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LOCAL SPECTRAL GAP IN SIMPLE LIE GROUPS AND APPLICATIONS

RÉMI BOUTONNET, ADRIAN IOANA AND ALIREZA SALEHI GOLSEFIDY

Abstract. We introduce a novel notion of local spectral gap for general, possibly infinite, measure
preserving actions. We establish local spectral gap for the left translation action Γ y G, whenever
Γ is a dense subgroup generated by algebraic elements of an arbitrary connected simple Lie group
G. This extends to the non-compact setting works of Bourgain and Gamburd [BG06, BG10], and
Benoist and de Saxcé [BdS14]. We present several applications to the Banach-Ruziewicz problem,
orbit equivalence rigidity, continuous and monotone expanders, and bounded random walks on
G. In particular, we prove that, up to a multiplicative constant, the Haar measure is the unique
Γ-invariant finitely additive measure defined on all bounded measurable subsets of G.
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1. Introduction

1.1. Background and motivation. Spectral gap for probability measure preserving actions is a
fundamental notion in mathematics with a wide range of applications. The goal of this paper is to
introduce and study a notion of spectral gap for general measure preserving actions.

We begin our discussion by recalling the following:

Definition 1.1. A measure preserving action Γ y (X,µ) of a countable group Γ on a standard
probability space (X,µ) is said to have spectral gap if there exist S ⊂ Γ finite and κ > 0 such that

‖F‖2 6 κ
∑
g∈S
‖g · F − F‖2 for any F ∈ L2(X,µ) with

∫
X
F dµ = 0.

Here, g ·F denotes the function given by (g ·F )(x) = F (g−1x), for every g ∈ Γ and x ∈ X. To justify
the terminology, consider the self-adjoint averaging operator PS(ξ) = 1

2|S|
∑

g∈S(g · F + g−1 · F ).

Then the constant function 1 is an eigenfunction of PS with eigenvalue 1, and the existence of κ > 0
as above is equivalent to the presence of a gap right below 1 in the spectrum of PS .

Let G be a compact Lie group and denote by mG its Haar measure. An important question, which
has been investigated intensively over the last three decades, is whether the left translation action
Γ y (G,mG), associated to a countable dense subgroup Γ < G, has spectral gap. Interest in this
question first arose in the early 1980s, in connection with Ruziewicz’s problem for the n-sphere Sn

(also known as the Banach-Ruziewicz problem). The latter asks if the Lebesgue measure on Sn is
the unique finitely additive, rotation-invariant measure defined on all Lebesgue measurable subsets.
For n = 1, Banach used the amenability of SO(2) (as a discrete group) to show that the answer
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is negative [Ba23]. For n > 2, however, the problem remained open for a long time. First, it was
realized that the existence of a countable dense subgroup of SO(n+1) with the spectral gap property
implies an affirmative answer [dJR79,Ro81]. By using Kazhdan’s property (T), Margulis [Ma80] and
Sullivan [Su81] then obtained an affirmative answer for every n > 4. The remaining cases n = 2, 3
were finally settled in the affirmative by Drinfeld [Dr84] via the construction of a countable dense
subgroup of SU(2) with the spectral gap property. An optimal such construction was achieved soon
after by Lubotzky, Phillips, and Sarnak [LPS86,LPS87] (see [Oh05] for a generalization to compact
simple Lie groups not locally isomorphic to SO(3)). For all of this, see the excellent survey [Lu94].
Later on, a new robust method for proving the spectral gap property for subgroups of SU(2) was
developed by Gamburd, Jakobson, and Sarnak [GJS99]. It is worth pointing out that in all of these
results, the subgroups involved are generated by matrices with algebraic entries.

In 2006, a breakthrough was made by Bourgain and Gamburd who established the spectral gap
property for any dense subgroup of SU(2) generated by matrices with algebraic entries [BG06].
Their approach followed two earlier major works: the authors’ work on expansion for Cayley graphs
of SL2(Fp) [BG05], and Helfgott’s product theorem for subsets of SL2(Fp) [He05]. Subsequently,
Bourgain and Gamburd established the spectral gap property for dense subgroups of G = SU(d)
generated by matrices with algebraic entries, for any d > 2 [BG10]. Recently, this was generalized
further by Benoist and de Saxcé to cover arbitrary connected compact simple Lie groups G [BdS14].

If G is a compact group and Γ is a countable dense subgroup with the spectral gap property, then
the Haar measure mG is the unique finitely additive Γ-invariant measure defined on all measurable
subsets of G. One of the main motivations for this paper is to formulate and prove analogues of
the results from [BG06,BG10,BdS14] that apply to general simple Lie groups G. By analogy with
the compact case, it would thus be desirable to find a notion of spectral gap for infinite measure
preserving actions, which in the case of left translation actions on locally compact groups G, implies
a uniqueness property for its left Haar measures as finitely additive measures.

1.2. Local spectral gap. As we explain in Corollary D, the following new notion of spectral gap
satisfies the desired property.

Definition 1.2. Let Γ y (X,µ) be a measure preserving action of a countable group Γ on a
standard measure space (X,µ). We say that Γ y (X,µ) has local spectral gap with respect to a
measurable set B ⊂ X of finite measure if there exist S ⊂ Γ finite and κ > 0 such that

‖F‖2,B 6 κ
∑
g∈S
‖g · F − F‖2,B for any F ∈ L2(X,µ) with

∫
B
F dµ = 0.

Here, ‖F‖2,B :=
( ∫

B
|F |2 dµ

) 1
2 denotes the L2-norm of the restriction of F to B.

Remark 1.3. We continue with a few remarks on this definition:

(1) Although the action Γ y (X,µ) is not required to be ergodic, this is automatic if the action
has local spectral gap with respect to a set B such that ∪g∈Γ g ·B is co-null in X.

(2) If (X,µ) is a probability space and B = X, then local spectral gap coincides with spectral
gap. Assume that (X,µ) is an infinite measure space with X being a locally compact space
and µ a Radon measure. Then the notion of local spectral gap aims to capture the intuitive
idea that functions on X which are locally almost Γ-invariant, must be locally almost
constant (see also Proposition 2.2). This is different from the “global” notion of spectral
gap requiring that there is no sequence of unit almost Γ-invariant functions in L2(X,µ).
Indeed, since any sequence of unit almost Γ-invariant functions in L2(X,µ) converges weakly
to 0 on compact subsets of X, the latter reflects only the dynamics of the action at infinity.
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(3) The notion of local spectral gap appears implicitly in Margulis’ positive resolution of the
Banach-Ruziewicz problem for Rn (n > 3). More precisely, with the above terminology, he
first shows the existence of a subgroup Γ < Rn o SO(n) such that the action Γ y (Rn, λn)
has local spectral gap, and then concludes that the Lebesgue measure λn is indeed the unique
finitely additive isometry-invariant measure defined on all bounded measurable subsets of
Rn [Ma82].

(4) While local spectral gap might depend on the choice of B, the following independence result
can be easily shown: assume that B1, B2 are measurable subsets of X such that B1 ⊂ K ·B2

and B2 ⊂ K ·B1, for some finite set K ⊂ Γ. Then local spectral gap with respect to B1 is
equivalent to local spectral gap with respect to B2 (see Proposition 2.3).

Notation. Let G be locally compact second countable group and H < G be a closed subgroup.
Here and after, we assume that the locally compact topology on G is Hausdorff. We denote by
mG a fixed left Haar measure of G. We also denote by mG/H a fixed quasi-invariant Borel regular
measure on G/H which is “nice”, in the sense that it arises from a rho-function for the pair (G,H)
(see [BdHV08, Theorem B.1.4.]).

The following is our main result.

Theorem A (local spectral gap). Let G be a connected simple Lie group. Denote by g the Lie
algebra of G and by Ad : G → GL(g) its adjoint representation. Let Γ < G be a dense subgroup.
Assume that there is a basis B of g such that the matrix of Ad(g) in the basis B has algebraic
entries, for any g ∈ Γ. Let B ⊂ G be a measurable set with compact closure and non-empty
interior.

Then the left translation action Γ y (G,mG) has local spectral gap with respect to B.

In the case G is compact, Theorem A recovers the main results of [BG06, BG10, BdS14]. On the
other hand, if G is not compact, Theorem A reveals an entirely new type of phenomenon for locally
compact groups.

Remark 1.4. The assumption on Γ < G is in particular satisfied if G = SLn(R), for some n > 2,
and Γ is a dense subgroup of G such that every matrix g ∈ Γ has algebraic entries.

Remark 1.5. In view of Remark 1.3 (4), the conclusion of Theorem A does not depend on the
choice of the set B. Indeed, if B1 ⊂ G has compact closure and B2 ⊂ G has non-empty interior,
then there exists a finite set K ⊂ Γ such that B1 ⊂ K ·B2.

Theorem A is a consequence of our main technical result proving a restricted spectral gap estimate
in the spirit of Bourgain and Yehudayoff’s pioneering work [Bo09,BY11].

Theorem B (restricted spectral gap). Assume that Γ < G are as in Theorem A. Let B ⊂ G be a
measurable set with compact closure. Let U be a neighborhood of the identity element in G.

Then there exist a finite set T ⊂ Γ∩U and a finite dimensional subspace V ⊂ L2(B) such that the
probability measure µ = 1

2|T |
∑

g∈T (δg + δg−1) satisfies ‖µ∗F‖2 < 1
2‖F‖2, for every F ∈ L2(B)	V .

Note that unlike Theorem A, this result is new even in the case of compact groups, where it leads
to some unexpected consequences (see Remark 1.7).

Theorem B concerns the left regular representation of G. The proof of Theorem B moreover shows
that for any 0 < r < 1 there exists a finite set T ⊂ Γ ∩ U such that the conclusion holds with r in
place of 1

2 . As a consequence, it follows that a more general statement, addressing all quasi-regular
representations of G, holds true.
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Corollary C. Assume that Γ < G are as in Theorem A. Let H < G be a closed subgroup and
denote by π : G → U(L2(G/H,mG/H)) be the associated quasi-regular unitary representation. Let
B ⊂ G/H be a measurable set with compact closure. Let U be a neighborhood of the identity in G.

Then there exist a finite set T ⊂ Γ∩U and a finite dimensional subspace V ⊂ L2(B) such that the
probability measure µ = 1

2|T |
∑

g∈T (δg+δg−1) satisfies ‖π(µ)(F )‖2 < 1
2‖F‖2, for any F ∈ L2(B)	V .

Here, for a probability measure µ, we denote by π(µ) the averaging operator
∑

g∈G µ({g})π(g).

Corollary C generalizes [BY11, Theorem 5] which deals with the case when G is SL2(R) and H is
the subgroup of upper triangular matrices. Then G/H can be identified with the real projective
line, P1(R). The proof of [BY11, Theorem 5] is specific to this situation, as it relies on the fact
that the action of SL2(R) on P1(R) is 2-transitive to show a certain mixing property. Corollary
C provides an alternative approach to the mixing property in this case. Corollary C is new in all
other cases with G non-compact, including the simplest one when G = SL2(R) and H is trivial.

Remark 1.6. In the case G has trivial center, the proof of Theorem B yields a more quantitative
statement (see Theorem 6.7). To explain this, identify G with a subgroup of GLn(R), for some
n, and endow it with the metric induced by the Hilbert-Schmidt norm ‖.‖2. For ε > 0, denote
Bε(1) = {g ∈ G| ‖g − 1‖2 < ε}.
Then the proof of Theorem B shows that there is a constant C > 1 (depending on Γ) such that for
any small enough ε > 0, there exist a finite set T ⊂ Γ ∩Bε(1) which freely generates a group, and
a finite dimensional subspace V ⊂ L2(B) such that denoting µ = 1

2|T |
∑

g∈T (δg + δg−1) we have

• |T | < 1
εC

, and

• ‖µ ∗ F‖2 < ε‖F‖2, for every F ∈ L2(B)	 V .

Remark 1.7. Theorem B (and its quantitative version) sheds some new light on the spectra of
averaging operators on compact groups. In order to briefly recall known results along these lines,
assume for simplicity that G = SU(2). Then the irreducible representations of G can be listed as
πn : G→ U(Hn), where dim(Hn) = n+ 1, for every n > 0, and by the Peter-Weyl theorem we have

that L2(G) =
⊕

n>0H
⊕(n+1)
n . Let T ⊂ G be a finite set which freely generates a subgroup, consider

the probability measure µ = 1
2|T |

∑
g∈T (δg +δg−1), and denote by Pµ the operator F 7→ µ∗F . Then

Pµ is self-adjoint and since ‖Pµ‖ 6 1, its spectrum is contained in [−1, 1]. Moreover, since Pµ can
be identified with

⊕
n>0 πn(µ)⊕n+1, it is also diagonalizable.

The asymptotic distribution of the eigenvalues of Pµ has been studied in [LPS86,GJS99], where it is

shown that most of them lie in the interval
[
−
√

2|T |−1

|T | ,

√
2|T |−1

|T |
]
. More precisely, if dn denotes the

number of eigenvalues of πn(µ) that lie outside this interval (so-called “exceptional” eigenvalues),
then dn

n → 0 (see [LPS86, Theorem 1.1]). Assume from now on that the elements of T have algebraic

entries. Then the following sharper estimate holds: dn
n �

1
logn , for large n (see [GJS99, Theorem

1.3]). A remarkable fact, discovered by Lubotzky, Phillips and Sarnak is that for certain sets T ,
the operator Pµ has no exceptional eigenvalues, i.e. dn = 0, for all n > 1 (see [LPS86,LPS87]). As
already mentioned above, the more recent work [BG06] implies that Pµ has a spectral gap, i.e. the
supremum κµ of the spectrum of Pµ but 1 satisfies κµ < 1. However, besides these facts, not much
is known about the exceptional eigenvalues of Pµ. In particular, to the best of our knowledge, it is
unknown whether κµ is ever an eigenvalue of Pµ.

Theorem B implies that kµ can be an isolated eigenvalue of Pµ, and thus Pµ can have a second
spectral gap. Moreover, it shows that operators of the form Pµ may have arbitrarily many gaps at
the top of their spectrum. To make this precise, let ε > 0 small enough, and let T ⊂ Γ ∩ Bε(1)



6 RÉMI BOUTONNET, ADRIAN IOANA AND ALIREZA SALEHI GOLSEFIDY

and µ as given by Remark 1.6. Then Pµ has only finitely many eigenvalues outside the interval
[−ε, ε]. On the other hand, since T ⊂ Bε(1), the number of eigenvalues of Pµ belonging to the
interval (1

2 , 1) gets arbitrarily large, as ε→ 0. In fact, it is easy to see that this number is� 1
ε2

. In
combination with [LPS86, Theorem 1.1] the following picture emerges: the spectrum of Pµ contains

• the whole interval
[
−
√

2|T |−1

|T | ,

√
2|T |−1

|T |
]

• only finitely many points, all of which are isolated eigenvalues, outside
[
− 1

|T |
1
C
, 1

|T |
1
C

]
.

• � |T |
2
C points in the interval (1

2 , 1).

1.3. Applications. We now turn to discussing several applications of our main results.

1.3.1. The Banach-Ruziewicz problem. The original Banach-Ruziewicz problem asks whether
the Lebesgue measure on Sn (resp. Rn) is the unique rotation-invariant (resp. isometry-invariant)
finitely additive measure defined on all bounded Lebesgue measurable sets. This problem is an
illustration of a general question: let Γ be a locally compact group acting isometrically on a locally
compact metric space X with an invariant Radon measure µ. Is µ the unique Γ-invariant finitely
additive measure defined on all µ-measurable subsets of X with compact closure? Here and after,
uniqueness is of course meant up to a multiplicative constant.

If the space X is compact and the group Γ is countable discrete, then a positive answer to this
question is closely connected to the spectral gap of the action. The connection stems from the
well-known fact that the action Γ y (X,µ) has spectral gap if and only if integration against µ
is the unique Γ-invariant mean on L∞(X,µ) (see [Ro81, Sc81]). On the other hand, if µ is unique
among invariant finitely additive measures, then integration against µ is unique among invariant
means. The converse of this statement is also true for certain classes of actions, including left
translation actions on compact groups (see Remark 7.2).

In Section 7, we generalize these results to the case when X is locally compact. Assume that
every orbit Γ · x is dense in X, and denote by L∞c (X,µ) the algebra of L∞-functions with compact
support. Firstly, we prove that the action Γ y (X,µ) has local spectral gap with respect to a
measurable set with compact closure and non-empty interior if and only if integration against µ
is the unique Γ-invariant positive linear functional on L∞c (X,µ) (see Theorem 7.6). This result
is partially inspired by Margulis’ work [Ma82], which we follow closely in the proof of the only if
assertion. Secondly, in the case of left translation actions Γ y (G,mG) on locally compact groups
G, we show that the Haar measure mG is unique among invariant finitely additive measures if and
only if integration against mG is unique among invariant positive linear functionals on L∞c (G,mG)
(see Theorem 7.1). Altogether, by combining these two results we derive the following:

Theorem D. Let G be a locally compact second countable group and Γ < G be a countable dense
subgroup. Denote by C(G) the family of measurable subsets A ⊂ G with compact closure.

Then the following conditions are equivalent:

(1) If ν : C(G)→ [0,∞) is a Γ-invariant, finitely additive measure, then there exists α > 0 such
that ν(A) = α mG(A), for all A ∈ C(G).

(2) The left translation action Γ y (G,mG) has local spectral gap.

Note that in order to treat arbitrary locally compact groups, we use the structure theory of locally
compact groups [MZ55] as well as Breuillard and Gelander’s topological Tits alternative [BG04].

As an immediate consequence of Theorems A and D we deduce the following uniqueness charac-
terization of Haar measures on simple Lie groups, in the spirit of the Banach-Ruziewicz problem:
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Corollary E. Assume that Γ < G are as in Theorem A.

Then, up to a multiplicative constant, the Haar measure mG of G is the unique finitely additive
Γ-invariant measure defined on C(G).

1.3.2. Orbit equivalence rigidity. Next, we apply our results to the theory of orbit equivalence
of actions. This area has flourished in the last 15 years, with many new exciting developments
(see the surveys [Po07,Fu09,Ga10]). To recall the notion of orbit equivalence, consider two ergodic
measure preserving actions Γ y (X,µ) and Λ y (Y, ν) of countable groups Γ, Λ on standard
measure spaces (X,µ), (Y, ν). The actions are called orbit equivalent if there exists a measure class
preserving Borel isomorphism θ : X → Y such that θ(Γ · x) = Λ · θ(x), for µ-almost every x ∈ X.
The simplest instance of when the actions are orbit equivalent is when they are conjugate, i.e. there
exists a measure class preserving Borel isomorphism θ : X → Y and a group isomorphism δ : Γ→ Λ
such that θ(g · x) = δ(g) · θ(x), for all g ∈ Γ and µ-almost every x ∈ X.

In general, however, orbit equivalence is a much weaker notion of equivalence than conjugacy. This
is best illustrated by the striking theorem of Ornstein-Weiss and Connes-Feldman-Weiss showing
that if the groups Γ,Λ are both infinite amenable and the measure spaces (X,µ), (Y, ν) are either
both finite or both infinite, then the actions are orbit equivalent (see [OW80, CFW81]). In sharp
contrast, there exist “rigid” situations when for certain classes of actions of non-amenable groups
one can deduce conjugacy from orbit equivalence.

It was recently discovered in [Io13] that such a rigidity phenomenon occurs for left translation
actions on compact groups in the presence of spectral gap. More precisely, let Γ < G and Λ < H
be countable dense subgroups of compact connected Lie groups with trivial centers. Assuming that
Γ y (G,mG) has spectral gap, it follows from [Io13, Corollary 6.3] that the actions Γ y (G,mG)
and Λ y (H,mH) are orbit equivalent if and only if they are conjugate. Most recently, this result
has been generalized to the case when G and H are arbitrary, not necessarily compact, connected
Lie groups with trivial centers (see [Io14, Theorems A and 4.1]). The only difference is that in the
locally compact setting, the spectral gap assumption has to be replaced with the assumption that
the action Γ y (G,mG) is strongly ergodic.

To recall the latter notion, let Γ y (X,µ) be an ergodic measure preserving action. Then, loosely
speaking, strong ergodicity requires that any sequence of asymptotically invariant subsets of X
must be asymptotically trivial. In order to make this precise, since the measure µ can be infinite,
we first choose a probability measure µ0 on X with the same null sets as µ. The action is said to be
strongly ergodic if any sequence {An} of measurable subsets of X satisfying µ0(g ·An ∆ An)→ 0, for
all g ∈ Γ, must satisfy µ0(An)(1− µ0(An))→ 0 [CW80,Sc80]. It is easy to see that this definition
does not depend on the choice of µ0.

For translation actions on compact groups, strong ergodicity is implied by the spectral gap property,
which is now known to hold in considerably large generality by [BG06,BG10,BdS14]. On the other
hand, in the case of translation actions on locally compact non-compact groups, strong ergodicity
seems much harder to work with, and so far could only be checked in two rather specific situations
(see [Io14, Propositions G and H]).

