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Introduction

Soil and rock masses naturally present heterogeneity at various scales of description. This heterogeneity may be of two kinds. At a large scale soil properties may be considered piecewise homogeneous once regions (e.g. layers) have been identified. At a lower scale the local spatial variability of the properties shall be accounted for. In any case, the use of deterministic values for representing the soil characteristics is poor, since it ignores the natural randomness of the medium. Alternatively, this randomness may be properly modelled using probabilistic models.

In the first of the two cases identified above, the material properties (e.g. Young's modulus, cohesion, friction angle, etc.) may be modelled in each region as random variables whose distributions (and possibly mutual correlation) have to be specified. In the second case, the introduction of random fields is necessary. In this respect probabilistic soil modelling is a long-term story, see e.g. [START_REF] Vanmarcke | Probabilistic modeling of soil profiles[END_REF]; [START_REF] Degroot | Estimating autocovariance of in-situ soil properties[END_REF]; Fenton (1999a,b); [START_REF] Rackwitz | Reviewing probabilistic soil modeling[END_REF]; [START_REF] Popescu | Effects of random heterogeneity of soil properties on bearing capacity[END_REF].

Usually soil characteristics are investigated in order to feed models of geotechnical structures in the context of engineering design. Examples of such structures are dams, embankments, pile or raft foundations, tunnels, etc. The design then consists in choosing characterictics of the structure (dimensions, material properties) so that the latter fulfills some requirements (e.g. retain water, support a building, etc.) under a given set of environmental actions that we will call "loading". The design is practically carried out by satisfying some design criteria which usually apply onto model response quantities (e.g. global equilibrium equation, settlements, bearing capacity, etc.). The conservatism of the design according to codes of practice is ensured first by introducing safety coefficients, second by using penalized values of the model parameters. In this approach, the natural spatial variability of the soil is completely hidden.

From another point of view, when the uncertainties and variability of the soil properties have been identified, methods that allow to propagate these uncertainties throughout the model have to be used. Perturbation methods used in the 80's and 90's [START_REF] Baecher | Stochastic finite element method in settlement predictions[END_REF][START_REF] Phoon | Reliability analysis of pile settlements[END_REF] allow to estimate the mean value and standard deviation of the system response. First/Second-order reliability methods (FORM/SORM) are used for assessing the probability of failure of the system with respect to performance criteria [START_REF] Ditlevsen | Structural reliability methods[END_REF]. Numerous applications of the latter can be found e.g. in [START_REF] Phoon | Representation of random variables using orthogonal polynomials[END_REF]; [START_REF] Low | Reliability-based design applied to retaining walls[END_REF]; [START_REF] Low | Efficient spreadsheet algorithm for first-order reliability[END_REF]; [START_REF] Li | Reliability analysis of circular tunnel under hydrostatic stress field[END_REF] among others.

In the early 90's a new approach called stochastic finite element method (SFEM) has emerged, which allows one to solve boundary value problems with uncertain coefficients and is especially suited to spatially variable inputs [START_REF] Ghanem | Stochastic finite elements -A spectral approach[END_REF]. The key ingredient in this approach is so-called polynomial chaos expansions (PCE), which allows one to represent a random output (e.g. the nodal displacement vector resulting from a finite element analysis) as a polynomial series in the input variables. Early applications of such a SFEM to geotechnics can be found in [START_REF] Ghanem | Stochastic finite element analysis of randomly layered media[END_REF]; [START_REF] Sudret | Stochastic finite elements and reliability: a state-of-the-art report[END_REF]; [START_REF] Ghiocel | Stochastic finite element analysis of seismic soilstructure interaction[END_REF]; [START_REF] Clouteau | An iterative solver for stochastic soil-structure interaction[END_REF]; [START_REF] Sudret | A stochastic finite element method in linear mechanics[END_REF]; [START_REF] Sudret | A stochastic finite element procedure for moment and reliability analysis[END_REF]; [START_REF] Berveiller | Stochastic finite elements: a non intrusive approach by regression[END_REF].

During the last ten years, polynomial chaos expansions have become a cross-field key approach to uncertainty quantification in engineering problems ranging from computational fluid dynamics and heat transfer problems to electromagnetism. The associated computational methods have also been somewhat simplified due to the emergence of non intrusive spectral approaches, as shown later.

The goal of this chapter is to give an overview on stochastic finite element analysis using polynomial chaos expansions, focusing more specifically on non intrusive computation schemes. The chapter is organized as follows. Section 2 presents a versatile uncertainty quantification framework which is now widely used by both researchers and practitioners [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF][START_REF] De Rocquigny | Modelling under risk and uncertainty -An introduction to statistical, phenomenological and computational methods[END_REF]. Section 3 presents the machinery of polynomial chaos expansions in a step-by-step approach: how to construct the polynomial chaos basis, how to compute the coefficients, how to estimate the quality of obtained series, how to address large dimensional problems using sparse expansions? Section 4 shows how to post-process a PC expansion for different applications, i.e. compute statistical moments of the response quantities, estimate the model output distribution or carry out sensitivity analysis. Finally, Section 5 presents different application examples in the field of geotechnics.

2 Uncertainty propagation framework

Introduction

Let us consider a physical system (e.g. a foundation on a soft soil layer, a retaining wall, etc.) whose mechanical behaviour is represented by a computational model M:

x ∈ D X ⊂ R M → y = M(x) ∈ R.

(1)

In this equation, x = {x 1 , . . . , x M } T gathers the M input parameters of the model while y is the quantity of interest (QoI) in the analyis, e.g. a load carrying capacity, a limit state equation for stability, etc. In the sequel only models having a single (scalar) quantity of interest are presented, although the derivations hold componentwise in case of vectorvalued models y = M(x) ∈ R q .

Figure 1: Uncertainty quantification framework As shown in Figure 1, once a computational model M is chosen to evaluate the performance of the system of interest (Step A), the sources of uncertainty are to be quantified (Step B): in this step the available information (expert judgment on the problem, data bases and literature, existing measurements) are used to build a proper probabilistic model of the input parameters, which is eventually cast as a random vector X described by a joint probability density function f X . When the parameters are assumed statistically independent, this joint distribution is equivalently defined by the set of marginal distribution of all input parameters, say {f X i , i = 1, . . . , M }. If dependence exists, the copula formalism may be used, see [START_REF] Nelsen | An introduction to copulas[END_REF][START_REF] Caniou | Global sensitivity analysis for nested and multiscale models[END_REF]. As a consequence, the quantity of interest becomes a random variable

Y = M(X), (2) 
whose properties are implicitely defined by the propagation of the uncertainties described by the joint distribution f X through the computational model (Step C). This step consists in characterizing the probabilistic content of Y , i.e. its statistical moments, quantiles or full distribution, in order to derive confidence intervals around the mean QoI for robust predictions, or to carry out reliability assessment.

When the spatial variability of soil properties is to be modelled, random fields have to be used. The mathematical description of random fields and their discretization is beyond the scope of this chapter. For an overview the interested reader is referred to [START_REF] Vanmarcke | Random fields : analysis and synthesis[END_REF]; [START_REF] Sudret | Stochastic finite elements and reliability: a state-of-the-art report[END_REF]; [START_REF] Sudret | Stochastic finite element methods in geotechnical engineering[END_REF]. In any case, and whatever the random field discretization technique (e.g. Karhunen-Love expansion, EOLE, etc.), the problem eventually reduces to an input random vector (which is usually Gaussian) appearing in the discretization. Then the uncertainty propagation issue identically suits the framework described above. For the sake of illustration an application example involving spatial variability will be addressed in Section 5.3.

Monte Carlo simulation

Monte Carlo simulation (MCS) is a well-known technique for estimating statistical properties of the random response Y = M(X): realizations of the input vector X are sampled according to the input distribution f X , then the computational model M is run for each sample and the resulting set of QoI is post-processed [START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF]. Although rather universal, MCS suffers from a low efficiency. Typically 10 3-4 samples are required to reach an acceptable accuracy. The cost even blows up when probabilities of failure are to be computed for the sake of reliability assessment, since 10 k+2 samples are required when estimating a probability of 10 -k . Thus alternative methods have to be devised for addressing uncertainty quantification problems which involve computationally demanding models such as finite element models. In the last decade polynomial chaos expansions have become a popular approach in this respect.

