 for the total space of the (trivial) D2-bundle
normal to V0 above X0, so W1

∼= D2×Sn−4; one writes V1 := ∂W1; and
one writes N0, N1 for two disjoint tubular neighborhoods of V0, V1 in
the interior of B.

In D1 × Sn−3, the submanifold en−4(S
n−4 × 1) is inessential, i.e.

contained in some ball: this is obvious from the proof of Lemma 3.6;
alternatively, one can argue that in D1 × Sn−3, every submanifold of
codimension two is inessential. So, X0 is inessential in B. So, N1 is
also.

One continues the filling of Hn much as one did above (3.3.1) for
H4: one assumes that φ = [α0, β0] is a commutator; one chooses φ1 =
[α1, β1] just as one did in 3.3.1; one fills C × D1, where C := B \
Int(N0∪N1), with the suspension of the representation ρ defined as in
3.3.1.

There remains to fill two discal subholes N0 ×D1, N1 ×D1.
The first oneN0×D1 is just the (Sn−4)-stabilization of a 4-dimensional

hole D2×S1×D1. Lemma 3.3, with r = 1, applies to this 4-dimensional
hole and fills it with a foliation, whose (Sn−4)-stabilization fills N0×D1.

The second discal subhole N1 × D1 is first extended, since N1 is
inessential in B, through the worm gallery. One obtains a round hole
N1 × S1, which is just the (Sn−4)-stabilization of a 4-dimensional hole
D2 × S1 × S1. Lemma 3.4, with r = 1, applies to this 4-dimensional
hole and fills it with a foliation, whose (Sn−4)-stabilization fills N1×S1.

This completes the proof of Proposition 3.5 in every dimension n ≥ 4,
in case i = 1 or n− 2. In dimension 4, this second proof of Proposition
3.5 will be the right one for the concordance argument in the next
section.

3.3.3. Proof of Proposition 3.5 for the intermediate indices. In case
n ≥ 5 and 2 ≤ i ≤ n − 3, the base factor Σ = Sn−i−2 × Si−1 is a
product of two spheres of positive dimensions. (The author suggests to
think to the simplest case n = 5, i = 2). Unfortunately, there exists, of
course, no closed (n−4)-manifold X which would admit some mapping
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Figure 7. First schematic view on the “rolling up the
holes” process. Here, the codimensions are respected;
but, X0 being reduced to one point, V1 seems to be
inessential in B, which it is not: we have to go to V2.

of nonzero degree

X × S1 → Sn−i−2 × Si−1

that would be null-homotopic in restriction to X×1. We need one more
iteration in the ”rolling up” process: going somehow to the meridian
of the meridian (Figures 7 and 8).

Consider the (n− 3)-manifold

V := Sn−i−3 × S1 × Si−2 × S1
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Figure 8. Second schematic view on the “rolling up
the holes” process. In that figure, the codimensions are
wrong. Note that, for n = 5 and i = 2, actually V0 is a
disjoint union of four 2-tori.

and the Cartesian product j0 := en−i−3 × ei−2 of the two embeddings
given by Lemma 3.6:

j0 : V → D1 × Sn−i−2 ×D1 × Si−1 ∼= D2 × Σ = B

Put V0 := j0(V ). The mapping pr2 ◦ j0 : V → Σ being of degree one,
V0 together with 1× Σ bound an orientable compact hypersurface W0

in B. Of course, the bundle normal to V0 in B is trivial. One defines

X0 := j0(S
n−i−3 × 1× Si−2 × S1)
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and one defines W1 as the total space above X0 of the (trivial) D2-
bundle normal to V0 in B. Let V1 := ∂W1 and choose a diffeomor-
phism j1 : V → V1 such that the normal projection of every point
j1(x1, θ1, x2, θ2) to V0 is j0(x1, 1, x2, θ2). In the same way, one defines

X1 := j1(S
n−i−3 × S1 × Si−2 × 1)

and one defines W2 as the total space over X1 of the D2-bundle normal
to V1 in B. Let V2 := ∂W2, a third embedding of V into the inte-
rior of B; and let N0, N1, N2 be pairwise disjoint, compact tubular
neighborhoods of V0, V1, V2, respectively, in the interior of B.

This N2 is inessential in B. Indeed, every submanifold of codimen-
sion 2 being inessential in the product of a sphere of positive dimension
with an interval, the bisphere j0(S

n−i−3× 1×Si−2× 1) is inessential in
B. But clearly, shrinking the fibre 2-disks over X0 and X1, one brings
N2 arbitrarily close to this bisphere through an isotopy in B.

One continues the filling of Hn
i (2 ≤ i ≤ n − 3) much as one did

above in the case i = 1, n− 2. In Diffc(−1,+1), some diffeomorphisms
αj, βj, φj (0 ≤ j ≤ 2) are chosen such that:

• φ0 = φ;
• Each φj = [αj, βj];
• For all j 6= k, the supports of αj, βj are disjoint from those of
αk, βk;
• For every j ≥ 1, the support of φj brackets those of αj−1 and
βj−1.

One writes

C := B \ Int(N0 ∪N1 ∪N2)

and fills the sub-hole C ×D1 by the suspension of the representation

ρ : γ 7→ φ
(W ∗0 γ)
0 φ

(W ∗1 γ)
1 φ

(W ∗2 γ)
2

It remains to fill the sub-holes N0 ×D1, N1 ×D1 and N2 ×D1.
The first one is the stabilization by X := Sn−i−3 × Si−2 × S1 of a

4-dimensional hole D2×S1×D1, whose monodromy is φ0 over ∂D2 and
φ1 over the incompressible S1 factor. Lemma 3.3 (with r = 1) applies
to D2×S1×D1 and fills it with a foliation, whose X-stabilization fills
N0 ×D1.

The second hole N1 × D1 is the (Sn−i−3 × Si−2)-stabilization of a
5-dimensional hole D2 × T2 ×D1, whose monodromy is φ1 over ∂D2

and φ0, φ2 over the two incompressible S1 factors. Lemma 3.3 (with
r = 2) applies to D2 × T2 × D1 and fills it with a foliation, whose
(Sn−i−3 × Si−2)-stabilization fills N1 ×D1.
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The third hole N2 × D1 is the X-stabilization of a 4-dimensional
hole D2 × S1 × D1, whose monodromy is φ2 over ∂D2 and φ1 over
the incompressible S1 factor. Since N2 is inessential in B, one can
extend this hole through the worm gallery, and one obtains a round hole
N2×S1, which is just the X-stabilization of a 4-dimensional round hole
D2×S1×S1. Lemma 3.4 (with r = 1) applies to D2×S1×S1 and fills
it with a foliation, whose X-stabilization fills N2 × S1. This completes
the proof of Proposition 3.5 in the case n ≥ 5 and 2 ≤ i ≤ n− 3, and
the construction of a minimal foliation on M .

4. Prescribing the concordance class of the foliation as
a Γ1-structure.

In this section, one more step is made towards Theorem A. We are
given a closed connected manifold M of dimension n ≥ 4 whose Euler
characteristic is zero; and, on this manifold, a smooth, co-oriented Γ1-
structure ξ. We build a concordance from ξ to some minimal foliation;
that is, a Γ1-structure η on M̄ := M × [0, 1] such that η|(M × 0) = ξ
and that η|(M × 1) is regular and minimal. Actually, we shall verify
that the method used in the preceding section, with some extra care,
builds such a concordance.