Nevertheless, strong ergodicity is implied by local spectral gap, for arbitrary ergodic measure pre-
serving actions. Moreover, for translation actions on locally compact groups, we prove that local
spectral gap and strong ergodicity are equivalent (see Theorem 7.1). This generalizes [AE10, The-
orem 4], which dealt with the compact case. Consequently, all actions covered by Theorem A are
strongly ergodic, which in combination with [Io14] allows us to conclude the following:

Corollary F. Assume that Γ < G are as in Theorem A. Suppose that G has trivial center. Let H
be any connected Lie group with trivial center and Λ < H be any countable dense subgroup.
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Then the left translation actions Γ y (G,mG) and Λ y (H,mH) are orbit equivalent if and only if
there is a topological isomorphism δ : G→ H such that δ(Γ) = Λ.

Remark 1.8. If Γ̃ < G is a countable subgroup that contains Γ, then Theorem A implies that the

action Γ̃ y (G,mG) has local spectral gap. Hence, Corollary F remains valid if Γ is replaced by Γ̃.

Remark 1.9. In the context of Corollary F, assume moreover that Γ is a free group. Since the
left translation action Γ y (G,mG) is strongly ergodic, it is not amenable in the sense of [Zi78].
Then [HV12, Theorem A] (which builds on [OP07,PV11]) implies that L∞(G) is the unique Cartan
subalgebra of the L∞(G)oΓ, up to unitary conjugacy. In combination with Corollary F, we deduce
that the crossed product von Neumann algebras L∞(G)oΓ and L∞(H)oΛ are isomorphic if and
only if there is a topological isomorphism δ : G→ H such that δ(Γ) = Λ.

1.3.3. Continuous and monotone expanders. Our main results also lead to a general con-
struction of continuous and monotone expanders, extending the main result of [BY11]. Expander
graphs are infinite families of highly connected sparse finite graphs. It is sometimes desirable
to find expander graphs within certain classes of graphs. A finite graph is called monotone if
it is defined by monotone functions. This means that the vertex set of the graph can be iden-
tified with [n] = {1, 2, ..., n} in such a way that there exist partially defined monotone maps
ϕi : [n]→ [n], 1 6 i 6 d, such that two vertices a, b are connected iff b = ϕi(a), for some i.

Bourgain and Yehudayoff recently found the first explicit construction of constant degree monotone
expander graphs [Bo09, BY11]. Their approach is to first build a continuous monotone expander
and then discretize it to obtain monotone expanders. In their terminology, a continuous expander
consists of a family of smooth partially defined maps ϕi : B → B, 1 6 i 6 d, where B is a compact
subset of a manifold endowed with a finite measure A 7→ |A|, such that the following holds: there is

κ > 0 such that for every measurable set A ⊂ B with |A| 6 |B|2 , we have | ∪di=1 ϕi(A)| > (1 + κ)|A|.

As a consequence of Theorem B, we obtain the following result.

Corollary G. Assume that Γ < G are as in Theorem A. Let H < G be a closed subgroup and
B ⊂ G/H be a measurable set with compact closure and non-empty interior. For a measurable
subset A ⊂ G/H, denote |A| := mG/H(A).

Then there exists a finite set S ⊂ Γ finite for which there is a constant κ > 0 such that for any

measurable set A ⊂ B with |A| 6 |B|2 we have

|
(
∪g∈S g ·A

)
∩B| > (1 + κ)|A|.

Moreover, if B is open and connected, and ε > 0 is given, then S ⊂ Γ can be taken inside Bε(1).

Assume that G is equal to SL2(R), H is the subgroup of upper triangular matrices, identify G/H
with the real projective line P1(R) = R ∪ {∞}, and let B = [0, 1]. With this notation, [BY11,
Theorem 4] provides a finite set S ⊂ SL2(Q) which satisfies the conclusion of Corollary G. Moreover,
S can be taken close enough to the identity so that the restriction g̃ of every g ∈ S to B ∩ g−1B is
monotonically increasing. Therefore, the family {g̃}g∈S is a continuous monotone expander.

Corollary G generalizes [BY11, Theorem 4] by showing the existence of such a set S inside any dense
subgroup of G generated by algebraic elements. Note that, as opposed to [BY11], our construction
of S is not explicit. On the other hand, unlike [BY11], our construction does not rely on the strong
Tits alternative from [Br08].
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1.3.4. Spectral gap for delayed bounded random walks. Our last application concerns ran-
dom walks on Lie groups that are bounded and delayed, in a sense made precise below. Let G be
a connected simple Lie group and S ⊂ G be a finite symmetric set. Denote k = |S| and enumerate
S = {g1, ..., gk}. Let B ⊂ G be a measurable set which is bounded (i.e. has compact closure). We
define a random walk on B as follows: a given point x ∈ B moves with probability 1

k to each of
the points h1x, h2x, ..., hkx, where hi = gi, if gix ∈ B, and hi = e, if gix /∈ B. In other words, with
probability 1

k , x either moves to gix or stays put, depending on whether gix belongs to B or not.

The associated transition operator PS : L2(B)→ L2(B) is given by

PS(F ) =
1

k

k∑
i=1

(
1B∩giB gi · F + 1B\giB F

)
, for every F ∈ L2(B).

Then PS is symmetric, ‖PS‖ 6 1, and PS(1B) = 1B, where 1B denotes the characteristic function
of B. Theorem B allows us to deduce the existence of many sets S such that PS has a spectral gap.

Corollary H. Assume that Γ < G are as in Theorem A.

Then there exists a finite symmetric set S ⊂ Γ such that the operator PS : L2(B)→ L2(B) satisfies

‖PS |L2(B)	C1B‖ < 1.

When G is compact and B = G, this result is a consequence of [BG06,BG10,BdS14]. Corollary H
is new in all other cases, including the case when G is compact and B is a proper subset.

1.4. On the proof of restricted spectral gap. Our approach to proving restricted spectral gap is
a combination of general results from [dS14,BdS14], refinements of techniques from [BG10,SGV11],
and ideas from [BY11] on how to treat non-compact situations. It relies on the remarkable strategy
invented by Bourgain and Gamburd [BG05,BG06] to prove spectral gap in the compact setting.

To briefly recall this strategy, consider a symmetric probability measure µ on a compact group G,
for which we want to establish the spectral gap property. A first step is to show that the convolution
powers of µ become “flat” rather quickly. Then one uses a mixing inequality to deduce spectral
gap for the corresponding operator Pµ : L2(G)→ L2(G) given by Pµ(F ) = µ ∗ F .

Flattening. The term flat roughly means that after “discretizing” the group G, the measure has
a small 2-norm, compared to the scale at which we discretize G. In [BdS14], Benoist and de Saxcé
proved a general flattening lemma for connected compact simple Lie groups G. They showed that
if a measure ν on G is not already flat and does not concentrate on any proper closed subgroup
of G, then its convolution square ν ∗ ν will be significantly flatter. A repeated application of this
result shows that a measure on G with small mass on closed subgroups will flatten rather quickly.

Escaping subgroups. Thus, in order to show that Pµ has spectral gap, it is necessary to show
that, quite quickly, convolution powers of µ have small mass on closed subgroups. To guarantee
this, one needs (due to the currently available techniques) to impose a diophantine assumption
on the support of µ. Typically, one assumes that µ is supported on finitely many elements with
algebraic entries (when viewed as matrices via the adjoint representation).

Mixing inequality. The concluding part, deducing spectral gap out of flatness of some small
power of µ, relies on a mixing inequality. If G is a finite group, the mixing inequality bounds the
norm of the operator Pµ in terms of the 2-norm of µ (see [BNP08] and [Ta15, Proposition 1.3.7]).
This step relies on the representation theory of the ambient group G. Specifically, one usually uses
the idea, due to Sarnak and Xue [SX91], of exploiting “high multiplicity” of eigenvalues.

In the non-compact setting, we will prove restricted spectral gap with a similar strategy. Recall,
however, that our aim is somewhat different from the spectral gap property for compact groups.
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Indeed, we are given a connected simple Lie group G, a dense subgroup Γ < G and an open
ball B ⊂ G. Our goal is to produce a measure µ supported on Γ and on an arbitrarily small
neighborhood of 1, such that the averaging operator Pµ : L2(B) → L2(G) has norm less than 1

2

(after discarding a finite dimensional subspace V ⊂ L2(B)). Let us emphasize the main differences
that occur in the proof.

Firstly, we show that the mixing inequality still holds in our setting, leading to a result that might
be of independent interest (see Theorem 5.1). Our proof is inspired by the “geometric approach”
introduced in [BY11,BG10], but here we address a far greater level of generality. Also, our proof is
elementary, in that it only relies on basic results from the representation theory of G, and essentially
self-contained. Using this inequality, we reduce to the task of producing a measure µ with support
contained in Γ and arbitrarily close to 1, whose convolution powers flatten rather quickly.

The flattening lemma of [BdS14] relies on two main tools: a product theorem due to de Saxcé [dS14],
and the non-commutative Balog-Szemerédi-Gowers Lemma due to Tao [Ta06]. It turns out that
these two tools actually hold for general (not necessarily compact) connected simple Lie groups.
So, by reproducing the proof of [BdS14, Lemma 2.5], we get a similar flattening lemma in the
locally compact setting (see Corollary 4.2). An important aspect is that our lemma only applies to
measures whose support is controlled (relative to the scale at which we discretize G).

Next, refining techniques from [SGV11, Section 3] we construct a measure µ, supported on Γ and
on an arbitrarily small neighborhood of 1, that will escape proper subgroups quickly when taking
convolution powers (Propositions 3.2 and 3.9). Therefore, we are almost in position to apply the
flattening lemma to some convolution powers of µ. However, we need to make sure that these
convolution powers still have a controlled support. This amounts to bounding the speed of escape
of subgroups in terms of the size of the support of µ. A priori, the measure µ that we construct does
not admit such a nice bound. As in [BY11], an application of the pigeonhole principle allows us to
construct a new measure µ′ with an improved bound. Then µ′ satisfies all the required assumptions
to ensure that it will become flat quickly enough. Finally, our mixing inequality will allow us to
show restricted spectral gap for this new measure µ′.

We will provide more quantitative statements of the main steps of the proof in Section 2.5.

1.5. Organization of the paper. Besides the introduction, this paper has seven other sections
and an appendix. In Section 2, we establish some basic properties of local spectral gap, explain
how Theorem A follows from Theorem B, and provide a detailed outline of the proof of Theorem
B. Sections 3, 4, and 5 are each devoted to one of the three main parts of the proof of Theorem B.
In Section 6 we conclude the proof of Theorem B and derive Corollary C. In Sections 7 and 8, we
prove Theorem D and Corollaries G, H, respectively. Finally, the Appendix deals with the proof of
Lemma 4.1.

1.6. Acknowledgements. We are grateful to Cyril Houdayer, Hee Oh and Peter Sarnak for helpful
comments.

2. Preliminaries

2.1. Terminology. We begin by introducing various terminology concerning analysis on groups.
Let G be a locally compact second countable (l.c.s.c.) group and fix a left Haar measure mG.

Given a measurable set A ⊂ G and a measurable function f : G→ C, we denote

|A| := mG(A),

∫
G
f(x) dx :=

∫
G
f dmG, and
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‖f‖p,A := ‖1Af‖p =
(∫

A
|f(x)|p dx

) 1
p
.

We denote byM(G) the family of Borel probability measures on G. Let f, g : G→ C be measurable
functions and µ, ν ∈ M(G). Then the convolution functions f ∗ g, µ ∗ f : G → C and probability
measure µ ∗ ν are defined (when the integrals make sense) by the formulae

(f ∗ g)(x) =

∫
G
f(y)g(y−1x) dy, (µ ∗ f)(x) =

∫
G
f(y−1x) dµ(y) and∫

G
F d(µ ∗ ν) =

∫
G

∫
G
F (xy) dµ(x)dν(y)

for any continuous F : G→ C. We will often use the following inequalities

‖f ∗ g‖2 6 ‖f‖1‖g‖2, ‖f ∗ g‖∞ 6 ‖f‖2‖g‖2 and ‖µ ∗ f‖2 6 ‖f‖2.

Further, we denote by f̌ : G → C the function given by f̌(x) = f(x−1). Similarly, µ̌ is the Borel
probability measure given by

∫
G F dµ̌ =

∫
G F̌ dµ, for any continuous F : G→ R. We say that µ is

symmetric if µ̌ = µ. For n > 1, we denote by µ∗n the n-fold convolution product of µ with itself.
We also denote by supp(µ) the support of µ. If µ and ν have finite support, then µ̌({x}) = µ({x−1})
and (µ ∗ ν)({x}) =

∑
y∈G µ({y})ν({y−1x}), for any x, y ∈ G.

If G is unimodular, we denote by λ, ρ : G→ U(L2(G)) the left and right regular representations of
G given by λg(f)(x) = f(g−1x), ρg(f)(x) = f(xg), for every f ∈ L2(G) and any g, x ∈ G. Notice
that λg(f) = δg ∗ f and ρg(f) = f ∗ δg−1 , where δg denotes the Dirac measure at g ∈ G.

Next, we establish a useful result that we will need later on.

Lemma 2.1. Let µ be a symmetric Borel probability measure on G and n > 1. Then

(1) ‖µ∗n ∗ f‖2 > ‖µ ∗ f‖2n2 , for every f ∈ L2(G) with ‖f‖2 = 1.

(2) µ∗n(A)2 6 µ∗(2n)(A−1A), for every measurable set A ⊂ G.

Proof. (1) Since µ is symmetric, we have ‖µ∗m∗f‖22 = 〈µ∗m∗f, µ∗m∗f〉 = 〈µ∗2m∗f, f〉 6 ‖µ∗2m∗f‖2,
for any m > 0. By induction, it follows that ‖µ∗2m ∗ f‖2 > ‖µ ∗ f‖2

m
, for all m > 0. Choose m > 0

such that 2m 6 n < 2m+1. Then ‖µ∗n ∗ f‖2 > ‖µ∗2
m+1 ∗ f‖2 > ‖µ ∗ f‖2

m+1
> ‖µ ∗ f‖2n, as claimed.

(2) Indeed, we have µ∗n(A)2 = µ∗n(A−1)µ∗n(A) 6 µ∗(2n)(A−1A). �

2.2. Basic properties of local spectral gap. We continue with several elementary properties of
local spectral gap, starting with an easy, but useful, equivalent formulation of local spectral gap.

Proposition 2.2. Let Γ y (X,µ) be a measure preserving action of a countable group Γ, and
B ⊂ X a measurable set of finite measure. Then Γ y (X,µ) has local spectral gap with respect to
B if and only if there exist a finite set F ⊂ Γ and a constant κ > 0 such that the following holds:

‖ξ − 1

µ(B)

∫
B
ξ dµ‖2,B 6 κ

∑
g∈F
‖g · ξ − ξ‖2,B for any ξ ∈ L2(G).

Proof. The if implication is clear. To prove the only if implication, suppose that Γ y (X,µ) has
local spectral gap with respect to B. Then there are a finite set F ⊂ Γ and κ > 0 such that
‖η‖2,B 6 κ

∑
g∈F ‖g · η − η‖2,B, for any η ∈ L2(X) with

∫
B η dµ = 0. We may assume that e ∈ F .

Let ξ ∈ L2(X) and put α = 1
µ(B)

∫
B ξ dµ. Let C = ∪g∈F g−1B and define η = ξ − α1C ∈ L2(G).

Then
∫
B η dµ = 0 and ‖g · η − η‖2,B = ‖g · ξ − ξ‖2,B, for all g ∈ F . The conclusion now follows. �



12 RÉMI BOUTONNET, ADRIAN IOANA AND ALIREZA SALEHI GOLSEFIDY

Proposition 2.3. Let Γ y (X,µ) be a measure preserving action of a countable group Γ, and
B1, B2 ⊂ X measurable sets of finite measure. Assume there is a finite set K ⊂ Γ such that
B1 ⊂ ∪h∈KhB2 and B2 ⊂ ∪h∈KhB1.

Then Γ y (X,µ) has local spectral gap with respect to B1 if and only if it does with respect to B2.

Proof. Assume that local spectral gap holds with respect to B1, but not B2. Let ξn ∈ L2(X) be a
sequence satisfying ‖ξn‖2,B2 = 1,

∫
B2
ξn dµ = 0, for all n, and ‖g · ξn− ξn‖2,B2 → 0, for every g ∈ Γ.

If g ∈ Γ, then we have

‖g · ξn − ξn‖2,B1 6
∑
h∈K
‖g · ξn − ξn‖2,hB2 =

∑
h∈K
‖(h−1g) · ξn − h−1 · ξn‖2,B2

6
∑
h∈K

(
‖(h−1g) · ξn − ξn‖2,B2 + ‖h−1 · ξn − ξn‖2,B2

)
.

This implies that ‖g · ξn − ξn‖2,B1 → 0, for every g ∈ Γ. Since we have local spectral gap with
respect to B1, Proposition 2.2 provides scalars αn ∈ C such that ‖ξn − αn‖2,B1 → 0. By reasoning
as above, it follows that ‖ξn − αn‖2,B2 → 0. Since

∫
B2
ξn dµ = 0, for all n, we get that αn → 0.

Hence, ‖ξn‖2,B2 → 0, which gives the desired contradiction. �

Next, we establish that local spectral gap passes to direct product actions.

Proposition 2.4. For i ∈ {1, 2}, let Γi y (Xi, µi) be a measure preserving action which has local
spectral gap with respect to a measurable set Bi ⊂ Xi of finite measure.

Then the product action Γ1×Γ2 y (X1×X2, µ1×µ2) has local spectral gap with respect to B1×B2.

Proof. By Lemma 2.2, for i ∈ {1, 2}, we can find Fi ⊂ Γi finite and κi > 0 such that

(2.1) ‖ξ − 1

µi(Bi)

∫
Bi

ξ dµi‖22,Bi 6 κi
∑
g∈Fi

‖g · ξ − ξ‖22,Bi for any ξ ∈ L2(Xi).

Denote (X,µ) = (X1×X2, µ1×µ2) and B = B1×B2. Let ξ ∈ L2(X,µ) and put α = 1
µ(B)

∫
B ξ dµ.

For y ∈ X2, define ξy(x) = ξ(x, y) and f(y) = 1
µ1(B1)

∫
B1
ξy dµ1. Then it is easy to see that

f ∈ L2(X2) and ‖g ·f −f‖22,B2
6 1

µ1(B1)‖g ·ξ−ξ‖
2
2,B1×B2

, for all g ∈ Γ2. Since 1
µ2(B2)

∫
B2
f dµ2 = α,

by using the last inequality and applying (2.1) to f we get that

(2.2) ‖f − α‖22,B2
6 κ2

∑
g∈F2

‖g · f − f‖22,B2
6

κ2

µ1(B1)

∑
g∈F2

‖g · ξ − ξ‖22,B1×B2

On the other hand, by applying (2.1) to ξy we get that ‖ξy − f(y)‖22,B1
6 κ1

∑
g∈F1
‖g · ξy − ξy‖22,B1

.
By integrating over y ∈ B2, we derive that

(2.3)

∫
B
|ξ(x, y)− f(y)|2 dµ(x, y) 6 κ1

∑
g∈F1

‖g · ξ − ξ‖22,B1×B2
.

It is now clear that the combination of (2.2) and (2.3) implies the conclusion. �

Finally, we record a result asserting that local spectral gap passes through certain quotients. Since
its proof is very similar to that of Corollary C, we leave its details to the reader.
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Proposition 2.5. Let G be a l.c.s.c. group, H < G a closed subgroup, and Γ < G a countable
dense subgroup. Assume that G/H admits a G-invariant Borel regular measure mG/H . Suppose
that the left translation action Γ y (G,mG) has local spectral gap.

Then the left translation action Γ y (G/H,mG/H) has local spectral gap.

2.3. Deduction of Theorem A from Theorem B. The aim of this subsection is to show that
Theorem B implies Theorem A. This relies on the following result.

Proposition 2.6. Let G be a l.c.s.c. group, Γ < G a countable dense subgroup, and B ⊂ G a
measurable set with non-empty interior and compact closure. Assume that there exists a constant
c > 0 satisfying the following property: for any neighborhood U of the identity, there are a finite
set S ⊂ Γ∩U and a finite dimensional vector space V ⊂ L2(G) such that for all ξ ∈ L2(B)	 V we
have

max
g∈S
‖g · ξ − ξ‖2 > c‖ξ‖2.

Then the left translation action Γ y (G,mG) has local spectral gap with respect to B.

Proof. Assume by contradiction that the conclusion is false. Then there is a sequence ξn ∈ L2(G)
satisfying ‖ξn‖2,B = 1,

∫
B ξn dµ = 0, for all n, and lim

n→∞
‖g · ξn − ξn‖2,B = 0, for all g ∈ Γ.