Polynomial chaos expansions

Mathematical setting

Consider a computational model M whose input parameters are represented by a random vector X, and the associated (random) quantity of interest Y = M(X). Assuming that Y has a finite variance (which is a physically meaningful assumption when dealing with geotechnical systems), it belongs to the so-called Hilbert space of second order random variables, which allows for the following representation [START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF]:

Y = ∞ j=0 y j Z j .
(3)

In the latter equation, the random variable Y is cast as an infinite series, in which {Z j } ∞ j=0 is a numerable set of random variables (which form a basis of the Hilbert space), and {y j } ∞ j=0 are coefficients. The latter may be interpreted as the coordinates of Y in this basis. Hilbertian analysis guarantees the existence of such bases and representation, however many choices are possible. In the sequel we focus on polynomial chaos expansions, in which the basis terms {Z j } ∞ j=0 are multivariate orthonormal polynomials in the input vector X, i.e. Z j = Ψ j (X).

Construction of the basis

Univariate orthonormal polynomials

For the sake of simplicity we assume that the input random vector has independent components denoted by {X i , i = 1, . . . , M }, meaning that the joint distribution is simply the product of the M marginal distributions {f X i } M i=1 :

f X (x) = M i=1 f X i (x i ), x i ∈ D X i , (4) 
where D X i is the support of X i . For each single variable X i and any two functions φ 1 , φ 2 : x ∈ D X i → R, we define a functional inner product by the following integral (provided it exists):

φ 1 , φ 2 i = D X i φ 1 (x) φ 2 (x) f X i (x) dx. ( 5 
)
The latter is nothing but the expectation E [φ 1 (X i ) φ 2 (X i )] with respect to the marginal distribution f X i . Two such functions are said orthogonal with respect to the probability measure

P (dx) = f X i (x) dx if E [φ 1 (X i ) φ 2 (X i )] = 0.
Using the above notation, classical algebra allows one to build a family of orthogonal polynomials {π

(i) k , k ∈ N} satisfying π (i) j , π (i) k i def = E π (i) j (X i ) π (i) k (X i ) = D X i π (i) j (x) π (i) k (x) f X i (x) dx = a i j δ jk , (6) 
where subscript k denotes the degree of the polynomial π

(i)
k , δ jk is the Kronecker symbol equal to 1 when j = k and 0 otherwise, and a i j corresponds to squared norm of π (i) j :

a i j def = π (i) j 2 i def = π (i) j , π (i) j i (7) 
This family can be obtained by applying the Gram-Schmidt orthogonalization procedure to the canonical family of monomials {1, x, x 2 , . . . }. For standard distributions, the associated family of orthogonal polynomials is well-known. For instance, if X i ∼ U(-1, 1) has a uniform distribution over [-1, 1], the resulting family is that of so-called Legendre polynomials. If X i ∼ N (0, 1) has a standard normal distribution with zero mean value and unit standard deviation, the resulting family is that of Hermite polynomials. The families associated to standard distributions are summarized in Table 1 [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF]. Note that the obtained family is usually not orthonormal. By enforcing the normalization, an orthonormal family ψ

(i) j ∞ j=0
is obtained from Eqs.( 6),(7) by

ψ (i) j = π (i) j / a i j i = 1, . . . , M, j ∈ N, (8) 
The normalizing coefficients are listed in Table 1 for the standard families. For the sake of illustration Hermite polynomials up to degree 4 are plotted in Figure 2. 
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Figure 2: Univariate Hermite polynomials

Multivariate polynomials

In order to build up a basis such as in (3), tensor products of univariate orthonormal polynomials are built up. For this purpose let us define multi-indices (also called tuples) α ∈ N M which are ordered lists of integers

α = (α 1 , . . . , α M ) , α i ∈ N. (9) 
One can associate a multivariate polynomial Ψ α to any multi-index α by

Ψ α (x) def = M i=1 ψ (i) α i (x i ), (10) 
where the univariate polynomials ψ

(i)
k , k ∈ N are defined according to the i-th marginal distribution, see Eqs.( 6),(8). By virtue of Eq.( 6) and the above tensor product construc-tion, the multivariate polynomials in the input vector X are also orthonormal, i.e.

E [Ψ α (X) Ψ β (X)] def = D X Ψ α (x)Ψ β (x) f X (x) dx = δ αβ ∀ α, β ∈ N M , (11) 
where δ αβ is the Kronecker symbol which is equal to 1 if α = β and zero otherwise.

With this notation, it can be proven that the set of all multivariate polynomials in the input random vector X forms a basis of the Hilbert space in which Y = M(X) is to be represented [START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF]:

Y = α∈N M y α Ψ α (X). ( 12 
)
This equation may be interpreted as an intrinsic representation of the random response Y in an abstract space through an orthonormal basis and coefficients that are the coordinates of Y in this basis.

Practical implementation

Isoprobabilistic transform

In practical uncertainty quantification problems the random variables which model the input parameters (e.g. material properties, loads, etc.) are usually not standardized as those shown in Table 1. Thus it is necessary to first transform random vector X into a set of reduced variables U through an isoprobabilistic transform

X = T (U ). ( 13 
)
Depending on the marginal distribution of each input variable X i , the associated reduced variable U i may be standard normal N (0, 1), standard uniform U(-1, 1), etc. Then the random model response Y is cast as a function of the reduced variables by composing the computational model M and the transform T :

Y = M(X) = M • T (U ) = α∈N M y α Ψ α (U ). ( 14 
)
Note that the isoprobabilistic transform also allows one to address the case of correlated input variables through e.g. Nataf transform [START_REF] Ditlevsen | Structural reliability methods[END_REF].

Example 1 Suppose X = {X 1 , . . . , X M } T is a vector of independent Gaussian variables X i ∼ N (µ i , σ i ) with respective mean value µ i and standard deviation σ i . Then a one-toone mapping X = T (U ) is obtained by:

X i = µ i + σ i U i , i = 1, . . . , M. ( 15 
)
where U = {U 1, . . . , U M } T is a standard normal vector.

Example 2 Suppose X = {X 1 , X 2 } T where X 1 ∼ LN (λ, ζ) is a lognormal variable and X 2 ∼ U(a, b) is a uniform variable. It is natural to transform X 1 into a standard normal variable and X 2 into a standard uniform variable. The isoprobabilistic transform X = T (U ) then reads:

   X 1 = e λ+ζ U 1 X 2 = b -a 2 U 2 + b + a 2 (16)

Truncation scheme

The representation of the random response in Eq.( 12) is exact when the infinite series is considered. However, in practice, only a finite number of terms may be computed. For this purpose a truncation scheme has to be adopted. Since the polynomial chaos basis is made of polynomials, it is natural to consider as a truncated series all polynomials up to a certain degree. Let us define the total degree of a multivariate polynomial Ψ α by:

|α| def = M i=1 α i . ( 17 
)
The standard truncation scheme consists in selecting all polynomials such that |α| is smaller than a given p, i.e.

A M,p = α ∈ N M : |α| ≤ p . (18) 
The number of terms in the truncated series is

card A M,p = M + p p = (M + p)! M ! p! . ( 19 
)
The maximal polynomial degree p may typically be equal to 3 -5 in practical applications. The question on how to define the suitable p for obtaining a given accuracy in the truncated series will be addressed later in Section 3.6. Note that the cardinality of A M,p increases polynomially with M and p. Thus the number of terms in the series, i.e. the number of coefficients to be computed, increases dramatically when M > 10, say. This complexity is referred to as the curse of dimensionality. Other advanced truncation schemes that allow one to bypass this problem will be considered later on in Section 3.6. As a conclusion, the construction of a truncated PC expansion requires to:

• transform the input random vector X into reduced variables;

• compute the associated families of univariate orthonormal polynomials;

• compute the set of multi-indices corresponding to the truncation set (Eq.( 18)). For this purpose, two different algorithms may be found in Sudret et al. (2006, Appendix I) and Blatman (2009, Appendix C).

Application example

Let us consider a computational model y = M(x 1 , x 2 ) involving two random parameters {X 1 , X 2 } T that are modelled by lognormal distributions, e.g. the load carrying capacity of a foundation in which the soil cohesion and friction angle are considered uncertain.

Denoting by (λ i , ζ i ) the parameters of each distribution (i.e. the mean and standard deviation of the logarithm of X i , i = 1, 2), the input variables may be transformed into reduced standard normal variables X = T (U ) as follows:

X 1 ∼ LN (λ 1 , ζ 1 ) X 1 = e λ 1 +ζ 1 U 1 X 2 ∼ LN (λ 2 , ζ 2 ) X 2 = e λ 2 +ζ 2 U 2 (20)
The problem reduces to representing a function of two standard normal variables onto a polynomial chaos expansion:

Y = M(T (U 1 , U 2 )) = α∈N 2 y α Ψ α (U 1 , U 2 ). ( 21 
)
Since the reduced variables are standard normal, Hermite polynomials are used. Their derivation is presented in details in Appendix A. For the sake of illustration the orthonormal Hermite polynomials up to degree p = 3 read (see Eq.( 8)):

ψ 0 (x) = 1 ψ 1 (x) = x ψ 2 (x) = (x 2 -1)/ √ 2 ψ 3 (x) = (x 3 -3x)/ √ 6. ( 22 
)
Suppose a standard truncation scheme of maximal degree p = 3 is selected. This leads to a truncation set A 2,3 of size P = 2+3 3 = 10. The set of multi-indices (α 1 , α 2 ) such that {α i ≥ 0, α 1 + α 2 ≤ 3} is given in Table 2 together with the expression of the resulting multivariate polynomials.