By a Morsifying concordance, we mean of course a Γ1-structure η on
M̄ such that η|(M × 0) = ξ and that η1 := η|(M × 1) is Morse. Call
every s ∈ M × 1 which is singular for η1, a boundary singularity. The
index of s will always mean its Morse index in M × 1. Call s a positive
(resp. negative) half Morse singularity of η, if M̄ admits at s some
local coordinates x0 = 1− pr2, x1,. . . , xn, w.r.t. which η is defined by
the quadratic form

(sign)x20 − x21 − · · · − x2i + x2i+1 + · · ·+ x2n

where sign = +1 (resp. −1).
It is immediate to make a first Morsifying concordance: start from

the pullback Γ1-structure pr∗1(ξ) on M̄ , and recall that it is the germ,
along M̄ × 0 in M̄ × R, of some foliation X , defined on some open
neighborhood U of M × 0 in M ×R, and transverse to the R-fibres.
For a generic smooth section σ : M̄ → U which is zero over M × 0,
the restriction σ|(M × 1) has only quadratic tangencies with X . Take
η := σ∗(X ). Note that generically, the boundary singularities of η are
not half Morse singularities. However, it is easy to make them such,
after a perturbation of η supported in a small neighborhood of s, and
relative to M × 1. The sign can be chosen arbitrarily.
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Now, we make η|(M × 1) regular and minimal through the same
successive transformations as in the section 3. We have to verify, for
each transformation, that it extends to the concordance. This will
follow from some inductive extension property of the transformation:
it can be extended from M × 1 to M × [0, 1], relatively to M × 0,
by one half of the same transformation performed in dimension n+ 1.
In fact, this property will always come from a sequence of models to
which the transformation is conjugate through some local chart. One
will have a minimal dimension n0 and, for every n ≥ n0, a model
space En of dimension n endowed with two model Γ1-structures εn, ε′n

(maybe with holes), such that En ⊂ En+1 is a separating hypersurface,
that εn = εn+1|En, and that ε′n = ε′n+1|En (induction property). The
transformation consists in changing the original structure εn to the final
structure ε′n.

In the remaining of this section, we verify that the transformations
used in the section 3 are inductively extendable. We shall content
ourselves with pointing the main points; some do deserve some care.
We begin with the creation and cancellation tools, before passing to
the process used in the section 3 itself.

Write 1
2
Dk+1 for the compact half unit (k+ 1)-disk, defined in Rk+1

by x20 + · · · + x2k ≤ 1 and x0 ≥ 0; write 1
2
Sk for the compact half

unit k-sphere, defined in Rk+1 by x20 + · · · + x2k = 1 and x0 ≥ 0. So,
∂(1

2
Dk+1) = 1

2
Sk ∪Dk.

4.0.1. Creation of a pair of singularities. The creation of a pair of
Morse singularities s, s′, of respective indices i and i+ 1, is inductively
extendable. One creates two positive half Morse singularities of the
concordance. The model is defined in every dimension n ≥ n0 := i+ 1.
The model n-space is En := Rn. Here, Rn is included in Rn+1 as the
hyperplane xi+1 = 0. The two model Γ1-structures εn, ε′n are defined
respectively by the functions xn and fi ◦Fi−1 of Example 2.2, (2). The
induction property is immediately verified on the formulas of Example
2.2, (2).

4.0.2. Cancellation of a pair of singularities. The cancellation of a pair
of Morse singularities s, s′, of respective indices i and i+1, is inductively
extendable. The model is defined in every dimension n ≥ n0 := i + 1.
The model n-space is En := Rn. Here, Rn is included in Rn+1 as the
hyperplane xi+1 = 0. The original model Γ1-structure εn is defined by
the function fi ◦Fi−1 of Example 2.2, (2). The final model Γ1-structure
ε′n is given by Lemma 2.3: it is defined by the function fi ◦Fi−1, except
on some small neighborhood N of the cancellation disks, where it is
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defined by g. The induction property is verified throughout the proof
of this lemma: the point is that we can choose the pseudogradient
∇ and the isotopy φ̄h to be tangential to the hyperplane xi+1 = 0.
With this choice, the function induced by g on this hyperplane is also
noncritical (and every connected component of every level set of the
induced function in N , meets ∂N).

To cancel a pair of boundary singularities, the hypotheses are as
follows. In M̄ , let η be a Morsifying concordance; let s, s′ be a pair
of boundary singularities, whose respective indices in M × 1 are i and
i + 1. Assume that s is a positive half Morse singularity of η. At
s, define a half stable (n − i + 1)-disk as the image of an embedding
F : 1

2
Dn−i+1 → M̄ , such that F (0) = s, that F−1(M × 1) = Dn−i, and

that F ∗η = ξn−i+1
can |1

2
Dn−i+1 (compare Definition 2.6).

Assume that η admits at s a half stable (n−i+1)-disk 1
2
Ds. Assume

that η admits at s′ an unstable (i + 1)-disk Du, contained in M × 1.
Assume that Du ∩ 1

2
Ds is a single point x ∈ M × 1, at which the

attachment spheres ∂Du and ∂(1
2
Ds ∩ (M × 1)) meet transversely in

the leaf of η|(M × 1) through x.
The cancellation itself is as follows. Write

1

2
Rn+1 := {(x1, . . . , xn+1) ∈ Rn+1/xi+1 ≥ 0}

Turn s′ into a positive half Morse singularity of η. Then, using the
relative Morse lemma (see 2.1) at s′, and another relative form of the
Morse lemma at s (exercise), one makes, on a neighborhood of 1

2
Ds∪Du

in M̄ , a local conjugation of η with εn+1|1
2
Rn+1, such that the two stable

half disks match, and the two unstable disks match. One changes η,
close to 1

2
Ds ∪ Du, to the preimage of ε′n+1|1

2
Rn+1 through the local

conjugation.

4.0.3. Replacement of a local extremum. The replacement of a singu-
larity s of index 0 (resp. n) by one of index 2 (resp. n − 2) and a
Reeb component, as in paragraph 3.1, is defined in every dimension
n ≥ 3, and inductively extendable. This follows easily from 4.0.1 and
4.0.2. First, one turns the boundary singularity s into a positive (resp.
negative) half Morse singularity of the concordance η; in other words,
η admits at s a small half stable (resp. unstable) (n + 1)-disk; then,
one creates close to s a pair of positive (resp. negative) boundary sin-
gularities s′, s′′ of indices 1 and 2 (resp. n− 1 and n− 2); finally, one
cancels s with s′. One is left with s′′ and a half (n + 1)-dimensional
Reeb component.
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4.0.4. Minimization. The minimization process of paragraph 3.1 is de-
fined for every n ≥ 3 and inductively extendable — as follows essen-
tially from 4.0.1. The model n-space En is Dn−1 ×D1. The inclusion
En ⊂ En+1 is the standard one. In En+1, one arranges that the four
singularities s1, s2, s

′
1, s
′
2 of f , whose indices are respectively 1 and 2

and 1 and 2, lie in En, and that f |En be Morse with exactly the same
singularities and the same indices. Then, the whirl is also inductive.

4.0.5. Matching. The creation, as in 3.2, of new pairs of singularities,
until they match into pairs of successive indices, is of course inductively
extendable, by 4.0.1.

4.0.6. Whirl and holes. In the paragraph 3.2, given two singularities of
indices i and i+1, and at them two small, disjoint, stable and unstable
disks, a whirl changed these disks into a cancellation pair, at the price
of a hole. This whirl is defined for n ≥ i+2; it is inductively extendable.
Here, En := Rn; the model Γ1-structures are the height Γ1-structure
defined by xn = 0, and the holed Γ1-structure described in 3.2. The
inclusion En ⊂ En+1 is

Rn−i−1 ×Ri ×R ⊂ Rn−i ×Ri ×R

Returning to this transformation in M̄ , some precision is necessary;
and we describe the structure of the resulting hole.