If C ⊂ G is a compact set, then C can be covered with finitely many of the sets {gB}g∈Γ. It follows
that supn ‖ξn‖2,C <∞ and lim

n→∞
‖g · ξn− ξn‖2,C = 0, for all g ∈ Γ. Since G is second countable, we

can find a subsequence {ξnk} of {ξn} and ξ ∈ L2
loc(G) (i.e. a locally L2-integrable function) such

that 1Cξnk → 1Cξ, weakly, for every compact set C ⊂ G. But then ξ must be Γ-invariant, and
hence constant by ergodicity. Since ξn has mean zero on B, for all n, we derive that ξ = 0, almost
everywhere. This argument implies that 1Cξn → 0, weakly, for any compact set C ⊂ G.

Let lim
n

be a bounded linear functional on `∞(N) which extends the limit. Then ν(C) = lim
n
‖1Cξn‖22

defines a Γ-invariant finitely additive measure on bounded Haar measurable subsets of G. Since
ν(B) 6= 0, we get that ν 6= 0. Since B has non-empty interior, by using finite additivity, we can
find two open sets B1 ( B2 ⊂ B such that ν(B1) 6= 0, ν(B2 \ B1) 6 (c2ν(B1))/4, and there exists
a closed intermediate subset B1 ⊂ F ⊂ B2.

By local compactness, we can find an intermediate open set B0 between B1 and B2 and a neigh-
borhood U of the identity small enough so that B1 ⊂ gB0 ⊂ B2, for g ∈ U . Put p = 1B0 . As the
sequence {pξn} converges weakly to 0 and is supported on B, the following claim contradicts our
assumption on c.

Claim. For all g ∈ Γ ∩ U , we have lim
n
‖g · (pξn)− (pξn)‖2 6 c

2 lim
n
‖pξn‖2.

Indeed, for g ∈ Γ ∩ U we can estimate

lim
n
‖g · (pξn)− (pξn)‖2 = lim

n
‖(g · p)(g · ξn)− (pξn)‖2

6 lim
n
‖(g · p)ξn − (pξn)‖2 + lim

n
‖(g · p)(g · ξn)− (g · p)ξn‖2

= lim
n
‖(g · p− p)ξn‖2 + lim

n
‖g · ξn − ξn‖2,gB0

But by the above, lim
n
‖g · ξn − ξn‖2,gB0 = 0. Moreover, since B1 ⊂ gB0 ⊂ B2, we get that

lim
n
‖(g · p− p)ξn‖22 6 ν(B2 \B1) 6

c2

4
ν(B1) 6

c2

4
ν(Br(1)) =

c2

4
lim
n
‖pξn‖22

�
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Proof of Theorem A. Assume that Theorem B holds and let us explain how Theorem A follows.
Let S ⊂ Γ be a finite set and denote µ = 1

|S|
∑

g∈S δg. If ξ ∈ L2(G), then∑
g∈S
‖g · ξ − ξ‖22 = 2|S|

(
‖ξ‖22 −<〈µ ∗ ξ, ξ〉

)
.

Thus, if we have that ‖µ ∗ ξ‖ < 1
2‖ξ‖2, then maxg∈S ‖g · ξ − ξ‖2 > ‖ξ‖2. By combining Theorem B

and Proposition 2.6, we conclude that Γ y (G,mG) has local spectral gap. �

2.4. Reduction to groups with trivial center. Next, we will argue that in order to prove
Theorem B, we may reduce to the case when G has trivial center.

Assume that Theorem B holds for connected simple Lie groups with trivial center. Let G be a
connected simple Lie group, B ⊂ G a measurable set with compact closure and non-empty interior,
and c > 0. Let π : G→ GL(g) be the adjoint representation of G. Put G0 = π(G) and Γ0 = π(Γ).

Since π has discrete kernel, we can find a small enough compact neighborhood of the identity C ⊂ G
and ε0 > 0 such that π is 1-1 on ∪g∈Bε0 (1)gC. Let K ⊂ G be a finite set such that B ⊂ ∪h∈KCh.
Write B as a disjoint union B = th∈KCh, where Ch is a subset of Ch, for every h ∈ K.

Since G0 has trivial center, the conclusion of Theorem B holds for (G0,Γ0, π(C)) by our assumption.
It is then easy to see that Theorem B also holds for (G,Γ, C).

Thus, given ε > 0, there are a finite set T ⊂ Γ∩Bε(1) and a finite dimensional subspace W ⊂ L2(C)
such that µ := 1

2|T |
∑

g∈T (δg + δg−1) satisfies ‖µ ∗ F‖2 < c
|K|‖F‖2, for every F ∈ L2(C)	W.

Let V ⊂ L2(B) be the linear span of {1Chρh(W )|h ∈ K}, where {ρg}g∈G denotes the right regular

representation of G. Let F ∈ L2(B)	 V . If h ∈ K, then ρ−1
h (1ChF ) ∈ L2(C)	W , and therefore

‖µ ∗ (1ChF )‖2 = ‖µ ∗ (ρ−1
h (1ChF ))‖2 <

c

|K|
‖ρ−1

h (1ChF )‖2 =
c

|K|
‖1ChF‖2.

Since F =
∑

h∈K 1ChF , we deduce that ‖µ∗F‖2 < c‖F‖2. Since c > 0 is arbitrary, and V ⊂ L2(B)
is finite dimensional, this implies that G satisfies the conclusion of Theorem B.

2.5. Outline of the proof of Theorem B. The previous subsection allows us to work hereafter
with connected simple groups with trivial center. Note, however, that although our results will be
stated only for groups with trivial center, they have analogues for general connected simple groups.

In order to outline the proof of Theorem B, let us introduce some more notation. Let G be a
connected simple Lie group with trivial center, and Γ < G be a dense subgroup. Suppose there is
a basis B of g such that the matrix of Ad(g) in the basis B has algebraic entries, for any g ∈ Γ.
Let n be the dimension of G, g its Lie algebra, and Ad: G→ GL(g) its adjoint representation. We
identify G ∼= Ad(G), g ∼= Rn via the basis B, and GL(g) ∼= GLn(R) ⊂ Mn(R). In particular, in
this identification we have that Γ < GLn(Q̄).

For α = (αi,j)
n
i,j=1 ∈ Mn(R), we denote by ‖α‖2 = (

∑n
i,j=1 |αi,j |2)1/2 its Hilbert-Schmidt norm.

We endow G with the metric given by (g, h) 7→ ‖Ad(g) − Ad(h)‖2. Abusing notation, we write
‖g − h‖2 := ‖Ad(g)−Ad(h)‖2 and ‖g‖2 := ‖Ad(g)‖2. Note that

‖gh− gk‖2 6 ‖g‖2‖h− k‖2, for all g, h, k ∈ G.

For x ∈ G and δ > 0, we denote Bδ(x) := {y ∈ G|‖x−y‖2 6 δ}. For δ > 0, we let A(δ) = ∪x∈ABδ(x)
be the δ-neighborhood of A ⊂ G, and denote

Pδ :=
1Bδ(1)

|Bδ(1)|
∈ L1(G)+,1.
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As explained at the end of the Introduction, the proof of Theorem B splits into three parts, dealt
with in the following three sections.

• In Section 3 we produce measures with small support that Escape subgroups quickly.

There are two steps for this. First, we produce for all ε > 0 a finite set S ⊂ Γ ∩ Bε(1) and
constants d,C > 0 such that for δ > 0 small enough, the measure µS := 1

2|S|
∑

g∈S(δg + δg−1)

satisfies µ∗nS (H(δ)) 6 δd, for all proper closed subgroups H and n ≈ C log 1
δ . This step is obtained

by combining Propositions 3.2 and 3.9. The set S that we obtain freely generates a free group.

One can of course get a better constant C by modifying accordingly the value of d. But for a fixed
d, the value of C depends on ε. Namely, it could happen that C → ∞ as ε → 0. As explained in
the introduction, we want to control the speed of escape in terms of ε. So the second step is to
upgrade the set S to a set T , also contained in Bε(1), such that the following holds (Theorem 3.1).

There are constants d1, d2 > 0 not depending on T such that the probability measure µT satisfies

µ∗nT (H(δ)) 6 δd1, for all δ > 0 small enough, all proper closed subgroups H and n ≈ d2
log 1

δ

log 1
ε

.

This improvement is obtained using the pigeonhole principle and the freeness of the elements of S.

• In Section 4 we extend the `2-flattening lemma from [BdS14].

Our generalization of the flattening lemma [BdS14, Lemma 2.5] to the locally compact setting does
not require much additional effort. However, it only applies for measures with controlled support.
But we anticipated this issue in part 1 above, by controlling the speed of escape in terms of ε.

Indeed, we want to apply the flattening lemma to the measure µ∗nT , with n ≈ d2
log 1

δ

log 1
ε

. Now, the

support of µ∗nT is contained in Bδ−β (1), with β > 0 arbitrarily small. Since the “controlled support”
condition that we require is soft enough, we are in position to apply our flattening Lemma 4.1.

Thus, our main result (Corollary 4.2) shows that the measure µT produced in Section 3 will flatten
rather quickly: given α > 0, we have ‖µ∗nT ∗ Pδ‖2 6 δ−α, for δ small enough and n ∼ log 1

δ .

• In Section 5 we prove a Mixing inequality and combine it with the above to conclude.

More precisely, we show that if µT is the measure produced in Section 3, then the convolution
operator F ∈ L2(B) 7→ (µT ∗F ) ∈ L2(G) has norm less than 1/2, when restricted to the orthogonal
complement of a finite dimensional subspace V ⊂ L2(B). The first observation is that this flexibility
of discarding a finite dimensional subspace V when trying to bound the norm of ‖µT ∗ F‖2, allows
us to restrict our study to functions F that live at a “small scale”. Namely, it will be enough to
consider functions F that do not change much when “discretizing” the group with high accuracy.
This reduction is achieved via a Littlewood-Paley type decomposition (Theorem 6.2 and Corollary
6.6). Then we are left to show a mixing inequality (Theorem 5.1). This is inspired by [BG10, Lemma
10.35], and should be thought of as an analogue of the well-known mixing inequality for finite groups
(see e.g. [Ta15, Proposition 1.3.7]), after discretizing the group. We will then be able to conclude
restricted spectral gap by combining this inequality with the flattening obtained in Section 4.

3. Escape from subgroups

The goal of this section is to prove the following:

Theorem 3.1 (escape from subgroups). Let G be a connected simple Lie group with trivial center,
and Ad: G → GL(g) be its adjoint representation. Let Γ < G be a countable dense subgroup.
Assume that there there is a basis B of g such that the matrix of Ad(g) in the basis B has algebraic
entries, for every g ∈ Γ.
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Then there are constants d1, d2 > 0 depending on Γ only such that the following holds.

Given ε1 > 0, we can find 0 < ε < ε1 and a finite set T ⊂ Γ∩Bε(1) which freely generates a subgroup
of Γ such that for any small enough δ > 0, the probability measure µ = 1

2|T |
∑

g∈T (δg + δg−1) satisfies

µ∗2n(H(δ)) 6 δd1 , where n =
⌊
d2

log 1
δ

log 1
ε

⌋
,

for any proper closed connected subgroup H < G.

3.1. Ping-pong. The first ingredient in the proof of Theorem 3.1 is a proposition which, roughly
speaking, asserts the existence of representations ρi : Γ→ GL(Vi), i ∈ I, and M > 2 such that

• the intersection of Γ with any proper closed subgroup of G stabilizes a line in some Vi, and
• we can find a set S ⊂ Γ of simultaneous “ping-pong players” for all the ρi’s in any given

neighborhood of the identity in G such that |S| = M .

Proposition 3.2. Let G be a connected simple real Lie group with trivial center. Let Γ < G be a
finitely generated dense subgroup. Assume that there there is a basis B of the Lie algebra g of G
such that the matrix of Ad(g) in the basis B has algebraic entries, for every g ∈ Γ.

Then there exist finitely many vector spaces Vi, i ∈ I, defined over local fields Ki, representations
ρi : Γ→ GL(Vi), and an integer M > 2 such that the following properties hold true:

(1) For any proper closed subgroup H < G such that Γ ∩ H is non-discrete, there exist i ∈ I
and [v] ∈ P(Vi) such that ρi(g)([v]) = [v], for all g ∈ Γ ∩H.

(2) For any η > 0, there is a finite set S ⊂ Γ satisfying |S| = M and S ⊂ Bη(1) such that for

all i ∈ I and every g ∈ S̃ := S ∪ S−1, we can find two sets K
(i)
g ⊂ U

(i)
g ⊂ P(Vi) such that

the following conditions hold:

(a) For every g ∈ S̃ we have ρi(g)(U
(i)
g ) ⊂ K(i)

g .

(b) Every line [v] ∈ P(Vi) is contained in at least two of the sets {U (i)
g }g∈S̃.

(c) For every g1, g2 ∈ S̃ we have K
(i)
g1 ⊂ U

(i)
g2 , unless g1g2 = 1.

(d) For every g1, g2 ∈ S̃ we have K
(i)
g1 ∩K

(i)
g2 = ∅, unless g1 = g2.

Before proving Proposition 3.2, let us record a simple observation that will be used later.

Lemma 3.3. [SGV11] In the setting from Proposition 3.2, let i ∈ I and v ∈ Vi \ {0}. Let

g = gngn−1...g1 be a reduced word on length n in S̃. Assume that ρi(g)([v]) = [v] and let 1 6 j < n.

(1) If ρi(gjgj−1...g1)([v]) ∈ Ugj+1, then gj+1, ..., gn are uniquely determined by v.
(2) If ρi(gjgj−1...g1)([v]) /∈ Ugj+1, then ρi(glgl−1...g1)([v]) /∈ Ugl+1

, for all 1 6 l 6 j.

Proof. For simplicity, denote ρ = ρi and Kg = K
(i)
g , Ug = U

(i)
g , for all g ∈ S̃. Assume that

ρ(gjgj−1...g1)([v]) ∈ Ugj+1 . Since ρ(gj+1)(Ugj+1) ⊂ Kgj+1 , we get ρ(gj+1gj ...g1)([v]) ∈ Kgj+1 . Since

gj+1 6= g−1
j+2, we have that Kgj+1 ⊂ Ugj+2 , and hence ρ(gj+1gj ...g1)([v]) ∈ Ugj+2 . Using induction

it follows that ρ(gpgp−1...g1)([v]) ∈ Kgp , for all j + 1 6 p 6 n. Thus, [v] = ρ(gn...g1)([v]) ∈ Kgn .
Since the sets {Kg}g∈S̃ are mutually disjoint, gn is therefore determined by v. Further, we have

that ρ(g−1
n )([v]) = ρ(gn−1...g1) ∈ Kgn−1 . Since ρ(g−1

n )([v]) is determined by v, we deduce that gn−1

is also determined by v. The first assertion now follows by induction. Since the beginning of the
proof implies the second assertion, the proof is complete. �

The rest of this subsection is devoted to proving Proposition 3.2. The proof is very similar to the
the proof of [SGV11, Proposition 21]. Consider a connected simple real Lie group G with trivial
center, together with a finitely generated dense subgroup Γ as in the statement of Proposition 3.2.
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By identifying G with Ad(G), we can assume that G is the connected component of a real algebraic

group G = Ad(G)
Z ⊂ GL(g). By our assumptions on Γ we can find a number field k with an

embedding k ⊂ R and a basis of g such that Γ ⊂ GLd(k) ⊂ GLd(R) ∼= GL(g). Since Γ is Zariski
dense in G, we see that G is in fact defined over k.

Now, note that in order to check item (1) of Proposition 3.2 for a subgroup H < G, it suffices
to check it for the closure of Γ ∩H (in the real topology). This shows that we only have to deal
with proper closed subgroups H < G which are non-discrete in G and such that Γ ∩ H is dense
in H. But if H is such a subgroup, then its Zariski closure H ⊂ G is a proper algebraic subgroup
which is defined over k, because Γ ∩H ⊂ GLd(k) is a Zariski dense subgroup of it. Hence the Lie
algebra h ⊂ g of H is a non-trivial proper subspace of g defined over k which is globally invariant

under H but not under G, because G is simple. Altogether, we find that the line in
∧dim h
j=1 g(k)

corresponding to the subspace h(k) ⊂ g(k) is invariant under H(k), but not under G(k).

Next, define the finite set of representations ρi, i ∈ I, to be the collection of all (non-trivial)
irreducible subrepresentations of the representations of G on

∧m
j=1 g, m < d = dimG. These are

algebraic representations, defined over a finite extension k′ of k. We will show that Proposition 3.2
holds when we view these representations ρi as defined over appropriate places Ki of k′. Note that
no matter how we choose the places Ki, we still get representations of Γ ⊂ G(k) which satisfy item
(1) of the proposition, by the above paragraph. Let us now choose the places Ki for which we will
be able to prove that item (2) of the proposition also holds true.

Lemma 3.4. Use the above notation. Then for every i ∈ I, there are a local field Ki and a
sequence (hn)n in Γ which converges to 1 in the real topology such that (ρi(hn))n goes to infinity in
the Ki-topology.

Proof. Fix i ∈ I. First we claim that there is a sequence (hn)n ⊂ Γ which converges to 1 in the
real topology such that the elements ρi(hn) are pairwise distinct.

To prove the claim, we view the representations ρi as representations over C by fixing an embedding
k′ ⊂ C. This way, it makes sense to talk about ρi(G). Note that the image ρi(B1(1)) of the unit
ball of G is connected. Since the representation ρi is non-trivial and Γ is dense in G, there exists
a sequence (hn)n ⊂ Γ ∩ B1(1) such that ρi(hn) is non-trivial and converges to 1 in the complex
topology. In particular, after passing to a subsequence of hn if necessary, we get that the elements
ρi(hn) are distinct. As (hn)n is a bounded sequence and ρi(hn) converges to 1, we deduce that hn
converges to 1 as well, proving our claim.

Next, denote by R the ring generated by the coefficients of the elements Ad(g), g ∈ Γ. Since Γ is
finitely generated, R ⊂ k′ is a finitely generated subring. The discrete diagonal embedding of k′ in
its adèle group gives a discrete embedding of R in a product of finitely many places Kν , ν ∈ S, of
k′.

From this we obtain a discrete embedding ρi(G(R)) ↪→ Πν∈Sρi(G(Kν)). In particular, ρi(Γ) is
discrete inside Πν∈Sρi(G(Kν)). Therefore there exists a field Ki := Kν such that the infinite set
{ρi(hn)} is unbounded as a subset of ρi(G(Kν)). �

Below, we denote by Γ
1

the set of sequences (hn) ⊂ Γ which converge to 1 in the real topology. For
i ∈ I, we view ρi : G → GL(Vi) as a representation over Ki, and equip GL(Vi) with the operator
norm ‖ · ‖i corresponding to the absolute value on Ki. We denote by Ai the set of cluster points

in the Ki-topology of sequences of the form (ρi(hn)/‖ρi(hn)‖i)n, where (hn) ∈ Γ
1
. Finally, we put

ri = minb∈Ai rk(b), where rk(b) is the rank of b.

A key fact that we will use is that since G is simple, we have that ρi(g) has determinant 1 for all
g ∈ G, and in particular for all g ∈ Γ. Hence, if (hn)n ⊂ Γ and (ρi(hn))n is unbounded in the
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Ki-topology, then the normalized sequence (ρi(hn)/‖ρi(hn)‖Ki)n has a non-invertible cluster point.
So by our choice of Ki, we have ri < di := dim(Vi).

Let us mention the following stability result for the sets Ai.

Lemma 3.5. If b and b′ belong to Ai and bb′ 6= 0, then some scalar multiple of bb′ belongs to Ai.
In particular rk(bb′) ≥ ri.

Proof. If b = limn ρi(gn)/‖ρi(gn)‖i and b′ = limn ρi(hn)/‖ρi(hn)‖i, with (gn)n, (hn)n ∈ Γ
1
, then the

product sequence (gnhn)n ⊂ Γ converges to 1 in the real topology. Moreover,

lim
n

ρi(gnhn)

‖ρi(gn)‖i‖ρi(hn)‖i
= bb′, so that lim

n

‖ρi(gnhn)‖i
‖ρi(gn)‖i‖ρi(hn)‖i

= ‖bb′‖i.

Therefore

lim
n

ρi(gnhn)

‖ρi(gnhn)‖i
=

bb′

‖bb′‖i
.

�

Now, we turn to the construction of the set S from Proposition 3.1. The following lemma will
produce the first element of S. In the context of Lemma 3.6, it will be gn with n large enough,
depending on η. The other elements of S will arise as appropriate conjugates of this first element.

Lemma 3.6. There exists a sequence (gn)n ∈ Γ
1

such that for all i ∈ I

(1) limn
ρi(gn)
‖ρi(gn)‖i = bi for some bi with rk(bi) = ri;

(2) Range(bi) ∩Ker(bi) = {0}.

Proof. We proceed in three steps.

