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Abstract 12 

The paper‟s main objective is to address the problem of health monitoring of system parameters in Bond Graph (BG) 13 

modeling framework, by exploiting its structural and causal properties.  The system in feedback control loop is considered 14 

globally uncertain and parametric uncertainty is modeled in interval form. The system parameter is undergoing degrada-15 

tion (prognostic candidate) and its degradation model is assumed to be known a priori. The detection of degradation 16 

commencement is done in a passive manner which involves interval valued robust adaptive thresholds over the nominal 17 

part of the uncertain BG-derived Interval Valued Analytical Redundancy Relations (I-ARRs). The latter forms an efficient 18 

diagnostic module. The prognostics problem is cast as joint state-parameter estimation problem, a hybrid prognostic ap-19 

proach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter 20 

(prognostic candidate). The observation equation is constructed from nominal part of the I-ARR. Using Particle Filter (PF) 21 

algorithms; the estimation of state of health (state of prognostic candidate) and associated hidden time-varying degrada-22 

tion progression parameters is achieved in probabilistic terms. A simplified variance adaptation scheme is proposed. As-23 

sociated uncertainties which arise out of noisy measurements, parametric degradation process, environmental conditions 24 

etc. are effectively managed by PF. This allows the production of effective predictions of the remaining useful life of the 25 

prognostic candidate with suitable confidence bounds. The effectiveness of the novel methodology is demonstrated 26 

through simulations and experiments on a mechatronic system.   27 

Keywords: Prognostics, Bond Graph, Intervals, Particle Filter, Remaining Useful Life, Robust Fault Detection  28 
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Abbreviations & Acronyms 

RUL Remaining Useful Life I-ARR Interval Valued Analytical Redundancy Rela-

tions 

EOL End of Life DPP Degradation Progression Parameter 

DM Degradation Model RMAD Relative Median Absolute Deviation 

BG Bond Graph RA Relative Accuracy 

BG-LFT Bond Graph in Linear Fractional Transfor-

mation 

RMSE 

SIR 

Root Mean Square Error 

Sampling Importance Resampling 

PF Particle Filters ARR Analytical Redundancy Relations 
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Notations 

θ  System parameter d  Degradation progression parameter associated to 

θ d  

θ d  System parameter under degradation 

(prognostic candidate) 

*d
 

True value of d  

θd

n  Nominal value of θ
d

 p probability 

θ
 Additive uncertainty on θ  

X
 

Standard deviation value of random specie X 

  
Multiplicative uncertainty on θ  2

X  Variance of population values of X 

   
Multiplicative uncertainty in interval 

form, equivalent to , 
     

N
 

Number of particles in PF 

 w  
Uncertain effort or flow brought by 

interval uncertainty on θ , to the sys-

tem. 

w i

k  Weight of i
th

  particle at discrete time k 

( )nr t  Numerical evaluation of the nominal 

part of I-ARR 

dy
 

Measurement of prognostic candidate θ
d

 

X̂
 

Estimated value of species X ( )dw t   Noise associated with measurement of θ
d

   

,R R 
   

Interval valued ARR (I-ARR) d  Normally distributed random walk noise for d  

2Ψ  Interval function (uncertain part of I-

ARR) 

dP  Proportional gain constant in variance adaptation 

of 
d  

1  Point-valued nominal part of I-ARR v
d

 RMAD (spread) of  
d  

2  Interval function 2Ψ with point val-

ued arguments 

*v
d

 Reference RMAD (spread) involved in variance 

adaptation scheme 

( )b t  Numerical evaluation of 2  * *,d d

l u   

 

Interval containing *d  

( ), ( )B t B t 
 

 

Range of interval function 2Ψ  ˆ
d

k  
Moving average of mean estimations of d   

 31 
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1. Introduction  33 

Health Monitoring aims at ensuring system safety, reliability and efficient functionality and deals with fault detection 34 

and prediction of the Remaining Useful Life (RUL) of the system in a holistic way. While the former two is mainly dealt 35 

by using a diagnostic module, the latter is performed by a prognostic module. The primary focus lies in scheduling the 36 

maintenance actions according to progression of the system to a time where it may be considered beyond the limits of 37 

certified functionalities [1]. Such a time-horizon of interest is termed as the End of Life (EOL) and the time remaining 38 

until that point is called RUL of the system [2, 3]. Prognostics are focused on the study of fault (or damage) evolution and 39 

prediction of the RUL of the system/component. Accurate prediction of EOL/RUL enables efficient and optimal planning 40 

of the future maintenance actions, and renders the capability of assessing reliability of the system [4]. This leads to sys-41 

tem/component‟s life extension by modification of the system demand, operating conditions, workload etc. [5].   42 

The failures of most systems can be attributed to the degradation of a given component, subsystem or material with 43 

time, environmental and operational conditions etc. Such system components/sub-systems can be identified as the poten-44 
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tial prognostic candidates through Failure Modes, Mechanisms and Effect Analysis or through other ways [6]. The under-45 

lying physical degradation is usually captured by Degradation Model(s) (DM) that can be obtained based upon physics of 46 

degradation or statistical (experimental) modeling approach as described in Gebraeel et al.[7] and Guo et al.[8]. In cases 47 

where physics of degradation is not available or reliable, the respective DM can be obtained statistically by finding a 48 

mathematical model that best fits a given set of degradation data. In this context, commonly employed DMs to fit the data 49 

are of linear, logarithmic, power or exponential form [8]. For example, approximation of degradation model by a linear 50 

part and logarithmic/exponential part [9], employment of exponential fit growth models [10], log-linear model for current 51 

drain degradation process [11] and stochastic degradation model [12].  52 

Prognostic approaches are broadly divided into three categories [3, 13]: model-based prognostics [14], data-driven 53 

prognostics [15, 16] and hybrid prognostics [9, 17]. In model based approach, the degradation model is physics based and 54 

requires a detailed understanding of the underlying phenomenon [1]. Inadequate modeling information, variation in behav-55 

ioral physics or environmental conditions, un-modeled/unclassifiable sources of noise etc., result in limiting its adequacy.  56 

Data-driven methods tend to learn the damage progression. However, they generalize damage progression over large sets 57 

of component population and remain unreliable in assessing the variability of damage progression trend from component 58 

to component in a population [1]. As such, they provide inferior results especially in absence of complete data and large 59 

unit to unit variations. Hybrid approaches on the other hand, benefit from the fusion of the advantages of the former two 60 

[9]. They employ physics or statistical based degradation models and use measured information to adapt the damage pro-61 

gression, accounting for un-modeled variations, environmental changes, external noise etc.  62 

Prognostic approaches set as a joint state-parameter estimation problem [18], have been widely useful and may fall 63 

under hybrid approach wherein, the prediction of RUL is based on current estimate of damage state and  state of damage 64 

propelling hidden parameters. Prediction of the RUL is obtained as probability distribution and accounts for the various 65 

uncertainties involved [18-21]. 66 

Choice of the filter for estimation and prediction process depends on the assumptions that can be made about the sys-67 

tem, and desired performance [22]. Well-known Kalman filter, an optimal estimator for linear systems, has been used for 68 

prognostics in[23, 24]. Extended Kalman Filter (EKF) [25]or Unscented Kalman filter [26], may also be used for parame-69 

ter estimation posing the problem as joint state-parameter estimation or as Expectation-Maximization problem [27] etc. 70 

However, they remain restricted to additive Gaussian noise. Also, EKF being sub-optimal diverges quickly if the initial 71 

estimate of state is significantly far from true value, or the model considered for estimation is not correct [10]. Compre-72 

hensive comparative studies of filters for prognostic purposes are found in [10, 22, 28]. 73 

Set in Monte-Carlo framework, Particle Filters (PF) or Sequential Monte Carlo methods [29] form a suitable filter 74 

choice in this context, as it can be applied to non-linear systems corrupted with non-Gaussian noises for which, optimal 75 

solutions may be unavailable or intractable. Recently, particle filters have been exploited voraciously for prognostic meth-76 

ods [30, 31]. Significant works include prediction of end of discharge and EOL in lithium-ion batteries [32], battery health 77 

monitoring [33], prediction of battery grid corrosion [34], estimation and prediction of crack growth [35-38], fuel cell 78 

prognostics [9], application to damage prognostics in pneumatic valve from the Space Shuttle cryogenic refueling system 79 

[18, 39], estimation-prediction of wear as concurrent damage problem in centrifugal pumps with a variance control algo-80 

rithm [20], employment in distributed prognosis [21], exploring uncertainty management options for prognostics [40] etc. 81 

Particle filters attract considerable attention [41], owing to the ever growing efforts being made for enhancement of per-82 

formances and computational efficiency, such as the use of correction loops[42], fixed–lag filters [43] and the recently 83 

proposed adaption of the degradation model with a kernel smoothing method [44]. Although a large amount of research 84 
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exists in model based diagnostics and prognostics, very few promise the achievement/implementation of all key require-85 

ments in a common framework and the realization through a unified modeling paradigm [45, 46]. 86 

In this context, Bond Graph (BG) modeling technique becomes a very suitable tool to deal with dynamic systems, es-87 

pecially those that belong to multi-energetic domains. A very brief and non-exhaustive introduction is given here. BG is a 88 

topological modeling language, where the exchange of energy between the different components of a dynamic system is 89 

captured in a graphical form. The energy exchange link is called a bond and there are two generic power variables named 90 

effort e and flow f, associated with every bond, such that e f Power  . The set of elements{ , , }I C R , model the system 91 

parameters/component where I, C, and R are the inertial element, capacitance element and dissipation element respective-92 

ly. The latter along with the elements{0,1, , }TF GY  define the junction structure (global structure of the system) where TF 93 

and GY are the transformer element and gyrator element respectively. Junction 0 (or 1) implies that all the connected 94 

bonds have same effort (or flow) and the sum of flows (or efforts) equals zero. For efficient simulation of the physical be-95 

havior of the system, the computational order of the variables (e and f) must be decided systematically. For that purpose, 96 

the cause and effect decisions are described by the notion of causality. Causality in BG models is depicted by a perpen-97 

dicular stroke on a bond. It determines whether the flow for a bond is computed from the effort or vice versa. The end of 98 

the bond which receives the effort is represented by the perpendicular stroke at that end of the bond.  If all of the energy 99 

storage elements in a model are in integral form, the system is in integral causality. The constitutive equations of I and C 100 

respectively, in integral causality are
2
 (linear case): ( ) (1/ ) ( )f t I e t dt   and ( ) (1/ ) ( )e t C f t dt  . For diagnosis task , 101 

where the initial conditions are unknown in real processes, the BG model is constructed in preferred derivative causality 102 

where the term “preferred” implies “wherever it is possible” . Derivative causality dictates the constitutive equation of I 103 

and C respectively, to be as (linear case): ( ) ( ( )) /e t I d f t dt and ( ) ( ( ))/f t C d e t dt . For a detailed introduction from 104 

the ab initio and various related behavioral, structural and causal properties, the readers are referred to following works 105 