One starts from a matched pair s, s′ of boundary singularities of η,
of indices i, i+ 1, with 1 ≤ i ≤ n− 2; and from a path from s to s′ in
M × 1, positively transverse to η but at its endpoints.

The case i = n − 2 must be avoided; the reason will appear in the
next paragraph. In case i = n − 2, we reverse the co-orientation of η
to shift to the case i = 1. So, 1 ≤ i ≤ n− 3.

We make s and s′ positive. Then, the whirl that gives them a can-
cellation pair, and their cancellation, are extended to M̄ by one half of
the same transformation in dimension n+ 1. This leaves a nonfoliated
half hole

1

2
Hn+1
i
∼= D2 × 1

2
Sn−i−1 × Si−1 ×D1

whose intersection with M × 1 is Hn
i (Figure 9).

4.0.7. Worm galleries. The enlargement of the holes is inductively ex-
tendable. Thanks to the minimality of η|(M × 1), one enlarges each
connected component of each half hole 1

2
Hn+1
i with a half worm gallery

1
2
W n+1 ∼= 1

2
Dn ×D1, whose intersection with M × 1 is a worm gallery

W n ∼= Dn−1×D1. (This is the point that would fail if one had allowed
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Figure 9. A half hole and its half worm gallery. This
low-dimensional figure may be misleading because of the
number of half worm galleries.

i = n−2, since the number of galleries would not be the same for Hn+1
i

and for Hn
i ).

4.0.8. Filling the holes. It remains to fill the enlarged half holes, which
amounts to verifying that the filling of the enlarged holes, performed
in 3.3, is inductively extendable.

In the case i = 1, the model space En, defined for every n ≥ 4, is

Hn
1 ∪W n = (D2 × Sn−3 × S0 ×D1) ∪ (Dn−1 ×D1) ∪ (Dn−1 ×D1)
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The inclusion En ⊂ En+1 is induced by the standard inclusions Sn−3 ⊂
Sn−2 and Dn−1 ⊂ Dn.

In the case i ≥ 2, the model space En, defined for every n ≥ i+ 3, is

Hn
i ∪W n = (D2 × Sn−i−2 × Si−1 ×D1) ∪ (Dn−1 ×D1)

The inclusion En ⊂ En+1 is induced by the standard inclusions Sn−i−2 ⊂
Sn−i−1 and Dn−1 ⊂ Dn.

One has to verify that the filling of Hn+1
i ∪W n+1 induces by restric-

tion the filling of Hn
i ∪W n.

The embedding Lemma 3.6 admits the following inductive version,
whose proof is straightforward. Write the inductive limit of the spheres
Sk as S∞.

lemma 4.1. There is a mapping

e : S∞ × S1 → D1 × S∞

such that

(1) For each k ≥ 0, the restriction ek := e|(Sk×S1) is an embedding
of Sk × S1 into Int(D1 × Sk+1);

(2) For each k ≥ 0, the composite pr2ek is a mapping of degree one
from Sk × S1 onto Sk+1.

Now we apply the filling process of paragraphs 3.3.2 and 3.3.3, using
the embeddings ek given by Lemma 4.1 (For n = 4 and i = 1, we
don’t apply paragraph 3.3.1, whose construction is not inductive; it
is not clear whether this construction results in a concordance of Γ1-
structures).

Almost extremal index — Consider the case i = 1, n ≥ 4. Recall
Hn+1, a connected component of Hn+1

1 ; and its base Bn ∼= D2 × Sn−2.
Since en−3 extends en−4, in Bn, one easily arranges that V0, W0, X0,
W1, V1, N0, N1, C intersect the base Bn−1 ∼= D2×Sn−3 of Hn along the
analogous subsets. Then, the representation ρ and the filling of C are
inductive. The filling of N0 by means of a stabilization of Lemma 3.3
is obviously inductive: the induction carries simply on the stabilizing
factors Sn−4 ⊂ Sn−3. In the same way, N1 being inessential in Bn

and N1 ∩ Bn−1 being inessential in Bn−1, one chooses a half n-ball
1
2
Dn ⊂ Bn containing N1, whose boundary intersects Bn−1 along a

(n − 1)-ball Dn−1. One takes 1
2
Dn (resp. Dn−1) as the entrance and

exit of the worm gallery attached to Hn+1 (resp. Hn). Then, the
extension of N1×D1 through the gallery, by a round hole, is inductive.
Its filling is inductive, for the same reasons as for N0. Thus, the filling
of the enlarged holes of index 1 is inductive.
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Intermediate index — In case 2 ≤ i ≤ n − 3, completely similar
arguments show that the filling of the enlarged holes of intermediate
index is also inductive.

5. Prescribing the homotopy class of the foliation as a
hyperplane field.

In this section, we are given a closed connected manifold M of di-
mension n ≥ 4; a co-oriented, Morse-singular, minimal Γ1-structure ξ
on M ; and a nonsingular vector field V on M . We build a minimal
foliation whose negative gradient is homotopic to V . We apply the
same method as in the paragraphs 3.2 and 3.3, but we take more care
in the choice of the cancellation disks and of the cancellation arcs, in
order to control the homotopy class of the pseudogradients of the out-
put foliation. The smooth (C∞) differentiability class is understood
everywhere. Obviously, this section is compatible with the preceding
one, thus proving Theorem A.

5.1. Generalities on the opposition between a nonsingular vec-
tor field and a pseudogradient.

5.1.1. Definitions.

definition 5.1. A pseudogradient for ξ is a vector field ∇ on M such
that:

• ∇ is negatively transverse to ξ, except at the singularities of ξ;
• On some neighborhood of every singularity of ξ, the field ∇

is the negative gradient of some local first integral of ξ with
respect to some flat local Riemannian metric.

One immediately makes a pseudo-gradient∇, using the Morse Lemma
and a partition of the unity.

vocabulary 5.2. We call x ∈ M an opposition point between V
and ∇, and write x ∈ O(V,∇), if V (x) and ∇(x) are nonpositively
colinear. Every singularity of ξ is an opposition point. We call x
a regular opposition point, if moreover x /∈ Sing(ξ). We call x a
nondegenerate opposition point, if moreover V and ∇ are transverse to
each other at x, as sections of the projectivized tangent bundle. Then,
O(V,∇) is a curve in a neighborhood of x.

At a regular opposition point x, let c be the real factor V (x)/∇(x).
The opposition framing Fx(V,∇) is the differential at x of the vector
field V − c∇, modulo R∇(x). So, Fx(V,∇) is a linear morphism from
TxM to TxM/R∇(x) = Txξ. Clearly, x is nondegenerate iff Fx(V,∇)
is of maximal rank n− 1.
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We call a regular opposition point x noncubic if Fx(V,∇) is of rank
n−1 in restriction to Txξ. Then, x is nondegenerate; the curve O(V,∇)
is transverse to ξ at x; and Fx(V,∇) gets identified with a linear au-
tomorphism of Txξ. We also get an opposition, Poincaré-Hopf index:
the sign of the Jacobian of this automorphism.

We call a regular opposition point x hyperbolic if Fx(V,∇) restricted
to Txξ induces a hyperbolic linear automorphism of Txξ. Then, x is
noncubic; and Txξ splits as the direct sum of the stable space E s

x (V,∇)
with the unstable space E u

x (V,∇). We also get an opposition, stability
index: the dimension of E s

x (V,∇).
A nondegenerate opposition point which is a Morse singularity of

ξ|O(V,∇) is called a cusp. The Morse index is 0 or 1. At such a point,
the Euler-Poincaré index changes.