Step 1. There exists a sequence (hn)n ∈ Γ
1

which satisfies (1) above for all i ∈ I.

We proceed by induction. Enumerate the set I = {1, · · · , |I|}. Assume that (kn)n ∈ Γ
1

satisfies (1)
for all indices i < i0, for some 1 6 i0 < |I|. Taking a subsequence if necessary, we can assume that
the sequence (ρi0(kn)/‖ρi0(kn)‖i0) converges to some element bi0 ∈ End(Vi).

Since the rank of bi0 could be greater than ri0 , we also consider a sequence (k′n)n ∈ Γ
1

such that
(ρi0(k′n)/‖ρi0(k′n)‖Ki0 )n converges to some b′i0 with rank ri0 . Taking a subsequence we can assume

(ρi(k
′
n)/‖ρi(k′n)‖i)n converges to some element b′i for all i < i0, with possibly rk(b′i) > ri.

We will prove the existence of an element g ∈ Γ such that the sequence (gkng
−1k′n)n satisfies (1)

for all i 6 i0. Note that no matter how we choose g, this sequence is inside Γ
1
. In fact it suffices to

find g ∈ Γ such that ρi(g
−1)biρi(g)b′i 6= 0, for all i 6 i0. Indeed, then Lemma 3.5 implies that the

sequence (ρi(gkng
−1k′n)/‖ρi(gkng−1k′n)‖i)n converges to some non-zero multiple of ρi(g

−1)biρi(g)b′i,
which has rank at most equal to min(rk(bi), rk(b′i)) = ri.

For each i 6 i0, the set Xi = {g ∈ G(Ki) | Range(ρi(g)b′i) * Ker(bi)} is a Zariski open set in G
which is non-empty because ρi is irreducible. Therefore Γ

⋂
(∩i6i0Xi) is nonempty. This proves

Step 1.

Step 2. There exists a sequence (gn)n ∈ Γ
1

such that (1) is true for any i ∈ I and the corresponding
elements bi satisfy b2i 6= 0.

Consider a sequence (hn) as in Step 1, and denote by b′i the corresponding elements. We will find
an element g ∈ Γ such that the sequence of elements gn := ghng

−1hn does what we want.

As above, for any i, the set Xi of elements g ∈ G(Ki) such that Range(ρi(g)b′i) * Ker(b′i) is a
non-empty Zariski-open set. So is the set Yi of g ∈ G(Ki) such that Range(ρi(g

−1)b′i) * Ker(b′i),
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for all i 6 |I|. Take g ∈ Γ
⋂

(∩i6|I|(Xi ∩ Yi)) so that the element ai := ρi(g)b′iρi(g
−1)b′i is non-zero.

Then for all i, the sequence (ρi(gn)/‖ρi(gn)‖i)n converges to some nonzero multiple bi of ai. We
claim that a2

i 6= 0.

Indeed, Lemma 3.5 implies that the rank of ai is equal to ri = rk(ρi(g)b′i). This means that the
range of ai is equal to the range of ρi(g)b′i. Since g ∈ Xi, it follows that b′iai is non-zero. Using
again Lemma 3.5, we get that the rank of b′iai is equal to ri = rk(b′i). This means that the range
of b′iai is equal to the range of b′i. But since g ∈ Yi we see that b′iρi(g

−1)b′iai 6= 0. This shows that
a2
i 6= 0.

Step 3. The sequence from Step 2 satisfies the conclusion of the lemma.

We just need to check that for all i, any element b ∈ Ai with rank ri and such that b2 6= 0 satisfies
Range(b)∩Ker(b) = {0}. Indeed, if b2 6= 0 then Lemma 3.5 implies that some multiple of b2 belongs
to Ai. Hence rk(b2) = ri = rk(b). This precisely means that Range(b) ∩Ker(b) = {0}. �

Before actually proving Proposition 3.2, let us give two easy lemmas.

Lemma 3.7. Given a local field K, consider a sequence of invertible elements (gn)n ⊂ GLd(K),
such that

lim
n

gn
‖gn‖

= b and lim
n

g−1
n

‖g−1
n ‖

= b′,

for some non-invertible elements b, b′ ∈Md(K). Then bb′ = 0, so that Range(b′) ⊂ Ker(b).

Proof. Note that bb′ is a scalar matrix, being the limit of the sequence (1/‖gn‖‖g−1
n ‖)n. Since it is

non-invertible, it must be 0. �

Lemma 3.8. Let ρ : G(K)→ GL(Wρ) be an irreducible algebraic representation over a local field K.
Let V +

1 , V −1 , V +
2 , V −2 ⊆Wρ be non-zero, proper subspaces such that V +

1 ∩V
−

1 = V +
2 ∩V

−
2 = {0} and

V +
1 ⊆ V −2 and V +

2 ⊆ V −1 . For M > 1, denote by XM ⊆ G(K)M the set of M -tuples (h1, . . . , hM )
satisfying the following two conditions.

(1) For 1 6 s 6= t 6M , we have ρ(hs)V
+

1 * ρ(ht)(V
−

1 ∪ V
−

2 ) and ρ(hs)V
+

2 * ρ(ht)(V
−

1 ∪ V
−

2 );

(2) For any subset S ⊂ {1, . . . ,M} and any choice of Vs ∈ {V −1 , V −2 }, s ∈ S, we have

dim(∩s∈Sρ(hs)Vs) 6 max(0, dim(Wρ)− |S|).

Then XM is a nonempty Zariski-open set.

Proof. Denote by AM (resp. BM ) the set of M -tuples satisfying condition (1) (resp. (2)). Then
AM is clearly a finite intersection of Zariski open sets, which are non-empty by irreducibility of ρ.

Let us prove by induction over M that BM is a non-empty Zariski open set. For M = 1, the
condition (2) is empty, so this is clearly true. Assuming the result for M , let us check it for M + 1.
Consider the finite collection of all vector spaces of the form Eα = ∩s∈Sρ(hs)Vs ⊂ Wρ, where
S ⊂ {1, . . . ,M} and Vs ∈ {V −1 , V −2 }, for all s ∈ S. Then BM+1 is equal to{

(h1, . . . , hM+1)
∣∣∣ (h1, . . . , hM ) ∈ BM and Eα * ρ(hM+1)(V −1 ∪ V

−
2 ) for all α with Eα 6= ∅

}
.

Using this, it can be easily seen that BM+1 is a finite intersection of non-empty Zariski open sets.
Therefore, BM+1 is Zariski open, as well as non-empty by the Zariski connectedness of G. �

Proof of Proposition 3.2. Consider the representations ρi over local fields Ki, i ∈ I, defined above.
For i ∈ I, we consider the representation ρi′ : g 7→ ρi(g

−1)t. Note that by the definition of ri, we
clearly have ri′ = ri.

Applying Lemma 3.6 to the set of representations {ρi}i∈I ∪{ρi′}i∈I , we obtain a sequence (gn)n ⊂ Γ
which converges to 1 in the real topology, and elements bi, bi′ ∈ End(Vi) such that for all i ∈ I,
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• limn
ρi(gn)

‖ρi(gn)‖Ki
= bi and limn

ρi(g
−1
n )

‖ρi(g−1
n )‖Ki

= bi′ ,

• rk(bi) = rk(bi′) = ri, and
• Range(bi) ∩Ker(bi) = Range(bi′) ∩Ker(bi′) = {0}.

By Lemma 3.7, we can add the following property to the above list:

• Range(bi) ⊂ Ker(bi′) and Range(bi′) ⊂ Ker(bi).

Now, for i ∈ I, the sets V +
i,1 = Range(bi), V

−
i,1 = Ker(bi), V

+
i,2 = Range(bi′) and V −i,2 = Ker(bi′)

satisfy the hypothesis of Lemma 3.8. Put M := maxi(dim(ρi)) + 1. For i ∈ I, denote by Xi the
non-empty Zariski open subset of G(Ki)

M given by Lemma 3.8 applied to these sets. Pick an
M -tuple (h1, · · · , hM ) ∈ Γ

⋂
(∩iXi).

Before going further, let us mention that ρi(hs)V
+
i,1 = Range(hsbih

−1
s ), ρi(hs)V

−
i,1 = Ker(hsbih

−1
s ),

whereas ρi(hs)V
+
i,2 = Range(hsbi′h

−1
s ), ρi(hs)V

−
i,2 = Ker(hsbi′h

−1
s ).

Then by the definition of Xi, for every i ∈ I and 1 6 s 6= t 6 N , we have ρi(hs)V
+
i,1 * ρi(ht)V

−
i,2.

This means that (htbi′h
−1
t ).(hsbih

−1
s ) 6= 0. But both (hsbih

−1
s ) and (htbi′h

−1
t ) belong to Ai and

have rank ri. Thus, their product has rank equal to ri by Lemma 3.5. From this we deduce that
ρi(hs)V

+
i,1∩ρi(ht)V

−
i,2 = {0}. Similarly, ρi(hs)V

+
i,1∩ρi(ht)V

−
i,1 = {0} and ρ(hs)V

+
i,2∩ρ(ht)(V

−
i,1∪V

−
i,2) =

{0}.
Using the above properties, for every i ∈ I and 1 6 s 6 N , we can find compact neighborhoods
Ki,s,K

′
i,s ⊂ P(Vi) of P(ρi(hs)V

+
i,1) and P(ρi(hs)V

+
i,2) respectively, and open sets Ui,s, U

′
i,s ⊂ P(Vi)

which are complements of neighborhoods of P(ρi(hs)V
−
i,1) and P(ρi(hs)V

−
i,2), respectively, such that:

• Ki,s ⊂ Ui,s and K ′i,s ⊂ U ′i,s for all s;

• K ′i,s ∩ Ui,s = ∅ = Ki,s ∩ U ′i,s;
• For all s 6= t, Ki,s ⊂ Ui,t ∩ U ′i,t and K ′i,s ⊂ Ui,t ∩ U ′i,t;
• For any x ∈ P(Vi), we can find at least two indices s for which x ∈ Ui,s or x ∈ U ′i,s.

The last fact is due to property (2) from Lemma 3.8, which implies that for any set S ⊂ {1, · · · ,M}
with |S| = M − 1 and any choice of Vs ∈ {V −i,1, V

−
i,2}, s ∈ S, we have ∩s∈Sρ(hs)Vs = {0}.

Finally, given η > 0, we can find n large enough so that for all i ∈ I and all s, we have
hsgnh

−1
s (Ui,s) ⊂ Ki,s, hsg

−1
n h−1

s (U ′i,s) ⊂ K ′i,s and hsgnh
−1
s , hsg

−1
n h−1

s ∈ Bη(1). We define S to

be the set of elements {hsgnh−1
s |1 6 s 6 M}. If g = hsgnh

−1
s ∈ S, define K

(i)
g = Ki,s and

U
(i)
g = Ui,s, and if g = hsg

−1
n h−1

s ∈ S−1, define K
(i)
g = K ′i,s and U

(i)
g = U ′i,s. These sets are easily

seen to satisfy the desired properties. �

3.2. From subgroups to neighborhoods of subgroups. The goal of this section is to prove the
following proposition, which roughly says that algebraic points with small logarithmic height cannot
be very close to a proper algebraic subgroup. Our method is fairly similar to [SGV11, Proposition
16] (see also [BdS14, Proposition 3.11] or [Va10, Proposition 4]).

Proposition 3.9. Let G be a connected simple Lie group and T ⊂ G a finite subset. Assume that
there there is a basis B of the Lie algebra g of G such that the matrix of Ad(g) in the basis B has
algebraic entries, for every g ∈ T .

Then there exists a constant C > 0 (depending on T ) such that for every integer n > 1 and any
non-discrete proper closed subgroup H < G, we can find a proper closed subgroup H ′ < G such that

W6n(T ) ∩H(e−Cn) ⊆ H ′,
where W6n(T ) = {g1g2...gn | g1, g2, ..., gn ∈ T ∪ T−1}.
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Notation. In this subsection, we use the notation OX(a) to denote a positive quantity bounded
by Ca, for some constant C > 0 depending only on X. We also use the notation a�X b to mean
the existence of some constant C > 0 depending only on X such that a > Cb.

Lemma 3.10. Let X ⊆ Mn(R) be a finite subset. Suppose the R-span A of X is an R-algebra, and
V := Rn is a simple A-module. Then there exists c0 > 0 such that for every l ∈ V ∗ and v ∈ V

max
x∈X
|l(xv)| > c0‖l‖2‖v‖2.

Proof. Let HX(l,v) := maxx∈X |l(xv)|. We need to show that the infimum of HX(l,v) on the
pair of unit vectors is positive. Suppose the contrary. So by the continuity of HX : V ∗ × V → R,
there are unit vectors l0 and v0 such that HX(l0,v0) = 0. This implies that for any a ∈ A we
have l0(av0) = 0. Hence the A-module generated by v0 is a proper subspace which contradicts the
simplicity of V . �

Lemma 3.11. Let G be a simple Lie group and T ⊆ G be a finite symmetric set such that Γ = 〈T 〉
is a dense subgroup of G. Suppose that the matrix of Ad(g) with respect to a basis B of the Lie
algebra g of G has algebraic entries, for every g ∈ T . Then there exists C1 > 0 such that the
following holds:

If n > 1 is an integer, then for any proper non-discrete closed subgroup H of G, there are non-zero

vectors v ∈ g⊗R C and l ∈ g∗ ⊗R C such that l(Ad(γ)(v)) = 0, for any γ ∈W6n(T ) ∩H(e−C1n).

Proof. Since Γ is a dense subgroup of G, the R-span A of Ad(Γ) in EndR(g) is equal to the R-span
of Ad(G). Denote by d the dimension of G. It is easy to see that the R-span of W6d2(T ) is equal
to A. Hence by Lemma 3.10, there exists c0 > 0 such that for any l ∈ g∗ and v ∈ g we have

(3.1) max
γ∈W6d2 (T )

|l(Ad(γ)(v))| > c0‖l‖2‖v‖2,

as the adjoint representation is irreducible.

Let H < G be a proper non-discrete closed subgroup and fix n ≥ 1. Let v ∈ g, l ∈ g∗ such that

(1) ‖v‖2 = 1 and ‖l‖2 = 1.
(2) v ∈ h and h ⊆ ker l where h := Lie(H) is the Lie algebra of H.

By using (3.1) and rescaling v, we find γ0 ∈W6d2(T ), vH ∈ g, and lH ∈ g∗ such that

(1) ‖lH‖2 = 1, ‖vH‖2 6 1/c0.
(2) lH(Ad(γ0)(vH)) = 1.
(3) for any h ∈ H, lH(Ad(h)(vH)) = 0.

By the hypothesis, g has a basis B := {v1, . . . ,vd} such that v∗i (Ad(γ)(vj)) ∈ Q, for any γ ∈ Γ
and 1 6 i, j 6 d, where B∗ := {v∗1, . . . ,v∗d} is the dual basis. Since Γ is finitely generated, there are
a number field k and a finite set of places S of k such that v∗i (Ad(γ)(vj)) ∈ Ok(S), for any γ ∈ Γ.

For any g ∈ G, let ηg(x, y) ∈ R[x1, . . . , xd, y1, . . . , yd] be the polynomial ηg([l]B∗ , [v]B) := l(Ad(g)(v)),
where [l]B∗ (resp. [v]B) is the vector of coordinates of l in the basis B∗ (resp. B). It is clear that
ηg is a degree 2 polynomial in 2d variables. Fix a constant C1 > 0 large enough, depending only on
T (we will be more specific later). Now, suppose that the following system of polynomial equations
do not have a common solution over C

ηγ(x, y) = 0 for any γ ∈W≤n(T ) ∩H(e−C1n),

ηγ0(x, y)− 1 = 0.
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We notice that the coefficients of ηγ are in Ok(S). We view Ok(S) as a discrete subring of∏
p∈Vk(∞)∪S kp, where Vk(∞) is the set of Archimedean places of k. It is clear that the S-

norm (the maximum norm in
∏

p∈Vk(∞)∪S kp) of the coefficients of ηγ for γ ∈ W6n(T ) is at

most eOT (n). Then by the effective Nullstellensatz [MW83, Theorem IV] there are polynomials
qγ(x, y), qγ0(x, y) ∈ Ok[x1, . . . , xd, y1, . . . , yd] and a ∈ Ok such that

(1)
∑

γ∈W6n(T )∩H(e−C1n) qγ(x, y)ηγ(x, y) + qγ0(x, y)ηγ0(x, y) = a.

(2) deg qγ ,deg qγ0 �d,deg k 1.

(3) The S-norms of the coefficients of qγ and qγ0 are at most eOT (n).

(4) The S-norm of a is at most eOT (n), and it is non-zero.

Since a ∈ Ok is non-zero, we have 1 6 |Nk/Q(a)| =
∏

p∈Vk(∞) |a|p 6 (minp∈Vk(∞) |a|p)‖a‖
deg k−1
S .

Thus

(3.2) min
p∈Vk(∞)

|a|p > e−OT (n).

Suppose p0 ∈ Vk(∞) is the place which gives us the embedding of Ad(Γ) into EndR(g).

So by the properties of lH and vH mentioned above we have that

|ηγ(lH ,vH)|p0 6 e−C1n/2,

|qγ(lH ,vH)|p0 6 eOT (n),

for any γ ∈W6n(T ) ∩H(e−C1n). Hence we have

|
∑

γ∈W6n(T )∩H(e−C1n) qγ(lH ,vH)ηγ(lH ,vH) + qγ0(lH ,vH)ηγ0(lH ,vH)|p0 6 eOT (n)−C1n/2 6 e−C1n/4

if we chose C1 large enough. But if we chose C1 perhaps even larger (but still depending only on
T ) this contradicts (3.2). �

Proof of Proposition 3.9. Let G be the Zariski-closure of Ad(G) in GL(g). By Lemma 3.11, there
exists a constant C1 > 0 such that for any n and any non-discrete proper closed subgroup H of
G there is a variety X (depending on H and n) of G whose dimension is strictly less than dimG
such that Ad(W6n(T ) ∩ H(e−C1n)) ⊆ X. Using the generalized Bezout theorem it was proved
in [EMO05, Proposition 3.2] that there is N(X) > 1 such that W6N(X)(A) 6⊆ X whenever A
generates a Zariski-dense subgroup of G. Moreover, by the proof of [EMO05, Proposition 3.2],
N(X) is bounded above by some bound depending on the number of irreducible components of X
and the maximal degree of an irreducible component of X. Since X is the intersection of G with a
hyperplane, we conclude that N := supX N(X) <∞. This number N only depends on T .

Next, we show that there exists C > 0 (depending only on T ) such that for all multiple n of N ,

(3.3) W6N

(
W6n/N (T )) ∩H(e−Cn)

)
⊆W6n(T ) ∩H(e−C1n).

This - coupled with the above paragraph - implies that for all multiple n of N and all proper closed

subgroup H of G, the set W6n/N (T ) ∩H(e−Cn) is contained in a proper algebraic subgroup of G.
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For any γi ∈ W6n/N (T ) ∩ H(e−Cn), there are hi ∈ H such that ‖Ad(γi) − Ad(hi)‖2 6 e−Cn and

‖Ad(γi)‖2 6 eOT (n). Hence, ‖Ad(hi)‖2 6 eOT (n) and

‖Ad(γ1 · · · γN )−Ad(h1 · · ·hN )‖2 = ‖
N−1∑
i=0

(Ad(γ1 · · · γN−ihN−i+1 · · ·hN )−Ad(γ1 · · · γN−i−1hN−i · · ·hN ))‖2

6
N−1∑
i=0

(

N−i−1∏
j=1

‖Ad(γj)‖2)(

N∏
j=N−i+1

‖Adhj‖2)(‖Ad γN−i −AdhN−i‖2)

6 eOT (n)−Cn 6 e−C1n

if C ′ �T 1, which implies (3.3). �

3.3. Proof of Theorem 3.1. By [BrG02, Corollary 2.5], Γ contains a finitely generated subgroup
which is dense in G. Thus, we may assume that Γ is finitely generated. Let ρi : Γ→ GL(Vi), i ∈ I,
be the representations and M > 2 be the integer given by Theorem 3.2.

By a result of Kazhdan and Margulis (see [Ra72, Theorem 8.16]), there is a neighborhood U of
the identity in G such that for any discrete subgroup Σ < G, Σ ∩ U is contained in a connected
nilpotent subgroup of G. Let U0 ⊂ U be an open set such that U contains the closure of U−1

0 U0.

Throughout the proof, we fix two constants κ > 1 and η > 0 (depending on G only) such that

(a) BR(1) can be covered by at most Rκ of the sets {gU0}g∈G, whenever R > 2,

(b) BR(1) can be covered by at most
(
R
r

)κ
balls in G of radius r

2 , whenever R > 2r > 0,

(c) ‖x−1‖2 6 ‖x‖κ2 , for every x ∈ G, and

(d) (1 + η)(3κ+4)κ <
(

2M−1
2M−2

) 1
13

.

