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STRUCTURE OF MODULAR INVARIANT SUBALGEBRAS
IN FREE ARAKI-WOODS FACTORS

REMI BOUTONNET AND CYRIL HOUDAYER

ABSTRACT. We show that any amenable von Neumann subalgebra of any free Araki-Woods
factor that is globally invariant under the modular automorphism group of the free quasi-free
state is necessarily contained in the almost periodic free summand.

1. INTRODUCTION

Free Araki-Woods factors were introduced by Shlyakhtenko in [Sh96]. In the framework of
Voiculescu’s free probability theory, these factors can be regarded as the type III counterparts
of free group factors using Voiculescu’s free Gaussian functor [Vo85, [VDN92]. Following [Sho6],
to any orthogonal representation U : R ~ HRr on a real Hilbert space, one associates the
free Araki-Woods von Neumann algebra I'(Hg,U)”. The von Neumann algebra I'(Hg,U)”
comes equipped with a unique free quasi-free state oy which is always normal and faithful (see
Section 2] for a detailed construction). We have T'(HRr, U)" = L(F gim(#z)) when U = 1y and
I'(Hg,U)"” is a full type III factor when U # 1p.

Let U : R ~ Hr be any orthogonal representation. Using Zorn’s lemma, we may decompose
Hg = Hy' ® HY™ and U = U"™ & U® where U? : R ~ Hg (resp. U™ : R ~ HE™)
is the almost periodic (resp. weakly mizing) subrepresentation of U : R ~ Hg. Write M =
I['(Hr,U)", N = I'(Hg,U*)"” and P = T(HZ™, U"™)" so that we have the following free
product splitting

(M, o) = (N, puap) * (P, pywm).

Our main result provides a general structural decomposition for any von Neumann subalgebra
@ C M that is globally invariant under the modular automorphism group ¢%v and shows
that when () is moreover assumed to be amenable then @ sits inside N. Our main theorem
generalizes [HRI4, Theorem C] to arbitrary free Araki-Woods factors.

Main theorem. Keep the same notation as above. Let Q C M be any unital von Neumann
subalgebra that is globally invariant under the modular automorphism group c¥V. Then there
exists a unique central projection z € Z(Q) C M¥V = N¥U* syuch that

e )z is amenable and Qz C zNz and
e Qz' has no nonzero amenable direct summand and (Q' N M)zt = (Q' N M)zt is
atomic for any nonprincipal ultrafilter w € S(N) \ N.

In particular, for any unital amenable von Neumann subalgebra Q C M that is globally invariant
under the modular automorphism group o%V, we have Q C N.
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Our main theorem should be compared to [HoI2l, Theorem D] which provides a similar result
for crossed product II; factors arising from free Bogoljubov actions of amenable groups.

The core of our argument is Theorem B.I] which generalizes [HRI4, Theorem 4.3] to arbitrary
free Araki-Woods factors. Let us point out that Theorem [B]is reminiscent of Popa’s asymp-
totic orthogonality property in free group factors [Po83] which is based on the study of central
sequences in the ultraproduct framework. Unlike other results on this theme [Hol2l [Hol4l
[HUT5], we do not assume here that the subalgebra Q C M has a diffuse intersection with the
free summand N of the free product splitting (M, pr) = (N, pyar) * (P, ¢ywm) and so we can-
not exploit commutation relations of (Q-central sequences with elements in N. Instead, we use
the facts that Q admits central sequences that are invariant under the modular automorphism
group o¥U of the ultraproduct state ¢ and that the modular automorphism group o#v is
weakly mixing on P.

Acknowledgments. The present work was done when the authors were visiting the University
of California at San Diego (UCSD). They thank Adrian Ioana and the Mathematics Department
at UCSD for their kind hospitality.

2. PRELIMINARIES

For any von Neumann algebra M, we denote by Z(M) the centre of M, by U(M) the group
of unitaries in M, by Ball(M) the unit ball of M with respect to the uniform norm and by
(M,L2(M), J,L2(M)) the standard form of M. We say that an inclusion of von Neumann
algebras P C M is with expectation if there exists a faithful normal conditional expectation
Ep: M — P. All the von Neumann algebras we consider in this paper are always assumed to
o-finite.