[47-49] and [50].  106 

For uncertain dynamic systems too, BG has been used extensively for modeling purposes and development of supervi-107 

sion techniques. This includes Fault Detection and Isolation (FDI) of complex systems [51], highly non-linear and com-108 

plex thermo-chemical systems [52], non-linear mechatronic systems [53], intelligent and autonomous systems [54-56], 109 

industrial chemical reactors [57], hybrid systems [58] etc. In BG framework, the FDI is mainly based upon Analytical Re-110 

dundancy Relations (ARRs)[59, 60] or by usage of the algebraic observers [55, 61]. Specifically, for uncertain systems, 111 

BG in Linear Fractional Transformation (BG-LFT)[62, 63] has been widely implemented for robust diagnosis by generat-112 

ing adaptive thresholds with respect to parametric uncertainties[64-66]. Very recently in Jha et al. [67], the authors have 113 

proposed modeling of parametric uncertainties in interval form. Unlike BG-LFT, where the threshold limits are simply the 114 

summation of the absolute values of each of the induced uncertain effort/flow at the junction [64] leading to an over-115 

estimation of threshold bounds, the  interval valued thresholds consider the sensitivity of each uncertain candidate to the 116 

respective residual. Even though there has been wide implementation of BG for robust diagnosis of complex processes 117 

[65], there have been very little efforts if none, towards the development/integration of prognostic techniques in BG 118 

framework.  119 

The few motivations propelling the development of this work are: 120 

  Initial steps towards system level prognostics in BG framework: There are many benefits of using BG, including but 121 

not limited to: systematic graphical representation of the governing differential equations, efficient decomposition of 122 
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  For any non-linear function X  with respect to BG element X, integral causality:

 
 ( ) ( )If t e t dt    and  ( ) ( )Ie t f t dt   ; derivative cau-

sality:
1( ) ( ( )) /Ie t d f t dt  and

1( ) ( ( ))/Cf t d e t dt   
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large scale multi-energetic systems into subsystems based upon functionality, an efficient understanding of the under-123 

lying physics, explicit knowledge of cause-effect relationships, validated FDI techniques at global as well as local 124 

level etc.  On the other hand, benefits of system level prognostics are many [68]. For almost all practical purposes, 125 

any plant (the dynamic system of interest) is a feedback closed loop system such that the system outputs follow a de-126 

sired reference. As such, the system level prognostics present unique challenges in that incipient parametric degrada-127 

tion may progress unnoticed in presence of controller compensated system outputs, resulting in non-estimation of the 128 

same till the saturation limit of controller is reached. BG derived ARRs being sensitive to system parameters and con-129 

trol inputs can be exploited for the same at local component level while being in closed loop regime. Such a kind of 130 

BG enabled health monitoring, can be achieved in a unified framework at global system level.    131 

  Very few and inefficient existing residual based prognostic approaches: Most of the previous residual based attempts 132 

in BG framework consider damage progression deterministic in nature, incapable of adapting to the current damage 133 

progression and hence, reliability of prediction is minimal [69-72]. Moreover, uncertainties associated with measure-134 

ments, operating conditions, process noise etc. have not been taken into account. This results in prediction of RUL 135 

without any associated confidence bounds, rendering it virtually useless for industrial certification and critical appli-136 

cations [73, 74]. 137 

 Inclusion of the recently developed  diagnostic methodology: Recently, [67, 75] proposed a methodology of modeling 138 

uncertainties in interval form and the subsequent diagnosis through interval valued thresholds. This generates a genu-139 

ine interest in its inclusion in an appropriate health monitoring framework. 140 

This paper‟s main objective is to address the problem of prognostics in BG modeling paradigm while the system is 141 

considered globally uncertain and parametric uncertainty is modeled in interval form. This is achieved by casting the prob-142 

lem as a joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by 143 

considering the statistical degradation model of the system parameter. The system parameter is known a priori to be un-144 

dergoing degradation. Measurements are obtained from BG derived residuals (evaluation of ARRs). Using PF algorithms, 145 

estimation of state of the system parameter under degradation (prognostic candidate) along with the associated unknown 146 

hidden time varying Degradation Progression Parameters(s) (DPPs) is achieved and tracked to obtain the state of damage 147 

in probabilistic terms which is used for prediction of RUL of the system with respect to that parameter.  148 

After this section, Section 2 details a fault detection algorithm where parametric uncertainty is modeled in interval 149 

form and Interval valued ARRs (I-ARRs) are derived systematically. The latter lead to the development of Interval valued 150 

robust thresholds over the nominal point-valued part of the I-ARRs. In Section 3, a novel methodology is proposed which 151 

includes construction of fault model and a novel way of obtaining the observation equation from the concerned nominal 152 

residual. In Section 4, the state of prognostic candidate and associated DPPs are estimated from the nominal part of the I-153 

ARRs, sensitive to the latter and control inputs, in Monte-Carlo framework using PF algorithms.  A novel variance control 154 

algorithm is proposed which ensures a suitable adaptation of random walk noise variance, once convergence is achieved in 155 

the estimation process. Prediction of the RUL is achieved in PF framework. Section 5 provides various evaluation metrics 156 

employed. In Section 6, the methodology is demonstrated through simulation and various issues are highlighted. In Sec-157 

tion 7, the methodology is tested experimentally by variation of frictional torque on a mechatronic system and Section 8 158 

draws the conclusions. The various novel contributions of the paper are listed as follows: 159 

 Integration of BG modeling framework and Monte Carlo framework for estimation of state of health and predic-160 

tion of RUL. 161 

 Exploitation of nominal part of I-ARRs derived in (BG framework) for detection of degradation beginning and 162 

prognosis of incipient parametric degradation in Monte Carlo framework using PF. 163 
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 Obtaining the observation equation from the nominal part of I-ARRs and construction of local fault model such 164 

that state of the prognostic candidate and RUL prediction is obtained while system outputs are feedback con-165 

trolled or otherwise.   166 

 Accounting the various noises associated with degradation process and nominal residual output, for estimation 167 

and RUL prediction. 168 

 Proportional control type variance adaptation algorithm with novel feedback condition that ensures a sustained 169 

convergence with low estimation variance (spread). 170 

Major assumptions are:  171 

 Only the system parameters are considered uncertain. Sensors are considered non-faulty. 172 

 The system parameter (prognostic candidate) that undergoes degradation is assumed to be known a priori.  The 173 

issue of isolation or isolability of the faulty candidate is assumed resolved.  174 

 DM of the prognostic candidate is assumed to be known a priori. 175 

 Single fault (degradation) hypothesis is followed for an I-ARR considered. 176 

 Noise associated with measurements (residuals) is assumed additive and normally distributed Gaussian in nature.  177 

2. Bond Graph Based Uncertain System Modeling 178 

Nominal model of any deterministic physical system may be modeled in BG form, in preferred integral causality, with 179 

nominal system parameters composed of basic elements  ,θ C,I,R TY,GY with
Nθ . Sub-script n denotes the nom-180 

inal value of the parameters. The sensor vector is formed by ( ) [ ( ), ( )]Tt t tY De Df  with ( ) DeN
t De being effort sensor 181 

vector and ( ) DfN
t Df being the flow sensor vector. The control/input vector is formed by ( ) [ ( ), ( )]Tt t tU Se Sf with 182 

( ) SeN
t Se and ( ) SfN

t Sf being respectively the source of effort and source of flow vectors. There is no uncertainty 183 

considered on system input (actuator/load/control input). The global system is considered uncertain with system parame-184 

ters in interval form , mN 
 
θ θ  where mN N  . The system parameter θ  is modeled in interval form as θ θ,θ 

  , 185 

where θ θ,θ θ θ θ     
   and θ,θ ,   

   
θ θ  . Then,  186 

 n l n u, ,        
 

          (1) 187 

   n n l u, , ,        
 

          (2) 188 

Here, θ 0l    and Δθu 0  are the additive uncertainty/deviation on the left and right sides, over the nominal value θn . 189 

[θ ,θ ]n n is a degenerate interval  with equal upper and lower bounds. For any additive uncertainty θ over θ , the multipli-190 

cative uncertainty is defined as: n/     . Multiplicative interval uncertainty , 
  
 

 is expressed as in (3) such that 191 

,  
    
  . Then, the uncertain θ may be expressed as shown in (4). 192 

 l n u n, / , / 
       
   

+n n, , 
         
     

(3) 

 

(4) 

Interval valued parameters are represented on an uncertain BG closely following the BG-LFT representation details of 193 

which can be referred in [63]. 194 

 195 
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2.1.1. Uncertainty Modeling and Representation on BG 196 

Uncertain system parameters can be represented in interval form on an uncertain BG by decoupling the nominal pa-197 

rameter value  ,θ n n nn n n C ,I ,R TY ,GY , from the uncertain interval part   n  where for the notational simplicity, 198 

 ,  
    
 

. The additional uncertain effort (or flow) is brought-in at the junction 1 (or 0) by interval uncertainty
i

   . 199 

It is represented on uncertain BG by a combination of: virtual effort (or flow) detectors 
θ* :De z (or θ* :Df z ) and fictitious 200 

source of effort input  :MSe w (or fictitious source of flow input  :MSf w ) (see (7) and Fig. 1 for illustration). In fact, 201 

the fictitious sources  :MSe w  (or  :MSf w ) are added to represent the introduction of an additional uncertain effort 202 

(or uncertain flow) generated by the interval uncertainty on the system. The virtual detectors *De (or *Df ) are used to 203 

represent the information exchange/transfer. The star „*‟ is added as super-script for distinguishing the fictitious detectors 204 

(signals) from the real ones. In general, symbol „:‟ is used alongside a generic BG element to indicate the value in its re-205 

spective characteristic equation. For instance, (see Fig. 1b) : nR R  indicates that the system component modeled as resistor 206 

R has the resistance value of nR in its characteristic equation R Re R. f . 207 

For pedagogical illustration, a resistor element R in resistance (imposed flow) causality is considered. 208 