Table 2: Hermite polynomial chaos basis -M = 2 standard normal variables, p = 3

j α Ψ α ≡ Ψ j 0 (0, 0) Ψ 0 = 1 1 (1, 0) Ψ 1 = U 1 2 (0, 1) Ψ 2 = U 2 3 (2, 0) Ψ 3 = (U 2 1 -1)/ √ 2 4 (1, 1) Ψ 4 = U 1 U 2 5 (0, 2) Ψ 5 = (U 2 2 -1)/ √ 2 6 (3, 0) Ψ 6 = (U 3 1 -3U 1 )/ √ 6 7 (2, 1) Ψ 7 = (U 2 1 -1)U 2 / √ 2 8 (1, 2) Ψ 8 = (U 2 2 -1)U 1 / √ 2 9 (0, 3) Ψ 9 = (U 3 2 -3U 2 )/ √ 6
As a conclusion, the random response of our computational model

Y = M(T (U 1 , U 2 ))
will be approximated by a 10-term polynomial series expansion in (U 1 , U 2 ):

Ỹ def = M PC (U 1 , U 2 ) = y 0 + y 1 U 1 + y 2 U 2 + y 3 (U 2 1 -1)/ √ 2 + y 4 U 1 U 2 + y 5 (U 2 2 -1)/ √ 2 + y 6 (U 3 1 -3U 1 )/ √ 6 + y 7 (U 2 1 -1)U 2 / √ 2 + y 8 (U 2 2 -1)U 1 / √ 2 + y 9 (U 3 2 -3U 2 )/ √ 6. (23)
3.4 Computation of the coefficients

Introduction

Once the truncated basis has been selected the coefficients {y α } α∈A M,p shall be computed. Historically, so-called intrusive computation schemes have been developed in the context of stochastic finite element analysis [START_REF] Ghanem | Stochastic finite elements -A spectral approach[END_REF]. In this setup the constitutive equations of the physical problem (e.g. linear elasticity for estimating the settlement of foundations) are discretized both in the physical space (using standard finite element techniques) and in the random space using the polynomial chaos expansion. This results in coupled systems of equations which require ad-hoc solvers, thus the term "intrusive". The application of such approaches to geotechnical problems may be found in [START_REF] Ghiocel | Stochastic finite element analysis of seismic soilstructure interaction[END_REF]; Berveiller et al. (2004b); [START_REF] Sudret | A stochastic finite element method in linear mechanics[END_REF]; [START_REF] Sudret | A stochastic finite element procedure for moment and reliability analysis[END_REF], Sudret and Berveiller (2007, Chap. 7).

In the last decade alternative approaches termed non-intrusive have been developed for computing the expansion coefficients. The common point of these techniques is that they rely upon the repeated run of the computational model for selected realizations of random vector X, exactly as in Monte-Carlo simulation. Thus the computational model may be used without modification. The main techniques are now reviewed with an emphasis on least-square minimization.

Projection

Due to the orthogonality of the PC basis (Eq.( 11)) one can compute each expansion coefficient as follows:

E [Y Ψ α (X)] = E   Ψ α (X) • β∈N M y β Ψ β (X)   = β∈N M y β δ αβ E [Ψ α (X)Ψ β (X)] = y α . (24)
Thus each coefficient y α is nothing but the orthogonal projection of the random response Y onto the corresponding basis function Ψ α (X). The latter may be further elaborated as

y α = E [Y Ψ α (X)] = D X M(x) Ψ α (x) f X (x) dx. ( 25 
)
The numerical estimation of y α may be carried with either one of the two expressions, namely:

• by Monte Carlo simulation (MCS) allowing one to estimate the expectation in Eq.( 25) [START_REF] Ghiocel | Stochastic finite element analysis of seismic soilstructure interaction[END_REF]. This technique however shows low efficiency, as does MCS in general;

• by a the numerical integration of the right-hand side of Eq.( 25) using Gaussian quadrature [START_REF] Le Maître | A stochastic projection method for fluid flow -II. Random process[END_REF]Berveiller et al., 2004a;[START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations[END_REF].

The quadrature approach has been extended using sparse grids for a more efficient integration, especially in large dimensions. So-called stochastic collocation methods have also been developed. The reader is referred to the review paper by [START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF] for more details.

Least-square minimization

Instead of devising numerical methods that directly estimate each coefficient from the expression

y α = E [Y Ψ α (X)],
an alternative approach based on least-square minimization and originally termed "regression approach" has been proposed in Berveiller et al. (2004b[START_REF] Berveiller | Stochastic finite elements: a non intrusive approach by regression[END_REF]. The problem is set up as follows. Once a truncation scheme A ⊂ N M is chosen (for instance, A = A M,p as in Eq.( 18)), the infinite series is recast as the sum of the truncated series and a residual:

Y = M(X) = α∈A y α Ψ α (X) + ε, (26) 
in which ε corresponds to all those PC polynomials whose index α is not in the truncation set A. The least-square minimization approach consists in finding the set of coefficients y = {y α , α ∈ A} which minimizes the mean square error

E ε 2 def = E   Y - α∈A y α Ψ α (X) 2   , (27) 
that is:

y = arg min y∈R cardA E   M(X) - α∈A y α Ψ α (X) 2   . ( 28 
)
The residual in Eq.( 27) is nothing but a quadratic function of the (still unknown) coefficients {y α } α∈A . By simple algebra it can be proven that the solution is identical to that obtained by projection in Eq.( 25). However, the setup in Eq.( 28) which is similar to regression opens to new computational schemes. For this purpose, the discretized version of the problem is obtained by replacing the expectation operator in Eq.( 28) by the empirical mean over a sample set:

ŷ = arg min y∈R cardA 1 n n i=1 M(x (i) ) - α∈A y α Ψ α (x (i) ) 2 .
(29)

In this expression, X = x (i) , i = 1, . . . , n is a sample set of points, (also called experimental design (ED)) that is typically obtained by Monte Carlo simulation of the input random vector X. The least-square minimization problem in Eq.( 29) is solved as follows:

• The computational model M is run for each point in the ED, and the results are stored in a vector

Y = y (1) = M(x (1) ), . . . , y (n) = M(x (n) ) T . (30) 
• The information matrix is calculated from the evaluation of the basis polynomials onto each point in the ED:

A = A ij def = Ψ j (x (i) ) , i = 1, . . . , n, j = 1, . . . , card A . (31) 
• The solution of the least-square minimization problem reads

ŷ = A T A -1 A T Y. (32) 
In order to be well-posed the least-square minimization requires that the number of unknown P = card A is smaller than the size of the experimental design n = card X . The empirical thumb rule n ≈ 2 P -3 P is often mentioned [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF][START_REF] Blatman | Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis[END_REF]. To overcome the potential ill-condionning of the information matrix, a singular value decomposition shall be used [START_REF] Press | Numerical Recipes[END_REF].

The points used in the experimental design may be obtained from crude Monte Carlo simulation. However other types of designs are of common use, especially Latin Hypercube sampling (LHS), see [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF], or quasi-random sequences such as the Sobol' or Halton sequence [START_REF] Niederreiter | Random number generation and quasi-Monte Carlo methods[END_REF]. From the author's experience the latter types of design provide rather equivalent accuracy in terms of resulting mean-square error, for the same sample size n. Note that deterministic designs based on the roots of the orthogonal polynomials have also been proposed earlier in [START_REF] Berveiller | Stochastic finite elements: a non intrusive approach by regression[END_REF] based on [START_REF] Isukapalli | Uncertainty Analysis of Transport-Transformation Models[END_REF].

Once the coefficients have been evaluated (Eq.( 32)) the approximation of the random response is the random variable

Ŷ = M PC (X) = α∈A ŷα Ψ α (X). ( 33 
)
The above equation may also be interpreted as a response surface, i.e. a function x → M PC (x) = α∈A ŷα Ψ α (x) that allows one to surrogate (fast, although approximately) the original model y = M(x).