Let S ⊂ Γ be a set satisfying Theorem 3.2 such that S̃ = S ∪S−1 ⊂ Bη(1) and |S| = M . For i ∈ I,

let K
(i)
g ⊂ U (i)

g (g ∈ S̃) be the subsets of Vi provided by Theorem 3.2. The usual ping-pong lemma
implies that S freely generates a subgroup of Γ, which we denote by 〈S〉. Let |g|S be the length of

an element g ∈ 〈S〉 with respect to S̃. We denote by Wn(S) the set of elements of length n, and by
W6n(S) the set of elements of length at most n.

Let ` > 1 be an integer and put ε = (1 + η)−`. In part 1 of the proof, we construct a finite set
T ⊂ Γ ∩ Bε(1). Our construction is inspired by the proof of [BY11, Lemma 3]. In the rest of
the proof (parts 2-4), we provide constants d1, d2 > 0 and show that T satisfies the conclusion of
Theorem 3.1, whenever ` is large enough. This will clearly imply Theorem 3.1.

Part 1: construction of the set T .

Let a, b ∈ S with a 6= b and define

Y = {w = s1s2...s`|s1 = a, s` = b, s2, ..., s`−1 ∈ S̃, si+1 6= s−1
i , for all 1 6 i < `}.

Let Z = {w3|w ∈ Y }. Since |S̃| = 2M , we get that |Z| = |Y | > (2M − 1)`−3. Since S̃ ⊂ Bη(1), it
follows that Wn(S) ⊂ B(1+η)n(1), for all n > 1. Since Z ⊂ W3`(S), we get that Z ⊂ B(1+η)3`(1).

By using (b), Z can be covered by at most
[

(1+η)3`
ε

(1+η)3κ`

]κ
= (1 + η)(3κ+4)κ` balls of radius ε

2(1+η)3κ`
.

From this we deduce that there is g0 ∈ Z such that

(3.4) |B ε

(1+η)3κ`
(g0) ∩ Z| > |Z|

(1 + η)(3κ+4)κ`
>

(2M − 1)`−3

(1 + η)(3κ+4)κ`
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We define T = g−1
0 (B ε

(1+η)3κ`
(g0) ∩ Z) \ {1} and T̃ = T ∪ T−1. Then |T | > (2M−1)`−3

(1+η)(3κ+4)κ` − 1. Since

by inequality (d) we have that 2M−1
(1+η)(3κ+4)κ > (2M − 2)

1
13 (2M − 1)

12
13 , we get that

(3.5) |T | > [(2M − 2)
1
13 (2M − 1)

12
13 ]`

(2M − 1)4
> [(2M − 2)

1
13 (2M − 1)

12
13 ]`−5, for all ` > 1.

If g ∈ T , then ‖g0g − g0‖2 6 ε
(1+η)3κ`

. Since ‖g0‖2 6 (1 + η)3`, we get ‖g−1
0 ‖2 6 ‖g0‖κ2 6 (1 + η)3κ`.

Altogether, it follows that ‖g − 1‖2 6 ‖g−1
0 ‖2‖g0g − g0‖2 6 ε, for all g ∈ T . Hence T ⊂ Bε(1).

We end part (1) of the proof by recording a useful property of T .

Claim 1. If g ∈Wn(T ), then n` 6 |g|S 6 6n`. Thus, T freely generates a free subgroup of Γ.

Proof. It is enough to show that n` 6 |g|S 6 3n`, for all g ∈ Wn(Z) and n > 1. Let g = gεnn ...g
ε1
1 ,

where n > 1 and g1, ..., gn ∈ Z, ε1, ..., εn ∈ {±1} are such that g
εi+1

i+1 g
εi
i 6= 1, for all 1 6 i 6 n − 1.

Let w1, ..., wn ∈ Y such that g1 = w3
1, ..., gn = w3

n. Then

g = w2εn
n (wεnn w

εn−1

n−1 )w
εn−1

n−1 (w
εn−1

n−1 w
εn−2

n−2 )...(wε22 w
ε1
1 )w2ε1

1 .

Since w
εi+1

i+1 w
εi
i 6= 1 and wεiw

ε
i is already reduced, after making all the possible cancellations, the

middle wεii from gεii = wεii w
εi
i w

εi
i will not be affected. This implies the conclusion. �

Part 2: bounding the number of returns.

We continue by showing that the number of elements g ∈Wn(T ) which fix a given line [v] ∈ P(Vi),
for some i ∈ I, is bounded above by |Wn(T )|1−c0 , for a constant c0 > 0.

Claim 2. There exist n0 > 1, `0 > 1 and c0 > 0 such that given i ∈ I and v ∈ Vi, we have

|{g ∈Wn(T )|ρi(g)([v]) = [v]}| 6 |Wn(T )|1−c0 , for all ` > `0 and n > n0.

Proof of Claim 2. Let i ∈ I and v ∈ Vi. For simplicity, we denote ρ = ρi and Kg = K
(i)
g , Ug = U

(i)
g ,

for g ∈ S̃. Fix n > 1 and define A = {g ∈Wn(T )|ρ(g)([v]) = [v]}. Denote N = bn`2 c.
In order to estimate |A|, we partition A into two subsets according to the reduced form of g. Let

g ∈ A and g = kpkp−1...k1 be its reduced form with respect to S̃, where p = |g|S and k1, ..., kp ∈ S̃.
By Claim 1 we get that 2N 6 n` 6 p 6 6n` 6 12N + 6. We define

B = {g ∈ A|ρ(kNkN−1...k1)([v]) ∈ UkN+1
} and C = A \B.

We proceed by estimating |B| and |C| separately.

Claim 3. |B| 6 (2|T |)
11n
12

+1, for all n > 12.

Proof of Claim 3. Assume that g = kpkp−1...k1 ∈ B. Then the first part of Lemma 3.3 implies that
kN+1, ..., kp−1, kp are uniquely determined by v.

Now, since g ∈ Wn(T ), we can write g = gεnn g
εn−1

n−1 ...g
ε1
1 , where g1, ..., gn ∈ T , ε1, ..., εn ∈ {±1} and

g
εj
j 6= g

εj+1

j+1 , for all 1 6 j < n. Let w0 ∈ Y such that g0 = w3
0 and w1, ..., wn ∈ Y \ {w0} such that

g1 = w−3
0 w3

1, ..., gn = w−3
0 w3

n. Then the reduced form can be written as g = hnw
εn
n hn−1...h1w

ε1
1 h0,

where hi ∈ Γ satisfies |hi|S 6 5`, and the factor wεii corresponds to the middle wεii from w3εi
i .

We claim that g
εq
q is uniquely determined, for any q such that n > q > 11n

12 + 1. More precisely, we

will show by induction that εq, wq and hq are uniquely determined, for all q with n > q > 11n
12 + 1.
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First, if q = n, we have that either hn = w−3
0 wn, if εn = 1, or hn = w−1

n , if εn = −1. Since |hn|S 6 4`

and p − N > n` − N > n`
2 > 4`, it follows that wn and εn are determined. Specifically, there are

two cases: (1) kp...kp−`+1 = w−1
0 or (2) kp...kp−`+1 = w−1

n . In case (1) εn = 1, wn = kp−3`...kp−4`+1,

and hn = w−3
0 wn, while in case (2) εn = −1, wn = k−1

p−`+1...k
−1
p and hn = w−1

n .

Assume that εn, ..., εq+1, wn, ..., wq+1, hn, ..., hq+1 are determined, for some q with n > q > 11n
12 + 1.

Since |hnwεnn ...hq+1w
εq+1

q+1 |S 6 6(n− q)` and p−N > n`
2 > 6(n− q+ 1)` = 6(n− q)`+ 6`, we deduce

that the first 6` letters from the left in the reduced word hqw
εq
q ...h1w

ε1
1 h0 with respect to S are

determined. Note that hq ∈ {wq+1w
−3
0 wq, wq+1w

−1
q }, if εq+1 = 1, and hq ∈ {w−1

q+1wq, w
−1
q+1w

3
0w
−1
q },

if εq+1 = −1. Since εq+1, wq+1 are determined and |hqw
εq
q |S 6 6`, it follows easily that εq, wq and

hq are determined. This finishes the proof of our assertion.

Therefore, if q = b11n
12 c+2, then gεnn , ..., g

εq
q ∈ T̃ are uniquely determined for every g = gεnn ...g

ε1
1 ∈ B.

Since gε11 , ..., g
εq−1

q−1 can each take at most 2|T | values, we get that |B| 6 (2|T |)q−1 6 (2|T |)
11n
12

+1. �

Claim 4. |C| 6 [4(2M − 2)`]
n
6 (2|T |)n+2−n

6 , for all n > 1.

Proof of Claim 4. Assume that g = kpkp−1...k1 ∈ C. Then the second part of Lemma 3.3 implies
that ρ(kjkj−1...k1)([v]) /∈ Ukj+1

, for all 1 6 j 6 N . Below we will use this fact as follows. Suppose
that k1, ..., kj are already determined, for some 1 6 j 6 N . Since ρ(kjkj−1...k1)([v]) belongs to at

least 2 of the sets {Ug}g∈S̃ and |S̃| = 2M , we derive that kj+1 ∈ S̃ can take at most 2M − 2 values.

Now, since g ∈ Wn(T ), we can write g = gεnn g
εn−1

n−1 ...g
ε1
1 , where g1, ..., gn ∈ T , ε1, ..., εn ∈ {±1} and

g
εj
j 6= g

εj+1

j+1 , for all 1 6 j < n. Let w1, ..., wn ∈ Y \ {w0} such that g1 = w−3
0 w3

1, ..., gn = w−3
0 w3

n.

Let q with 1 6 q 6 n
12 − 1 and assume that gε11 , ..., g

εq
q are already determined. In other words,

assume that w1, ..., wq and ε1, ..., εq are determined. Our goal is to estimate the number of possible

values of g
εq+1

q+1 ∈ T̃ . Depending on the values of εq, εq+1 ∈ {±1} we are in one of four cases. We
assume that εq = εq+1 = 1, since the estimates in the other three cases are entirely similar. In

this case, we have g = gεnn ...g
εq+2

q+2 (w−3
0 w2

q+1)(wq+1w
−1
0 )(w−2

0 w3
q)g

εq−1

q−1 ...g
ε1
1 . Let j such that we have

(w−2
0 w3

q)g
εq−1

q−1 ...g
ε1
1 = kjkj−1...k1. Then j and k1, ..., kj are determined. Note that j 6 6q`.

Write w0 = r1...r`, wq+1 = s1...s`, where r1, ..., r`, s1, ..., r` ∈ S̃. Notice that |wq+1w
−1
0 |S is even

and 2 6 |wq+1w
−1
0 |S 6 2`− 2. Let 1 6 `′ 6 `− 1 such that |wq+1w

−1
0 |S = 2`′.

Assume that 1 6 `′ 6 ` − 1 is determined. Then s`′+1 = r`′+1, ..., s` = r`, hence s`′+1, ..., s`
are determined. Since wq+1w

−1
0 = s1...s`′r

−1
`′ ...r

−1
1 , we get that kj+1 = r−1

1 , ..., kj+`′ = r−1
`′ and

kj+`′+1 = s`′ , ..., kj+2`′ = s1. Hence k1, ..., kj+`′ are determined. As j+ 2`′ 6 6`q+ 2(`− 1) < N we
get ρ(kj+`′ ...k1)([v]) /∈ Ukj+`′+1

. The beginning of the proof implies that kj+`′+1 and hence s`′ can

take at most 2M−2 values. Moreover, if kj+`′+1, ..., kj+`′+p are determined, for some 1 6 p 6 `′−1,
then since ρ(kj+`′+p...k1)([v]) /∈ Ukj+`′+p+1

, we deduce that kj+`′+p+1 and therefore s`′−p can take

at most 2M − 2 values. It follows that there are at most (2M − 2)`
′

possibilities for s1, ..., s`′ .

We derive that in the case εq = εq+1 = 1, the total number of possible values of wq+1 is at most∑`−1
`′=1(2M − 2)`

′
6 (2M − 2)`. By adapting the above argument, it follows that the number of

possible values of wq+1 is at most (2M − 2)` in the other three cases as well. Altogether, we get

that if gε11 , ..., g
εq
q are determined and 1 6 q 6 n

12−1, then g
εq+1

q+1 can take at most 4(2M−2)` values.

Let q = b n12c. Thus, if gε11 is determined, then gε22 ...g
εq
q can take at most [4(2M − 2)`]q−1 values. As

gε11 , g
εq+1

q+1 , ..., g
εn
n can each take at most 2|T | values, we get that |C| 6 [4(2M − 2)`]

n
12 (2|T |)n+2− n

12 .
This finishes the proof of Claim 4. �
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End of proof of Claim 2. By combining Claims 3 and 4, and using that |T | 6 (2M − 1)`−1, we get

(3.6) |A| 6 (2|T |)
11n
12

+1 + [4(2M − 2)`]
n
12 (2|T |)n+2− n

12 6 [(2M − 2)
1
12 (2M − 1)

11
12 ](n+24)(`+2)

for all n > 12 and every ` > 1. Equations (3.5) and (3.6) together imply that there exist n0 > 1,

c0 > 0 and l0 > 1 such that |A| 6 |T |(1−c0)n, for all n > n0 and every ` > `0. Since |Wn(T )| =
2|T |(2|T | − 1)n−1 > |T |n, the conclusion of Claim 2 follows. �

Part 3: bounding the probability of return.

Define µ = 1
2|T |

∑
g∈T (δg + δg−1). By using Part 2 and following closely the proof of [Va10, Propo-

sition 9] (see also [SGV11, Proposition 7]) we next estimate µ∗n({g ∈ Γ|ρi(g)([v]) = [v]}).

Claim 5. There exist n1 > 1 and c > 0 such that for every i ∈ I, v ∈ Vi and ` > `0, we have that

µ∗n({g ∈ Γ|ρi(g)([v]) = [v]}) 6 |T |−cn, for all n > n1.

Proof of Claim 5. Denote ρ = ρi and A = {g ∈ Γ|ρ(g)([v]) = [v]}. Let n > 10n0, where n0 is as in
Part 2. For every k > 1, fix gk ∈Wk(T ). Then µ∗n({g}) = µ∗n({gk}), for all g ∈Wk(T ). Since µ∗n

is supported on words of length at most n in T , we get

µ∗n(A) =

n∑
k=0

µ∗n(A ∩Wk(T )) =

n∑
k=0

|A ∩Wk(T )|µ∗n({gk}).

Let us now majorize each of the terms involved. First, by Kesten’s theorem [Ke59] we have that

µ∗n({g}) 6
(√2|T | − 1

|T |

)n
, for all g ∈ Γ.

Moreover, we deduce from Part 2 that for n > 10n0, we have that

|A ∩Wk(T )| 6 |Wk(T )|1−c0 6 (2|T | − 1)−
c0n
10 |Wk(T )| for all k > n/10.

When k < n/10, we use the brutal bound |A ∩Wk(T )| 6 |Wk(T )| 6 (2|T |)k. Altogether, we get

µ∗n(A) 6
∑

16k< n
10

(2|T |)k
(√2|T | − 1

|T |

)n
+ (2|T | − 1)−

c0n
10

∑
n
10
6k6n

|Wk(T )|µ∗n({gk})

6
∑

16k< n
10

(2|T |)k
(√2|T | − 1

|T |

)n
+ (2|T | − 1)−

c0n
10

6 (2|T |)
n
10

(√2|T | − 1

|T |

)n
+ (2|T | − 1)−

c0n
10 .

The conclusion of Claim 5 is now immediate. �

Part 4: end of the proof.

We are now ready to conclude the proof. Let n1, c, `0 be given as above and let C be the constant

given by Proposition 3.9. Since M > 2, we get that (2M − 1)
12
13 > 3

12
13 > e. By using (3.5), and

after taking a larger `0, we may assume that |T | > e` and that (4n+ 1)2(κ+1)n 6 e
n`
4 , for any n > 1

and ` > `0.

Claim 6. Let δ > 0 be small enough and n be an integer such that log(1+η)
7C

log 1
δ

log 1
ε

6 n 6 log(1+η)
6C

log 1
δ

log 1
ε

.
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Then µ∗n(H(δ)) 6 δ
min{c, 14 }

7C , for every proper closed connected subgroup H < G.

Proof of Claim 6. Fix n as in the claim and let H < G be a proper closed connected subgroup.
Thanks to Proposition 3.9, we can find a proper closed subgroup H ′ < G such that

W66n`(S) ∩H(e−C6n`) ⊂ H ′.

Let g ∈ supp(µ∗n)∩H(δ). Then g ∈W6n(T ) and since T ⊂W6`(S), we deduce that g ∈W66n`(S).

Since ε = (1 + η)−`, hence ` =
log 1

ε
log(1+η) , the assumption on n implies that δ 6 e−6n`C . By using

the previous paragraph, we derive that g ∈ H ′. Since µ is supported on T , we also have g ∈ 〈T 〉.
Denoting Γ0 = 〈T 〉 ∩H ′, we therefore get that

(3.7) µ∗n(H(δ)) 6 µ∗n(Γ0).

We continue by treating two separate cases:

Case 1. Γ0 is non-discrete in G.

In this case, since Γ0 ⊂ Γ ∩ H ′, we get that Γ ∩ H ′ is non-discrete. Proposition 3.2 implies the
existence of i ∈ I and [v] ∈ P(Vi) such that ρi(g)([v]) = [v], for all g ∈ Γ ∩H ′. Since |T | > e`, by
combining 3.7 with Part 3, we get that for δ > 0 small enough so that n > n1,

(3.8) µ∗n(H(δ)) 6 µ∗n(Γ ∩H ′) 6 µ∗n({g ∈ Γ|ρi(g)([v]) = [v]}) 6 |T |−cn 6 e−cn`.

Since n >
log (1+η) log 1

δ

7C log 1
ε

, we get n` >
log 1

δ
7C . This implies that e−cn` 6 δ

c
7C , proving the claim.

Case 2. Γ0 is discrete in G.

In this case, by the definition of U , we have that Γ1 := 〈Γ0∩U〉 is a nilpotent group. Since Γ1 < 〈T 〉
and 〈T 〉 is a free group, Γ1 must be a cyclic group. As a consequence, we have that

|Γ0 ∩ U ∩ supp(µ∗2n)| 6 |Γ1 ∩ supp(µ∗2n)| = |Γ1 ∩W62n(T )| 6 4n+ 1.

Next, if N = b(1 + ε)κnc, then by (a) we can find g1, ..., gN ∈ G such that B(1+ε)n(1) ⊂ ∪Ni=1giU0.

Since supp(µ∗n) ⊂ B(1+ε)n(1), we thus get that Γ0∩supp(µ∗n) ⊂ ∪Ni=1(Γ0∩giU0∩supp(µ∗n)). Recall

that U−1
0 U0 ⊂ U . So, if 1 6 i 6 N and x, y ∈ Γ0∩giU0∩supp(µ∗n), then x−1y ∈ Γ0∩U∩supp(µ∗2n).

This implies that |Γ0 ∩ giU0 ∩ supp(µ∗n)| 6 |Γ0 ∩ U ∩ supp(µ∗2n)| 6 4n+ 1, for every 1 6 i 6 N .

Altogether, we get that |Γ0 ∩ supp(µ∗n)| 6 (4n + 1)N 6 (4n + 1)(1 + ε)κn. In combination with
Kesten’s theorem, we derive that

µ∗n(Γ0) 6 (4n+ 1)(1 + ε)κn
(√2|T | − 1

|T |

)n
.

Since |T | > e`, we get

√
2|T |−1

|T | 6 2√
|T |
6 2e−

`
2 . Since (4n+ 1)(1 + ε)κn2n 6 (4n+ 1)2(κ+1)n 6 e

n`
4 ,

by using 3.7 we conclude that

(3.9) µ∗n(H(δ)) 6 µ∗n(Γ0) 6 e−
n`
4 .

Since n > log(1+η)
7C

log 1
δ

log 1
ε

=
log 1

δ
7C` , by combining 3.8 and 3.9 we get that

µ∗n(H(δ)) 6 e−min{c, 1
4
}n` 6 e−

min{c, 14 }
7C

log 1
δ = δ

min{c, 14 }
7C ,
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which proves Claim 6. �

Finally, put d1 =
min{c, 1

4
}

7C and d2 = log(1+η)
12C . Then Claim 6 implies that d1, d2 > 0 satisfy the

conclusion of Theorem 3.1. �

4. `2-flattening

A key step in Bourgain and Gamburd’s remarkable strategy [BG05] for proving spectral gap is
the so-called `2-flattening lemma. In [BG06] and [BG10], Bourgain and Gamburd established a
flattening lemma for probability measures on SU(2) and SU(d), d > 2, respectively. Bourgain and
Yehudayoff then proved a flattening lemma for probability measures on SL2(R) whose support is
large but “controlled” [BY11]. All of these results rely on product theorems for the respective Lie
groups. In an important recent development, de Saxcé obtained a product theorem for arbitrary
connected simple Lie groups [dS14]. This allowed Benoist and de Saxcé [BdS14] to extend the
flattening lemmas of [BG06,BG10] to any compact connected simple Lie group.