 Nominal case (see Fig. 1a): The characteristic equation with parameter in nominal state (without any uncertainty) is 209 

expressed as:  210 

R Re R. f           (5) 211 

 Uncertain case (see Fig. 1b): With multiplicative interval uncertainty 
R R,  

 
, the characteristic law is expressed as: 212 

 1+R R R n R R Re ,e R,R . f R , . f        
                (6) 213 

   
R ,uncR ,n

R R n n R R

ee

e ,e R ,R . f w



   
            (7) 214 

where  R R R R R R n Rw , .z , .R . f          
    . Interval valued uncertain effort ,R unce  is brought at the 1-junction by  Rw215 

. For the notational simplicity,    : , . . :R R n R RMSe R f MSe w    
 

. As it is clear, the associated effort (or flow) infor-216 

mation z .R n RR f , is brought to  : RMSe w  by the virtual detector De
*
. 217 

For better illustration of the effort/flow transfer, Fig. 1c shows the equivalent block diagram representation of the uncertain 218 

BG in Fig. 1b. 219 

 

Fig.1. (a). Nominal R element (resistance causality), (b) Uncertain R element (resistance causality) in Interval form, (c) 

Equivalent Block Diagram Representation of Uncertain R element (Illustration of Signal Transfer)  
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 220 

Similarly, interval uncertainty can be modeled and represented for the other BG elements I, C, GY, TF, RS etc. For di-221 

agnosis based on ARR generation, the detectors are dualized such that effort detector De becomes a source of effort signal 222 

SSe and imposes the effort signal at the 0-junction connected to the detector. Flow detector Df becomes a source of flow 223 

signal SSf and imposes flow at the 1-junction connected to the detector [76]. 224 

2.1.2. Interval Valued ARR Generation 225 

Classically, an ARR is a constraint relation derived from an over-constrained system/subsystem. It is expressed in terms of 226 

only known variables of the process [77]. For any function f and set of known variables k, it has the form: ( ) 0f k . In the 227 

context of BG modeling, an : ( ( ), ( ), ( ), ( ) ) 0ARR f t t t t θSSe SSf Se Sf , , where θ is vector of system parameters. For  228 

deterministic systems, the properties and ARR generation algorithm are detailed in [59]. BG model in preferred derivative 229 

causality with dualized sensors are utilized to avoid unknown initial condition problem. For the uncertain systems, robust 230 

FDI is achieved by generation of uncertain ARRs with perfectly separable nominal part and uncertain part[64]. The ap-231 

proach of latter is described in [64] and here, it is adapted to obtain interval valued ARRs (I-ARRs) in presence of interval 232 

valued uncertainties. Consider the uncertain parameter vector , mN 
 
θ θ and mN N  , following steps are taken to gen-233 

erate I-ARRs: 234 

Step 1:  Preferred derivative causality is assigned to the nominal model. 235 

Step 2: Parametric uncertainties are modeled in interval form and represented on the nominal BG, as explained in section 236 

2.1.1 to obtain uncertain BG.  237 

Step 3: The candidate ARRs are generated from “1” or “0” junction, where power conservation equation dictates that sum 238 

of efforts or flows, respectively, is equal to zero, as shown in (8) and (9) with s being the sign rendered to the bond due to 239 

energy convention. 240 

 for 0-junction:s  
0

. , . : 0
mi N

i i

i

s f f Sf s MSf w




    
          (8) 241 

 for 1-junction:  
0

. , . : 0
mi N

i i

i

s e e Se s MSe w




    
          (9) 242 

Step 4: The unknown effort or flow variables are eliminated using covering causal paths from unknown variables to known 243 

(measured) variables (dualized detectors), to obtain the I-ARRs, ,R R 
  consisting of known variables only as shown in 244 

(10). The nominal part is characterized by point valued function 1 , with point valued nominal parameters as coefficients 245 

of point valued measured variables (cf.(12)). It is separated from the interval valued part which is identified as an interval 246 

function 2Ψ  (see Definition A.1 in Appendix A), sensitive to interval valued uncertainties (cf.(13)).  247 

  , : , , , , , ( ), ( )n iR R w Se Sf t t   
     Ψ θ θ,θ SSe SSf  

(10) 

 

 
1

2

( ), ( ) : ( ) ( ), ( )

( ) , ( ), ( ), ,

( ), ( ) , , ( ), ( )

n

n

R t R t r t B t B t

r t t t Se Sf

B t B t t t

   
   

 

     
     

 n

θ θ

θ

Ψ θ,θ δ ,δ

SSe SSf

SSe SSf

 

(11) 

(12) 

(13) 

Hereafter, ( )nr t being the numerical evaluation of the point-valued nominal part 1 , will be referred to as nominal resid-248 

ual and 2Ψ will be termed as Uncertain Residual Interval Function (URIF).  249 

2.2. Residual Based Determination of Degradation Model  250 
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In BG framework, the DM of a system parameter under degradation θ
d θ , θN

θ can be obtained from the time 251 

evolution profile of the respective ARR to which it is sensitive, assuming that the rest of the system parameters which are 252 

sensitive to the same, do not undergo any kind of progressive fault or degradation [69],[78]. Here, consider the point val-253 

ued part of the d
th

 I-ARR ( )dr t , such that with \ θ ( )d t θ θ , 0, ( ) 0d

nt r t  : 254 

 1( ) θ ( ), , ( ), ( ), ( ), ( )d d d

nr t t t t t t  θ SSe SSf Se Sf         (14)  255 

Here, the sub-script n denotes nominal value. The computed values of ( )dr t at time sample points give an implicit relation 256 

of the degradation profile of θ ( )d t in time. Assuming that implicit function theorem is satisfied [79], (14) gives a real val-257 

ued function d  such that: 258 

 θ ( ) ( ), , ( ), ( ), ( ), ( )d d

d nt r t t t t t  θ SSe SSf Se Sf         (15) 259 

Residual based DM should be obtained prior to prognostics i.e. prior to the phase when system‟s health monitoring is of 260 

interest.  261 

2.3. Fault Detection Using Interval Valued Thresholds 262 

In this work, the fault detection module is constructed for the robust detection of degradation commencement.  263 

2.3.1. Interval Valued Thresholds 264 

Consider point valued parametric deviation(s)  such that , , θ( ) , ,t   
                 
       

θ θ , ( )b t is the 265 

numerical evaluation of function 2 with point valued arguments (cf.(16)). 266 

 2 ( ) ,θ( ), ( ), ( )b t t SSe t SSf t  
 

(16) 

2Ψ can be considered as the Natural Interval Extension Function  of point valued function 2 (see Definition A.2 in Ap-267 

pendix A), with the point valued arguments and operators replaced by the corresponding interval arguments (time-268 

invariant here) and interval operators in the syntactic expression of the function 2 [80, 81]. Then, 2Ψ  can be expressed 269 

as finite sequence of interval arithmetic operations (evaluated as class code during implementation [81]) so that it is con-270 

sidered as a Rational Interval Function of 2 and hence, is inclusion isotonic (see Definition A.3 and Definition A.4 in 271 

Appendix A). Then, through Fundamental Theorem of Interval Analysis (see Theorem A.1 in Appendix A) the inclusion 272 

of (17) can be verified. 273 

( ) ( ), ( )b t B t B t 
 

 (17) 

Now, at all times, due to power conservation at the junction, 274 

( ) ( ) 0

( ) ( )

n

n

r t b t

b t r t

 

  
 

(18) 

Thus, the change in effort/flow brought by deviation at any instant in system is given by negative value of the nominal 275 

residual at that time. From (16),(17) and(18), following is used for fault detection: 276 

Under nominal conditions: 277 

( ) , ( )nr t B B t  
 

 (19) 

Fault is detected if: 278 
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( ) , ( )nr t B B t  
 

 (20) 

2.3.2. Robust Fault Detection 279 

The thresholds are generated by the range evaluation of URIF as shown in (19) and (20). In discrete time step k, the al-280 

gorithm for fault detection is given in Table I.  It should be noted that therein, the bounds of  URIF 2Ψ is computed by 281 

expressing them as a sequence (computational graph or code list) of real valued functions [81]. 282 

3. Fault model       283 

In this work, the system parameter that undergoes degradation is assumed to be known a priori. Let θ ( )d t θ  be such 284 

a prognostic candidate. The objective in this paper is to estimate the state of θ ( )d t based upon information (measurement) 285 

provided by the values of nominal residual sensitive to θ ( )d t , ( )d

nr t .  286 

3.1. State Equation 287 

The parameter under degradation θ ( )d t is included as a tuple  θ , ,d d dgγ to model the progressive fault where (.)dg de-288 

notes the linear/non-linear degradation progression function (DPF) obtained from the corresponding DM. The latter mod-289 

els the way degradation progresses in θ ( )d t :  290 

θθ ( ) ( ( ), ( )) ;θ ( 0) θ
dd d d d d

nt g t t t  γ v  (21) 

where, ( )
dN

d t  γγ is DPP vector and θθ ( )
d

d
N

t 
v

v is the respective associated process noise vector. The fault model for 291 

 θ , ,d d dgγ is constructed in state–space form by considering the parameter θ ( )d t as the state variable augmented with the 292 

DPP vector as, 293 

( ) ( ( ), ( ))dd d dt t t
x

x f x v  (22) 

where, ( ) θ ( ), ( )
T

d d dt t t   γx is the augmented state vector and d
f is state transition function following the Markovian 294 

assumption. 295 

3.2. Residual Based Observation Equation  296 

Here, the objective is to exploit the nominal residual for the estimation of state variables. This way, the nominal resid-297 

ual used for detection of degradation beginning can be further used furthur for estimation of state of health of the prognos-298 

tic candidate and associated DPPs. This is possible if the ARR expression is altered to obtain the observation equation in 299 

an appropriate way, such that the nominal residual provides the measurements of state variables. For this purpose, a sim-300 

ple algebraic approach is proposed.    301 

Theorem: Under the single degradation hypothesis, assuming the nominal part ( )d

nr t  of an I-ARR can be expressed as a 302 

linear combination of non-linear functions of θ ( )d t , the measurement of the state θ ( )d t can be obtained from the negative 303 

value of ( )d

nr t . 304 

Proof: Let θ ( )d t be the prognostic candidate and \ θ ( )d t θ θ . Assuming ( )d

nr t can be expressed as, 305 

 ( ) ,SSe( ), ( ), ( ), ( ) A (θ )d T d

n n nr t t t t t  θ φSSf Se Sf  
(23) 
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where | 1, 2...i i m  , 1