Alternatively, we can view these properties in terms of the vector field
X on M \Sing(ξ), projection of V on the leaves of ξ parallelly to∇. On
some domain of M \ Sing(ξ), let x1, . . . , xn−1, xn be local coordinates
such that ξ is defined by xn. One thinks of X, in this domain, as
a one-parameter family of vector fields on the plaques xn = const,
parametrized by xn. Write Lx for the plaque through x. If x is an
opposition point, then x is a singularity of X|Lx. The opposition point
is noncubic (resp. hyperbolic) iff X|Lx has a nondegenerate (resp.
hyperbolic) singularity at x. Then, Fx(V,∇) is simply the differential
of X|Lx at x. At a cusp of index 0 (resp. 1), in the one-parameter
family X, one sees the birth or the death of a pair of nondegenerate
singularities.

example 5.3. a) Given an index 1 ≤ i ≤ n− 2, recall the function Pi
of Example 2.2. Consider the parallel vector field U := −∂/∂xn, and
the negative Euclidean gradient ∇Pi. Every regular opposition point
between U and ∇Pi is hyperbolic.

Precisely, the opposition locus is the segment [s, s′]. At every regular
opposition point, the Lagrange multiplier c := U/∇Pi equals (3x2n −
3)−1; the differential of U − c∇Pi is diagonal; its eigenvalues being −2c
(with multiplicity i); +2c (with multiplicity n− i− 1); 2xn(x2n − 1)−1

(not relevant since its eigenvector is ∇Pi). Therefore, the opposition
between U and ∇Pi is hyperbolic w.r.t. Pi; the framing is positively
proportional to Ii ⊕−In−i−1; the opposition index is n− i− 1.

b) The same holds if we change Pi and ∇Pi for fi and its negative
Euclidean gradient ∇fi: indeed, O(U,∇fi) = [s, s′], as follows from the
observations made in Example 2.2 about the partial derivatives of fi.

example 5.4. a) Given two indices 1 ≤ i ≤ n − 2, and j = 0 or 1,
recall the function Pi of Example 2.2. Consider the parallel vector field
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Vj := (−1)j+1∂/∂x1−∂/∂xn, and the negative Euclidean gradient ∇Pi.
Some straightforward computations give the following.

• The opposition locus between Vj and∇Pi is an arc (of parabola)
bounded by s and s′;
• This arc is not tangent to the isotropic cones of d2Pi at s, nor

at s′;
• Every regular opposition point is nondegenerate (precisely, for
c := Vj/∇xfi, the endomorphism Dx(Vj − c∇Pi) = cHessxPi,
being diagonal with entries ±2c, . . . , ±2c, 6cxn, is of rank n−1
modulo Vj);
• Every regular opposition point is noncubic, except one, which

is a cusp of index j.

b) We claim that, for a good choice of the plateau function φ in
Example 2.2, the same as a) holds for the function fi and for the
opposition between Vj and the negative Euclidean gradient ∇fi.

Indeed, to the conditions given for r and φ in Example 2.2, add that
r2 ≥ 65; that O(Vj,∇Pi) ⊂ Br; and that 0 ≤ φ′ ≤ 1/3. We have to
verify that every opposition point x between Vj and ∇fi is of norm at
most r.

By the equation (2) in Example 2.2, one has x2 = · · · = xn−1 = 0.
Also, ∂fi/∂x1 = ∂fi/∂xn ≤ 0. On the one hand, with the equation
(3), one sees that |xn| ≤ 1; with the equation (3) again, one gets
|∂fi/∂xn| ≤ 8. On the other hand, since |φ′| ≤ 1/3, the equation (2)
gives |∂fi/∂x1| ≥ |x1|. Finally, |x1| ≤ 8, and x21 + x2n ≤ 65.

5.1.2. Opposition close to the singularities. Given a singularity s of ξ,
let i be its Morse index. On a neighborhood, let f be a local first
integral for ξ and let g be a local, flat Riemanian metric, such that
∇ is the gradient of f with respect to g (Definition 5.1). Let Hesssf
denote the g-symmetric linear automorphism of TsM associated to the
bilinear form d2sf . Write h := (Hesssf)−1V (s) ∈ TsM . Let H ⊂ TsM
be the hyperplane g-orthogonal to V (s), and d2fs-orthogonal to h. Let
S be the g-symmetric endomorphism of H associated to d2sf |H.

We say that the opposition is anisotropic at s, with respect to ξ, if
d2sf(h, h) 6= 0. In other words, S is invertible.

lemma 5.5. Consider the opposition between V and ∇ close to the
singularity s.

i) On some neighborhood of s, the opposition locus can be parametrized
as a smooth curve t 7→ x(t) (t ≥ 0) such that x(0) = s and x′(0) = −h.

Assume moreover that the opposition is anisotropic at s. Assume
that d2fs(h, h) > 0 (resp. < 0). Then:
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ii) For every small t > 0, one has (f ◦ x)′(t) > 0 (resp. < 0);
iii) As t goes to 0, the tangent hyperplane Tx(t)ξ goes to H; and the

rescaled framing

F ′
x(t)(V,∇) := ‖V (x(t))‖−1‖∇(x(t))‖Fx(t)(V,∇)

goes to −S;
iv) For every small t > 0, the opposition point x(t) is hyperbolic

w.r.t. ξ, the opposition index being n− i− 1 (resp. n− i);
v) The family of planes and automorphisms (Tx(t)ξ,F

′
x(t)(V,∇)), ex-

tended at t = 0 by (H,−S), is smooth at t = 0.

See Figure 10.

Proof. One identifies a neighborhood of s in M with an open subset of
Rn, and g with the Euclidean metric. One regards locally the vector
fields as self-mappings of Rn.

i) Put F (x, t) := ∇(x) + tV (x). The opposition curve is defined by
F (x, t) = 0 and t ≥ 0. The partial derivate ∂F/∂x|(s,0) = −Hesssf be-
ing invertible, by the Implicit Function Theorem, the opposition curve
has a smooth parametrization x(t) with x(0) = s; and x′(0) = −h.

ii) This is because (f ◦ x)′(0) = 0 and (f ◦ x)′′(0) = d2sf(h, h).
iii) As t goes to 0, obviously, Tx(t)ξ = V (x(t))⊥ goes to V (s)⊥ = H.

Write ν for −‖∇‖−1∇, the unit vector field positively normal to the
level sets of f . At the regular opposition point x := x(t), close enough
to s, differentiate the projected vector field X = V − 〈V, ν〉ν along the
level set Lx := f−1(f(x)). Recall that the Weingarten endomorphism
Dx(ν|Lx) is also ‖∇(x)‖−1Sx, where Sx is the symmetric endomorphism
of TxLx associated to d2xf . One finds after rescaling:

(4) F ′
x(V,∇) = −Sx + ‖V (x)‖−1‖∇(x)‖(pr ◦DxV )

where pr is the orthogonal projection of TxM onto TxLx = V (x)⊥. As
x goes to s, the first term does go to −S, while the second goes to 0.

iv) By the anisotropy hypothesis, −S is hyperbolic and its stability
index (the number of eigenvalues whose real part is negative) is n−1−i
(resp. n− i). By iii), so is the opposition framing at every opposition
point close enough to s.

v) Follows at once from the formula (4) (of course, the function
‖∇(x(t))‖ is smooth with respect to t ≥ 0). �

5.1.3. Hyperbolic opposition and the homotopy class of output pseudo-
gradients. A hyperbolic opposition will allow us to control the homo-
topy class of the pseudogradients of the output foliation. The crucial
step is of course when a pair of singularities is canceled (Lemma 2.8).
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Figure 10. Opposition locus between a nonsingular
vector field and a pseudogradient, close to a singularity.
Some orbits of the vector field X, orthogonal projection
of V on the leaves, have been sketched.
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Figure 11. A cancellation pair of disks and an adapted opposition.

definition 5.6. (Figure 11) Consider a pair of singularities s, s′; a
cancellation pair of disks Ds, Du for ξ at s and s′; an arc A ⊂ Ds∪Du
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bounded by s and s′; and a neighborhood N of Ds ∪ Du. We say
that the opposition between V and ∇ is adapted to the quadruple
(N,Ds,Du, A) if:

i) The opposition locus in N coincides with A;
ii) Every regular opposition point x ∈ A\∂A is hyperbolic; moreover,

if x ∈ Ds (resp. Du), then the stable (resp. unstable) space E s
x (V,∇)

(resp. E u
x (V,∇)) is the intersection of Txξ with TxDs (resp. TxDu).