Validation

Error estimators

As mentioned already, it is not possible to know in advance how to choose the maximal polynomial degree in the standard truncation scheme Eq.( 18). A crude approach would consist in testing several truncation schemes of increasing degree (e.g. p = 2, 3, 4) and observe if there is some convergence for the quantities of interest. Recently, a posteriori error estimates have been proposed by [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] that allow for an objective evaluation of the accuracy of any truncated PCE. First of all it is reminded that a good measure of the error committed by using a truncated series expansion is the mean-square error of the residual (which is also called generalization error in statistical learning theory):

Err G def = E ε 2 = E   Y - α∈A ŷα Ψ α (X) 2   . (34)
In practice the latter is not known analytically, yet it may be estimated by a Monte Carlo simulation using a large sample set, say X val = {x 1 , . . . , x n val }:

Err G def = 1 n val n val i=1 M(x i ) - α∈A ŷα Ψ α (x i ) 2 . ( 35 
)
The so-called validation set X val shall be large enough to get an accurate estimation, e.g. n val = 10 3-5 . However, as the computation of Err G requires evaluating M for each point in X val , this is not affordable in real applications and would ruin the efficiency of the approach. Indeed the purpose of using polynomial chaos expansions is to avoid Monte Carlo simulation, i.e. to limit the number of runs of M in Eq.( 30) to the smallest possible number, typically n = 50 to a few hundreds. As a consequence, in order to get an estimation of the generalization error Eq.( 34) at an affordable computational cost, the points in the experimental design X could be used in Eq.( 35) instead of the validation set, leading to the so-called empirical error Err E defined by

Err E def = 1 n n i=1 M(x (i) ) - α∈A ŷα Ψ α (x (i) ) 2 , x (i) ∈ X (36) 
This empirical error now only uses the values M(x (i) ) that are already available from Eq.( 30) and is thus readily computable. Note that the normalized quantity

R 2 = 1 - Err E Var [Y] , (37) 
where Var [Y] is the empirical variance of the set of response quantities in Eq.( 30), is the well-known coefficient of determination in regression analysis.

However Err E usually underestimates (sometimes severely) the real generalization error Err G . As an example, in the limit case when an interpolating polynomial would be fitted to the experimental design, Err E would be exactly zero while Err G in Eq.(34) would probably not: this phenomenon is known as overfitting.

Leave-one-out cross-validation

A compromise between fair error estimation and affordable computational cost may be obtained by leave-one-out (LOO) cross-validation, which was originally proposed by [START_REF] Allen | The prediction sum of squares as a criterion for selecting prediction variables[END_REF]; [START_REF] Geisser | The predictive sample reuse method with applications[END_REF]. The idea is to use different sets of points to (i) build a PC expansion and (ii) compute the error with the original computational model. Starting from the full experimental design X , LOO cross-validation sets one point apart, say x (i) and builds a PC expansion denoted by M PC\i (.) from the n -1 remaining points, i.e. from the ED X \x (i) def = x (1) , . . . , x (i-1) , x (i+1) , . . . , x (n) . The predicted residual error at that point reads:

∆ i def = M(x (i) ) -M PC\i (x (i) ). ( 38 
)
The PRESS coefficient(predicted residual sum of squares) and the leave-one-out error respectively read:

P RESS = n i=1 ∆ 2 i , (39) 
Err LOO = 1 n n i=1 ∆ 2 i . ( 40 
)
Similar to the determination coefficient in Eq.( 37) the Q 2 indicator defined by

Q 2 = 1 - Err LOO Var [Y] ( 41 
)
is a normalized measure of the accuracy of the meta-model. From the above equations one could think that evaluating Err LOO is computationally demanding since it is based on the sum of n predicted residuals, each of them obtained from a different PC expansion. However algebraic derivations may be carried out to compute Err LOO from a single PC expansion analysis using the full original experimental design X (details may be found in Blatman (2009, Appendix D)) as follows. The predicted residual in Eq.(38) eventually reads:

∆ i = M(x (i) ) -M PC\i (x (i) ) = M(x (i) ) -M PC (x (i) ) 1 -h i , ( 42 
)
where h i is the i-th diagonal term of matrix A(A T A) -1 A T . The LOO error estimate eventually reads

Err LOO = 1 n n i=1 M(x (i) ) -M PC (x (i) ) 1 -h i 2 , (43) 
where M PC has been built up from the full experimental design. As a conclusion, from a single resolution of a least-square problem using the ED X , a fair error estimate of the mean-square error is available a posteriori using Eq.( 43). Note that in practice, a normalized version of the LOO error is obtained by dividing Err LOO by the sample variance Var [Y]. A correction factor that accounts for the limit size of the experimental design is also added [START_REF] Chapelle | Model selection for small sample regression[END_REF] which eventually leads to:

LOO = 1 n -P 1 + 1 n tr C -1 emp Var [Y] n i=1 M(x (i) ) -M PC (x (i) ) 1 -h i 2 , ( 44 
)
where tr(•) is the trace, P = card A and C emp = 1 n Ψ T Ψ.

Curse of dimensionality

Common engineering problems are solved with computational models having typically M = 10 to 50 input parameters. Even using a low-order PC expansion, this leads to a large number of unknown coefficients (size of the truncation set P = card A M,p ), which is equal to e.g. 286 -23,426 terms when choosing p = 3. As explained already the suitable size of the experimental design shall be two to three times those numbers, which may reveal unaffordable when the computational model M is e.g. a finite element model. On the other hand, most of the terms in this large truncation set A M,p correspond to polynomials representing interactions between input variables. Yet it has been observed in many practical applications that only the low-interaction terms have coefficients that are significantly non zero. Taking again the example {M = 50, p = 3}, the number of univariate polynomials in the input variables (i.e. depending only on U 1 , on U 2 , etc.) is equal to p • M =150, i.e. less than 1% of the total number of terms in A 50,3 . As a conclusion, the common truncation scheme in Eq.( 18) leads to compute a large number of coefficients, whereas most of them may reveal negligible once the computation has been carried out.

Due to this sparsity-of-effect principle [START_REF] Blatman | Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis[END_REF] has proposed to use truncation schemes that favor the low-interaction (also called low-rank) polynomials. Let us define the rank r of a multi-index α by the number of non zero integers in α, i.e.

r def = ||α|| 0 = M i=1 1 {α i >0} (45) 
This rank corresponds to the number of input variables a polynomial Ψ α depends on. For instance, Ψ 1 , Ψ 3 and Ψ 9 in Table 2 are of rank 1 (they only depend on one single variable) whereas Ψ 4 , Ψ 7 and Ψ 8 are of rank 2. [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] propose to fix a priori the maximum rank r max and define truncation sets as follows:

A M,p,rmax = {α ∈ N M : |α| ≤ p, ||α|| 0 ≤ r max } (46) 
Another approach which has proven to be more relevant in the context of adaptive algorithms has been introduced in Blatman and Sudret (2011a) and is referred to as the hyperbolic truncation scheme. Let us define for any multi-index α and 0 < q ≤ 1 the q-norm:

||α|| q def = M i=1 α q i 1/q (47)
The hyperbolic truncation scheme corresponds to selecting all multi-indices of q-norm less than or equal to p: A M,p,q = {α ∈ N M : ||α|| q ≤ p} (48)

As shown in Figure 3 for a two-dimensional problem (M = 2), such a truncation set contains all univariate polynomials up to degree p (since tuples of the form (0, . . . , α i = 0, . . . , 0) belong to it as long as α i ≤ p). The case q = 1 corresponds to the standard truncation set A M,p defined in Eq.( 18). When q < 1 though, the polynomials of rank r > 1 (corresponding to the blue points that are not on the axes in Figure 3) are less numerous than in A M,p . The gain in the basis size is all the more important when q is small and M is large.

In the limit when q → 0 + only univariate polynomials (rank 1, no interaction terms) are retained leading to an additive surrogate model, i.e. a sum of univariate functions. As shown in Blatman and Sudret (2011a) the size of the truncation set in Eq.( 48) may be smaller by 2 to 3 orders of magnitude than that of the standard truncation scheme for large M and p ≥ 5. 

Adaptive algorithms

The use of hyperbolic truncation schemes A M,p,q as described above allows one to a priori decrease the number of coefficients to be computed in a truncated series expansion. This automatically reduces the computational cost since the minimal size of the experimental design X shall be equal to k • card A M,p,q , where k = 2 to 3. However this may remain too costly when large-dimensional, highly non linear problems are to be addressed. Moreover, it is often observed a posteriori that the non zero coefficients in the expansion form a sparse subset of A M,p,q . Thus came the idea to build on-the-fly the suitable Standard truncation (A M,p ) Hyperbolic truncation (A M,p,q ) Sparse truncation (A) 2008) and further improved in [START_REF] Blatman | Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis[END_REF]Sudret (2010, 2011a). In the latter publication the question of finding a suitable truncated basis is interpreted as a variable selection problem. The so-called least-angle regression (LAR) algorithm [START_REF] Efron | Least angle regression[END_REF] has proven remarkable efficiency in this respect (see also [START_REF] Hastie | Forward stagewise regression and the monotone lasso[END_REF]).