Let M be any o-finite von Neumann algebra with predual M, and ¢ € M, any faithful state.
We write ||z[|, = @(2*z)!/2 for all # € M. Recall that on Ball(M), the topology given by | - ||,
coincides with the o-strong topology. Denote by &, € L2(M), the unique representing vector
of ¢. The mapping M — L*(M) : 2 x&, defines an embedding with dense image such that
[zl = [[#€plr2(ar) for all z € M. We denote by 0% the modular automorphism group of the
state ¢. The centralizer M% of the state ¢ is by definition the fixed point algebra of (M, c%).

Ultraproduct von Neumann algebras. Let M be any o-finite von Neumann algebra and
w € B(N) \ N any nonprincipal ultrafilter. Define

Zo,(M) ={(zn)n € (M) : &, — 0 x-strongly as n — w}
MO (M) = {(zn)n € L°(M) : ()0 Zo(M) C Zy(M) and Z,(M) (xp)n C L,(M)}.

The multiplier algebra M¥ (M) is a C*-algebra and Z,,(M) C M“(M) is a norm closed two-
sided ideal. Following [Oc85, §5.1], we define the ultraproduct von Neumann algebra M“ by
M == M“(M)/Z,(M), which is indeed known to be a von Neumann algebra. We denote the
image of (z,), € M¥(M) by (x,)* € M*.

For every = € M, the constant sequence (z), lies in the multiplier algebra M®“(M). We will then
identify M with (M +Z,,(M))/Z, (M) and regard M C M* as a von Neumann subalgebra. The
map E, : MY — M : (x,)¥ — o-weak lim,,_,, x,, is a faithful normal conditional expectation.
For every faithful state ¢ € M, the formula ¢* := ¢ o K, defines a faithful normal state on
M*®. Observe that ¢“((x,)¥) = lim, ., @(x,) for all (z,)¥ € M¥.

Let Q@ C M be any von Neumann subalgebra with faithful normal conditional expectation
Eg : M — Q. Choose a faithful state ¢ € M, in such a way that ¢ = poEg. We have (>°(Q) C
(>°(M), Z,(Q) C Z,,(M) and M*(Q) C M¥(M). We will then identify Q* = M“(Q)/Z.,(Q)
with (M“(Q)+Z,(M))/Z,(M) and be able to regard Q¥ C M* as a von Neumann subalgebra.
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Observe that the norm | - [[(,),)» on @ is the restriction of the norm || - [, to @“. Observe
moreover that (Eg(zy)), € Z,(Q) for all (z,), € Z,(M) and (Eg(z,)), € M*(Q) for all
(xn)n € MY(M). Therefore, the mapping Eqw : MY — Q¥ : (z,)* — (Eg(xy))” is a well-
defined conditional expectation satisfying ¢“ o Egw = ¢*. Hence, Egw : M — Q% is a faithful
normal conditional expectation. For more on ultraproduct von Neumann algebras, we refer the

reader to [AHI2| [Oc85].

Free Araki—Woods factors. Let Hr be any real Hilbert space and U : R ~ Hg any
orthogonal representation. Denote by H = Hr ®r C = Hr @ iHRr the complexified Hilbert
space, by I : H — H : £ +in — £ — in the canonical anti-unitary involution on H and by A
the infinitesimal generator of U : R ~ H, that is, U; = A" for all t € R. Moreover, we have
IAI = A='. Observe that j : HR — H : ( — (A_Llﬂ)l/% defines an isometric embedding of
Hgy into H. Put KR := j(HR). It is easy to see that Kg NiKgr = {0} and that Kg + iKR is
dense in H. Write T'= ITA~'/2. Then T is a conjugate-linear closed invertible operator on H
satisfying T'= T~ ! and T*T = A~'. Such an operator is called an involution on H. Moreover,
we have dom(T) = dom(A~'/2) and Kr = {¢£ € dom(T) : T¢ = ¢}. In what follows, we will
simply write
E+in:=T(E+in) =& —in, V¢, n € KR.