In Example 5.3, the opposition between −∂/∂xn and ∇fi is adapted
to the quadruple (Rn,Ds,Du, [s, s′]).

Note that, in Definition 5.6, the pseudogradient needs not be tangent
to the cancellation disks, nor to the arc.

lemma 5.7. Let f be a Morse function on an n-manifold M ; let s, s′ be
a pair of critical points of f admitting a pair of cancellation disks Ds,
Du; and let A ⊂ Ds ∪Du be an arc bounded by s and s′. Let N ⊂ M
be a sufficiently small, embedded compact n-ball containing Ds ∪Du in
its interior. Let g be a noncritical function on some neighborhood of
N , coinciding with f on ∂N . Let V be a nonsingular vector field on
some neighborhood of N , s.t. V · f < 0 on ∂N .

Assume that f admits a pseudogradient whose opposition with V is
adapted to the quadruple (N,Ds,Du, A).

Then, every pseudogradient for g which coincides with V on ∂N , is
homotopic to V rel. ∂N .

observation 5.8. From now on, we use repeatedly an (extremely
obvious) convex homotopy trick to make V coincide with ∇ on any
given closed subset K ⊂ M disjoint from O(V,∇). One chooses
some plateau function φ on M , equal to 1 on K, and whose support
is disjoint from O(V,∇). The homotopy of nonsingular vector fields
Vt := (1− tφ)V + tφ∇ brings V = V0 to V1, which equals ∇ on K. One
changes V for V1; the opposition locus with ∇ is not changed, nor the
framing.

Proof of Lemma 5.7. Using the relative Morse Lemma (see 2.1), one
embeds some small open neighborhood of Ds ∪Du into Rn, such that
f matches the function fi of Example 2.2; that s, s′, Ds, Du match the
points s, s′ and the disks Ds, Du of Example 2.2; and that A matches
[s, s′]. So, we are reduced to the situation where M = Rn; where ξ
is defined by fi; where A = [s, s′]; and where s, s′, Ds, Du are as in
Example 2.2. We are given a compact n-ball N containing Ds ∪ Du

in its interior; a nonsingular vector field V on some neighborhood of
N , s.t. V · fi < 0 on ∂N ; a pseudogradient ∇ for fi on some neigh-
borhood of N , whose opposition with V is adapted to the quadruple
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(N,Ds,Du, [s, s′]); a noncritical function g on some neighborhood of N ,
coinciding with fi on ∂N ; and a pseudogradient ∇g for g, coinciding
with V on ∂N .

We extend V and ∇ to Rn, such that on Rn \N one has V · fi < 0
and ∇·fi < 0; and that on some neighborhood of∞ one has V = ∇ =
−∂/∂xn. Then, one extends g and ∇g to Rn, such that on Rn \N one
has and g = fi and ∇g = V .

One has to prove that ∇g is homotopic to V on N rel. ∂N ; or,
equivalently, on Rn rel. some neighborhood of ∞. Since every orbit of
∇g descends from Rn−1 × (+∞) down to Rn−1 × (−∞), by Douady’s
chord trick [9], ∇g is homotopic to −∂/∂xn on Rn rel. some neigh-
borhood of ∞. It remains to show that −∂/∂xn is homotopic to V on
Rn rel. some neighborhood of ∞. This will follow from an elementary
Pontryagin-Thom-like argument. However, reducing to the classical
theory would be more tedious than giving the argument from scratch.

First, rescale V (multiplication by a positive function) to arrange
that, on [s, s′], one has ∇/V = ∂fi/∂xn. Then, consider on Rn the
convex homotopies

Vt := (1− t)(−∂/∂xn) + tV

∇t := (1− t)∇fi + t∇
The field Vt is nonsingular at every point x of [s, s′]: indeed, at x 6= s, s′

(resp. x = s or s′), both vectors −∂/∂xn and V (x) lie on the same side
of the hyperplane ker(dxfi) (resp. the hyperplane H of Lemma 5.5).
The opposition locus between Vt and ∇t contains [s, s′].

Claim: On some small neighborhood N ′ of [s, s′] in N , there appears
during the homotopy no other opposition point between Vt and ∇t.

Close to s and s′, the claim follows from Lemma 5.5, (i). Close to
x ∈ [s, s′] s.t. 0 ≤ xn < 1 (resp. −1 < xn ≤ 0), the reason is that the
opposition framing between Vt and ∇t at x is hyperbolic too. Indeed,
thanks to the rescaling of V , one has

F (Vt,∇t) = (1− t)F (−∂/∂xn,∇fi) + tF (V,∇)

But, the opposition between −∂/∂xn and ∇fi and the opposition be-
tween V and∇ being both adapted to the quadruple (N,Ds,Du, [s, s′]),
one has

E s
x (−∂/∂xn,∇fi) = E s

x (V,∇)(
resp. E u

x (−∂/∂xn,∇fi) = E u
x (V,∇)

)
The set of the (n− 1)× (n− 1) real hyperbolic matrices whose stable
(resp. unstable) space is Rn−i−1× 0 (resp. 0×Ri), is of course starred
with respect to its point −In−i−1 ⊕ Ii. The claim is proved.
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For every x ∈ Rn \ {s, s′}, and for every t ∈ [0, 1], the space of the
vectors of Rn not opposite to ∇t(x) is contractible. On Rn \ [s, s′], V0
is not opposite to ∇0, and V1 is not opposite to ∇1. On N ′ \ [s, s′], the
field Vt is not opposite to ∇t. On some neighborhood of ∞, the field
Vt = −∂/∂xn is not opposite to ∇t. Hence, after the Homotopy Lifting
Property for fibrations, the local homotopy (Vt|N ′) can be extended on
Rn by a homotopy (V̄t) of vector fields such that V̄0 = −∂/∂xn; and
V̄1 = V ; and V̄t is not opposite to ∇t at any point of Rn \ [s, s′]; and
V̄t = −∂/∂xn on some neighborhood of ∞. Lemma 5.7 is proved.

�

5.1.4. Tools for modifying an opposition locus. We end this paragraph
by introducing three tools that will be used, in the next one, to modify
the opposition locus.

(1) Creation of a pair of cusps, by means of a local homotopy of V ;
(2) Cancellation of a pair of cusps, by means of a homotopy of V ;
(3) Creation of a pair of singularities and of an opposition arc with

one cusp, by means of a local concordance of ξ, of a local mod-
ification of ∇, and of a local homotopy of V .