1 2A [ ... ]m T

ma a a   is a vector of known (measured system variables) with306 

( , ( ), ( ), ( ), ( ))i i na t t t t  θ SSe SSf Se Sf  and  1

1 2(θ ( )) [ (θ ( )), (θ ( )),.... (θ ( ))]m d d d d T

mt t t t   φ is the vector of non-linear 307 

functions of θ ( )d t . Then, 0t  power conservation at the BG junction where the corresponding I-ARR is derived, gives, 308 

   ( ) ,SSe( ), ( ), ( ), ( ) A θ ( ) 0d T d

nr t t t t t t   θ φSSf Se Sf
   

 
    (24) 

or, 309 

   

 

 

( ) , ( ), ( ), , , A (θ ) A (θ ( )) A (θ ) 0

( ) ( ) A (θ ( )) (θ ) 0

A (θ ( )) (θ ) ( )

d T d T d T d

n n n

d d T d d

n n

T d d d

n n

r t t t Se Sf t

r t r t t

t r t

     

   

  

 θ SSe SSf φ φ φ

φ φ

φ φ

 

 

(25) 

Thus, degradation state θ ( )d t  can be linked implicitly to the measurements of ( )d

nr t . Observation equation can be ob-310 

tained as, 311 

 ( ) ( ) A (θ ( )) (θ )d d T d d

n ny t r t t   φ φ  (26) 

Corollary: When (θ ) (θ ) θd d d

n n n φ  , the vector 1A a , 1 1( , ( ), ( ), , )na t t Se Sf  θ SSe SSf , can be understood as the 312 

coefficient function linking the fault value to the residual. It can be found as, 313 

 
 

1

( )

θ ( )

d

n

d

r t
a

t





 

(27) 

The observation equation argument in (26)  includes known variables (sensor measurements, system parameters, inputs 314 

etc.) and their derivatives. It is heavily corrupted with noise, especially due to presence of derivative(s) of measured varia-315 

bles. In this work, the noise is considered additive, independent and identically distributed (i.i.d.) drawn from a zero mean 316 

normal distribution. It is assumed uncorrelated to ( )d tx .Thus, from(26), observation equation is formed as,  317 

where (.)dh
 
is a nonlinear observation function obtained from (26) and 

2( ) ~ (0, )d

d

w
w t  . The standard deviation dw

 , is 318 

approximated from residual measurements. 319 

4. Degradation Estimation And RUL Prediction 320 

In discrete time step k  , the fault model  θ , ,d d dgγ can be described in stochastic framework as, 321 

1 1( , )dd d d

k k k k 
x

x f x v  

 d d d d

k k ky h w x  

(29) 

(30) 

where θ ,
T

d d d

k k k
   γx ,

d

kf is state transition function (possibly non-linear) and is described by first order Markov model. 322 

Measurements 
d

ky are assumed conditionally independent, given the state process
d

kx .The likelihood function becomes as, 323 

     
2

21
| θ , exp 2

2
d
k

d
k

d d d d d d

k k k k k w

w

p y y h x 
 

  γ  
(31) 

With the beginning of degradation being detected by the FDI module as a fault at time step dk , the prediction of 324 

EOL/RUL at prediction time k , requires the estimate of θ
d

k , d

kγ . This problem is cast as joint state-parameter estimation 325 

 ( ) ( ) ( )d d d dy t h t w t x  (28) 
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problem in particle filter (PF) framework, where the estimation at time k is obtained as probability density function (pdf) 326 

:(θ , | )
d

d d d

k k k kp yγ , based upon history of measurements from the time of beginning of degradation kd up to k , :d

d

k ky . In the 327 

following section, the method employed for degradation estimation and consequent prognostics is explained assuming that 328 

degradation begins at the start. In reality, information about kd will be given by fault detection module as described in Sec-329 

tion 3. 330 

4.1. Degradation Estimation 331 

In this section, concise details about PF are provided. The related concepts mentioned here can be found detailed in [29] 332 

and [82]. The state distribution is approximated by set of discrete weighted samples or particles, , ,

1
(θ , ),w

N
d i d i i

k k k i
γ , where 333 

N is the total number of particles and for  i
th

 particle at time k, 
,θd i

k is the estimate of  the state (system faulty parameter 334 

here) and 
,d i

kγ is the estimate of  fault progression parameters. The weight associated with each particle is denoted by w i

k . 335 

The posterior density at any time step k is approximated as, 336 

0 : (θ , )
1

(θ , | ) w . ( θ )d d
k k

N
d d d i d d

k k k k k k

i

p y d d


 γ
γ γ  

(32) 

where 
(θ , )

( θ )d d
k k

d d

k kd d
γ

γ denotes the Dirac delta function located at (θ , )d d

k kγ and sum of the weights
1

w 1
N

i

k

i

 .In this paper, 337 

sampling importance resampling (SIR) PF is employed for estimation of 0 :(θ , | )d d d

k k kp yγ , assuming that particles 338 

 , ,

1 1 1 1
(θ , ),w

N
d i d i i

k k k i   
γ are available as realizations of posterior probability 1 1 0 : 1(θ , | )d d d

k k kp y  γ at time 1k  , with the follow-339 

ing main steps: 340 

 Realizations of prediction 0 : 1(θ , | )d d d

k k kp y γ , is obtained in form of new set of particles , ,

1
(θ , ),w

N
d i d i i

k k k i
γ , with 341 

weights being chosen using the principle of importance sampling.  The proposal importance density is chosen as the 342 

transitional prior
, ,

1( | )d i d i

k kp x x , such that particles are generated by sampling from probability distribution of system 343 

noise 1
d

k

x
v  and simulation of the system dynamics of(29).  344 

 Each sampled particle 
, ,(θ , )d i d i

k kγ  is then updated. The weight w i

k is associated to each of the particles based on the 345 

likelihood of observation
d

ky made at time k as, 346 

, , , ,

1

w ( | θ , ) / ( | θ , )
N

i d d i d i d d j d j

k k k k k k k

j

p y p y


 γ γ  
(33) 

Note that with the choice of importance density as the prior, the weights were obtained as, 347 

, ,

1w ( | θ , )i i d d i d i

k k k k kw p y γ  (34) 

 To avoid the degeneracy problem, a new set of particles is resampled (with replacement) from the approximation of 348 

posterior distribution 0 :(θ , | )d d d

k k kp yγ  constructed on weighted samples previously drawn, such that weights are reset 349 

equally to w 1/i

k N .  The objective behind resampling is the elimination of particles with small weights and focus 350 

on particles with large weights, for estimation.  In this work, systematic resampling scheme is preferred as it is easy to 351 

implement and takes O(N) time and the algorithm can be referred in [29].  352 

 The prediction, update and resample procedures form a single iteration step and are applied at each time step k. The 353 

algorithm for SIR filter is given in Table II. Details about other variants of  sequential importance sampling PFs can 354 

be referred in [29]. 355 
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4.1.1. Random Walk Noise Variance Adaptation 356 

 Consider the DPP vector
dN

d  γγ such that {1,.. }dj N 
γ

, ,d j d  γ , ,ˆd j is the estimated value, and357 

, * * *,
dN

d j d d   γγ γ being the respective true value. Also consider the interval vector
dN

  
γd* d*

l u
γ , γ , consisting of 358 

intervals , * , *,d j d j

l u       
d* d*

l u
γ , γ , that contain the true value , * , * , *,d j d j d j

l u      . Moreover, for every ,d j d  γ , con-359 

sider an associated constant (proportional gain) 
,d jP   such that 

,d j dP  P ,
dN

d  γP . 360 

 ,d j is modeled as a random walk process 
, , ,

1 1

d j d j d j

k k k     where,
,

1

d j

k   is sampled from an artificial random zero-mean 361 

Gaussian distribution i.e. ,
1

, 2

1 (0, )d j
k

d j

k 
 


 . Here, ,

1

2
d j
k




denotes the associated variance 
,

1v
d j

k



 at time k-1 i.e. 
,

,
1

2

1v
d j

d j
k

k







  362 

for notational simplicity where, {1,.. }dj N 
γ

, 
,

v
d j d  ξ

v and 
d dN

 γξ
v . Moreover, associated with every

, *v
d j

, consider 363 

a reference variance (spread) 
, *v

d j
,

, * *v
d j d  ξ

v .  The artificial random walk noise permits the estimation of θ ( )d t  to con-364 

verge to its true value during the estimation process. Selection of the variance of the random walk noise is essentially a 365 

tradeoff between values that are big enough to allow the convergence in reasonable amount of time, yet small enough to 366 

let the parameter values be tracked smoothly once convergence is reached [18]. One of the efficient ways of ensuring good 367 

estimation of θ ( )d t  is to reduce the random walk noise variance
,

1v
d j

k



 , once a suitable convergence is reached. In this re-368 

gard, performance enhancement has been achieved by the usage of proportional control law type variance adaptation 369 

method; it is proposed, demonstrated and implemented in [20]. Therein,  370 

  Variance (spread) is quantified by the statistically robust metric Relative Median Absolute Deviation (RMAD) 371 

obtained as, 372 

Median ( Median (X ) )
( )

Median (X )

i i j j

j j

X
RMAD X


  

(35) 

where, iX  is an element for a data set X. 373 

   The variance is adapted in a proportional control law way where the normalized error between the current 374 

RMAD 
,

v
d j

k


(e.g. 80%) and a reference

,ξ *v
d j

(e.g. 10%) is multiplied by a proportional gain constant
,d jP . Cur-375 

rent RMAD 
,

v
d j

k


is then increased or decreased by that amount. Thereafter, current random walk noise ,d j

k  is 376 

sampled from a zero mean Gaussian distribution with the modified variance
,

v
d j

k


. 377 

However, there-in, the adaptation that progresses in arbitrarily decided multiple stages, requires a proper tuning of refer-378 

ence value 
,ξ *v

d j

and proportional gain constant
,d jP , for each stage. Such a procedure can be a tedious task especially in 379 

presence of multiple DPP. Although the objective that rests in achieving proper convergence and subsequent smooth 380 

tracking is clearly achievable, availability of no guidelines for a proper selection of number of stages and 
,ξ *v

d j

, makes 381 

the task complicated. In this paper, random walk variance is controlled in similar fashion as in [20], however, with the 382 

distinguishing feature that variance adaptation is triggered by 
,

ˆ
d j

k : 383 

,
,

0

,

1
ˆmean( ) if

ˆ 1

ˆmean( ) if

l L
d j

d j k l

lk

d j

k

k L
L

k L















 
 