The principle of LAR is to (i) select a candidate set of polynomials A, e.g. a given hyperbolic truncation set as in Eq.( 48), and (ii) build up from scratch a sequence of sparse bases having 1, 2, , . . . , card A terms. The algorithm is initialized by looking for the basis term Ψ α 1 which is the most correlated with the response vector Y . The correlation is practically computed from the realizations of Y (i.e. the set Y of QoI in Eq.( 30)) and the realizations of the Ψ α 's, namely the information matrix in Eq.( 31). This is carried out by normalizing each column vector into a zero-mean, unit variance vector, such that the correlation is then obtained by a mere scalar product of the normalized vector. Once the first basis term Ψ α 1 is identified, the associated coefficient is computed such that the residual Yy

(1) α 1 Ψ α 1 (X) becomes equicorrelated with two basis terms (Ψ α 1 , Ψ α 2 ). This will define the best one-term expansion. Then the current approximation is improved by moving along the direction (Ψ α 1 + Ψ α 2 ) up to a point where the residual becomes equi-correlated with a third polynomial Ψ α 3 , and so on.

In the end the LAR algorithm has produced a sequence of less and less sparse expansions. The leave-one-out error of each expansion can be evaluated by Eq.( 43). The sparse model providing the smallest error is retained. The great advantage of LAR is that it can be applied also in the case when the size of the candidate basis A is larger than the size of the ED, card X . Usually the size of the optimal sparse truncation is smaller than card X in the end. Thus the coefficients of the associated PC expansion may be recomputed by least-square minimization for a better accuracy [START_REF] Efron | Least angle regression[END_REF].

Note that all the above calculations are conducted from a prescribed initial experimental design X . It may happen though that this size is too small to address the complexity of the problem, meaning that there is not enough information to find a sparse expansion with a sufficiently small LOO error. In this case overfitting appears, which can be detected automatically as shown in Blatman and Sudret (2011a). At that point the ED shall be enriched by adding new points (Monte Carlo samples or nested Latin Hypercube sampling). All in all a fully automatic "basis-and-ED" adaptive algorithm may be devised that will only require to prescribe the target accuracy of the analysis, i.e. the maximal tolerated LOO error, and an initial experimental design. The algorithm then automatically runs LAR analysis with increasingly large candidate sets A, and possibly by increasing large experimental designs so as to reach the prescribed accuracy (see Figure 5). Note that extensions to vector-valued models have been proposed recently in [START_REF] Blatman | Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis[END_REF]Sudret (2011b, 2013).

Post-processing for engineering applications

The polynomial chaos expansion technique presented in the previous sections leads to represent the quantity of interest (QoI) of a computational model Y = M(X) through a somewhat abstract represention by a polynomial series Ŷ = α∈A ŷα Ψ α (X) (Eq.( 33)). Once the PC basis has been set up (a priori or using an adaptive algorithm such as LAR) and once the coefficients have been calculated, the series expansion shall be postprocessed so as to provide engineeringwise meaningful numbers and statements: what is the mean behaviour of the system (mean QoI), scattering (variance of the QoI), confidence intervals or probability of failure (i.e. the probability that the QoI exceeds an admissible threshold)? In this section the various ways of post-processing a PC expansion are reviewed.

Moment analysis

From the orthonormality of the PC basis shown in Eq.( 11) one can easily compute the mean and standard deviation of a truncated series Ŷ = α∈A ŷα Ψ α (X). Indeed, each polynomial shall be orthogonal to Ψ 0 ≡ 1, meaning that E [Ψ α (X)] = 0 ∀ α = 0. Thus the mean value of Ŷ is the first term of the series:

E Ŷ = E α∈A ŷα Ψ α (X) = y 0 (49)
Similarly, due to Eq.( 11) the variance reads

σ 2 Ŷ def = Var Ŷ = E Ŷ -y 0 2 = α∈A α =0 ŷ2 α ( 50 
)
Higher order moments such as the skewness and kurtosis coefficients δ Ŷ and κ Ŷ may also be computed, which however requires the expectation of products of three (resp. four) multivariate polynomials:

δ Ŷ def = 1 σ 3 Ŷ E ( Ŷ -y 0 ) 3 = 1 σ 3 Ŷ α∈A β∈A γ∈A E [Ψ α (X)Ψ β (X)Ψ γ (X)] ŷα ŷβ ŷγ κ Ŷ def = 1 σ 4 Ŷ E ( Ŷ -y 0 ) 4 = 1 σ 4 Ŷ α∈A β∈A γ∈A δ∈A E [Ψ α (X)Ψ β (X)Ψ γ (X)Ψ δ (X)] ŷα ŷβ ŷγ ŷδ (51)
The above expectations of products can be given analytical expressions only when Hermite polynomials are used (see Sudret et al. (2006, Appendix I)). Otherwise they may be computed numerically by quadrature.

Distribution analysis and confidence intervals

As shown from Eq.( 33) the PC expansion M PC can be used as a polynomial response surface. Thus the output probability density function of Ŷ = α∈A ŷα Ψ α (X) can be obtained by merely sampling the input random vector X, say X MCS = {x 1 , . . . , x n MCS } and evaluating the PC expansion onto this sample, i.e.

Y PC MCS = M PC (x 1 ), . . . , M PC (x n MCS ) . ( 52 
)
Using a sufficiently large sample set (e.g. n MCS = 10 5-6 ), one can then compute and plot the almost exact PDF of Ŷ by using a kernel density estimator [START_REF] Wand | Kernel smoothing[END_REF]:

f Ŷ (y) = 1 n MCS h n MCS i=1 K y -M PC (x i ) h . ( 53 
)
In this equation the kernel function K is a positive definite function integrating to one (e.g. the standard normal PDF ϕ(y) = e -y 2 /2 / √ 2π) and h is the bandwith. The latter can be taken for instance from Silverman's equation:

h = 0.9 n -1/5 MCS min σ Ŷ , (Q 0.75 -Q 0.25 )/1.34 , (54) 
Once a PC expansion of the QoI is available though, the probability of failure may be obtained by substituting M by M PC in Eq.( 57):

P PC f = {x: y adm -M PC (x)≤0} f X (x) dx = E 1 {x: M PC (x)≥y adm} (X) (59)
The latter can be estimated by crude Monte Carlo simulation. Using the sample set in Eq.( 52) one computes the number n f of samples such that M PC (x i ) ≥ y adm . Then the estimate of the probability of failure reads:

P PC f = n f n MCS (60)
This crude Monte Carlo approach will typically work efficiently if P f ≤ 10 -4 , i.e. if at most 10 6 runs of PC expansion are required. Note that any standard reliability method such as importance sampling or subset simulation could be also used.

Sensitivity analysis

Sobol' decomposition

Global sensitivity analysis (GSA) aims at quantifying which input parameters {X i , i = 1, . . . , M } or combinations thereof explain at best the variability of the quantity of interest Y = M(X) (Saltelli et al., 2000(Saltelli et al., , 2008)). This variability being well described by the variance of Y , the question reduces to apportioning Var [Y ] to each input parameter {X 1 , . . . , X M }, second-order interactions X i X j , etc. For this purpose variance decomposition techniques have gained interest since the mid 90's. The Sobol' decomposition [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] states that any square integrable function M with respect to a probability measure associated with a PDF f X (x) = M i=1 f X i (x i ) (independent components) may be cast as:

M(x) = M 0 + M i=1 M i (x i ) + 1≤i<j≤M M ij (x i , x j ) + • • • + M 12...M (x) (61)
that is, as a sum of a constant, univariate functions

{M i (x i ) , 1 ≤ i ≤ M }, bivariate functions {M ij (x i , x j ) , 1 ≤ i < j ≤ M }, etc.
Using the set notation for indices

u def = {i 1 , . . . , i s } ⊂ {1, . . . , M } , ( 62 
)
the Sobol' decomposition in Eq.( 61) reads:

M(x) = M 0 + u⊂{1, ... ,M } u =∅ M u (x u ) (63)
where x u is a subvector of x which only contains the components that belong to the index set u. It can be proven that the Sobol' decomposition is unique when the orthogonality between summands is required, namely:

E [M u (x u ) M v (x v )] = 0 ∀ u, v ⊂ {1, . . . , M } , u = v (64)
A recursive construction is obtained by the following recurrence relationship:

M 0 = E [M(X)] M i (x i ) = E [M(X)|X i = x i ] -M 0 M ij (x i , x j ) = E [M(X)|X i , X j = x i , x j ] -M i (x i ) -M j (x j ) -M 0 (65)
The latter equation is of little interest in practice since the integrals required to compute the various conditional expectations are cumbersome. Nevertheless the existence and unicity of Eq.( 61) together with the orthogonality property in Eq.( 64) now allow one to decompose the variance of Y as follows:

D def = Var [Y ] = Var     u⊂{1, ... ,M } u =∅ M u (x u )     = u⊂{1, ... ,M } u =∅ Var [M u (X u )] ( 66 
)
where the partial variances read:

D u def = Var [M u (X u )] = E M 2 u (X u ) . (67) 

Sobol' indices

The so-called Sobol' indices are defined as the ratio of the partial variances D u to the total variance D. The so-called first-order indices correspond to single input variables, i.e. u = {i}:

S i = D i D = Var [M i (X i )] Var [Y ] (68) 
The second-order indices (u = {i, j}) read:

S ij = D ij D = Var [M ij (X i , X j )] Var [Y ] (69) 
etc. Note that the total Sobol' index S T i , which quantifies the total impact of a given parameter X i including all interactions, may be computed by the sum of the Sobol' indices of any order that contain X i :

S T i = i∈u S u (70) 

Sobol' indices from PC expansions

Sobol' indices have proven to be the most efficient sensitivity measures for general computational models (Saltelli et al., 2008). However they are traditionally evaluated by Monte Carlo simulation (possibly using quasi-random sequences) [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models[END_REF], which make them difficult to use when costly computational models M are used. In order to bypass the problem [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF][START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] has proposed an original post-processing of polynomial chaos expansions for sensitivity analysis. Indeed, the Sobol' decomposition of a truncated PC expansion Ŷ = M PC (X) = α∈A ŷα Ψ α (X) can be established analytically, as shown below.

For any subset of variables u = {i 1 , . . . , i s } ⊂ {1, . . . , M } let us define the set of multivariate polynomials Ψ α which depend only on u:

A u = {α ∈ A : α k = 0 if and only if k ∈ u} . (71) 
It is clear that the A u 's form a partition of A since

u⊂{1, ... ,M } A u = A. (72) 
Thus a truncated PC expansion such as in Eq.( 33) may be rewritten as follows by simple reordering of the terms:

M PC (x) = y 0 + u⊂{1, ... ,M } u =∅ M PC u (x u ) (73) 
where:

M PC u (x u ) def = α∈Au y α Ψ α (x) (74) 
Consequently, due to the orthogonality of the PC basis, the partial variance D u reduces to:

D u = Var M PC u (X u ) = α∈Au y 2 α (75) 
In other words, from a given PC expansion, the Sobol' indices at any order may be obtained by a mere combination of the squares of the coefficients. As an illustration the first-order PC-based Sobol' indices read:

S PC i = α∈A i y 2 α /D A i = {α ∈ A : α i > 0 , α j =i = 0} (76) 
whereas the total PC-based Sobol' indices are:

S T,PC i = α∈A T i y 2 α /D A T i = {α ∈ A : α i > 0} (77) 
Polynomial chaos expansions and the various types of post-processing presented above are now applied to different classical geotechnical problems.

5 Application examples 5.1 Load carrying capacity of a strip footing

Independent input variables

Let us consider the strip footing of width B = 10 m sketched in Figure 6 which is embedded at depth D. We assume that the ground water table is far below the surface. The ultimate bearing capacity reads [START_REF] Lang | Bodenmechanik und Grundbau[END_REF]:

q u = c N c + γD N q + 1 2 B γ N γ (78) 
where the bearing capacity factors read:

N q = e π tan φ tan 2 (π/4 + φ/2) N c = (N q -1) cot φ N γ = 2 (N q -1) tan φ (79) 
The soil parameters and the foundation depth are considered as independent random variables, whose properties are listed in Table 3. Let us denote the model input vector by X = {D, γ, c, φ} T . The associated random bearing capacity is q u (X). 

• , µ = 30 • =10%
Using the mean values of the parameters in Table 3 the ultimate bearing capacity is equal to q u = 2.78 MPa. We consider now several design situations with applied loads q des = q u /SF where SF = 1.5, 2, 2.5, 3 would be the global safety factor obtained from a deterministic design. Then we consider the reliability of the foundation with respect to the ultimate bearing capacity. The limit state function reads: g(X) = q u (X)q des = q u (X)q u /SF (80)

Classical reliability methods are used, namely FORM, SORM and crude Monte Carlo simulation (MCS) with 10 7 samples in order to get a reference solution. The uncertainty quantification software UQLab is used [START_REF] Marelli | UQLab: A framework for uncertainty quantification in Matlab[END_REF]. Alternatively a PC expansion q PC u (X) of the ultimate bearing capacity is first computed using a LHS experimental design of size n = 500. Then the PC expansion is substituted for in Eq.( 80) and the associated probability of failure is computed by Monte Carlo simulation (10 7 samples), now using the PC expansion only (and for the different values of SF). The results are reported in Table 4.

Table 4: Ultimate bearing capacity of a strip foundation -Probability of failure (resp. generalized reliability index β gen = -Φ -1 (P f ) between parentheses) -Case of independent variables From Table 4 it is clear that the results obtained by PC expansion are almost equal to those obtained by the reference Monte Carlo simulation. The relative error in terms of the probability of failure is all in all less than one 1% (the corresponding error on the generalized reliability index β gen = -Φ -1 (P f ) is negligible).

SF FORM SORM MCS (10 7 runs) PCE +MCS † 1.5 1.73 • 10 -1 (0.94) 1.70 • 10 -1 (0.96) 1.69 • 10 -1 (0.96) 1.70 • 10 -1 (0.96) 2.0 5.49 • 10 -2 (1.60) 5.30 • 10 -2 (1.62) 5.30 • 10 -2 (1.62) 5.29 • 10 -2 (1.62) 2.5 1.72 • 10 -2 (2.11) 1.65 • 10 -2 (2.13) 1.63 • 10 -2 (2.14) 1.65 • 10 -2 (2.
The number of runs associated to FORM (resp. SORM) are 31 for SF =1.5 and 2, and 35 for SF =2.5 and 3 (resp. 65 for SF =1.5 and 2, and 69 for SF =2.5 and 3). Note that for each value of SF a new analysis FORM/SORM analysis shall be run. In contrast to FORM/SORM, a single PC expansion has been used to obtain the reliability associated to all safety factors. Using 500 points in the experimental design, i.e. 500 evaluations of q u (X), the obtained PC expansion provides a normalized LOO error equal to 1.7 • 10 -7 (the maximal PC degree is 6 and the number of terms in the sparse expansion is 140).

Correlated input variables

For a more realistic modelling of the soil properties one now considers the statistical dependence between the cohesion c and the friction angle φ. From the literature (see a review in Al [START_REF] Al Bittar | Bearing capacity of strip footings on spatially random soils using sparse polynomial chaos expansion[END_REF]) the correlation between these parameters is negative with a value around -0.5. In this section we model the dependence between c and φ by a Gaussian copula which is parametrized by the rank correlation coefficient ρ R = -0.5. Due to the choice of marginal distributions in Table 3 this corresponds to a linear correlation of -0.512. Using 500 points in the experimental design, i.e. 500 evaluations of q u (X), the obtained PC expansion provides a LOO error equal to 6.8 • 10 -7 (the maximal PC degree is 6 and the number of terms in the sparse expansion is 172). The reliability results accounting for correlation are reported in Table 5. These results show that polynomial chaos expansions may be applied to solve reliability problems also when the variables in the limit state function are correlated. In terms of accuracy, the PCE results compare very well with the reference results obtained by MCS, the error on the probability of failure being again less than 1%. SORM provides accurate results as well, at a cost of 65, 65, 72 and 83 runs when SF=1.5, 2, 2.5, 3 (the associated FORM analysis required 31, 31, 38 and 49 runs). Moreover, it clearly appears that neglecting the correlation between c and φ leads to a conservative estimation of the probability of failure, e.g. by a factor 2.5 for SF = 3 (10% underestimation of the generalized reliability index).

Settlement of a foundation on an elastic 2-layer soil mass

Let us consider an elastic soil mass made of two layers of different isotropic linear elastic materials lying on a rigid substratum. A foundation on this soil mass is modeled by a uniform pressure P 1 applied over a length 2 B 1 = 10 m of the free surface. An additional load P 2 is applied over a length 2 B 2 = 5 m (Figure 7-(a)).