(1) Let x be a regular, noncubic opposition point between V and ∇.
The local creation of a pair of cusps close to x can be seen as a standard
application of the elementary Pontryagin-Thom theory (see e.g. [14]).
Consider a neighborhood N ∼= Dn−1×D1 of x, in which ξ is the height
foliation, and whose intersection with O(V,∇) is A := 0×D1. One fixes
a parallelization of the manifold N with respect to which the vector
field ∇ is parallel. The nonsingular vector fields in N are seen as maps
to Sn−1. Let A′ be in N an arc isotopic to A rel. ∂A, and on which
the height function is Morse, with two singularities. In N × [0, 1], the
arcs A and A′, together with ∂A× [0, 1], bound a topological disk. By
Theorems B and C of [14] there is on N a nonsingular vector field V ′,
homotopic to V rel. ∂N , such that O(V ′,∇) = A′; and the opposition
is nondegenerate. We change V to V ′ in N .

(2) Let c0, c1 ∈ O(V,∇) be two cusps of respective indices 0 and 1.
Since ξ is minimal, c0 and c1 bound in M an oriented arc T transverse
to ξ, and disjoint from O(V,∇) but at c0 and c1. Consider a small
neighborhood N ∼= Dn−1 ×D1 of T , in which ξ is the height foliation,
and whose intersection with O(V,∇) consist of two small arcs A0, A1

centered at c0, c1, with ∂A0 ⊂ Dn−1 × (+1) and ∂A1 ⊂ Dn−1 × (−1).
One completes the square with two disjoint arcs A′, A′′ ⊂ N transverse
to the height foliation, and such that ∂(A′ ∪ A′′) = ∂(A0 ∪ A1). One
chooses A′ and A′′ such that F (V,∇) has the same Euler-Poincaré
index at the two endpoints of A′ (resp. A′′). As before, by Theorems
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B and C of [14], there is on N a nonsingular vector field V ′, homotopic
to V rel. ∂N , such that O(V ′,∇) = A′ ∪ A′′; and the opposition
is nondegenerate. We change V to V ′ in N . As a result, the locus
O(V,∇) has been modified through an elementary surgery.

(3) Given two indices i, j, such that 1 ≤ i ≤ n − 2 and j = 0 or 1,
choose in M a point x where V and ∇ are not opposite.

Then, x admits a small open neighborhood U ∼= Rn whose closure Ū
is disjoint from O(V,∇); and in which ξ is defined by the polynomial
function F n

i = Qn
i + x3n + 3xn of Example 2.2; and in which ∇ is

positively colinear to −∂/∂xn. Since, at every regular point, the set
of vectors tangent to M and not opposite to ∇ is contractible, after a
homotopy of V among the vector fields not opposite to ∇, supported in
a small neighborhood of Ū , one can arrange that V = (−1)j+1∂/∂x1−
∂/∂xn in U . In U , we change ξ for the Γ1-structure defined by fi (see
Example 2.2), thus creating a pair of singularities of indices i, i + 1.
Also, let ∇′ be a pseudogradient for fi on U , equal to the negative
Euclidean gradient ∇fi on some neighborhood K of O(V,∇fi), and
to ∇ on some neighborhood U \ K ′ of ∂U . By the homotopy lifting
property for fibrations, there is a nonsingular vector field V ′ on U ,
homotopic to V rel K∪ (U \K ′), and nowhere opposite to ∇′ on U \K.
In U , we change ∇ for ∇′ and V for V ′. Then, in U , the opposition
is normal; the opposition locus between V and ∇ is an arc between
the two singularities; and there is a unique cusp on this arc, of index j
(Example 5.4, d).

5.2. End of the proof of Theorem A. We come back to the data of
a closed n-manifold M (n ≥ 4), endowed with a minimal, co-oriented
Morse Γ1-structure ξ; and with a nonsingular vector field V .

Let ∇ be a pseudogradient for ξ on M .

5.2.1. Anisotropy, nondegeneracy, and Morse position. First, we ar-
range that:

a) At every singularity of ξ, the opposition curve between V and ∇
is not tangent to the isotropic cone of ξ;

b) Every regular opposition point is nondegenerate;
c) Every cubic opposition point is a cusp.
For ξ and ∇ fixed, these are generic properties of the nonsingular

vector field V . Indeed, close to the singularities, the genericity of (a)
and (b) follows at once from Lemma 5.5, (i) and (iv). On the rest of M ,
the genericity of (b) follows from the Thom Transversality Theorem;
the genericity of (c) follows from the classical normal form Theorem
for the one-parameter families of germs of vector fields; but we don’t
even need this classical result. Alternatively, once (a) and (b) have
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been fulfilled, the opposition locus is a smooth submanifold of M of
dimension 1, whose boundary is exactly the set of singularities of ξ.
To get (c), we can more simply push V and ∇ by a common, C1-small
isotopy of M , relative to some small neighborhood of the singularities.
By the Thom Transversality Theorem, a generic such isotopy pushes
the opposition curve to the Morse position with respect to ξ.

5.2.2. Acyclicity and noncubicity. The locus O(V,∇) may have some
connected components homeomorphic to the circle. On each of them,
using tool (1) of paragraph 5.1.4, we create a pair of cusps. Now, no
circle connected component is cusp-free.

For every cusp c of index 0 (resp. 1) on O(V,∇), using tool (3),
we create an opposition arc bearing a cusp c′ of index 1 (resp. 0).
Using tool (2), we cancel c with c′. Now, every regular opposition
point is noncubic; and every connected component of O(V,∇) is an arc
transverse to ξ.

For each opposition arc A, orient A by the co-orientation of ξ; let ∂0A
(resp. ∂1A) be the lower (resp. upper) endpoint; let i0(A) (resp. i1(A))
be the Morse index of ξ at this endpoint; and let δ(A) := i1(A)− i0(A).
This integer is odd, since the Poincaré-Hopf degree of the opposition,
which is constant along A, equals (−1)i0(A) close to ∂0A, and (−1)i1(A)−1

close to ∂1A (Lemma 5.5, iv).
Note that, if the opposition happens to be hyperbolic along A, then

δ(A) = 1. This follows at once from Lemma 5.5 (iv), the stability index
being constant along A.

5.2.3. Making δ equal 1. Our next task is to arrange that δ(A) = 1 for
every opposition arc A (Figure 12). In case δ(A) ≥ 3 (resp. δ(A) ≤
−1), one creates on A a pair of cubic points c0, c1 of respective indices
0 and 1 (tool 1). Note that the points ∂0A, c1, c0, ∂1A lie in this order
along A. Also, by two uses of the tool (3), one creates in M two new
opposition arcs A′, A′′, such that i0(A

′) = i0(A) + 1 (resp. i0(A
′) =

i0(A) − 2) and i1(A
′) = i0(A) + 2 (resp. i1(A

′) = i0(A) − 1) and
i0(A

′′) = i0(A) + 1 (resp. i0(A
′′) = i0(A)) and i1(A

′′) = i0(A) + 2 (resp.
i1(A

′′) = i0(A) + 1). The new opposition arcs have two cusps c′ ∈ A′,
c′′ ∈ A′′ of respective indices 1 and 0. One cancels c0 with c′ and c1
with c′′ (tool 2). One is left, instead of A, with three opposition arcs
B, C, D without cubic points. One has ∂0B = ∂0A and ∂1B = ∂0A

′′

(resp. ∂0B = ∂0A and ∂1B = ∂1A
′′) , so δ(B) = 1; one has ∂0C = ∂0A

′

and ∂1C = ∂1A
′′ (resp. ∂0C = ∂1A

′ and ∂1C = ∂0A
′′), so δ(C) = 1; one

has ∂0D = ∂1A
′ and ∂1D = ∂1A (resp. ∂0D = ∂0A

′ and ∂1D = ∂1A),
so δ(D) = δ(A)− 2 (resp. δ(D) = δ(A) + 2).

Iterating this process, one gets δ = 1 for all the opposition arcs.
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Figure 12. Reducing δ, in the case δ ≥ 3.