         (36) 384 
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with θ d  at time k , being the average of the estimation mean ,ˆd j  in a running window of previous L  estimates. Fig. 2 385 

shows the schematic of the proposed algorithm. The fact that degradation model of θ ( )d t is known, leads to an approxi-386 

mate knowledge of the true value of , *d j . The adaptation of ,d j is triggered when 
,

, * , *ˆ ,
d j

d j d j

k l u      . The interval 387 

, * , *,d j d j

l u     can be decided based upon the approximate knowledge of , *d j , obtained from the DM. The main objective 388 

rests in letting the variance be regulated in an automatic way. 389 

The corresponding pseudo-algorithm of the variance adaptation scheme followed in this paper is given in Table III.   390 

 

Fig. 2. Schematic of variance control scheme 

 391 

4.2. Remaining Useful Life Prediction 392 

The critical/failure value of θ ( )d t is θd

fail
; it is specified beforehand. The corresponding RUL prediction at time k is

θd

kRUL ; 393 

it is framed as generation of dl –step ahead long term prediction 0 :(θ , | )d d

d d d

kk l k l
p y

 
γ  based upon the current joint state-394 

parameter estimate
0 :(θ , | )d d d

k k kp yγ . The latter is obtained with dl =1,… dT k , where 
dT is the time horizon of interest 395 

i.e. time until θ θd

d d

failk l
 . The dl -step ahead state distribution is computed by propagating each of the particles 396 

 , ,

1
(θ , ),w

N
d i d i i

k k k i
γ , ,d il steps ahead until

,θ θdi

d i d

failk l
  [9, 18-20] as: 397 

, ,
, ,

0 : (θ , )
1

(θ , | ) . ( θ )d d d i d i d d
d i d ik l k l

N
d d d i d d

k kk l k l k l k l
i

p y w d d
 

   


 γ
γ γ  (37) 

where for the i
th 

particle, the corresponding weight during the ,d il -step propagation is kept equal to weight w i

k . For i
th
 398 

particle, 
,θ , ,d i d i d i

kRUL k l k l    ; the corresponding 
θd

kRUL  is obtained as: 399 

θ ,

θ θ

0 :
( )

1

( | ) w ( )
d d

d i
k

N
d i

k k k k
RUL

i

p RUL y dRUL


  (38) 

The prediction
θd

kRUL  is done in the absence of future observations
1: d

d

k k l
y

 
 which are not available. Pseudo algorithm for 400 

RUL prediction is given in Table IV. 401 

4.3. Health Monitoring Algorithm 402 

The beginning of degradation is detected by the fault detection module described in Section 2. Subsequently, the joint 403 

estimation and RUL prediction is triggered. As the thresholds are sensitive to other uncertain parameters, θ =θ
d

d d

t t n  cannot 404 

be assured. Thus, the initial value of the state estimate is assumed uniformly distributed as, 405 

θ ~ (θ θ ,θ θ )
d

d d d

t t n l n uU  Δ Δ  (39) 

where dt  is the time of degradation commencement. The associated uncertainty interval limits  l u,  decide the 406 

bounds of the uniform distribution as shown in (2). Such an approximation guarantees to include the true initial state of407 
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θ ( )d t .  The complete algorithm is shown in Table V. Fig. 3 shows the schematic description of the proposed methodolo-408 

gy. 409 

 

Fig. 3. Schematic description of the Health Monitoring Methodology 

 410 

5. Evaluation Metrics 411 

In this section, various metrics employed to evaluate the performance of estimation, prediction etc. are briefly dis-412 

cussed. [74] can be referred for details and [18, 20] for implementation of the same. 413 

5.1. Estimation performance  414 

The estimation performance is evaluated using two metrics that quantify the accuracy and spread.  415 

Root mean square error (RMSE): This metric expresses the relative estimation accuracy as: 416 

2
*

*X k

X X
RMSE Mean

X

  
   
   

         (40)  417 

Here, {θ , }d dX  γ and the corresponding true values are denoted by. kMean denotes mean over all the values of k.  418 

Relative median absolute deviation (RMAD): As detailed in Section 4.1.1, RMAD expresses the spread of estimation rela-419 

tive to median as a percentage. It is averaged over multiple values of k to obtain, 420 

,
RMAD (RMAD )d

dk k
Mean


          (41)   421 

where 
,

RMAD d k
is the RMAD of d at time k.  422 

5.2. Prediction performance 423 

For a particular prediction time point kp, the prediction accuracy is evaluated by Relative Accuracy (RA) metric as, 424 



  

16 

 

*

θ , θ ,

*θ ,

θ ,

Mean( )
RA 1

d d
p p

d
p

d
p

k k

k

k

RUL RUL

RUL

 
 

  
 
 

         (42)425 

where
*

θ ,d
pk

RUL denotes the true RUL at time kp , with respect to θ d . The overall accuracy is determined by averaging 426 

θ ,
RA d

pk
over all the prediction points. The latter is denoted as θRA d ; it is determined as shown in (43). The associated 427 

spread at kp is denoted as 
θ

RMAD
dRUL

. The overall spread is determined by finding the corresponding mean which is de-428 

noted as
θ

RMAD
dRUL   429 

θ
θ ,

RA Mean (RA )d
d

p p
k k

            (43) 430 

5.3. Prognostics Performance 431 

   metric[74] is employed to assess the  prognostic performance. Here, [0,1]   defines the bounds of true RUL 432 

as
*

θ ,
(1 ) d

pk
RUL  and [0,1]  denotes the fraction of time between the initial prediction time point and the true EOL. 433 

The third parameter [0,1]   signifies the desired (pre-fixed) fraction of the RUL prediction probability mass percentage 434 

that must fall between the cones of accuracy determined by , for the respective RUL prediction to be acceptable.  In this 435 

paper, for all λ (all k), β =0.5 which translates to the requirement of 50% of probability mass distribution of
θ ,d

pk
RUL fall-436 

ing within 
* *

θ , θ ,
[(1 ) ,(1 ) ]d d

p pk k
RUL RUL    for the prediction at kp, to be acceptable.  437 

6. Case Study on Mechatronic System 438 

 The method presented in this paper is applied on a mechatronic Torsion Bar 1.0 system shown in Fig.4. [83, 84]; it is 439 

integrated with 20SIM, a BG dedicated  software [85].  Real time implementation is achieved through 20 SIM 4C 2.1, a 440 

prototyping environment that enables C-code implementation in real time on ARM-9 processor based torsion bar 441 

system[86]. The interval computations, estimation, variance control and prediction algorithms are written in Matlab Func-442 

tion Block in Simulink.  The embedded code is generated through Simulink Coder in Matlab2013a
®
.  INTLAB[81, 87] is 443 

used to implement interval calculations during simulation. For real time C-code generation, relevant/required functionali-444 

ties are borrowed from INTLAB. 445 

6.1. Nominal System  446 

The schematic model of the mechatronic system (detailed in [84]) is shown in Fig. 5. It consists of the Maxon® servo 447 

motor that provides the controlled actuation (rotation) to the disks; it is equipped with voltage amplifier Am, inductance La, 448 

resistance Ra, rotor inertia Jm. The associated motor friction coefficient is mf and torque constant is km. The high stiffness 449 

transmission belt provides the torque transmission with the transmission ratio of beltk , to the motor disk with rotational 450 

inertia MdJ .The motor disk is connected to load disk with rotational inertia LdJ , through a flexible shaft that constitutes 451 

the drive train. The shaft is modeled as spring-damper element having damping coefficient sb  and spring constant as sk452 

.The friction in the bearings of the motor disk and load disk is modeled as viscous friction with damping parameters as 453 

Mdb and Ldb , respectively. Friction arising due to belt action is lumped with the viscous friction coefficient at motor disk 454 

in Mdb . The setup is equipped with motor encoder and load encoder that measure, respectively, the angular position of 455 

motor shaft and load disk (2000 pulses per revolution). Angular position of the motor disk is obtained by dividing the mo-456 

tor encoder counts by belt ratio.    457 
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The BG model of the nominal system in integral causality[83] is given in Fig. 6. The control input from PI controller 458 

(controlled variable: motor speed m ) modulates the input voltage MSe:UPI . The measured angular velocities (obtained 459 

from angular position measurements) of motor shaft and load disk are represented as : MDf   and : LdDf  respectively. 460 

Belt is considered of high stiffness and the rigidity is not considered in the model. Also, the frictional loss due to the ac-461 

tion of belt is lumped with frictional loss at motor bearing; it is modeled as a resistor element : MdR b . GY element models 462 

the conversion of electrical current to electrical torque in the DC motor with corresponding coefficient of gyration being463 

GY mm k . TF element models the transmission of velocity through the belt from motor shaft to the motor disk. The corre-464 

sponding coefficient of transformation 1/TY beltm k  where beltk  is the ratio between number of teeth on motor disk to 465 

motor shaft [84]. The electrical part of the DC motor is not monitorable as there is no sensor installed in it.  466 

 467 

  

Fig. 4. (a).  Mechatronic Torsion Bar 1.0 system Fig. 4. (b). Fabricated Mechanical Lever  

type arrangement for Load (Mass) Suspension   

 

Fig. 5. Schematic Model Of The Mechatronic System 

 

Fig. 6.  Bond Graph Model ( Preferred Integral Causality) of The Nominal System 
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Fig. 7. Bond Graph Model Of Monitorable Part In Preferred Derivative Causality With Parametric Uncertainties As In-

tervals  

Only the monitorable part (marked in Fig. 6) is used for analysis. It must be noted that the system is operating in feed-468 

back closed loop (Proportional-Integral (PI) control) regime. Analysis or development of the control strategy is not de-469 

scribed, as the main interest of the paper does not lie in the same.  470 

6.2. Uncertain BG and System Validation 471 

The uncertain BG of the monitorable part in preferred derivative causality is shown in Fig. 7. The parametric uncer-472 

tainties are modeled and represented in interval form. The global system is considered uncertain with uncertain parameter 473 

vector , 
 
θ θ : , , , , , , , , , , , , , , , ,

T

m m Md Md Md Md Ld Ld Ld Ld s s s sJm Jm f f J J b b J J b b k k b b                  
                  
θ θ   (44) 474 

The monitorable part has input in form of the controlled electrical torque input generated by the DC motor. Both the sen-475 

sors (Df) are dualized to corresponding source of flows as 1 2( ) [ : , : ]T

m Ldt SSf SSf Y . C element remains in integral 476 

causality with the initial condition given by the flow at respective 0-junction, provided by encoder readings as477 

10 9 13 ( / )m belt Ldf f f k     .  478 

6.2.1. Interval valued ARRs and  Robust Thresholds 479 

From the steps described in Section 2, I-ARR can be generated from the detectable junction 11 of Fig. 7 as: 480 

   

   , ,

, , , ,
1

, , , ,

,

, , , .