Due to the symmetry, half of the structure is modeled by finite elements (Figure 7-(b)). The mesh comprises 500 QUAD4 isoparametric elements. A plane strain analysis is carried out. The geometry is considered as deterministic. The elastic material properties of both layers and the applied loads are modelled by random variables, whose PDF are specified in Table 6. All six random variables are supposed to be independent.

The quantity of interest is the maximum vertical displacement u A at point A, i.e. on the symmetry axis of the problem. The finite element model is thus considered a black-box M FE that computes u A as a function of the six input parameters X = 

u A = M FE (E 1 , E 2 , ν 1 , ν 2 , P 1 , P 2 ). ( 81 
)
The serviceability of this foundation on a layered soil mass vis-à-vis an admissible settlement is studied. The limit state function is defined by:

g(X) = u adm -u A = u adm -M FE (E 1 , E 2 , ν 1 , ν 2 , P 1 , P 2 ), (82) 
in which the admissible settlement is chosen to 12, 15, 20 and 21 cm. First FORM and SORM are applied, together with importance sampling (IS) at the design point using n MCS = 10 4 samples. The latter is considered as the reference solution. Results are reported in Table 7.

Then PC expansions of the maximal settlement M PC are computed using different experimental designs (ED) of increasing size, namely n = 100, 200, 500, 1000 using the UQLab platform [START_REF] Marelli | UQLab: A framework for uncertainty quantification in Matlab[END_REF]. The obtained expansion is then substituted for in the limit state function Eq.( 82) and the associated reliability problem is solved using crude Monte Carlo simulation (n MCS = 10 6 samples). The results are reported in Table 8. It can be observed that the results obtained from the PC expansion compare very well to the reference as soon as n = 200 points are used in the experimental design. The error is less than 1% in the generalized reliability index, for values as large as β = 4, i.e. for probabilities of failure in the order of 10 -5 . The detailed features of the PC expansions built for each experimental design of size n = 100, 200, 500, 1, 000 are reported in Table 9.

Again the sparsity of the expansions is clear: a full expansion with all polynomials up to degree p = 4 in M = 6 variables has P = 6+4 4 = 210 terms, which would typically require an experimental design of size 2 × 210 = 440. Using only n = 100 points a sparse PC expansion having 59 terms could be built up. It is also observed that the classical (normalized) empirical error 1 -R 2 is typically one order of magnitude smaller than the Table 9: Settlement of a foundation on a two-layer soil mass -PC expansion features (p stands for the maximal degree of polynomials and P is the number of non zero terms polynomials in the sparse expansion) n = 100 n = 200 n = 500 n = 1000 1 -R 2 (Eq.( 37)) 8.45 • 10 -5 6.76 • 10 -6 1.25 • 10 -6 1.14 • 10 -7 LOO (Eq.( 44)) 1.20 • 10 -3 2.39 • 10 -4 1.33 • 10 -5 2. 5.3 Settlement of a foundation on soil mass with spatially varying Young's modulus (after Blatman ( 2009))

Let us now consider a foundation on an elastic soil layer showing spatial variability in its material properties. A structure to be founded on this soil mass is idealized as a uniform pressure P applied over a length 2B = 20 m of the free surface (Figure 8). The soil layer thickness is equal to 30 m. The soil mesh width is equal to 120 m. The soil layer is modelled as an elastic linear isotropic material with Poisson's ratio equal to 0.3. A plane strain analysis is carried out. The finite element mesh is made of 448 QUAD4elements. The Young's modulus is modelled by a two-dimensional homogeneous lognormal random field with mean value µ E = 50 MPa and a coefficient of variation of 30%. The underlying Gaussian random field log E(x, ω) has a square-exponential autocorrelation function:

ρ log E (x, x ) = exp - x -x 2 2 , (83) 
where = 15 m. The Gaussian random field log E(x, ω) is discretized using the Karhunen-Love (KL) expansion [START_REF] Loève | Probability theory -Graduate texts in mathematics[END_REF][START_REF] Sudret | Stochastic finite elements and reliability: a state-of-the-art report[END_REF], (Sudret and Berveiller, 2007, Chap. 7):

log E(x, ω) = µ log E + σ log E ∞ i=1 λ i ξ i (ω) φ i (x) (84) 
where {ξ i (ω)} ∞ i=1 are independent standard normal variables and the pairs {(λ i , φ i )} ∞ i=1 are solution of the following eigenvalue problem (Fredholm integral of the second kind):

ρ log E (x , x ) ϕ i (x ) dx = λ i ϕ i (x) (85) 
As no analytical solution to the Fredholm equation exists for this type of autocorrelation function, the latter is solved by expanding the eigenmodes onto an orthogonal polynomial basis, see details in Blatman (2009, Appendix B). Note that other numerical methods have been proposed in the literature [START_REF] Phoon | Simulation of second-order processes using Karhunen-Loève expansion[END_REF][START_REF] Phoon | Simulation of strongly non Gaussian processes using Karhunen-Loève expansion[END_REF][START_REF] Li | Comparison between Karhunen-Loève expansion and translation-based simulation of non-Gaussian processes[END_REF]. Eventually 38 modes are retained in the truncated expansion:

log E(x, ω) ≈ µ log E + σ log E 38 i=1 λ i ξ i (ω) φ i (x), (86) 
where µ log E = 3.8689 and σ log E = 0.2936 in the present application. The 9 first eigenmodes are plotted in Figure 9 for the sake of illustration. Note that these 38 modes allow one to account for 99% of the variance of the Gaussian field.

The average settlement under the foundation is computed by finite element analysis. It may be considered as a random variable Y = M(ξ), where ξ is the standard normal vector of dimension 38 that enters the truncated KL expansion. Of interest is the sensitivity of this average settlement to the various modes appearing in the KL expansion. To address this problem, a sparse PC expansion is built using a LHS experimental design of size n = 200. It allows one to get a LOO error less than 5%. From the obtained expansion the total Sobol' indices related to each input variable ξ i (i.e. each mode in the KL expansion) are computed and plotted in Figure 10 It appears that only 7 modes contribute to the variability of the settlement. This may be explained by the fact that the model response is an averaged quantity over the domain of application of the load, which is therefore rather insensitive to small-scale fluctuations of the spatially variable random Young's modulus. Note that some modes have a zero total Sobol' index, namely modes #2, 4, 7 and 8. From Figure 10 it appears that they correspond to antisymmetric modes with respect to the vertical axis (see Figure 9). This means that the symmetry of the problem is accounted for in the analysis. It is now clear why the PC expansion is sparse since roughly half of the modes (i.e. half of the input variables of the uncertainty quantification problem) do not play any role in the analysis.

Conclusions

In this section three different problems of interest in geotechnical engineering have been addressed, namely the bearing capacity of a strip footing, the maximal settlement of a foundation on a two-layer soil mass, and the settlement in case of a single layer with spatially-varying Young's modulus. In the two first cases reliability analysis is carried out as a post-processing of a PC expansion. The results in terms of probability of failure compare very well with those obtained by reference methods such as importance sampling at the design point. From a broader experience in structural reliability analysis, it appears that PC expansions are suitable for reliability analysis as long as the probability of failure to be computed is smaller than 10 -5 . For very small probabilities, suitable methods such as adaptive Kriging shall be rather used [START_REF] Dubourg | Reliability-based design optimization using kriging and subset simulation[END_REF][START_REF] Sudret | Meta-models for structural reliability and uncertainty quantification[END_REF] In the last example the spatial variability of the soil properties is introduced. The purpose is to show that problems involving a large number of random input variables (here, 38) may be solved at an affordable cost using sparse PC expansions (here, 200 samples in the experimental design). Recent applications of this approach to the bearing capacity of 2D and 3D foundations can be found in Al Bittar and Soubra (2013); [START_REF] Mao | Probabilistic analysis and design of strip foundations resting on rocks obeying Hoek-Brown failure criterion[END_REF]. 

Conclusions

Accounting for uncertainties has become a crucial issue in modern geotechnical engineering due to the large variability of soil properties as well as the associated limited information. The uncertainty analysis framework that is nowadays widely used in many fields applies equally to geotechnics. Starting from a computational model used for assessing the system performance, the input parameters are represented by random variables or fields. The effect of the input uncertainty onto the model response (i.e. the system performance) can be assessed by a number of numerical methods.

Monte Carlo simulation (MCS) offers a sound framework for uncertainty propagation, however its low efficiency precludes its use for analyses involving finite element models. Classical structural reliability methods such as FORM and SORM may be used, at the price of some linearizations and approximations. In contrast, the so-called polynomial chaos expansions allow for an accurate, intrisic representation of the model output. The series expansion coefficients may be computed using non intrusive schemes which are similar in essence to MCS: a sample set of input vectors is simulated and the corresponding model output evaluated. From this data, algorithms such as least-square minimization or least-angle regression may be used.