We introduce the full Fock space of H:

F(H)=CQaPH
n=1
The unit vector €2 is called the vacuum vector. For all & € H, define the left creation operator
&) F(H) — F(H) by
{ N =¢,
(6@ &) =R - Q&
We have [[£(§)]|lco = ||€]| and £(&) is an isometry if ||£]| = 1. For all £ € Kr, put W(§) :=
0(&) +£(£)*. The crucial result of Voiculescu [VDN92l Lemma 2.6.3] is that the distribution of

the self-adjoint operator W (§) with respect to the vector state oy = (- Q, Q) is the semicircular
law of Wigner supported on the interval [—||£]], ||€]|]-

Definition 2.1 (Shlyakhtenko, [Sh96]). Let Hr be any real Hilbert space and U : R ~ Hr
any orthogonal representation. The free Araki—Woods von Neumann algebra associated with
U : R ~ Hg is defined by

[(Hg,U)" :={W () : £ € Kr}".

We will denote by I'(Hgr, U) the unital C*-algebra generated by 1 and by all the elements T (§)
for £ € KR.

The vector state oy = (-Q,Q) is called the free quasi-free state and is faithful on I'(Hg, U)".
Let £,n € Kr and write ¢ = £ +in. Put

W(Q) := W(&) +1W(n) = £(¢) + £(O)"-
Note that the modular automorphism group %V of the free quasi-free state ¢y is given by

ofV = Ad(F(Uy)), where F(U;) = 1ca ® @,,5, U™, In particular, it satisfies
oV (W(Q) = W(UK),Y¢ € Kr +iKR,Vt € R.

It is easy to see that for all n > 1 and all (3,...,(, € Kp +iKRr, (1 ® - - ®(, € I'(Hr,U)".
When (1, ...,(, are all non-zero, we will denote by W((; ® -+ ® ¢,,) € I'(Hr,U)” the unique
element such that

QR RG=W({(1® @)
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Such an element is called a reduced word. We refer to [HR14l, Section 2] for further details.

3. ASYMPTOTIC ORTHOGONALITY PROPERTY IN FREE ARAKI-WOODS FACTORS

Let U : R ~ Hgr be any orthogonal representation. Using Zorn’s lemma, we may decompose
Hgr = HR' ® HY™ and U = U"™ @ U where U?® : R ~ Hg (resp. U™ : R ~ HE™)
is the almost periodic (resp. weakly mizing) subrepresentation of U : R ~ Hgr. Write M =
I'(Hg,U)", N = F(Hla{’, U?P)" and P = T(HE™, UM™)" so that

(M’ QDU) = (Na SDUap) * (Pa SDme)‘
For notational convenience, we simply write ¢ := .

The main result of this section, Theorem B.I] below, strengthens and generalizes [HR14, Theo-
rem 4.3].

Theorem 3.1. Keep the same notation as above. Let w € B(N)\ N be any nonprincipal

w

ultrafilter. For alla € M & N, allb € M and all x,y € (M“)?" N (M“ & M), we have
¢’ (b*y*ax) = 0.

Proof. Denote as usual by H := Hgr ®gr C the complexified Hilbert space and by U : R ~ H
the corresponding unitary representation. Put H?P := Hg’ ®gr C and H"™ := HF™ ®@r C.
Put Kr = j(Hr), Ky = j(Hgy ) and K§™ := j(HZ™), where j is the isometric embedding
£ € Hr — (1+i,1)1/2§ € H. Denote by H = F(H) the full Fock space of H. For every
t € R, put ke = lcg ® @, US" € U(H). For every t € R and every x € M, we have
of () = ky(2Q). We will implicitly identify the full Fock space F(H) with the standard
Hilbert space L*(M) and the vacuum vector Q € H with the canonical representing vector
Ep € L2(M)4.

Put Kan = Uy -1y (A)(Kr +iKR). Observe that K,, C Kr + iKR is a dense subspace
of elements n € Kr + iKr for which the map R — Kr + iKr : t — Un extends to an

(KR + iKR)-valued entire analytic function and that K,, = K,,. For all n € K, the element

W (n) is analytic with respect to the modular automorphism group % and we have of (W (1)) =
W (A%n) for all z € C.

Denote by W the set of reduced words of the form W (& ®---®&,) for whichn > 1, &,...,&, €
K. By linearity/density, in order to prove Theorem Bl we may assume without loss of
generality that a and b are reduced words in WW. Since moreover a € M © N, we can assume
that at least one of its letters &; lies in K{™ 4 iK{™. More precisely, we can write

a=d W(E 8- @)
b:b/W(U1®“'®77q)b”
with p > 1, ¢ > 0 d/,a”, b,V are reduced words in N with letters in Ky, N (Kg +1Kg),

& &pa1, M2y -y Mg—1 € Kan and &1,&p,m1,1g € Kan N(KZ™ +1KR™). By convention, when
q=0,W(m ®---®ng) is the trivial word 1, so that b = b'b".