( / ) , ( / ) ( / ) , .( / )

(1/ )

( ) ,

m m m m

Md Md Md Md

s s

PI m n m J J m n m m n m f f m n m

Md n m belt J J Md n m belt Md n m belt b b Md n m belt

belt
m

s n Ld k k

belt

R R J J f f

J k J k b k b k

k

k dt
k

    

   




             
     

        
    



     , , ,( ) ( ) , ( )
s s

m m m

s n Ld s n Ld b b s n Ld
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  (45) 481 

Electrical torque : PIMSe  is the PI controlled input to the monitorable part of the system; it is given as, 482 

 
 ( / )

.
: . . 1

PI m m Ra La t

PI m m m

U k
MSe k i k e

Ra


  


           (46) 483 

where PIU is the PI controlled voltage input and mi is the motor stator current. The nominal part 1, ( )nr t is formed by col-484 

lecting point valued nominal parameters as coefficients of known (measured) variables. The I-ARR is expressed as, 485 

1,
1 1

, ( ) ( ), ( )nR R r t B t B t    
   

          (47)486 

where, 487 
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(49) 489 

Only one I-ARR has been derived here at 11; it serves the purpose of approach-demonstration. Similarly, another inde-490 

pendent I-ARR may be derived from 12 junction.   491 

6.3. Study by Simulation  492 

6.3.1. Nominal conditions 493 

The nominal parameter values and respective multiplicative interval uncertainty is tabulated in Table VI. Fig. 8 shows 494 

the nominal outputs where motor velocity
m is PI controlled with the reference , 112.5 /m ref rad s  . Then, the motor disk 495 

velocity Md  is regulated to , , / 30 /Md ref m ref beltk rad s   . Noise is added to sensor outputs. It corrupts the residual and is 496 

approximated as
2( ) ~ (0, )d

d

w
w t  ; 0.01 Vdw

  . Negative value of residual 1, ( )d

nr t  is contained within the interval 497 

threshold bounds determined in (49). 498 

  

Fig. 8 Nominal Conditions (a) Motor disk speed (b) In-

put voltage (c) Nominal residual and Interval valued 

thresholds  

Fig. 9. Simulation of Degradation (a) Injected Degradation 

(b) Motor Disk Speed (c) Input Voltage to the System (d) 

Nominal Residual 1, ( )nr t  

6.3.2. Generation of Parametric Degradation 499 

Degradation of motor disk bearing friction parameter Mdb , is simulated by considering the degradation model exponential 500 

in nature as, 501 

1

1 1

( )

,

( , )
( )

Md

Md

Md b

Md t

Md n b

g b v
b t

b e v


 
 



          (50)502 

where, 1g  is the DM, θ ( )=d

Mdt b is the state variable and DPP vector 1{ }d d  γ  and
2(0, )

Md bMd
b vv   is the process 503 

noise. Fig. 9 shows the corresponding outputs.  The fault is detected at td=10s when residual crosses the interval thresh-504 

olds. Note that Md is controlled at 30 rad/s until t=44.2s while the PI controller is effective. Thereafter, as the saturation 505 

value of actuator (motor) input voltage (12V) is reached, the speed Md starts to decrease and reaches ,Md stop =3rad/s at 506 



  

20 

 

t=100s. The latter is the time point at which system is considered to have obtained the failure state. The residual is sensi-507 

tive to the input torque and hence, the input voltage captures the degradation evolution throughout the system‟s lifetime.     508 

6.3.3. Fault model 509 

State measurement is obtained from the observation equation which is developed using the Nominal Part of I-ARR510 

1[ , ]R R , 1, ( )nr t (cf. (25) and (27)) as, 511 
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         (51) 512 
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             (52)513 

where 
1

2

1( ) ~ (0, )ww t  approximates the noise which corrupts 
1, ( )nr t . For estimation, the fault model denoted as tuple514 

1 1( ( ), , )Mdb t g , is formulated as, 515 
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          (53)516 

where, 
1

2

1( ) ~ (0, )t   is the additive random walk noise. The estimation of state of parameter ( )Mdb t is triggered at 517 

td=10s. Initial estimate
, 10 ~ (0.045,0.055)

dMd t sb U
N.m.s/rad, contains , 0.005Md nb  N.m.s/rad. The true value of DPP is 518 

kept as *

1 =0.05 Nm/rad so that ,Md stop is reached at 100s. Here, 0.1t s  and N=500. Simulation is run until tf=100s 519 

when ˆ
Mdb  reaches the failure value , 0.45Md failb   N.m.s/rad.  520 

6.3.4. Degradation Estimation   521 

 Estimated ˆ
Mdb is shown in Fig. 10. The true state *

Mdb is estimated accurately with 4.21%
MdbRMSE   . In fact, estima-522 

tion spread decreases as the estimation progresses, indicating the desirable performance.  Estimation of Mdb  largely de-523 

pends upon quality of estimation achieved with 1 . Fig. 11 shows the estimation of 1 achieved with524 

 * *

1, 1,, 0.03,0.07l u      N.m./rad, proportional gain P1 = 0.001, 1*
v 10%

 , initial artificial noise variance 

1

2 2

, 0 0.02k   . 525 

The particle filter assumes measurement noise variance equal to 4 times that of residual noise variance
1

2 20.01w  . The 526 

convergence is achieved very quickly but with large initial estimation spread. This is due to the high artificial noise vari-527 

ance set for the desirable quick convergence. As shown in Fig. 11b, the estimation spread is reduced (effective from 528 

t=20s) until 1*
v 10%

 is achieved at around t=50s and thereafter, *

1 is tracked smoothly with controlled spread and529 

3.02%RMSE  . For comparison, Fig. 11c shows performance with no variance adaptation. Therein, the estimation con-530 

tinues with large spread even after the convergence is achieved. 531 

6.3.5. RUL prediction 532 

Using 0.1, 0.5     and for all k , RUL prediction is shown in Fig. 12. The RUL predictions obtained until t=52s 533 

are not good and suffer with large variance spread due to the large corresponding spread in 1̂  (see Fig. 11a), making them 534 

virtually useless. However, after t=52s, the RUL distributions are well within accuracy cone (more than 50% of RUL 535 
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probability mass lies within accuracy cone). Ignoring the initial period of convergence, the overall prediction performance 536 

is very good with 9.8%RULRMAD    and 97.15%RA  .   537 

6.4. A Qualitative Analysis  538 

As seen in the previous section, accuracy and spread of RUL predictions are directly influenced by the estimation 539 

quality of DPP. This in turn, depends on choice/initial setting and tuning of the several parameters involved. They are dis-540 

cussed here qualitatively. Note that estimation obtained in Fig. 11a forms the most desirable performance.   In this section, 541 

only the specified PF parameters are played with; rests are kept same as for Fig. 11a. Although some of the things dis-542 

cussed are intuitive from the perspective of estimation in a state space model, authors have felt the necessity to highlight 543 

their concurrence when the residual is used as measurement.   544 

 545 

 

Fig. 12. RUL Prediction performance with respect to estimation in Fig. 10 and Fig. 11. (a). 

 546 

 Initial variance of the artificial random walk noise,
1

2

, 0k  (or 1

0vk



 ): The initial variance of random walk noise 547 

is set according to the magnitude order of DPP , *d j . It is kept high enough so that 1,
ˆ

k  is captured quickly as548 

 
 

Fig. 10.  State estimation of the  prognostic candidate system param-

eter Mdb   

Fig. 11. Estimation performance (a) Estimation of  DPP with variance adap-

tation (b) Estimation spread associated (c) Estimation performance without 

variance adaptation only for comparison purpose 
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* *

1, 1, 1,
ˆ ,k l u     . It is the most important factor that determines good tuning of parameters in succession. A very 549 

high value of the latter, results in bad estimation performance. Fig. 13a shows estimation with 
1

2 2

, 0 0.04k  
 

550 

(read high) wherein, although, quick convergence of mean
1̂ is seen, the estimation continues further with a very 551 

wide spread for a long time before it is gradually reduced, owing to variance adaptation scheme. On the contrary, 552 

a very low variance will result in very late convergence, if at all. Fig. 13b has
 1

2 2

, 0 0.001k   leading to a very 553 

late convergence. For tuning of other related parameters in this paper, an initial high value of variance 
1

2

, 0k  is 554 

chosen.   555 

 Proportional Gain P: Proportional gain determines how fast the estimation spread is reduced to the reference *v556 

. As observed in Fig. 11a, an appropriate choice of latter was found as P1 = 0.001. It resulted in smooth tracking 557 

after convergence was achieved. A high gain value results in quick reduction of estimation spread; however, it is 558 

accompanied with continuous shrink and expansion as shown in Fig. 13c with P1=0.005. The latter has also been 559 

demonstrated in [20]. Although, a very high gain value may bring down variance spread quickly; however, it may 560 

be followed by poor convergence results as shown in Figs. 14c and d, with P1=0.01. On the contrary, a very low 561 