5.2.4. Hyperbolicity. Here, we moreover make every regular opposition
point hyperbolic; by means of a homotopy of V in a small neighborhood
of the opposition locus, and relatively to some small neighborhood of
the singularities. The opposition locus itself will not be changed.

Consider an opposition arc A. Close to both its endpoints, F (V,∇)
is hyperbolic, with the same stability index σ := n − i0(A) − 1 (by
Lemma 5.5, iv, and δ(A) = 1). Applying Theorems B and C of [14] in
a small neighborhood of some large subarc A′ ⊂ A\∂A, one is reduced
to homotope the opposition framing F (V,∇)|A′ to some hyperbolic
framing, relatively to ∂A′.

Since no singularity of ξ is a local extremum, one has 1 ≤ σ ≤ n− 2.
In the linear group GL(Rn−1), consider the subset Hσ of the hyper-
bolic automorphisms whose stable invariant subspace is of dimension σ.
Of course, Hσ is connected (being homotopy equivalent to the Grass-
mannian manifold of the σ-planes in Rn−1). Consider also the con-
nected component GL±(Rn−1) of GL(Rn−1) containing Hσ. We are
reduced to the remark that GL±(Rn−1) is simply connected relatively
to Hσ. This fact is well evident: at the basepoint h := (−I)σ⊕ In−1−σ,
the fundamental group of GL±(Rn−1) is generated by the loop (uθh),
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where (uθ) (θ ∈ [0, 2π]) is any one-parameter subgroup of rotations in
Rn−1. We choose uθ to be the rotation of angle θ in the (x1, xσ+1)-
plane, and the identity in the other coordinates. Then, of course,
uθh = (uθ/2)h(uθ/2)

−1 is hyperbolic for every θ.

5.2.5. Adapted disks, and cancellation. Then, for every opposition arc
A, we modify ξ in a small neighborhood of A, so that its endpoints s,
s′ get in cancellation position, just as in paragraph 3.2; but we arrange
that the cancellation pair of disks that we create is adapted (Definition
5.6) to the opposition between V and ∇. Here are the details.

Let i and i + 1 be the respective indices of s and s′. Recall the
family of the stable, framing-invariant (n−i−1)-planes E s(V,∇) ⊂ Tξ,
defined and smooth over A\∂A. By Lemma 5.5 (v) and the anisotropy
of A at s, this family extends smoothly at the endpoints of A; the limit
plane Hu ⊂ H is the unstable, S-invariant subspace. Therefore, one
has in M an open (n−i)-disk D containing A, and whose tangent space
at every x ∈ A \ ∂A (resp. at s) is E s

x (V,∇) (resp. Hu). In particular,
s is a nondegenerate local minimum of f |D. By the Morse Lemma, D
contains a small stable disk Ds for ξ at its singularity s. Symmetrically,
one has an open (i+ 1)-disk D′ containing A, and whose tangent space
at every x ∈ A \ ∂A is E u

x (V,∇); and ξ has at s′ a small unstable disk
Du ⊂ D′.

Write a ⊂ A for the compact subarc whose endpoints are A ∩ ∂Ds

and A ∩ ∂Du. One can arrange, changing ∇ and V without changing
the homotopy class of V , nor the opposition locus, nor the opposition
framing, that ∇ is tangential to D and to D′ on a neighborhood U of
a. Indeed, by means of a partition of the unity, one makes a pseudo-
gradient ∇′ for ξ, equal to ∇ outside some small neighborhood of a,
and tangential to D and to D′ on a smaller neighborhood U of a; one
splits V on M \ Sing(ξmin) as V = X + u∇ where X is tangential to
ξ and where u is a function; one changes ∇ to ∇′; one changes V to
X + u∇′, which is of course homotopic to V .

Then, shrinking U if necessary, we identify U with Rn as in para-
graph 3.2. Since ∇ is tangential to D and to D′, we can arrange more-
over that the identification turns ∇ into −∂/∂xn (up to some positive
function factor); turns D ∩ U into Rn−i−1 × 0 ×R; and turns D′ ∩ U
into 0×Ri ×R. Consequently, after rescaling ∇:

(1) On Rn\Hn
i , the field ∇ is a pseudogradient for the Γ1-structure

ξwhl;
(2) In the hole Hn

i , the field ∇ coincides with the height gradient;
(3) The opposition between V and ∇ is adapted to the cancellation

pair of disks Φ(Ds),Du.
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Let NA be in M a small open neighborhood of Φ(Ds) ∪ Du, diffeo-
morphic to the open n-ball, so small that ξ admits a first integral f
on NA, and so small that Lemma 2.3 applies. Just as in paragraph
3.2, in NA one changes ξ to the Γ1-structure defined by the noncritical
function g. Having done so for each component A of O(V,∇), one gets
a minimal foliation Fhol on Mhol := M minus the holes.

Let N ⊂ M be the union of the NA’s. After a homotopy of V
whose support is disjoint from the opposition locus, we can arrange
moreover that V = ∇ on some neighborhood of M \N (since at every
regular point, the set of vectors tangent to M and not opposite to ∇ is
contractible). Let ∇′ be a vector field on M which is a pseudogradient
for Fhol in each NA, and coincides with ∇ on some neighborhood of
M \ N . For each component A, the hypotheses of Lemma 5.7 are
fulfilled in NA. By this Lemma, V is homotopic to ∇′ relatively to
M \N . We change V to ∇′ on M .

5.2.6. Worm galleries. We are left with a foliation Fhol on Mhol; and
with a nonsingular vector field V on M , which is a pseudogradient for
Fhol on Mhol, and which coincides with the height gradient in each
hole.

As in paragraph 3.3, we attach, to every connected component of
every hole, a worm path in Mhol, transverse to Fhol, from the ceiling
of the hole to its floor. After a homotopy of V supported in a small
neighborhood of the worm paths, one can arrange that V is moreover
tangential to the worm paths. Then, when we enlarge the worm paths
to make worm galleries, as in paragraph 3.3, we can choose the enlarge-
ment so that in every gallery, the height gradient is positively colinear
to V .

5.2.7. Filling the holes. Finally, one fills the holes, as in paragraph
3.3: that is, let MHOL be the complement in M of the interiors of the
enlarged holes, and let FHOL := Fhol|MHOL. One extends FHOL by
a foliation inside each enlarged hole, obtaining a foliation F on M ,
concordant with ξ.

It remains to arrange that F admits a pseudogradient ∇F which
coincides with V on MHOL, and which is homotopic to V relatively to
MHOL.

In the parts of the enlarged holes that one fills by suspensions, one
defines of course ∇F as the height gradient. So, one is reduced to
arrange that, in Lemmas 3.3 and 3.4, the filling foliation F admit a
pseudogradient ∇F equal to the height gradient −∂/∂y along ∂H, and
homotopic to −∂/∂y rel. ∂H.
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Consider first the straight case. In paragraphs 3.3.1, 3.3.2 and 3.3.3,
we can choose φ1 such that moreover, φ1(y) ≥ y for every y ∈ D1. So,
in the hypotheses of Lemma 3.3, one has moreover ψ1(y) ≥ y. Then, in
H, obviously F admits a pseudogradient ∇F , equal to −∂/∂y along
∂H, such that (∇F ) ·θ1 ≥ 0 at every point of H. Here, θ1 is, of course,
the projection of Tr onto its first S1 factor. Then, ∇F and −∂/∂y,
being both nowhere opposite to ∂/∂θ1, are homotopic rel. ∂H.

The round case is similar, the condition ψ1(y) ≥ y referring to the
connected component of S1\K containing y, oriented by the orientation
of S1.