The resulting series expansion can be post-processed in order to compute the statistical moments of the model response (mean value, standard deviation, etc.), quantiles and confidence intervals or even the probability density function. In the latter case, the PC expansion is used as a surrogate to the original computational model. Due to its polynomial expression it can be used together with Monte Carlo simulation and kernel smoothing techniques.

PC expansions appear also extremely efficient in the context of sensitivity analysis. The Sobol' indices, which are considered as the most accurate sensitivity measures, may be computed analytically from PC expansions coefficients by simple algebra. The PC expansion itself may be reordered so as to exhibit the so-called Sobol' decomposition, which allows for detecting the linear and non linear effects of the input variables as well as their interaction.

Problems involving spatial variability of the material properties may be efficiently addressed by introducing random fields and using discretization techniques. The discretized field is represented by a vector of (usually) standard normal variables, whose size may be large (e.g. 20-100) especially when the correlation length of the field is small. However, the so-called sparse PC expansion technique may be used so that the full analysis can be carried out using a few hundred to a thousand model runs.
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 3 Figure 3: Hyperbolic truncation scheme (after Blatman and Sudret (2011a))
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 4 Figure 4: Sketch of the different truncation sets (blue points)
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 5 Figure 5: Basis-and-ED adaptive algorithm for sparse PC expansions (after Blatman and Sudret (2011a))
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 6 Figure 6: Example #1 : Strip footing
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 7 Figure 7: Example #2 : Foundation on a two-layer soil mass
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 8 Figure 8: Example #3: Foundation on a soil mass with spatially varying Young's modulus
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 9 Figure 9: Example #3: First modes of the Karhunen-Love expansion of the Young's modulus (after Blatman and Sudret (2011a))
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 10 Figure 10: Example #3 : Foundation on a soil mass with spatially varying Young's modulus -Total Sobol' indices (after Blatman and Sudret (2011a))

  

  

Table 1 :

 1 Classical families of orthogonal polynomialsType of variable DistributionOrthogonal polynomials Hilbertian basis ψ k

Table 3 :

 3 Ultimate bearing capacity of a strip foundation -probabilistic model

	Parameter	Notation Type of PDF	Mean value	Coef. of variation
	Foundation width	B	Deterministic	10 m	
	Foundation depth	D	Gaussian	1 m	15%
	Unit soil weight	γ	Lognormal	20 kN/m 3	10 %
	Cohesion	c	Lognormal	20 kPa	25%
	Friction angle	φ	Beta	Range:[0, 45]	

Table 5 :

 5 Ultimate bearing capacity of a strip foundation -Probability of failure (resp. generalized reliability indexβ gen = Φ -1 (P f ) between parentheses) -(1.01) 1.52 • 10 -1 (1.03) 1.51 • 10 -1 (1.03) 1.52 • 10 -1 (1.03) 2.0 4.02 • 10 -2 (1.75) 3.85 • 10 -2 (1.77) 3.85 • 10 -2 (1.77) 3.85 • 10 -2 (1.77) 2.5 9.60 • 10 -3 (2.34) 8.98 • 10 -3 (2.37) 8.98 • 10 -3 (2.37) 8.99 • 10 -3 (2.37) 3.0 2.20 • 10 -3 (2.85) 2.00 • 10 -3 (2.88) 2.01 • 10 -3 (2.88) 2.00 • 10 -3 (2.88) † n = 500, n MCS = 10 7

	Case of dependent

Table 6 :

 6 Example #1 : Two-layer soil layer mass -Parameters of the model{E 1 , E 2 , ν 1 , ν 2 , P 1 , P 2 } T :

	Parameter	Notation Type of PDF Mean value Coef. of variation
	Upper layer soil thickness	t 1	Deterministic	8 m	-
	Lower layer soil thickness	t 2	Deterministic	22 m	-
	Upper layer Young's modulus	E 1	Lognormal	50 MPa	20 %
	Lower layer Young's modulus	E 2	Lognormal	100 MPa	20 %
	Upper layer Poisson ratio	ν 1	Uniform	0.3	15 %
	Lower layer Poisson ratio	ν 2	Uniform	0.3	15 %
	Load #1	P 1	Gamma	0.2 MPa	20 %
	Load #2	P 2	Weibull	0.4 MPa	20 %

Table 7 :

 7 Settlement of a foundation on a two-layer soil mass -reliability results

	Threshold	FORM		SORM		Importance Sampling	
	u adm	P f,FORM	β	P f,SORM	β	P f,IS	β
	12 cm 15 cm 20 cm 21 cm	1.54 • 10 -1 1.02 1.38 • 10 -1 1.09 1.42 • 10 -1 [CoV = 1.27%] 1.07 1.64 • 10 -2 2.13 1.36 • 10 -2 2.21 1.43 • 10 -2 [CoV = 1.67%] 2.19 1.54 • 10 -4 3.61 1.17 • 10 -4 3.68 1.23 • 10 -4 [CoV = 2.23%] 3.67 5.57 • 10 -5 3.86 4.14 • 10 -5 3.94 4.53 • 10 -5 [CoV = 2.27%] 3.91

Table 8 :

 8 Settlement of a foundation on a two-layer soil mass -reliability results from PC expansion (MCS with n MCS = 10 7 )

	Threshold	n = 100		n = 200		n = 500		n = 1000	
	u adm	P f	β	P f	β	P f	β	P f	β
	12 cm	1.44 • 10 -1 [CoV = 0.08%]	1.06	1.45 • 10 -1 [CoV = 0.08%]	1.06 1.44 • 10 -01 1.06 1.44 • 10 -1 1.06 [CoV = 0.08%] [CoV = 0.08%
	15 cm	1.33 • 10 -2 [CoV = 0.27%]	2.22	1.44 • 10 -2 [CoV = 0.26%]	2.19 1.45 • 10 -02 2.18 1.45 • 10 -2 2.18 [CoV = 0.26%] [CoV = 0.26%
	20 cm	5.84 • 10 -5 [CoV = 4.14%]	3.85	1.13 • 10 -4 [CoV = 2.97%]	3.69 1.26 • 10 -04 3.66 1.24 • 10 -4 3.66 [CoV = 2.82%] [CoV = 2.84%
	21 cm	1.66 • 10 -5 [CoV = 7.76%]	4.15	3.64 • 10 -5 [CoV = 5.24%]	3.97 4.72 • 10 -05 3.90 4.56 • 10 -5 3.91 [CoV = 4.60%] [CoV = 4.68%
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where σ Ŷ (resp. Q 0.25 , Q 0.75 ) is the empirical standard deviation of Y PC MCS (resp. the first and third quartile of Y PC MCS ). Note that these quantiles as well as any other can be obtained from the large sample set in Eq.( 52). Having first reordered it in ascending order, say ŷ(1) , . . . , ŷ(n MCS ) , the empirical p-quantile Q p% , 0 < p < 1 is the p% • n MCS -th point in the ordered sample set, i.e.

where u is the largest integer that is smaller than u. This allows one to compute confidence intervals (CI) on the quantity of interest Ŷ . For instance the 95% centered confidence interval, whose bounds are defined by the 2.5% and 97.5% quantile, is

Note that all the above post-processing may be carried out on large Monte Carlo samples since the function to evaluate in Eq.( 52) is the polynomial surrogate model and not the original model M. Such an evaluation is nowadays a matter of seconds on standard computers, even with n MCS = 10 5-6 .

Reliability analysis

Reliability analysis aims at computing the probability of failure associated to a performance criterion related to the quantity of interest (QoI) Y = M(X). In general the failure criterion under consideration is represented by a limit state function g(X) defined in the space of parameters as follows [START_REF] Ditlevsen | Structural reliability methods[END_REF]):

> 0} is the safe domain of the structure;

• D f = {x ∈ D X : g(x) < 0} is the failure domain;

• The set of realizations {x ∈ D x : g(x) = 0} is the so-called limit state surface.

Typical performance criteria are defined by the fact that the QoI shall be smaller than an admissible threshold y adm . According to the above definition the limit state function then reads

Then the probability of failure of the system is defined as the probability that X belongs to the failure domain:

where f X is the joint probability density function of X and 1 {x: y adm -M(x)≤0} is the indicator function of the failure domain. In all but academic cases, this integral cannot be computed analytically, since the failure domain is defined from a quantity of interest Y = M(X) (e.g. displacements, strains, stresses, etc.), which is obtained by means of a computer code (e.g. finite element code) in industrial applications.

Appendix A: List of symbols