P1 renders a non-effective variance adaptation as shown in Fig. 13d with P1 = 0.0001, adding no significant bene-562 

fits in RUL prediction. 563 

 Desired RMAD ( *v ): The pre-fixed 1*
v
 for 1 , determines how much freedom is given to 1  after the estima-564 

tion spread is brought under control. An appropriate choice of 1*
v
  gives enough freedom for convergence even 565 

after actual variance is well under 1*
v
 , as shown in Fig. 11a between t=50s and t=80s with 1*

v
 =10%. 566 

 In extreme cases, where P1 is chosen of high value (rate of RMAD reduction depends on P1) and 1*
v
 is set very 567 

low, the estimation may remain stagnant near, but not equal to *

1 . This is shown in Fig. 14c with P1=0.01 (read 568 

high) and desired RMAD 1*v
 =6% (read very low).  569 

 True DPP interval
* *

1, 1,,l u    : The main objective of the latter remains in triggering the variance adaptation. As 570 

such, if width of
* *

1, 1,,l u     is kept too tight around *

1 , 1,
ˆ

k  may never be captured inside the
* *

1, 1,,l u     band. This 571 

may lead to a very insignificant effect of variance adaptation on the estimation performance. Fig. 14a shows the 572 

estimation with  * *

1, 1,, 0.04,0.06l u     Nm/rad, which can considered “too tight” around *

1 =0.05 Nm/rad. 573 

Here, the variance adaption is not effective enough. On the contrary, if the interval width is appropriately set (as-574 

suming that initial estimate is outside of it), 1,
ˆ

k is captured quickly and variance control is triggered early, as 575 

shown in Fig. 14b with  * *

1, 1,, 0.01,0.09l u     Nm/rad. This leads to early reduction in variance. However, a bad 576 

choice of P1 (read high) and early variance adaptation, may lead to a rapid reduction in spread, followed by stag-577 

nation of estimation around , *d j , before converging slowly to the same, as shown in Fig. 14d with P1 = 0.005 578 

and   * *

1, 1,, 0.01,0.09l u     Nm/rad. 579 

 Residual noise variance (measurement noise) assumed by PF: Noise that corrupts the residual measurements 580 

can be non-Gaussian due to presence of derivative terms. Such noises can be dealt by PF effectively without any 581 

restrictions. In this work, the explicit distribution of the residual noise is not found. Instead, it is approximated as 582 
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normally distributed Gaussian in nature. The related standard deviation and variance is found out from residual 583 

measurements. Moreover, generally, the variance of measurement noise (residual noise here) assumed by PF, is 584 

greater than the approximated measurement noise. This is done to counter the sample impoverishment problem 585 

which happens while very few particles have significant weights and most of the other particles with non-586 

significant weights are abandoned during the resampling process [88]. Higher residual noise variance assumed by 587 

PF allows higher particles being sampled for estimation, thus, reducing the problem of sample degeneracy and 588 

consequent impoverishment. As followed in other works [20], in this work too, the residual noise assumed by PF 589 

is greater than actual residual noise. 590 

6.5. Computational complexity  591 

The time taken per step for estimation and RUL prediction depends on the number of particles used. With N=500, on 592 

an average, 0.03s was consumed per step. Fig. 15 shows the RUL prediction computation time per step for the RUL pre-593 

diction performance of Fig. 12. In addition to the number of particles N, computational time for RUL prediction varies: 594 

 Inversely with the time at which prediction is made: The farther is the time from EOL at which RUL predic-595 

tion is made, the longer it takes to simulate to EOL. This makes the computational time large.  596 

 Inversely with estimated DPP ̂  : At a certain time of prediction, higher is the rate of damage progression, 597 

smaller is time taken to simulate to EOL. As seen in Fig. 11a, before t=50s, the estimation value of 1̂  is 598 

lower than true value accompanied with large variance. Therefore, for a specific N, the computation time 599 

per step before t=50s is higher and with large variations. After t=50s, with a nearly uniform 1̂ estimation 600 

and lesser spread (see Fig. 11a), the computation time follows an almost uniform monotonic decreasing 601 

trend (see Fig. 15). 602 

Simulations were run on a 2.49-GHz dual core processor with 8GB RAM. With N=500, and sample time of 0.1s 603 

(which translates to 10 computational steps per second); it took on an average 32 minutes to simulate system dynamics, 604 

estimation and RUL prediction till 100s. With N=50, the same took 110 seconds. This indicates that through employment 605 

of lesser number of particles, the RUL predictions could be achieved in real time, for experimental purposes. Moreover, 606 

for real experiments run on complied C, the run time reduces drastically by an order of magnitude.   607 

 608 

 

Fig. 13. Estimation of DPP 1  for qualitative analysis (a) Large initial random walk variance
1 , 0 0.04k   Nm/rad (b) Small initial random walk 
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variance
1 , 0 0.001k   Nm/rad  (c) High proportional gain in variance control P1=0.005 (d) Very low proportional gain in variance adaptation 

P1=0.0001 

 

Fig. 14. Estimation of DPP 1  for qualitative analysis (a)Tight width  * *

1, 1,, 0.04,0.06l u    
Nm/rad (b) Wide width with 

 * *

1, 1,, 0.01,0.09l u    
Nm/rad (c) High gain value, P1=0.01 and  very low desired RMAD 

*v
=6%  (d) High gain P1=0.005 and  

large width  * *

1, 1,, 0.01,0.09l u    
Nm/rad 

 

 

Fig. 15 Prediction computational time for per step for different number of particles 
 



  

25 

 

 

 

Fig. 16. Nominal residual 2, ( )nr t  under nominal conditions Fig 17. (a) Addition of mass discretely to introduce degradation (b). Motor 

disk speed (c)  Nominal residual 2, ( )nr t (d) Input voltage (PI controlled) 

7. Experiments and Results 609 

For the experiments, a mechanical lever type arrangement is fabricated as shown in Fig. 4b; it introduces frictional 610 

torque Mech over the motor disk by suspension of load in form of sand. The frictional torque manifests due to Coulomb 611 

friction existing between the surfaces (  being friction coefficient); it is modulated by the suspended load of mass M kg 612 

as, 613 

.

( / | |)

Mech mech Md

mech Md Md

f r

f Mg



  




          (54) 614 

with Mdr  as the radius of the motor disk. In the BG model, it is incorporated as non-linear resistance element at motor disk 615 

as shown in (55); the corresponding characteristic equation is obtained as shown in (56). 616 

( ). / | |Md MdR b M t r g             (55) 617 

8 8( ) ( ). ( / | |)Md Md Md Md Mde R f b M t r g              (56) 618 

The corresponding I-ARR 
1

,R R 
 

in (45) changes to 
2

,R R 
 

as, 619 
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(58) 621 

The nominal value of  , n is found out from 2, ( )nr t and (57) by suspending a known load mass. Fig. 16 shows the residual 622 

profile under nominal conditions.  Fig. 17 shows the effect of adding load (or frictional toque) in a discrete way on the 623 

system. Md is controlled at 30 rad/s. Each time load is added, there is PI controller enabled compensation due to which624 

Md  settles to the reference velocity. However, 2, ( )nr t being sensitive to increase in current (and thus, voltage) decreases 625 

and settles to a different value. Saturation value for input voltage is reached around t=65s as the total load suspended is 1.6 626 

Kg. Thereafter (t>65s), controller is unable to compensate the change in Md . Addition of more sand leads to reduction in 627 

motor disk speed; it stops at around t=70s. For safety reasons, the disk is kept at stop condition for few seconds after 628 
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which the load is removed; this brings back the controller action into play. It is clearly visible that residual captures the 629 

variation of friction (variation of mass) while controller remains effective or otherwise.  630 

The experiments involve only non-destructive procedures so that there is no degradation (wear) of the surfaces. In oth-631 

er words,  is assumed constant.  Experiments involve variation of suspended load mass M in a uniform way till the limit 632 

failM , is reached. ( )M t is treated as system parameter under degradation. The experiments were conducted in two distinct 633 

phases:  634 

 Offline: In this phase, multiple tests were done with the load being added uniformly. As explained in Section 635 

2.2, variations of ( )M t were obtained from the evolution of 2, ( )nr t found in (57). This provided the time de-636 

pendent DM of the system parameter ( )M t . 637 

 Online health monitoring: The maximum limit of additive load mass
failM was pre-decided keeping in mind 638 

the safety of the system. Load was varied until failM ; this was performed in the similar environment as of the 639 

offline phase. In real time, estimation of ( )M t and associated DPPs, and subsequent RUL predictions were 640 

obtained. 641 

 642 

7.1. Case I :Linear variation of mass 643 

Linear degradation models are frequently employed where incipient degradation does not accelerate subsequent degra-644 

dation. Here, such a scenario was created through experiments and tested in real time. 645 

7.1.1. Degradation Test and Degradation model 646 

Load is varied linearly. Ten experiments are carried out wherein; sand is poured with same environmental conditions to 647 

maintain the uniformity. Fig. 18 shows the experimental data and the data mean found at each instant. A linear fit over 648 

data mean is obtained using linear regression. The DM can be expressed as, 649 

2 2 2

2 2

( ) ( , ) ( )

( )

M

M

M t g t v t

t v t





 

  
          (59) 650 

where 2 (.)g is the DM, DPP vector
2{ }d d  γ  and

 2

2

2 ( ) ~ (0, )
MM vv t  . An approximate *

2  =0.005 Kg/s is obtained. 651 

Sum of squared errors provide an approximate standard deviation for process noise Mv ,
2

31x10
Mv

  Kg. 652 

 
 

Fig. 18  Degradation Test Data (linear variation) Fig.19 Nominal residual 2, ( )nr t  while system is under deg-

radation. (linear variation of mass) 

 653 

7.1.2. Fault model 654 

The tuple ( ( )M t , 2 , 2g ) is formulated in state space as in (60), with 
2

2

2, ~ (0, )k   as the additive random walk 655 

noise.  656 
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          (60) 657 

Observation equation is obtained from the nominal part of I-ARR
2[ , ]R R , 2, ( )nr t , as shown in (61) and (62) with658 

2

2, 2~ (0, )k ww  . 2w is determined from 
2, ( )nr t values during degradation tests of Fig. 18. 659 
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      (62) 661 

For the experiment, load is varied until ( ) 1.5failM t M Kg  . Fig. 19 shows the nominal residual profile under degra-662 

dation. 663 

7.1.3. Estimation 664 

The prognostics module is triggered at t=22 s; estimation and predictions are performed with N=50 particles, t =0.1s,665 

2

2

, 0k  =1x10
-6

,
2

31x10
Mv

 Kg, 
2w =5x10

-3 
V. For estimation, particle filter assumes measurement noise variance 9 times 666 

that of measurement variance
2

2

w to counter sample impoverishment problem. Estimation of M is shown in Fig. 20a. The 667 

true M
*
 is the residual based measurement of M(t) (as described in section 2.2, cf. (15)). State is estimated very accurately 668 

with MRMSE = 3.98%. 669 

  