In this section, we first note that the product theorem of [dS14] allows to derive a flattening lemma
in the spirit of [BY11, Lemma 4.1] for arbitrary connected simple Lie groups.

Lemma 4.1 (`2-flattening, [BdS14]). Let G be a connected simple Lie group with trivial center.
Given α, κ > 0, there exist β, γ > 0 such that the following holds for any δ > 0 small enough.

Suppose that µ is a symmetric Borel probability measure on G such that

(1) supp(µ) ⊂ Bδ−β (1),
(2) ‖µ ∗ Pδ‖2 > δ−α, and

(3) (µ ∗ µ)(H(ρ)) 6 δ−γρκ, for all ρ > δ and any proper closed connected subgroup H < G.

Then ‖µ ∗ µ ∗ Pδ‖2 6 δγ‖µ ∗ Pδ‖2.

Lemma 4.1 follows by adapting the proof of [BdS14, Lemma 2.5] in order to deal with non-compact
Lie groups G and measures µ with large controlled support (in the sense of (1)). Nevertheless, for
completeness, we include the details of proof in the Appendix.

For now, we assume this lemma, and continue towards proving our main results. More precisely,
by applying Lemma 4.1 repeatedly we obtain:

Corollary 4.2. Let G be a connected simple Lie group with trivial center, and d1, d2 > 0 be given.
Then for every α > 0, there exist ε0 > 0 and c0 > 0 such the following holds.

Let 0 < ε < ε0 and µ be a Borel probability measure on G such that supp(µ) ⊂ Bε(1). Assume that

for any δ > 0 small enough we have µ∗2n(H(δ)) 6 δd1, for any proper connected closed subgroup

H < G, where n =
⌊
d2

log 1
δ

log 1
ε

⌋
.

Then for any δ > 0 small enough we have ‖µ∗n ∗ Pδ‖2 6 δ−α, for any integer n > c0
log 1

δ

log 1
ε

.

Proof. Let α > 0. By Lemma 4.1 there are β, γ > 0 such that for any δ > 0 small enough the
following holds: if ν is a symmetric Borel probability measure on G which satisfies

(a) supp(ν) ⊂ Bδ−β (1), and

(b) (ν ∗ ν)(H(ρ)) 6 δ−γρ
d1
4 , for all ρ > δ and any proper closed connected subgroup H < G,
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then either ‖ν ∗ Pδ‖2 6 δ−α, or ‖ν ∗ ν ∗ Pδ‖2 6 δγ‖ν ∗ Pδ‖2.

We first claim that there is a constant C > 1 depending only on G such that the following holds.
Let ρ ∈ (0, 1), R > 2, a, b, x ∈ BR(1) and h, k ∈ G such that ‖x−1a−h‖2 6 ρ and ‖x−1b− k‖2 6 ρ.
Then ‖b−1a− k−1h‖2 6 RCρ. Indeed, the claim follows since there is a constant c > 1 depending
only on G such that ‖y−1‖2 6 (‖y‖2 + 1)c, for any y ∈ G, and we have that

‖b−1a− k−1h‖2 = ‖(x−1b)−1(x−1a)− k−1h‖2
6 ‖x−1‖2‖a‖2‖(x−1b)−1 − k−1‖2 + ‖k−1‖2‖x−1a− h‖2
6 ‖x−1‖2‖a‖2‖(x−1b)−1‖2‖k−1‖2‖x−1b− k‖2 + ‖k−1‖2‖x−1a− h‖2.

Let k > 1 be the smallest integer such that δkγ‖Pδ‖2 6 δ−α, for any δ > 0 small enough. Let ε > 0

small enough such that 2kd2
4 log 1

ε

<
min{β, γ

d1C
}

ε . Let µ be a Borel probability measure on G which is

supported on Bε(1) and satisfies the hypothesis. The proof relies on the following:

Claim. If δ > 0 is small enough and n is an integer such that
⌊
d2

log 1
δ

4 log 1
ε

⌋
6 n 6 min{β, γ

d1C
} log 1

δ
ε ,

then the measure ν = µ∗n satisfies conditions (a) and (b).

Proof of the claim. Since supp(ν) ⊂ B(1+ε)n(1) and (1 + ε)n 6 [(1 + ε)
1
ε ]β log 1

δ < eβ log 1
δ = δ−β, we

get that ν satisfies (a). To verify (b), let ρ > δ and H < G be a proper closed connected subgroup.

We may assume that ρ 6 δ
4γ
d1 , because otherwise δ−γρ

d1
4 > 1 and (b) is trivially satisfied.

Let m =
⌊
d2

log 1

ρ
1
2

log 1
ε

⌋
=
⌊
d2

log 1
ρ

2 log 1
ε

⌋
. Then m 6 2n and the hypothesis implies that

µ∗2m(Hρ(
1
2 )

) 6 ρ
d1
2

. For x ∈ G, denote Ax = xH(ρ)∩ supp(µ∗m). Since µ∗2n = µ∗(2n−m) ∗ µ∗m, we have

(4.1) ν ∗ ν(H(ρ)) = µ∗2n(H(ρ)) 6 sup
x∈supp(µ∗(2n−m))

µ∗m(xH(ρ)) = sup
x∈supp(µ∗(2n−m))

µ∗m(Ax).

Further, since µ∗m is symmetric, Lemma 2.1 implies that

(4.2) µ∗m(Ax) 6 µ∗2m(A−1
x Ax)

1
2 , for any x ∈ G.

Let x ∈ supp(µ∗(2n−m)) and a, b ∈ Ax. Since supp(µ∗k) ⊂ B(1+ε)k(1), for any k > 1, we have that

a, b, x ∈ B(1+ε)2n(1). By the definition of Ax, we can find h, k ∈ H such that ‖x−1a− h‖2 6 ρ and

‖x−1b− k‖2 6 ρ. The earlier claim implies that ‖b−1a− k−1h‖2 6 (1 + ε)2Cnρ. Since n < γ
d1C

log 1
δ

ε ,

we get that (1 + ε)2Cn < e2Cnε < δ
− 2γ
d1 6 ρ−

1
2 . Thus ‖b−1a− k−1h‖2 6 ρ

1
2 .

Since k−1h ∈ H and a, b ∈ Ax are arbitrary, we deduce that A−1
x Ax ⊂ H(ρ

1
2 ). By combining (4.1)

and (4.2) we therefore derive that

ν ∗ ν(H(ρ)) 6 µ∗2m(H(ρ
1
2 ))

1
2 6 ρ

d1
4 ,

which finishes the proof of the claim. �
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Let δ > 0 and put n0 =
⌊
d2

log 1
δ

4 log 1
ε

⌋
and n1 = 2kn0. We claim that ‖µ∗n1 ∗ Pδ‖2 6 δ−α, for

any small enough δ > 0. Once this claim is proven, the conclusion follows for c0 = 2k−2d2 since

n1 6 2k−2d2
log 1

δ

log 1
ε

and ‖µ∗n ∗ Pδ‖2 = ‖µ∗(n−n1) ∗ (µ∗n1 ∗ Pδ)‖2 6 ‖µ∗n1 ∗ Pδ‖2, for any n > n1.

Assume by contradiction that the claim is false and let 0 6 i 6 k. Then 2in0 6 n1 and therefore

‖µ∗2in0 ∗ Pδ‖2 > ‖µ∗n1 ∗ Pδ‖2 > δ−α. On the other hand,
⌊
d2

log 1
δ

4 log 1
ε

⌋
6 2in0 6 min{β, γ

d1C
} log 1

δ
ε .

The claim implies that µ2in0 satisfies conditions (a) and (b). As ‖µ∗2in0 ∗Pδ‖2 > δ−α we must have

‖µ∗2i+1n0 ∗ Pδ‖2 6 δγ‖µ∗2
in0 ∗ Pδ‖2, for every 0 6 i 6 k.

By combining these inequalities we deduce that ‖µ∗n1 ∗ Pδ‖2 6 δkγ‖µ∗n0 ∗ Pδ‖2 6 δkγ‖Pδ‖2 6 δ−α,
which is a contradiction. �

5. A mixing inequality

The goal of this section is to prove an analogue for simple Lie groups of the well-known mixing
inequality for quasirandom finite groups (see [Ta15, Proposition 1.3.7]). In the next section, we
will combine this mixing inequality with Corollary 4.2 and a Littlewood-Paley decomposition on
simple Lie groups to deduce Theorem B.

Theorem 5.1 (mixing inequality). Let G be a connected simple Lie group with trivial center.
Denote by d the dimension of G, and let B ⊂ G be a measurable set with compact closure.

Then there exist constants a, b, κ > 0 such that for every F ∈ L2(B) with ‖F‖2 = 1, we have

‖f ∗ F‖16d
2 6 a‖Pδ ∗ F‖2 + bδκ,

for all f ∈ L2(G) with ‖f‖2 = 1 and all 0 < δ < 1.

This result and its proof are inspired by [BG10, Lemma 10.35], which dealt with the caseG = SU(d),
for d > 2. In particular, we borrow from [BG10] the idea of reducing to functions F that satisfy an
additional “symmetry”, i.e. are eigenvectors for a maximal torus of G. This reduction is crucial,
as it will allow us to exploit certain cancellations appearing in the integrals.

Turning to the proof of Theorem 5.1, we start with a classical lemma which can be easily deduced
from [RS88, Section 2]. We denote by C1

c (G) the space of compactly supported C1-functions on G.

Lemma 5.2. Let G and H be two Lie groups of dimensions n and m. Assume that n > m.
Consider an analytic function φ : G → H such that the derivative dφx : g → h has rank m, at
almost every point x ∈ G. Let ψ ∈ C1

c (G) and denote by µ = φ∗(ψ ·dmG) the push-forward measure
of the measure ψ · dmG on G through φ.

Then µ is absolutely continuous with respect to mH , and the Radon-Nykodym derivative ρ : H → R
is L1-Hölder: there exist α > 0 and C > 0 such that∫

H
|ρ(g−1h)− ρ(h)|dh 6 C‖g − 1‖α2 , for every g ∈ H.

By applying this lemma, we obtain the following:

Lemma 5.3. Let G be a connected simple Lie group and H < G be a connected compact Lie
subgroup of dimension 1. Define π : G × H2 → G by letting π(g, t1, t2) = t1gt

−1
1 t2g

−1t−1
2 , for all

g ∈ G, t1, t2 ∈ H. Let ψ ∈ C1
c (G) and define ν = π∗((ψ · dmG)×mH ×mH).

Then ν∗n is absolutely continuous with respect to mG, and the corresponding Radon-Nykodym de-
rivative is L1-Hölder, for every integer n > dim(G).
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Proof. Let n > 1. Then ν∗n = π
(n)
∗ ((ψ · dmG)n ×m2n

H ), where π(n) : Gn ×H2n → G is defined as

π(n)(g1, ..., gn, t1, ..., t2n) =
n∏
i=1

π(gi, t2i−1, t2i) =
n∏
i=1

(t2i−1git
−1
2i−1t2ig

−1
i t−1

2i ).

By Lemma 5.2, we only have to check that the derivative of the analytic function π(n) has rank d,
at almost every point, as soon as n > d := dim(G).

Fix n > d. Let g and h be the Lie algebras of G and H, respectively. Let Ad: G → GL(g) be
the adjoint representation of G. Since dim(H) = 1 and H is connected, there is b ∈ g such that
h = {ub |u ∈ R} and H = {exp(ub) |u ∈ R}.

Let Xn be the set of (g1, ..., gn, t1, ..., t2n) ∈ Gn ×H2n such that the following set spans g:

{Ad(

i−1∏
j=1

π(gj , t2j−1, t2j))(b)−Ad((

i−1∏
j=1

π(gj , t2j−1, t2j))t2i−1git
−1
2i−1)(b) | 1 6 i 6 n}.

Claim 1. rk(d(π(n))x) = d, for every x ∈ Xn.

Proof of Claim 1. Take x = (g1, ..., gn, t1, ..., t2n) ∈ Xn. Proving the claim amounts to showing that

the map π̃n : y 7→ π(n)(y)π(n)(x)−1 is such that d(π̃n)x has rank d. For all 1 6 i 6 n, define a map
ϕi : R→ G by the formula

ϕi(u) = π̃n(g1, ..., gn, t1, ..., t2i−2, exp(ub)t2i−1, t2i · · · , t2n)

The derivative ϕ′i(0) ∈ g belongs to the range of the derivative d(π̃n)x, while an easy computation
gives that

ϕ′i(0) = Ad(
i−1∏
j=1

π(gj , t2j−1, t2j))(b)−Ad((
i−1∏
j=1

π(gj , t2j−1, t2j))t2i−1git
−1
2i−1)(b).

Since x ∈ Xn, the set {ϕ′i(0) | 1 6 i 6 n} spans g, and d(π̃n)x is therefore onto. �

Claim 2. Xn is a nonempty Zariski open subset of Gn ×H2n, for every n > d.

Proof of Claim 2. Since Xn is clearly Zariski open, for every n > 1, it remains to argue that Xn is
nonempty, whenever n > d. Since G is simple, g is the only non-trivial Ad(G)-invariant subspace
of g. Thus, the span of {Ad(g)(b)− Ad(h)(b)|g, h ∈ G} is equal to g. Equivalently, we derive that
the span of {Ad(g)(b)− b|g ∈ G} is also equal to g. We can therefore find g1, ..., gd ∈ G such that
{Ad(gi)(b) − b|1 6 i 6 d} spans g. Define gd+1 = .... = gn = t1 = ... = t2n = 1. Then it is clear
that (g1, ..., gn, t1, ..., t2n) ∈ Xn, which shows that Xn is nonempty, as claimed. �

Finally, if n > d, then Claim 2 implies that Xn a co-null subset of Gn ×H2n. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let F ∈ L2(B) and f ∈ L2(G) with ‖f‖2 = 1. Since F ∗ F̌ is supported
on BB−1, we have ‖f ∗ F‖22 = 〈f ∗ F, f ∗ F 〉 = 〈f̌ ∗ f, F ∗ F̌ 〉 6 ‖f̌ ∗ f‖2,BB−1‖F ∗ F̌‖2. Since

‖f̌ ∗ f‖∞ 6 1, we get that ‖f̌ ∗ f‖2,BB−1 6 |BB−1|1/2. Moreover, for every g ∈ G, we have that

F ∗ F̌ (g) =
∫
G F (g−1x)F (x) dx = 〈λg(F ), F 〉. By putting these facts together, we get that

‖f ∗ F‖16d
2 6 |BB−1|4d(

∫
G
|〈λg(F ), F 〉|2 dg)4d.

Thus, the conclusion reduces to proving the following:
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(∗) there exist constants a, b, κ > 0 such that for every F ∈ L2(B) with ‖F‖2 = 1, we have that

( ∫
G
|〈λg(F ), F 〉|2 dg

)4d
6 a‖Pδ ∗ F‖2 + bδκ, for all 0 < δ < 1.

To this end, we fix a compact connected Lie subgroup H of G with dimension 1. Below, we denote
by x, y, z, g elements of G and by t, t1, t2 elements of H. Writing dx (respectively, dt) will refer to
integration against the Haar measure of G (respectively, H).

Let B̃ ⊂ G be an open set with compact closure which contains B−1B. Let ψ ∈ C1
c (G) be a non-

negative function which is equal to 1 on B̃. Define π : G×H2 → G by π(x, t1, t2) = t1xt
−1
1 t2x

−1t−1
2 ,

for all x ∈ G and t1, t2 ∈ H. Let ν = π∗((ψ ·dmG)×m2
H). Lemma 5.3 implies that ν∗d is absolutely

continuous with respect to mG and the corresponding Radon-Nykodym derivative ρ is L1-Hölder.
In other words, there exist κ > 0 and C > 0 such that∫

G
|ρ(g−1h)− ρ(h)|dh 6 C‖g − 1‖2κ2 , ∀g ∈ G.

For x ∈ G, we define an operator Rx : L2(G)→ L2(G) by the formula

(Rxf)(z) =

∫
H
f(ztxt−1) dt, f ∈ L2(G), z ∈ G.

Claim 1. For every f ∈ L2(G), we have

∫
B̃
‖Rx(f)‖22 dx 6 ‖f ∗ ν‖2‖f‖2.

Proof of Claim 1. Let f ∈ L2(G). Since (R∗xRxf)(z) =

∫
H2

f(zt1x
−1t−1

1 t2xt
−1
2 ) dt1 dt2, the claim

follows from the following calculation∫
B̃
‖Rx(f)‖22 dx 6

∫
G
‖Rx(f)‖22ψ(x) dx =

∫
G
〈R∗xRx(f), f〉ψ(x) dx

=

∫
G

(∫
G×H2

f(zt1x
−1t−1

1 t2xt
−1
2 ) ψ(x) dx dt1 dt2

)
f(z) dz

=

∫
G

(f ∗ ν)(z)f(z) dz 6 ‖f ∗ ν‖2‖f‖2. �

Next, using that ρ is L1-Hölder, we deduce the following claim:

Claim 2. There is c > 0 such that ‖Pδ ∗ f ∗ρ− f ∗ρ‖2 6 cδκ‖f‖2, for all f ∈ L2(B) and 0 < δ < 1.

Proof of Claim 2. Take f ∈ L2(B) and δ > 0. Note that for x ∈ G, we have

(Pδ ∗ f ∗ ρ− f ∗ ρ)(x) =
1

|Bδ|

∫
Bδ(1)×B

f(z)(ρ(z−1y−1x)− ρ(z−1x)) dy dz.
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Using the Cauchy-Schwarz inequality and L1-Hölder condition for ρ, we get that ‖Pδ ∗f ∗ρ−f ∗ρ‖22
is at most equal to

1

|Bδ|2

∫
G

(∫
Bδ(1)×B

|f(z)|2|ρ(z−1y−1x)− ρ(z−1x)| dy dz
)(∫

Bδ(1)×B
|ρ(z−1y−1x)− ρ(z−1x)| dy dz

)
dx

6
2‖ρ‖1
|Bδ|

∫
G×Bδ(1)×B

|f(z)|2|ρ(z−1y−1x)− ρ(z−1x)| dx dy dz

6
2‖ρ‖1
|Bδ|

∫
B
|f(z)|2

(∫
G×Bδ(1)

|ρ(z−1y−1zx)− ρ(x)| dx dy
)

dz

6 2C‖ρ‖1
∫
B
|f(z)|2 sup

y∈Bδ(1)
‖z−1yz − 1‖2κ2 dz 6 c2δ2κ‖f‖22,

for some constant c > 0 independent of f and δ. �

Let F ∈ L2(B) with ‖F‖2 = 1. The proof of (∗) splits into two cases.

Case 1. We first prove assertion (∗) in the following case: there is a character η : H → T such
that for all t ∈ H, F (xt) = η(t)F (x), for almost every x ∈ G.

Then for almost every (x, y, t) ∈ G2 ×H we have that F (xt)F (yt) = F (x)F (y). By using this fact
we get that ∫

G
|〈λg(F ), F 〉|2 dg =

∫
G3

F (g−1x)F (x)F (g−1y)F (y) dg dx dy

=

∫
G3

∫
H
F (g−1xt)F (x)F (g−1yt)F (y) dg dx dy dt

Using left invariance of the Haar measure and unimodularity on the g and y variables, we get∫
G
|〈λg(F ), F 〉|2 dg =

∫
G3

∫
H
F (gt−1y−1xt)F (x)F (g)F (y) dg dx dy dt

=

∫
G3

∫
H
F (gt−1y−1t)F (x)F (g)F (xy) dg dx dy dt

=

∫
G

(F̌ ∗ F )(y) 〈Ry−1F, F 〉 dy =

∫
G

(F̌ ∗ F )(y) 〈F,RyF 〉 dy

Since ‖F̌ ∗ F‖∞ 6 1 and F̌ ∗ F ∈ L2(B̃), we conclude from Claim 1 and Lemma 2.1 that∫
G
|〈λg(F ), F 〉|2 dg 6

∫
B̃
‖Rx(F )‖2 dx 6 |B̃|1/2

(∫
B̃
‖Rx(F )‖22 dx

)1/2

6 |B̃|
1
2 ‖F ∗ ν‖

1
2
2 6 |B̃|

1
2 ‖ν‖

1
4 ‖F ∗ ν∗d‖

1
4d
2

= |B̃|
1
2 ‖ν‖

1
4 ‖F ∗ ρ‖

1
4d
2 .

On the other hand, Claim 2 yields

‖F ∗ ρ‖2 6
(
‖Pδ ∗ F ∗ ρ‖2 + ‖F ∗ ρ− Pδ ∗ F ∗ ρ‖2

)
6 ‖ρ‖1‖Pδ ∗ F‖2 + cδκ.