Denote by L € K™ + iK{™ the finite dimensional subspace generated by &1,&p, 11,7, and
such that L = L. If ¢ = 0, then L is simply the subspace generated by &, Eps €15 Ep-

Denote by
e X(1,r) C H the closed linear subspace generated by all the reduced words of the form

e1®--Qep withr >0, n>r+1,e1,...,e, € K +1Kg and e, € L. When r = 0,
simply denote &} := X(1,0).
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e X(2,r) C H the closed linear subspace generated by all the reduced words of the form
e1®--®ep withr >0, n>r+1, e, € Land eyyi1,...,6, € Ky +1iKg . When
r = 0, simply denote Xy := X(2,0).

e )V C H the closed linear subspace generated by all the reduced words of the form
e1®- e, withn >1and ey, e, € L+

Observe that we have the following orthogonal decomposition
H:CQ@(Xl—i-XQ)@y.

Claim 3.2. Let ¢ > 0 and t € R such that Uy(L) L./qimz, L. Then for all i € {1,2} and all
r > 0, we have

re(X (i, 7)) Le X(i,7).

Proof of Claim[3Z2. Choose an orthonormal basis ({1, ..., gmr) of L. We first prove the claim
for i = 1. We will identify X' (1,r) with L ® ((H*?)®" @ H) using the following unitary defined
by

VI,r)  HR(H" @H) = H: (Quav—=pupa{ .
Observe that xV(1,r) = V(l r)(Up @ (U)®" @ ky) for every t € R. Let 21,25 € X(1,7) be
such that Z; = Y ¢, @ ©F and =, = ZdlmL (; © O3 with ©],0% € (H**)®" @ H. We have

ke (Z1) = S0 EUL(G) © ke(O©)) and hence

dim L
(5e(E1),E2)| < D (UG, I3 ]
ij=1
Since [(U(G),¢j)| < e/ dim L, we obtain [(k:(Z1),Z2)| < €||=1]|[|Z2]| by the Cauchy-Schwarz
inequality. The proof of the claim for ¢ = 2 is entirely analogous. O

Given a closed subspace K C H, we denote by Px : H — K the orthogonal projection onto K.

Claim 3.3. Take z = (2,)* € (M*)¥" and let wy,ws € N be any elements of the following
form:

e citherwy =lorw =W((® - ®¢) withr > 1and (3,...,¢ GKanﬂ(Kgp—i—iK;f).
e cither wo =1l orwy =W (1 ®- - - @us) with s > 1 and puq, ..., ps GKanﬂ(Kf{’—HK;f).

Then for all i € {1,2}, we have lim,,_,,, || Px, (w1 2,w282)| = 0.

Proof of Claim[33. Observe that wiz,weQ = w1 Jo?, /2(w§ )J 2,82, Firstly, we have
Pra) (J6%, 1 (w3) 2092) = J0, 1 (3)T Py (20 )
PX(2,3) (w1 2,92) = wlPX(z,s)(an)-
Secondly, for all Z € H, we have
Py, (wE) = PX (w1 Px1,0(Z))
Py (J07, 5 (w3)JE) = Py (Jo7, 5 (w5) ] Px(a,5)(E))-
This implies that
P, (w1 2,w2Q)) = Px, (leafi/Q(ws)J P11 (2a2))
Py, (w1 2,w2QY) = P, (leafﬁ(w;)J Py (2,5 (2n82)),
and we are left to show that lim,, ., || Px (1) (222)[| = limy, sy [ Py(2,6)(222)]| = 0.

Let i € {1,2} and k € {r,s}. Fix N > 0. Since the orthogonal representation U : R ~ HE™
is weakly mixing and L C H"™ is a finite dimensional subspace, we may choose inductively
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t1,...,txy € R such that Utjl (L) L(Ndim(L))*l Uth (L) for all 1 < 71 < g2 < N. By ClaimB:ZL
this implies that

kity, (X (0, k) Lijn ke, (X(0,K)), V1 < ji < ja < N.