Fig. 20. (a). Estimation of M  (b) Estimation of 2  Fig 21: RUL prediction in experimental case: Linear varia-

tion of mass 

Estimation of DPP 2 is shown in Fig. 20b. Here, reference RMAD is set as 2 *
5v


 %, proportional gain P2 = 0.007, true 670 

DPP interval 
* *

2, 2,,l u    = [3x10
-3

, 7x10
-3

] Kg/s around the approximately true *

2  =0.005 Kg/s. It should be noted that in 671 

the real experiment, *

2 is not guaranteed to remain constant; the DM provides only an approximate idea of its magnitude 672 

order. Fig. 20b shows the estimation with large initial variance. The estimation spread is reduced effectively from t=40s. 673 

Thereafter, the estimation mean remains around *

2  with RMAD of 6%.     674 

 675 

7.1.4. RUL prediction 676 
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Prediction of RUL is shown in Fig. 21 with 0.2   and 0.5   .The initial predictions have a very large spread due to 677 

the large corresponding spread in 
2̂ . However, after t=35s, the RUL is within the *(1 ) RUL  bounds with678 

98.64%RA  , 9.4%RULRMAD  . During the last 3 seconds of experimentation, the sand inflow is stopped gradually (and 679 

not abruptly) bringing in certain non-uniformity. As such, RUL predictions at t=58s, 59s and 60s, do not fall under the680 

*(1 ) RUL  bounds that are based upon the ideal linear degradation model. 681 

 682 

7.2. Case II :Exponential variation of mass 683 

Load is varied in an exponentially. Eight experiments are carried out in total. The considered DM is given in (63) 684 

where 3 (.)g is the DM, θ = ( )d M t , DPP vector
3{ }d d  γ and

3

2

3( ) ~ (0, )
MM vv t  . 685 

3

3 3 3
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M e v


 

 
          (63)  686 

Fig. 22a shows the experimental data. Fig. 22b shows the exponential fit over the experimental data mean from which the 687 

approximate value of DPP *

3  =0.05 Kg/s, is obtained. Regression residuals provide
3

48x10
Mv

  Kg. 688 

 
 

Fig. 22 Exponential variation of mass. (a) experimental data 

(b). Exponential fit over experimental data mean 
Fig. 23. Nominal residual 2, ( )nr t  while system is under 

degradation (exponential case) 

 689 

7.2.1. Fault Model 690 

The tuple ( ( )M t , 3 , 3g )is formulated in state space as, 691 
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      (64) 692 

where
3

2

3, ~ (0, )k   , 
2

3, 3~ (0, )k ww  and the approximation of 3w is determined from 2, ( )nr t values during degrada-693 

tion tests. The structure of the observation equation remains same as in (62). For the experiment, load mass is varied until694 

( ) 1.8failM t M Kg  .  Fig 23 shows the profile of nominal residual under exponential degradation. 695 

7.2.2. Estimation and RUL Prediction 696 

The prognostic module is triggered at t=22 s. It is performed with N=50, t =0.1s, 
3

2

, 0k  =4x10
-6

  and 3w =5x10
-3 

V. 697 

For estimation, particle filter assumes measurement noise variance 9 times that of measurement variance 2

3w  to counter 698 

sample impoverishment problem during the experimentation. As shown in Fig. 24a, state of parameter is estimated accu-699 
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rately with 3.78%MRMSE  . Fig. 24b shows the DPP 3 estimation with reference RMAD set as 3 *
10%v


 , proportion-700 

al gain P3 = 0.003, true DPP interval * *

3, 3,,l u   
=[1x10

-2
, 9x10

-2
] Kg/s. Estimation is achieved with 3RMSE =7.6%. It 701 

must be noted that in reality, *

3 cannot be claimed to be the accurate true value of 3 . Fig. 24c shows the RUL prediction 702 

with 0.2  , 0.5  . Ignoring the initial predictions until t=32 (due to large spread), 9.4%RULRMAD   and 703 

97.02%RA  . In fact, the EOL is achieved slightly before than that predicted by DM. 704 

It should be noted that RMSE in real time experiments is higher than that obtained in simulations as * does not re-705 

maining perfectly constant in real cases. Also, usage of lesser number of particles leads to worse estimation performance. 706 

However, overall prediction and estimation performances are very good and satisfactory. 707 

 

Fig. 24. (a) State estimation for Trail 1 (b) Estimation of DPP 3  (c) RUL prediction for case II 

 708 

8. Conclusions 709 

It has been successfully demonstrated through simulation and experimental studies that under single degradation hypothe-710 

sis, the nominal part of Interval Valued Analytical Redundancy Relations (I-ARRs) derived from the Bond Graph (BG) 711 

model of the uncertain system can be used for detection of system parameter‟s degradation. Subsequent estimation of the 712 

state of health and associated degradation progression parameter(s), and prediction of the remaining useful life of the 713 

prognostic candidate can be obtained using particle filtering algorithms. This leads to an efficient integration of the bene-714 

fits of BG modeling framework and Monte Carlo framework. The uncertain part of the I-ARRs is used for robust thresh-715 

old generation over the nominal part. This enables efficient detection of the degradation commencement, robust to para-716 

metric uncertainty. Further, the same nominal residual can be used for obtaining the measurements of state variables in the 717 

fault model while the observation equation is developed from the nominal part of the I-ARR. For the latter, a novel alge-718 

braic approach is proposed so that the robust detection of degradation and further estimation of state variables of the fault 719 

model can be achieved using the same nominal residual in a unified framework. Moreover, this methodology can be ex-720 

tended in presence of multiple degradations which forms a potential future work. In future, the work will be effectively 721 

explored for large systems with multiple prognostic candidates. Being sensitive to the control inputs, nominal residual is 722 



  

30 

 

able to capture the parametric degradation profile even while the system outputs remain in feedback closed loop regime. 723 

This makes the approach effective for system level health management.  Approximation of the distribution of noise pre-724 

sent in residuals can be difficult or impossible, due to presence of derivative or integral terms in the arguments. As such, 725 

employed Particle filter algorithms form the best choice in this regard, supporting non-Gaussian noises. The novel vari-726 

ance adaptation scheme leads to very good estimation results and involves less complexity in terms of tuning of the in-727 

volved factors. In future, the latter will be developed further and exploited for similar purposes. Through simulations, this 728 

approach has the capability of generating long term and very long term predictions.  729 

 Through experiments, capability of obtaining RUL predictions in real time has been shown, although, in very short time 730 

window. The associated computational complexity prevents the long and very long-term RUL predictions in real time.  731 

In future, additional ways to obtain the same in sliding time windows will be explored. The method will be extended to 732 

achieve very long term predictions in multiple stages, comprising of small time windows, in real time. Although, robust-733 

ness of the methodology has not been analyzed quantitatively, a qualitative analysis has been presented which helps in an 734 

efficient tuning of the PF parameters. As this work forms an effective initial step towards prognostics in BG framework, 735 

the same methodology will be applied over complex non-linear thermochemical-hydraulic systems such as fuel cells and 736 

vapor generator systems. 737 
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Appendix A 741 

Given a real function f  of real variables 
1 2[ , ,... ]T

nx x x x belonging to intervals  1 2, ,...
T

nX X X X [81]: 742 

Definition A.1: The interval extension function (IEF), ( )F X , is any interval valued function that satisfies 743 

1 2 1 2( , ...x ) ( , ...x )n nF x x f x x  . For degenerate interval arguments, the result must be the degenerate interval744 

 1 2 1 2( , ...x ), ( , ...x )n nf x x f x x . 745 

Definition A.2: Natural interval extension (NIE) F, of  f is obtained, by replacing the real arguments with interval argu-746 

ments and real operators (arithmetic etc. ) by their equivalent interval operators, in the syntactic expression of the real 747 

function f. 748 

Definition A.3: We say that is 1 2( , ,.... )nF F X X X  inclusion isotonic if 1,2..i iY X i n    749 

1 2 1 2( , .. ) ( , ... )n nF Y Y Y F X X X . 750 

Definition A.4: A rational interval function is an interval-valued function whose values are defined by a specific finite se-751 

quence of interval arithmetic operations. 752 

Lemma A.3.1:  All rational interval functions are inclusion isotonic. 753 

 754 

Theorem A.1 (Fundamental Theorem of Interval Analysis): If F is an inclusion isotonic interval extension of f , then 755 
 756 

 1 2 1 2( , ... ) ( , ... )n nf X X X F X X X . 757 

Corollary A.1.1: If F is a rational interval function and an interval extension of f, then 1 2 1 2( , ... ) ( , ... )n nf X X X F X X X . 758 
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Algorithm 1: Fault detection with d
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Table II 

Algorithm 2: Estimation using SIR filter 
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Algorithm 3:  Adaptation  
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Table IV 

Algorithm 4: RUL Prediction 
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1
(θ , ),w

N
d i d i i

k k k i
γ   

Variable: l 

Outputs:  
,θ

1

,w
d i N

i

k k
i

RUL


 

for i=1 to N do 

  l=0 

   while 
,θ θd i d

k l fail  do 

    , , ,

1 1~ ( | )d i d i d i

k k kp γ γ γ  

    , , , ,

1 1θ ~ (θ | θ , )d i d i d i d i

k k k kp  γ  

    1l l    

   end while 

,θd i

kRUL l  

end for 

 



  

36 

 

 

Table V 

Algorithm 5: Health monitoring of 0θ
d with respect to d

nr  

while system is running do 

  Detect the beginning of degradation using Algorithm 1 

   if fault detection =true then 

    //set initial conditions 

     

0

0

0

θ ~ (θ θ ,θ θ )

0

( )

d d d

n l n u

d

d d

n

U

y r k

 



 

γ

Δ Δ

 

      do Estimation using Algorithm 2 

      do Adaptation using  Algorithm3 

      do RUL prediction using Algorithm4 

  end if 

end while 

 

 

Table VI  List of parametric values 

Parameter 
θ  

Nominal Value  

θn  

Multiplicative 

 Uncertainty 

θ θ,  
 

  

Jm  6 26.76 10 kg.m / rad   [-0.02,0.02] 

mf  62 10  N.m.s/rad [0,0.3] 

MdJ  4 29.07 10 kg.m / rad   [-0.1,0.1] 

Mdb  35.025 10 N.m.s/rad  [0,0.2] 

LdJ  3 21.37 10 kg.m / rad  [-0.1,0.1] 

Ldb  52.5 10 N.m.s/rad [0,0.2] 

sk  1.786 N.m/rad [-0.1,0.1] 

sR  45.11 10  N.m/rad [-0.1,0.1] 

km 43.89 10 Nm/A - 

beltk  3.75 - 

La 31.34 10 H - 

Ra 

  

1.23   

0.27 

- 

[-0.1,0.1] 



  

37 

 

 