Thus, if we let a = |B̃|2d‖ν‖d‖ρ‖1 and b = c|B̃|2d‖ν‖d, the desired inequality (∗) follows in Case 1.
Moreover, notice the crucial fact that a and b are independent of the character η.

Case 2. We now prove (∗) for an arbitrary function F ∈ L2(B) with ‖F‖2 = 1.
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Consider the unitary representation H yσ L2(G) corresponding to the right multiplication action
H y G. Since H is compact and abelian, we can decompose

L2(G) =
⊕

η∈Char(H)

Hη,

where Hη denotes the eigenspace of σ corresponding to a character η : H → T.

Thus, we can decompose F =
∑

η Fη, where Fη(xt) = η(t)F (x), for almost every x ∈ G, t ∈ H.

Note that the functions Fη do not necessarily belong to L2(B). However, Fη belongs to the closure
of the linear span of σ(H)F , and therefore to L2(BH), for every η.

By applying Case 1 with BH instead of B, and using homogeneity, we get that there exist constants
a, b, κ > 0 (independent of F ) such that for all η ∈ Char(H) we have

(

∫
G
|〈λg(Fη), Fη〉|2 dg)4d 6 a‖Pδ ∗ Fη‖2‖Fη‖16d−1

2 + bδκ‖Fη‖16d
2 .

Since all the norms on R2 are equivalent, we find a′, b′ > 0 (only depending on a, b, d) such that for
all η ∈ Char(H) we have that

(

∫
G
|〈λg(Fη), Fη〉|2 dg)1/2 6 a′‖Pδ ∗ Fη‖

1/8d
2 ‖Fη‖2−1/8d

2 + b′δκ/8d‖Fη‖22.

But since λg(Fη) ∈ Hη and Pδ ∗ Fη ∈ Hη for all η, by using the triangle inequality for ‖.‖2 and
Hölder’s inequality we get that(∫

G
|〈λg(F ), F 〉|2 dg

)1/2
=
(∫

G

∣∣∣∑
η

〈λg(Fη), Fη〉
∣∣∣2 dg

)1/2

6
∑
η

(∫
G
|〈λg(Fη), Fη〉|2 dg

)1/2

6
(∑

η

a′‖Pδ ∗ Fη‖
1/8d
2 ‖Fη‖2−1/8d

2

)
+ b′δκ/8d

6 a′
(∑

η

‖Pδ ∗ Fη‖22
)1/16d(∑

η

‖Fη‖22
)1−1/16d

+ b′δκ/8d

= a′‖Pδ ∗ F‖
1/8d
2 + b′δκ/8d.

Using again the equivalence of norms in R2 and modifying the values of a and b if necessary, the
conclusion follows. �

6. Proofs of Theorem B and Corollary C

6.1. A Littlewood-Paley decomposition on Lie groups. Let G be a connected simple Lie
group with trivial center. In order to prove Theorem B, we next introduce a Littlewood-Paley
decomposition on G. This is analogous to the Littlewood-Paley decomposition on G = SU(d)
defined by Bourgain and Gamburd in [BG10, Section 10]. As before, we endow G with the ‖.‖2
metric and denote by C(G) the family of measurable subsets of G with compact closure.

We define bounded linear operators ∆i : L2(G)→ L2(G), i > 0, as follows

∆0(F ) = P1/2 ∗ F
∆i(F ) = P2−(i+1) ∗ F − P2−i ∗ F, for all i > 1.



LOCAL SPECTRAL GAP 35

Remark 6.1. The decomposition F =
∑

i>0 ∆i(F ) is analogous to the classical Littlewood-Paley

decomposition on Rn, in the following sense. For any i > 0, the function ∆i(F ) “lives” at scale 2−i:
it is essentially constant at scales � 2−i and essentially has mean zero on balls of radius � 2−i.

We now prove that the operators ∆i, i > 0, yield an almost orthogonal decomposition of L2(G).
This will allow us to reduce to functions living at an arbitrary small scale in the proof of restricted
spectral gap Theorem B.

Theorem 6.2. There exists a constant C > 0 such that for all F ∈ L2(G) and any µ ∈ M(G)
with supp(µ) ⊂ B1(1), we have that

(1)
∑

i>0 ‖∆i(F )‖22 6 C‖F‖22.

(2) ‖µ ∗ F‖22 6 C
∑

i>0 ‖µ ∗∆i(F )‖22.

(3)
∑

i>0 2i/2‖P2−2i ∗∆i(F )−∆i(F )‖22 6 C
∑

i>0 ‖∆i(F )‖22.

(4)
∑

i>0 2i/2‖P2−i/2 ∗∆i(F )‖22 6 C
∑

i>0 ‖∆i(F )‖22.

The first ingredient of the proof of Theorem 6.2 is the following lemma. This lemma and its proof
are a variation of [KS71, Lemma 11] due to Knapp and Stein.

Lemma 6.3 (Cotlar-Stein). Consider a Hilbert space H and bounded operators Ti : H → H, i > 0.
Assume that there exists ϕ : Z→ R+ with Φ :=

∑
n∈Z ϕ(n) <∞ such that for all i, j > 0, we have

‖T ∗j Ti‖1/2 6 ϕ(j − i) and ‖TiT ∗j ‖1/2 6 ϕ(i− j). For k > 0, denote Φk :=
∑
|n|>k ϕ(n).

Then for all ξ ∈ H and all k > 0 we have∑
i,j: |i−j|>k

|〈Tiξ, Tjξ〉| 6 ΦkΦ‖ξ‖2.

Proof. Fix ξ ∈ H and k > 0. For every i, j > 0, we choose a scalar αi,j in such a way that
|〈Tiξ, Tjξ〉| = αi,j〈Tiξ, Tjξ〉, and that αi,j = 0 whenever |〈Tiξ, Tjξ〉| = 0. Then for all N > 0, the
operator RN :=

∑
06i,j6N : |i−j|>k αi,jT

∗
j Ti is self-adjoint.

In order to prove the lemma, it is sufficient to check that the operator norm of RN is at most ΦkΦ,
for all N > 0. Take N > 0. Since RN is self-adjoint, ‖RN‖p = ‖RpN‖, for all integers p > 1. This
leads to the estimate:

‖RN‖p 6
∑

06i1,j1,...,ip,jp6N : |il−jl|>k,∀16l6p

‖T ∗j1Ti1T
∗
j2Ti2 · · ·T

∗
jpTip‖.

Since the general term of this sum is bounded by the following two quantities

‖T ∗j1Ti1T
∗
j2Ti2 · · ·T

∗
jpTip‖ 6 ‖T

∗
j1Ti1‖‖T

∗
j2Ti2‖ · · · ‖T

∗
jpTip‖ and

‖T ∗j1Ti1T
∗
j2Ti2 · · ·T

∗
jpTip‖ 6 ‖T

∗
j1‖‖Ti1T

∗
j2‖ · · · ‖Tip−1T

∗
jp‖‖Tip‖,

we get that

‖RN‖p 6
∑

06i1,j1,...,ip,jp6N : |il−jl|>k,∀16l6p

(‖T ∗j1‖‖T
∗
j1Ti1‖‖Ti1T

∗
j2‖ · · · ‖T

∗
jpTip‖‖Tip‖)

1/2

6 N( max
06i6N

‖Ti‖)( max
16j6N

∑
16i6N : |i−j|>k

‖T ∗j Ti‖1/2)p( max
06i6N

∑
16j6N

‖TiT ∗j ‖1/2)p−1

6 N( max
06i6N

‖Ti‖)Φp
kΦ

p−1.

Since p > 1 is arbitrary, we indeed get that ‖RN‖ 6 ΦkΦ. �
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Remark 6.4. The case k = 0 of Lemma 6.3 recovers the classical Cotlar-Stein lemma (see [St93,
Chapter VII]) which asserts that, under the same assumptions as above, the sum

∑
i>0 Ti converges

in the strong operator topology. Lemma 6.3 also implies that the sum
∑

i>0 ‖Tiξ‖2 is finite, for all
ξ ∈ H. Later on, we will use the following inequalities, which follow easily from Lemma 6.3

(6.1)
∑
i>0

‖Tiξ‖2 6 Φ2‖ξ‖2,

(6.2) ‖
∑
i>0

Tiξ‖22 6 k
∑
i>0

‖Tiξ‖2 + ΦkΦ‖ξ‖2, for all k > 0.

In order to prove Theorem 6.2 we will also need the following lemma which allows us to quantify
the “orthogonality” between the operators ∆i, i > 0. For a Borel probability measure µ ∈ M(G)
we denote by Tµ : L2(G)→ L2(G) the contractive operator given by Tµ(F ) = µ ∗ F .

Lemma 6.5. There exists a constant C0 > 0 such that for any Borel probability measure µ ∈M(G)
with supp(µ) ⊂ B1(1) we have that

‖(Pδ1 − Pδ2) ∗ µ ∗ Pδ3‖1 6 C0
δ2

δ3
, for all 0 < δ1 6 δ2 6 δ3 < 1, and

‖∆∗jT ∗µTµ∆i‖ 6
C0

2|i−j|
and ‖Tµ∆i∆

∗
jT
∗
µ‖ 6

C0

2|i−j|
, for all i, j > 0.

Proof. Denote by B1, B2 and B3 the balls centered at 1 with respective radii δ1, δ2 and δ3. Note
that ‖(Pδ1−Pδ2)∗µ∗Pδ3‖1 6

∫
G ‖(Pδ1 − Pδ2) ∗ δx ∗ Pδ3‖1 dµ(x). So it suffices to prove that lemma

for Dirac measures µ = δx, with x ∈ B1(1).

Fix x ∈ B1(1). Then for all y ∈ G, we have |(Pδ1 −Pδ2) ∗ δx ∗Pδ3(y)| 6 ‖Pδ1 −Pδ2‖1/|B3| 6 2/|B3|.
Let us now bound the measure of the support of (Pδ1 − Pδ2) ∗ δx ∗ Pδ3 . One easily checks that this
support is contained in B2xB3 ∩B2x(G \B3).

Firstly, if y ∈ B2xB3, we write y = axb, where a ∈ B2, b ∈ B3. Then we have that ‖y‖2 6 8 and

‖x−1y − 1‖2 6 ‖x−1y − b‖2 + δ3 6 ‖x−1‖2‖y − xb‖2 + δ3

6 ‖x−1‖2‖xb‖2δ2 + δ3 6 C1δ2 + δ3,

where C1 > 0 is independent of x ∈ B1(1).

Secondly, if y ∈ B2x(G \ B3), we write y = a′xb′, where a′ ∈ B2 and b′ /∈ B3. Then we see that
‖xb′‖2 6 ‖a−1‖2‖y‖2 6 8‖a−1‖2 and

‖x−1y − 1‖2 > ‖b′ − 1‖2 − ‖x−1y − b′‖2 > δ3 − ‖x−1‖2‖y − xb′‖2
> δ3 − ‖x−1‖2‖xb′‖2δ2 > δ3 − C2δ2,

where C2 > 0 is independent of x ∈ B1(1).

Therefore, the support of (Pδ1 − Pδ2) ∗ δx ∗ Pδ3 is contained in x(Bδ3+C1δ2 \Bδ3−C2δ2). Altogether,
we get that

‖(Pδ1 − Pδ2) ∗ δx ∗ Pδ3‖1 6
2 |Bδ3+C1δ2 \Bδ3−C2δ2 |

|Bδ3 |
,

which implies the first inequality. By using the fact that ‖x−1− 1‖2 6 ‖x−1‖2‖x− 1‖2 and arguing
similarly to the above, it follows that the quantities ‖(P̌δ1−P̌δ2)∗µ∗Pδ3‖1 and ‖(Pδ1−Pδ2)∗µ∗P̌δ3‖1
are bounded above by C0δ2/δ3, for some possibly larger constant C0 > 0. Since ‖f ∗g‖2 6 ‖f‖1‖g‖2,
for all f ∈ L1(G), g ∈ L2(G), these estimates imply the rest of the asserted inequalities. �
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Proof of Theorem 6.2. Let C0 > 0 be the constant provided by Lemma 6.5 and define ϕ : Z→ R+

by letting ϕ(n) =
C

1/2
0

2|n|/2
. Then Lemma 6.5 gives that for any finitely supported probability measure

on G with supp(µ) ⊂ B1(1), the operators Ti := Tµ∆i on L2(G) satisfy ‖T ∗j Ti‖1/2 6 ϕ(j − i) and

‖TiT ∗j ‖1/2 6 ϕ(i− j), for all i, j > 0.

Let Φ and Φk be as defined in Lemma 6.3 and take k large enough so that ΦkΦ < 1. Let F ∈ L2(G).
Since lim

δ→0
‖Pδ ∗ F − F‖2 = 0, we get that F =

∑
i>0 ∆i(F ). By combining this fact with equations

(6.1) and (6.2), we derive that

(6.3)
1

Φ2

∑
i>0

‖∆i(F )‖22 6 ‖F‖22 6
k

1− ΦkΦ

∑
i>0

‖∆i(F )‖22

Similarly, for all µ ∈ Prob(G) with supp(µ) ⊂ B1(1), we have

‖µ ∗ F‖22 6
k

1− ΦkΦ

∑
i>0

‖µ ∗∆i(F )‖22,

Further, Lemma 6.5 implies that for all i > 0, we have

‖P2−2i ∗∆i(F )−∆i(F )‖2 6
4C0

2i
‖F‖2 and ‖P2−i/2 ∗∆i(F )‖2 6

C0

2i/2
‖F‖2.

Therefore, ∑
i>0

2i/2‖P2−2i ∗∆i(F )−∆i(F )‖22 6 2(4C0)2‖F‖22

and ∑
i>0

2i/2‖P2−i/2 ∗∆i(F )‖22 6
√

2√
2− 1

C2
0‖F‖22.

It is now clear that the conclusion of Theorem 6.2 holds for C > 0 large enough (but still independent
of µ and F ). �

6.2. Reduction to functions living at a small scale. We continue with a consequence of
Theorem 6.2 that will allow us to reduce the problem of proving restricted spectral gap to functions
that live at an arbitrarily small scale δ > 0.

Corollary 6.6. Let C > 0 be the constant provided by Theorem 6.2. Let 0 < r < 1. Let B ∈ C(G)
and µ ∈ M(G) be a Borel probability measure with supp(µ) ⊂ B1(1). Assume that for any finite

dimensional subspace V ⊂ L2(B), there is F ∈ L2(B)	 V such that ‖µ ∗F‖2 > r‖F‖2. Let B̃ ⊂ G
be an open set with compact closure which contains the closure of B.

Then for every δ0 > 0, there exist F ∈ L2(B̃) and 0 < δ < δ0 such that

(1) ‖µ ∗ F‖2 > r‖F‖2/(2C).

(2) ‖Pδ ∗ F − F‖2 < δ1/16‖F‖2.

(3) ‖Pδ1/4 ∗ F‖2 < δ1/16‖F‖2.

Proof. Let δ0 > 0. Choose N > 1 such that 2−N < δ0/2 and 2−N/4 < r2/(16C3). Since B has
compact closure, the operator L2(B) 3 F 7→ Pδ ∗ F ∈ L2(G) is compact, for any δ > 0. Hence, the
operator L2(B) 3 F 7→ ∆i(F ) ∈ L2(G) is compact, for all i > 0. The hypothesis implies that we

can find F0 ∈ L2(B) such that ‖µ ∗ F0‖2 > r‖F0‖2 and
∑N−1

i=0 ‖∆i ∗ F0‖22 < r2‖F0‖22/(2C).
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By using Theorem 6.2 (2), we derive that
∑

i>0 ‖µ ∗∆i(F0)‖22 > ‖µ ∗ F0‖22/C > r2‖F0‖22/C. Since∑N−1
i=0 ‖µ ∗∆i(F0)‖2 < r2‖F0‖22/(2C), we get that

∑
i>N ‖µ ∗∆i(F0)‖22 > r2‖F0‖22/(2C). In com-

bination with Theorem 6.2 (1) we deduce that
∑

i>N ‖µ ∗∆i(F0)‖22 > r2(
∑

i>N ‖∆i(F0)‖22)/(2C2),
or equivalently

(6.4)
∑
i>N

(‖∆i(F0)‖22 − ‖µ ∗∆i(F0)‖22) 6
(
1− r2

2C2

)∑
i>N

‖∆i(F0)‖22.

Since
∑

i>0 ‖∆i(F0)‖22 > ‖F0‖22/C by Theorem 6.2 (2) and
∑N−1

i=0 ‖∆i ∗F0‖22 < ‖F0‖22/(2C), we get

that
∑

i>0 ‖∆i(F0)‖22 < 2(
∑

i>N ‖∆i(F0)‖22). By combining this inequality with Theorem 6.2 (3)

and using that 2−N/4 < r2/(16C3) we deduce that∑
i>N

2i/4‖P2−2i ∗∆i(F0)−∆i(F0)‖22 6 2−N/4
∑
i>0

2i/2‖P2−2i ∗∆i(F0)−∆i(F0)‖22(6.5)

6 2−N/4C
(∑
i>0

‖∆i(F0)‖22
)

< 2−N/4+1C
(∑
i>N

‖∆i(F0)‖22
)
6

r2

8C2

∑
i>N

‖∆i(F0)‖22.

Similarly, by using Theorem 6.2 (4), we get that

(6.6)
∑
i>N

2i/4‖P2−i/2 ∗∆i(F0)‖22 <
r2

8C2

∑
i>N

‖∆i(F0)‖22.

By combining equations (6.4), (6.5), and (6.6) we can find i > N such that

(‖∆i(F0)‖22−‖µ∗∆i(F0)‖22)+2i/4‖P2−2i∗∆i(F0)−∆i(F0)‖22+2i/4‖P2−i/2∗∆i(F0)‖22 < (1− r2

4C2
)‖∆i(F0)‖22.

Let F := ∆i(F0) and δ := 2−2i. Then δ 6 2−2N < δ0. Moreover, the above inequality implies that

‖µ ∗F‖22 > r2‖F‖22/(4C2), ‖Pδ ∗F −F‖22 < δ1/8‖F‖22, and ‖Pδ1/4 ∗F‖2 < δ1/8‖F‖22. Finally, notice

that since F0 ∈ L2(B), the support of F is contained in B2−i+1(1)B ⊂ Bδ0(1)B and hence in B̃, if
δ0 > 0 is small enough. �

6.3. Proof of Theorem B. Next, we prove the following “quantitative restricted spectral gap”
theorem for all measures with small support that escape subgroups at a controlled speed. It is clear
that this result in combination with Theorem 3.1 immediately implies Theorem B.

Theorem 6.7. Let G be a connected simple Lie group with trivial center and B ⊂ G a measurable
set with compact closure. Let d1, d2 > 0 be given.

Then there exist c > 0 and ε2 > 0 such that the following holds true. Let 0 < ε < ε2 and µ ∈M(G)
be a Borel probability on G with supp(µ) ⊂ Bε(1). Assume that for all δ > 0 small enough, we have
that for any proper connected closed subgroup H < G,

µ∗2n(H(δ)) 6 δd1 , where n =
⌊
d2

log 1
δ

log 1
ε

⌋
.

Then there exists a finite dimensional subspace V ⊂ L2(B) such that ‖µ ∗ F‖2 < εc‖F‖2, for every
F ∈ L2(B)	 V .
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Theorem 6.7 also implies the quantitative version of Theorem B referred to in Remarks 1.6 and 1.7.

Proof. Let B ⊂ G and d1, d2 > 0 be as in the statement of the theorem. Let B̃ ⊂ G be an open set
with compact closure which contains the closure of B. Denote d = dim(G).

We start by quantifying how small ε > 0 should be. First, Theorem 5.1 provides constants a, b, κ > 0

such that for any F ∈ L2(B̃) with ‖F‖2 = 1 we have

(6.7) ‖f ∗ F‖16d
2 6 a‖Pδ ∗ F‖2 + bδκ, for all f ∈ L2(G) with ‖f‖2 = 1 and all 0 < δ < 1.

Put q = min{ 1
16 , κ/4} and let C > 0 be the constant provided in Theorem 6.2. Choose

• 0 < α < q
16d and denote by c0 and ε0 the corresponding constants given by Corollary 4.2.

• c > 0 such that 2c0c < min{ 1
16 ,

q
16d − α}.

• 0 < ε < ε0 small enough so that 2c0(c+ log 2C

log 1
ε

) < min{ 1
16 ,

q
16d − α}.

Next, take a probability measure µ on G supported on Bε(1) such that for all δ > 0 small enough,

we have µ∗2n(H(δ)) 6 δd1 , where n = bd2
log 1

δ

log 1
ε

c, for any proper connected closed subgroup H < G.

By Corollary 4.2, there exists δ0 > 0 such that for all 0 < δ < δ0, we have that

(6.8) ‖µ∗n ∗ Pδ‖2 6 δ−α, for all n >
⌊
c0

log 1
δ

log 1
ε

⌋
.

Taking δ0 smaller if necessary, we can assume that δ
2c0(c+ log 2C

log 1
ε

)
> (a+b)

1
16d δ

q
16d
−α+δ

1
16 , for δ < δ0.