For all £ € R and all n € N, we have

| Pre(i iy (zn)1* = (Prigy (2n82), 2n82)
= (Kt (Py(i k) (2092)), Kt (20))  (since ks € U(H))
= (Pay(x(i,k)) (Kt (20 ) Kt (2n92)).

By [AHI2, Theorem 4.1], for all £ € R, we have (z,)* = z = o (2) = (6f (2))*. This implies
that limy, ., ||0f (2n) — 2nll, = 0, and hence limy,_, [|£:(2,Q) — 2,9 = 0 for all ¢ € R. In
particular, since the sequence (z,€), is bounded in H, we deduce that for all t € R,

3 . 2 — 3 .
lim (| Py (20 Q)12 = i (P, (o) (2n ). 202).

Applying this equality to our well chosen reals (t;)i<j<n, taking a convex combination and
applying Cauchy—Schwarz inequality, we obtain

N
. . 1
Jim | Py (20 Q)* = lim = Z(ij (X(i,k)) (2n€2), 2n2)

Q),an>

N
o1
< lim N mej(é\f(i,k))(zng) [2nle-

Il
ir
LE

2|~

<1
%9
s
;

By almost orthogonality, for all n € N we have,

2

N N
antj(é’((i,k))(zng) = > (P, () (2082), P, (k) (208))
Jj=1 J1,52=1
o o= lzl?
<ZH t(sz) 2 Q)] +‘ TN
J1#j2
[EAF
< Nz, |2 + N212lle
l2nll5 + N

= 2N||zn\|3,.

Altogether, we have obtained the inequality lim,, ., || Py ) (2082 )12 < \/_||,27H2 /VN. As N is
arbitrarily large, this finishes the proof of Claim B3] U

Claim 3.4. The subspaces W(§ ® -+ ®&,)Y and Jafi/z(W(ﬁq ®---®7,))JY are orthogonal
in H. Here, in the case ¢ = 0, the vector space Jafi/Q(W(ﬁq ® -+ ®1,))JY is nothing but ).

Proof of Claim[34) Let m,n > 1, e1,...,em, f1,..., fn € H with e1,en, f1, fn € L' so that
the vectors e; ® --- ® e, and f1 ® -+ @ f,, belong to Y. Since §, L ey, f, L m and & L fi,
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we have
W @8) (1@ @em), Jofy p (W@, @ @M))J (L& @ fn))
= (W(& -®§p)W(e1®---®em)ﬂ7Ja,i/2(W(ﬁq®---®ﬁ1))JW(f1®---®fn)Q>
= (W(& RV @ Ren) AL W([i® @ f)W(n ®--- @1,)Q)
=W ® - 050ea® - Qen) LW i® @ fa@m®:- - ®ng)
=& ®-- ®£p®el® Rem, 1® @ @M@ @1y
= 0.

Note that in the case ¢ = 0, the above calculation still makes sense. Indeed we have
<W(§1®. . '®§p) (€1®' . '®€m)7 (f1®. . ®fn)> — <§1®. . '®§p®€1®' . '®€m,f1®' . ®fn> = 0.

Since the linear span of all such reduced words e; ® - - -®e,, (resp. f1®---® f,) generate ), we
obtain that the subspaces W (£ ® -+ ®§,)Y and Jafi/z(W(ﬁq ® ---®7;))JY are orthogonal
in H. 0

Let z,y € (M¥)?" N (M* & M). We have
Py ax) = (aabpe, b
= lim {0z, ybE,)
= gi_r)rclu(a’W(& @ @&p)a" xn QY VW (m @ -+ @ ng)b"Q)
= lim (W(§ ® -+ @ &) a"wno?, (7)), JoZ, (W, @ - @11))J () ynb' Q).
Put z, = a"z,0%((b")*) and 2z}, = (a’)*y,V’. By Claim B3] we have that lim,,_,, || Px, (2,Q)| =

limy, ., || Py, (2], Q)H = 0 for all i € {1,2}. Since moreover E,(z) = E,(y) = 0, we see that
limy, s, || Pca(2,2)|| = limy,—, || Pca(2,92)|| = 0. Since H = CQ @ (X + X2) & Y, we obtain

I 2 = Py(z ) =0 and  lim [[4Q — Py(,0)] = 0.
By Claim [34], we finally obtain
(b y*ax) = VIL%(W(& Q- ®&) 2, Jo¥ 1/Q(I/V( ®--@M))J 2,Q)
= lim (W(& @ -+ @ &) Py(2nQ), Jo2 (W (i, ® - - @71))J Py(2,9)
=0.
This finishes the proof of Theorem B.11 O

4. PROOF OF THE MAIN THEOREM

We start by proving the following intermediate result.