6. Generalizations

Our Theorem A (as well as Thurston’s existence theorem) is indeed
more general than the form given in the introduction, in three ways:

• The compact manifold M may have a smooth boundary. We
shall consider only the construction of foliations transverse to
this boundary;
• One works in any differentiability class Cr, 1 ≤ r ≤ ∞;
• The Γ1-structures are not necessarily co-oriented.

In full generality, on the manifold M , a codimension-one Haefliger
structure of class Cr — more briefly a Γr1-structure [4][5] — can be
defined as a pair ξ = (ν(ξ),F (ξ)):

• A rank-one real vector bundle ν(ξ) over M : the normal bundle;
• In the total space of ν(ξ), a germ, along the zero section Z(M),

of codimension-one foliation F (ξ) of class Cr, transverse to
every fibre: the microfoliation.

The Γr1-structure is regular at a point x ∈ M if Z is transverse
to F (ξ) at x. One makes no distinction between a foliation and a
regular Γ1-structure. A concordance between two Γr1-structures ξ0, ξ1
on M means a Γr1-structure on M × [0, 1] whose restriction to M × i
coincides with ξi (i = 0, 1). Then, ν(ξ0) and ν(ξ1) are isomorphic. A
(ν(ξ))-twisted tangent vector V at a point x ∈M is a linear morphism
ν(ξ)x → τMx. If V is transverse to ξ, the sign of this transversality is
well-defined. If ξ is regular, it admits a gradient, that is, a ν(ξ)-twisted
vector field negatively transverse to ξ.

theorem A’. Let

• M be a compact manifold of dimension at least 4;
• ξ be a Γr1-structure (1 ≤ r ≤ ∞) on M , inducing a foliation on
∂M ;
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• V be a nonsingular, ν(ξ)-twisted vector field on M , tangential
to ∂M , and whose restriction to ∂M is a gradient for ξ|∂M .

Then, there is a minimal Cr foliation on M , concordant to ξ rel. ∂M
(as a Γr1-structure), and whose gradient is homotopic to V rel. ∂M (as
a nonsingular, ν(ξ)-twisted vector field).

The generalization of the h-principle to manifolds with boundary is,
of course, the key to classifying foliations up to concordance. Here is
a simple example of a nontrivial application of our Theorem A’ for
manifolds with boundary. Any two linear foliations of codimension
one on the 3-torus are concordant through some smooth foliation of
T3 × [0, 1] without interior leaf.

We now indicate the few changes to be made in the sections 4 and
5.2, in order to prove Theorem A’.

To pass to the relative version, just change M for Int(M) wherever
necessary: one never has to modify ξ, nor V , on the boundary.

Of course, in class C1, the notion of Morse singularity is not defined.
Without co-orientability, the index of a Morse singularity is not defined;
and the index of a cusp opposition point (see vocabulary 5.2) is not
defined. However, an arbitrary differentiability class Cr (1 ≤ r ≤ ∞)
and/or a lack of differentiability will make few problems, because one
will always arrange to work in an open subset Ω ⊂ M on which ξ is
co-orientable and smooth (C∞). To this end, five places in the proof
need some care.

i) In section 4, by assumption, the foliation X representing the germ
pr∗1(F (ξ)) in U is of class Cr. First, it is not difficult to make a section
σ1 of ν(ξ) of class C1 overM×1, which is U -valued, and whose tangency
points with X are isolated ([11], Proposition 2.1). Second, X is easily
smoothed in a neighborhood of these tangency points, through some
ambient, C1-small isotopy of class Cr in U . Third, one takes for σ
a generic, smooth, U -valued section of pr∗1(ν(ξ)) over M̄ , null over
M × 0, and C1-close to σ1 over M × 1. So, η := σ∗(X ) is of class
Cr, and smooth in a neighborhood of its boundary singularities, which
are Morse. From this moment, one always works with a Γr1-structure
which is Cr on M , smooth on a neighborhood of its singularities; and
the singularities are Morse.

ii) In section 5.2, V is understood smooth; all pseudogradients are
understood smooth. In paragraph 5.2.1, after (a) and (b) have been
fulfilled, O(V,∇) is a smooth submanifold of M of dimension 1, trans-
verse to ξ in a neighborhood of its boundary Sing(ξ). The property
(c) still makes sense provided that ξ is smooth in an open neighbor-
hood of O(V,∇). To get this local smoothness and (c), one will push ξ
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successively by four isotopies of M , of class Cr, small in topology C1,
and relative to some neighborhood of Sing(ξ). A first isotopy allows us
to arrange that ξ has only a finite number of tangency points with the
curve O(V,∇) (cubic opposition points). Then, using the elementary
Weierstrass Approximation Theorem, one has a second isotopy, with
support in some small neighborhood of these tangency points, which
makes ξ smooth in some smaller, open neighborhood N of the tan-
gency points. After this second isotopy, the tangency points form a
compact subset of N . Then, using the Thom Transversality Theorem,
one has a third isotopy, smooth and with support in N , which makes
all tangency points be cusps. There remains to make ξ smooth close to
the arcs of O(V,∇) bounded by the cusps and the endpoints, and close
to the cusp-free circle components of O(V,∇). Since these arcs and
circles are transverse to ξ, this is easily realized by a fourth isotopy,
whose support is contained in in a small neighborhood of O(V,∇), but
disjoint from the singularities and the cusps.

iii) At the beginning of the paragraph 5.2.2, one replaces a cusp c
by a new opposition arc. This construction can take place in a small
neighborhood of c, where ξ is co-oriented and smooth.

As soon as O(V,∇) is a union of arcs transverse to ξ except at
their endpoints, obviously ξ is co-orientable (and smooth) in some open
neighborhood Ω of O(V,∇). One fixes arbitrarily a co-orientation Or
in Ω.

iv) In the paragraph 5.2.3, one uses tool (2) several times to cancel
some pairs of cusps. Let c, c′ be one of these pairs, of respective indices
0 and 1 with respect to Or. This tool needs an arc T in M transverse to
ξ, such that ∂T = {c, c′}, and such that the co-orientation Or extends
along T . But such an arc does exist, because every codimension-one,
minimal foliation which is not co-orientable, has a strong transitivity
property: for every two points x, y and every two tangent vectors v ∈
TxM , w ∈ TyM both transverse to the foliation, there is a transverse
path γ : [0, 1] → M such that γ(0) = x, γ′(0) = v, γ(1) = y, and
γ′(1) = w. Also, one makes ξ smooth on some neighborhood of T ,
by a C1-small isotopy of class Cr. We extend Ω by a small open
neighborhood of T .

So, we keep an open neighborhood Ω of O(V,∇) where ξ is smooth
and co-oriented.

v) The rest of the proof (paragraphs 5.2.3 through 5.2.7) takes place
in Ω, except for the worm galleries (paragraph 5.2.6).

For each connected component of each hole, recall that a worm path
means a path in M minus the holes, transverse to ξ, and joining the
ceiling of the component to its floor. Such a path does exist, thanks to
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the strong transitivity property recalled in iv). Then, the worm path
being transverse to ξ, one can make ξ smooth in a small neighborhood
of the arc, through some C1-small isotopy of class Cr, whose support
is close to the arc; and then dig the gallery in this neighborhood. Also,
the co-orientation of νξ over the component obviously extends first over
the worm path, and then, over the gallery.
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topes à l’identité, du tore de dimension n, C. R. Acad. Sci. Paris, Sér. A-B,
273 (1971), A232–A234, MR0287585, Zbl 0217.49602.

[7] M.R. Herman, Sur le groupe des difféomorphismes du tore, Ann. Inst. Fourier
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