Theorem 4.1. Let (M, ) = (I'(Hr,U)", pu) be any free Araki-Woods factor endowed with

its free quasi-free state. Keep the same notation as in the introduction. Let ¢ € M¥ = N¥v?
_ »la-q
elg) -~

Then for any amenable von Neumann subalgebra QQ C qMq that is globally invariant under the
modular automorphism group o¥¢, we have (Q C ¢Ngq.

be any nonzero projection. Write ¢, =

Proof. We may assume that ) has separable predual. Indeed, let x € @ be any element
and denote by Qg C @ the von Neumann subalgebra generated by x € ) and that is globally
invariant under the modular automorphism group o%. Then @)y is amenable and has separable
predual. Therefore, we may assume without loss of generality that Q9 = @Q, that is, Q) has
separable predual.
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Special case. We first prove the result when QQ C gMq is globally invariant under o¥7 and is
an irreducible subfactor meaning that Q' N ¢Mq = Cgq.

Let a € @ be any element. Since @ is amenable and has separable predual, Q' N (¢Mq)*
is diffuse and so is Q' N ((¢M¢q)*)#7 by [ARI4, Theorem 2.3]. In particular, there exists a
unitary u € U(Q' N ((¢Mq)~)¥4) such that ¢¢(u) = 0. Note that E,(u) € Q' NgMq =
Cq and hence E,(u) = ¢¥(u) = 0 so that u € (M“)?" N (M* & M). Theorem B yields
¥ (a*u*(a — En(a))u) = 0. Since moreover au = ua and u € U((¢Mq)#7), we have
lallf = llaull

= ¢*(u"a*au) = ¥ (a*u*au)

= ¢“(a"u"En(a)u) = ¢*(ua"u"En(a))

= ¢(a"En(a))

= [En(a)[3-
This shows that a = Ex(a) € N.

General case. We next prove the result when @) C gMq is any amenable subalgebra globally
invariant under o%4.

Denote by z € Z(Q) C N¥ the unique central projection such that Qz is atomic and Q(1 — z)
is diffuse. Since @z is atomic and globally invariant under the modular automorphism group
o%=, we have that ¢,|g. is almost periodic and hence Qz C N. It remains to prove that
Q(1 — z) C N. Cutting down by 1 — z if necessary, we may assume that @ itself is diffuse.

Since Q C ¢Mq is diffuse and with expectation and since M is solid (see [HR14, Theorem A] and
[HI15, Theorem 7.1] which does not require separability of the predual), the relative commutant
Q' NgMq is amenable. Up to replacing Q by Q V Q' NgMgq which is still amenable and globally
invariant under the modular automorphism group o%¢, we may assume that Q' N ¢Mq =
Z(Q). Denote by (zn)n a sequence of central projections in Z(Q) such that ) =z, = g,
(Qz20) N zgMzy = Z(Q)zp is diffuse and (Qz,) N 2z, Mz, = Cz, for every n > 1.

e By the Special case above, we know that Qz, C N for all n > 1.

e Since Z(Q)zo @& (1 — z9)N(1 — 2p) is diffuse and with expectation in N, its relative
commutant inside M is contained in N by [HUIL5, Proposition 2.7(1)]. In particular,
we have QQzg C N.

Therefore, we have Q C N. O

Proof of the main theorem. Put ¢ := ¢r. Denote by z € Z(Q) C M¥ = N¥ the unique central
projection such that Qz is amenable and Q2" has no nonzero amenable direct summand. By
Theorem [A1], we have @z C zNz. Next, fix w € S(N) \ N any nonprincipal ultrafilter. By
[AR14, Theorem A] (see also [HI15, Theorem 7.1]), we have that (Q' N M%)zt = (Q' N M)z+

is atomic. U
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