Now, assume by contradiction that the measure µ does not satisfy the conclusion of the theorem.

Then by Corollary 6.6, there exists F ∈ L2(B̃) with ‖F‖2 = 1 and 0 < δ < δ0 such that

(1) ‖µ ∗ F‖2 > εc/(2C).

(2) ‖Pδ ∗ F − F‖2 < δ1/16.

(3) ‖P
δ
1
4
∗ F‖2 < δ1/16.

Let n =
⌊
c0

log 1
δ

log 1
ε

⌋
. Since µ is symmetric, by using Lemma 2.1 we derive that( εc

2C

)2n
6 ‖µ ∗ F‖2n 6 ‖µ∗n ∗ F‖2 6 ‖µ∗n ∗ Pδ ∗ F‖2 + ‖Pδ ∗ F − F‖2

On the other hand, by combining (6.7) and (6.8) we get that

‖µ∗n ∗ Pδ ∗ F‖2 6
(
a‖Pδ1/4 ∗ F‖2 + δκ/4

) 1
16d ‖µ∗n ∗ Pδ‖2

6 (aδ
1
16 + bδκ/4)

1
16d δ−α 6 (a+ b)

1
16d δ

q
16d
−α.

By putting the last two inequalities together we get that
(
εc

2C

)2n
6 (a + b)

1
16d δ

q
16d
−α + δ

1
16 . Since(

εc

2C

)2n
>
(
εc

2C

)2c0 log 1
δ

log 1
ε = δ

2c0(c+ log 2C

log 1
ε

)
, this contradicts the choice of δ > 0. �

6.4. Proof of Corollary C. Let Γ, G, H and B ⊂ G/H be as in the statement of Corollary C.
Recall that the measure mG/H on G/H arises from a rho-function for the pair (G,H) (see [BdHV08,
Theorem B.1.4.]). Thus, there exists a continuous function ρ : G→ R∗+ such that

(6.9)

∫
G
f(x)ρ(x)dx =

∫
G/H

∫
H
f(xh)dhdmG/H(xH), for all f ∈ Cc(G).
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Of course, equality 6.9 holds more generally for any function f ∈ L1(G) with compact support. The
measure mG/H is not necessarily G-invariant, but the function ρ allows to determine the translates
of g ·mG/H (see [BdHV08, Lemma B.1.3]):

(6.10)
d(g ·mG/H)

dmG/H
(xH) =

ρ(gx)

ρ(x)
, for all x, g ∈ G.

Put B1 = B1(1) · B ⊂ G/H and B2 = B1(1)−1 · B1 ⊂ G/H. Let p : G → G/H be the canonical

projection. Let B̃1, B̃2 ⊂ G be open sets with compact closures such that Bi ⊂ p(B̃i) for i = 1, 2.

Replacing B̃i by B̃i ·K for some compact set K ⊂ H with non empty interior, we may also assume
that

∫
H 1B̃i(xh)dh is bounded away from 0 uniformly in x ∈ B̃i. Then using (6.9) there exists

β > 0 such that ‖F‖2/β 6 ‖F ◦ p‖2,B̃i 6 β‖F‖2 for all F ∈ L2(Bi), for both i = 1 and i = 2.

Fix ε ∈ (0, 1) small enough so that |
√

ρ(x)
ρ(gx) − 1| 6 1

4 , for all g ∈ Bε(1) and x ∈ B̃1. Take r > 0 such

that 2rβ4 < 1/16.

By Theorem 6.7 there exist a finite dimensional space V ⊂ L2(B̃2) and a finite set T ⊂ Γ such
that the measure µ = 1

2|T |
∑

g∈T (δg + δg−1) satisfies supp(µ) ⊂ Bε(1) and ‖µ ∗F‖2 < r‖F‖2, for all

F ∈ L2(B̃2)	 V .

Take a sequence of functions Fn ∈ L2(B) which converges weakly to 0 and such that ‖Fn‖2 = 1 for
all n. To prove the corollary, it is enough to show that eventually ‖π(µ)(Fn)‖2 < 1

2 .

First, remark that by our choice of ε, we have |1 −
√

ρ(gx)
ρ(x) | 6

1
4

√
ρ(gx)
ρ(x) for all g ∈ supp(µ) and

x ∈ B̃1. Thus, Equation (6.10) gives for all F ∈ L2(B):

‖π(µ)(F )− µ ∗ F‖2 =
1

2|T |
‖

∑
g∈T∪T−1

(

√
ρ(g ·)
ρ
− 1)F (g−1 ·)‖2

6
1

4

1

2|T |
∑

g∈T∪T−1

‖

√
ρ(g ·)
ρ

F (g−1 ·)‖2 =
1

4
‖F‖2.

Therefore, for all n we have

(6.11) ‖π(µ)(Fn)‖2 6 ‖µ ∗ Fn‖2 +
1

4
.

So we are left to bound ‖µ ∗ Fn‖2 by 1
4 for all n large enough. Since µ ∗ Fn is supported on B1, by

the definition of β, we have that

‖µ ∗ Fn‖22 6 β2‖(µ ∗ Fn) ◦ p‖2
2,B̃1

= β2‖µ ∗ (Fn ◦ p)‖22,B̃1

= β2〈µ ∗ (Fn ◦ p)1B̃1
, µ ∗ (1B̃2

.(Fn ◦ p))〉
6 β2‖µ ∗ (Fn ◦ p)‖2,B̃1

‖µ ∗ (1B̃2
.(Fn ◦ p))‖2

The second line above comes from the fact that 1B̃1
6 1g·B̃2

for all g ∈ supp(µ) ⊂ B1(1). Using the

same fact we moreover see that ‖µ ∗ (Fn ◦ p)‖2,B̃1
6 ‖Fn ◦ p‖2,B̃2

6 β‖Fn‖2 = β. In summary,

‖µ ∗ Fn‖22 6 β3‖µ ∗ (1B̃2
.(Fn ◦ p))‖2.

Using (6.9) one easily checks that the sequence (1B̃2
.(Fn ◦ p))n ⊂ L2(B̃2) goes weakly to 0. Hence,

we deduce from the restricted spectral gap assumption on µ that for n large enough,

‖µ ∗ (1B̃2
.(Fn ◦ p))‖2 < 2r‖1B̃2

.(Fn ◦ p)‖2 = 2r‖Fn ◦ p‖2,B̃2
6 2rβ.
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Altogether, we get that for n large enough:

‖µ ∗ Fn‖22 < 2rβ4 6
1

16
.

Combining this with (6.11), we indeed get that ‖π(µ)(Fn)‖2 < 1
2 for n large enough. �

7. The Banach-Ruziewicz problem

This section is devoted to the proof of Theorem D. Moreover, we will show the following:

Theorem 7.1. Let G be a l.c.s.c. group and Γ < G a countable dense subgroup.

Then the following four conditions are equivalent:

(1) If ν : C(G)→ [0,∞) is a Γ-invariant, finitely additive measure, then there exists α > 0 such
that ν(A) = α|A|, for all A ∈ C(G).

(2) If Φ : L∞c (G,mG) → C is a Γ-invariant, positive linear functional, then there exists α > 0
such that Φ(f) = α

∫
G f dmG, for all f ∈ L∞c (G,mG).

(3) The translation action Γ y (G,mG) has local spectral gap with respect to a measurable set
B ⊂ G with compact closure and non-empty interior.

(4) The translation action Γ y (G,mG) is strongly ergodic.

Remark 7.2. Suppose that G is compact. It is clear that (1) =⇒ (2). Further, it is well-known that
(2)⇐⇒ (3) and (3) =⇒ (4) (see Theorem 7.3). The implication (4)⇐⇒ (3) was established recently
in [AE10, Theorem 4]. Let us also explain why (2) =⇒ (1). Note that if (2) holds, then (3) does as
well, hence Γ is non-amenable. Since the action Γ y G is free, it follows that G is Γ-paradoxical (see
Definition 7.9). The proof of [Lu94, Theorem 2.1.17] implies that any subsets B,C ⊂ G with non-
empty interior are equidecomposable. Further, the proof of [Lu94, Proposition 2.1.12] gives that
any finitely additive Γ-invariant measure ν : C(G) → [0,∞) is absolutely continuous with respect
to mG. It follows readily that (1) holds. Theorem 7.1 is therefore contained in the literature when
G is compact. Our contribution is to show that it holds for arbitrary locally compact groups.

Turning to locally compact groups G, the non-trivial implications, which we will address below,
are (2) =⇒ (3), (2) =⇒ (1), and (4) =⇒ (3).

7.1. Local spectral gap and uniqueness of invariant means. In order to prove implication
(2) =⇒ (3) from Theorem 7.1, we give an equivalent formulation of local spectral gap in terms of
uniqueness of invariant linear functionals (see Theorem 7.6).

This generalizes a well-known result for probability measure preserving actions. Let Γ y (X,µ) be
a probability measure preserving action of a countable group Γ. Then integration against µ defines
a Γ-invariant mean (i.e. a unital positive linear functional) on L∞(X,µ). In the early 1980’s, it
was realized that whether this is the unique Γ-invariant mean on L∞(X,µ) is equivalent to the
spectral gap of the action. More precisely, the following was shown:

Theorem 7.3. [Ro81,Sc81] Let Γ y (X,µ) be an ergodic measure preserving action of a countable
group Γ on a probability space (X,µ). Consider the following conditions:

(1) If Φ : L∞(X,µ)→ C is a Γ-invariant mean, then Φ(f) =
∫
X f dµ, for all f ∈ L∞(X,µ).

(2) There does not exist a sequence {An} of measurable subsets of X such that µ(An) > 0, for
all n, lim

n→∞
µ(An) = 0, and lim

n→∞
µ(gAn∆An)/µ(An) = 0, for all g ∈ Γ.

(3) If a sequence ϕn ∈ L1(X,µ) of positive functions satisfies
∫
X ϕn dµ = 1, for all n, and

lim
n
‖g · ϕn − ϕn‖1 = 0, for all g ∈ Γ, then lim

n
‖ϕn − 1‖1 = 0.
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(4) The action Γ y (X,µ) has spectral gap.
(5) The action Γ y (X,µ) is strongly ergodic.

Then conditions (1)-(4) are equivalent and they all imply condition (5).

The equivalence of (1) and (2) is due to Rosenblatt [Ro81, Theorem 1.4]. The equivalence of (1),
(3) and (4), and the fact that (1) implies (5) are due to Schmidt [Sc81, Propositions 2.2 and 2.3]
(see also [FS99, Section 5], where a gap from [Sc81] is fixed).

The main goal of this section is to generalize Theorem 7.3 to arbitrary measure preserving actions.
In order to state our result, we need to introduce some notation:

Notation 7.4. Let Γ y (X,µ) be a measure preserving action of a countable group Γ on a standard
measure space (X,µ). Let B ⊂ X be a measurable set. We denote by

• CB(X) the family of measurable subsets C ⊂ X for which we can find g1, ..., gn ∈ Γ such
that C ⊂ ∪ni=1giB, almost everywhere, and by
• L∞B (X,µ) the set of functions f ∈ L∞(X,µ) whose essential support belongs to CB(X).

Remark 7.5. If G is a l.c.s.c. group and B ∈ C(G) is a set with non-empty interior, then
CB(G) = C(G) and L∞B (G) = L∞c (G).

Theorem 7.6. Let Γ y (X,µ) be an ergodic measure preserving action of a countable group Γ on
a standard measure space (X,µ). Let B ⊂ X be a measurable set with 0 < µ(B) < ∞. Consider
the following conditions:

(1) If Φ : L∞B (X,µ) → C is a Γ-invariant positive linear functional, then there exists α > 0
such that Φ(f) = α

∫
X f dµ, for all f ∈ L∞B (X,µ).

(2) If a sequence {An} of measurable subsets of X satisfies that µ(An ∩ B) > 0, for all n, and
lim
n
µ((gAn∆An) ∩B)/µ(An ∩B) = 0, for all g ∈ Γ, then lim

n
µ(An ∩B) = µ(B).

(3) If a sequence ϕn ∈ L1(X,µ) of positive functions satisfies
∫
B ϕn dµ = µ(B), for all n, and

lim
n
‖g · ϕn − ϕn‖1,B = 0, for all g ∈ Γ, then lim

n
‖ϕn − 1‖1,B = 0.

(4) The action Γ y (X,µ) has local spectral gap with respect to B.
(5) The action Γ y (X,µ) is strongly ergodic.

Then conditions (1)-(4) are equivalent and they all imply condition (5).

Theorem 7.6 is motivated in part by Margulis’ proof of [Ma82, Theorem 3]. Note that in the case
µ(X) = 1 and B = X, it recovers Theorem 7.3.

Proof. Let lim
n

be a bounded linear functional on `∞(N) which extends the usual limit.

(1) =⇒ (2). Assume that (1) holds and (2) is false. Let S be the set of L > 0 for which
there exists a sequence {An} of measurable subsets of X such that µ(An ∩ B) > 0, for all n,
lim
n
µ((gAn∆An) ∩ B)/µ(An ∩ B) = 0, for all g ∈ Γ, and lim

n
µ(An ∩ B) = L. It is easy to see

that S ⊂ [0,∞) is a non-empty closed set. We denote by ` the minimum of S and by {An} the
corresponding sequence of measurable subsets of X. Since (2) is false, ` < µ(B).

We define a positive linear functional Φ : L∞B (X,µ)→ C by letting

Φ(f) = lim
n

1

µ(An ∩B)

∫
An

f dµ, for all f ∈ L∞B (X,µ).

We claim that Φ is well-defined and Γ-invariant. To this end, let f ∈ L∞B (X,µ) and g ∈ Γ.

Denote by A the support of f . Since A ∈ CB(X), we can find g1, ..., gk ∈ Γ with A ⊂ ∪ki=1giB.



LOCAL SPECTRAL GAP 43

Then µ(An ∩ A) 6
∑k

i=1 µ(g−1
i An ∩ B) and we get that lim sup

n→∞
µ(An ∩ A)/µ(An ∩ B) 6 k. Since

| 1
µ(An∩B)

∫
An
f dµ| 6 ‖f‖∞ µ(An∩A)

µ(An∩B) , it follows that Φ(f) is well-defined. Further, we have

|
∫
An

g · f dµ−
∫
An

f dµ| 6
∫
g−1An∆An

|f | dµ =

∫
(g−1An∆An)∩A

|f | dµ

6 ‖f‖∞ µ((g−1An∆An) ∩A).

Since A ∈ CB(X), we have lim
n
µ((gAn∆An) ∩ A)/µ(An ∩ B) = 0. In combination with the above,

this implies that Φ(g · f) = Φ(f). Therefore, Φ is Γ-invariant. Since Φ(1B) = 1 and condition (1)
is assumed true, we get that Φ(f) = 1

µ(B)

∫
X f dµ, for all f ∈ L∞B (X,µ).

We are now ready to derive a contradiction. Firstly, assume that ` = lim
n
µ(An ∩ B) = 0. In this

case, after passing to a subsequence, we may assume that 0 < µ(An ∩B) < 3−nµ(B), for all n > 1.
Let C = B \ (∪n>1An). It follows that µ(C) > 0 and hence Φ(1C) = µ(C)/µ(B) > 0. On the other
hand, it is clear from the definition of Φ that Φ(1C) = 0. This gives a contradiction.

Secondly, assume that 0 < ` < µ(B). If C ∈ CB(X), then lim
n
µ(An∩C) = `Φ(1C) = (`µ(C))/µ(B).

Denoting Am,n = Am ∩An, we further get that

(7.1) lim
m

lim
n
µ(Am,n ∩ C) = lim

m

` µ(Am ∩ C)

µ(B)
=
`2µ(C)

µ(B)2
.

In particular, lim
m

lim
n
µ(Am,n ∩B) = `2/µ(B). Let g ∈ Γ. Since ` > 0, the assumptions on {An}

imply that lim
n
µ((gAn∆An) ∩ C) = 0. Since gAm,n∆Am,n ⊂ (gAm∆Am) ∪ (gAn∆An), we get that

lim
m

lim
n
µ((gAm,n ∩ Am,n) ∩ C) = 0. It follows that there is a sequence of the form Ãk = Am(k),n(k)

such that lim
k
µ(Ãk ∩ B) = `2/µ(B) and lim

k
µ((gÃk∆Ãk) ∩ C) = 0, for all C ∈ CB(X) and g ∈ Γ.

This implies that `2/µ(B) ∈ S. Since `2/µ(B) < `, this contradicts the minimality of `. �

(2) =⇒ (3). The proof relies on a variation of Namioka’s trick. Suppose (2) is true. By
contradiction, assume that there is a sequence of positive functions ϕn ∈ L1(X,µ) satisfying∫
B ϕn dµ = µ(B), for all n, and lim

n
‖g · ϕn − ϕn‖1,B = 0, for all g ∈ Γ, such that ‖ϕn − 1‖1,B 6→ 0.

After passing to a subsequence, assume that there is δ > 0 such that ‖ϕn− 1‖1,B > δ, for all n > 1.

Let c ∈ (0, δ
2µ(B)) and denote δ0 := δ−2cµ(B)

2 > 0. Fix n > 1. We define ψn : X → R by letting

ψn(x) = ϕn(x)− 1. Since
∫
B ψn dµ = 0 and c1{ψn>c} + ψn1{06ψn<c} 6 c1{ψn>0} 6 cϕn, we have

δ 6
∫
B
|ψn| dµ = 2

∫
B
ψn1{ψn>0} dµ = 2

∫
B
ψn1{ψn>c} dµ+ 2

∫
B
ψn1{06ψn<c} dµ

= 2

∫
B

(ψn − c)1{ψn>c} dµ+ 2

∫
B

(c1{ψn>c} + ψn1{06ψn<c}) dµ

6 2

∫
B

(ψn − c)1{ψn>c} dµ+ 2c

∫
B
ϕn dµ

= 2

∫
B

(ϕn − (1 + c))1{ϕn>(1+c)} dµ+ 2cµ(B).
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It follows that
∫
B(ϕn − (1 + c))1{ϕn>(1+c)} dµ > δ0. For t > 0, we put At,n = {x ∈ X|ϕn(x) > t}.

By combining this inequality with Fubini’s theorem we get that

(7.2)

∫ ∞
1+c

µ(At,n ∩B) dt =

∫
B

∫ ∞
1+c

1{ϕn>t} dt dµ =

∫
B

(ϕn − (1 + c))1{ϕn>(1+c)} dµ > δ0.

Next, let g ∈ Γ. By using a similar calculation to the above we get that

∫ ∞
0

µ((gAt,n∆At,n) ∩B) dt =

∫
B

∫ ∞
0
|1gAt,n(x)− 1At,n(x)| dt dµ(x)

=

∫
B

∫ ∞
0
|1{ϕn(g−1x)>t} − 1{ϕn(x)>t}| dt dµ(x)

=

∫
B
|ϕn(g−1x)− ϕn(x)| dµ(x) = ‖g · ϕn − ϕn‖1,B.

Now, fix a finite set F ⊂ Γ and ε > 0. We claim that there is a measurable set A ⊂ X satisfying

µ(A∩B) ∈ (0, µ(B)
1+c ], and µ((gA∆A)∩B)/µ(A∩B) < ε, for all g ∈ F . To this end, note that since

‖g · ϕn − ϕn‖1,B → 0, for all g ∈ Γ, we can find n > 1 such that
∑

g∈F ‖g · ϕn − ϕn‖1,B < εδ0. By
combining 7.2 with the last displayed identity it follows that

ε

∫ ∞
1+c

µ(At,n ∩B) dt > εδ0 >

∫ ∞
0

(
∑
g∈F

µ((gAt,n∆At,n) ∩B)) dt.

From this we deduce that there is t > 1 + c such that
∑

g∈F µ((gAt,n∆At,n) ∩ B) < εµ(At,n ∩ B).

Also, tµ(At,n) 6
∫
B ϕn dµ = µ(B), hence µ(At,n) 6 µ(B)

t 6
µ(B)
1+c . Thus, A = At,n verifies the claim.

By using the claim we can construct a sequence {An} of measurable subsets of X which satisfy

that µ(An ∩B) ∈ (0, µ(B)
1+c ], for all n, and lim

n
µ((gAn∆An)∩B)/µ(An ∩B) = 0, for all g ∈ Γ. Since

(2) is assumed true, we would get that lim
n
µ(An ∩B) = µ(B), which is a contradiction. �

(3) =⇒ (1). The proof follows the proof of [Ma82, Theorem 3] and relies on Day’s convexity trick.
Suppose that (3) holds and let Φ : L∞B (X,µ) → C be a Γ-invariant, positive linear functional. If
Φ(1B) = 0, then we clearly have that Φ ≡ 0. Thus, we may assume that Φ(1B) > 0. After replacing

Φ with µ(B)
Φ(1B)Φ, we may further assume that Φ(1B) = µ(B).

Let f0 ∈ L∞B (X,µ). We will show that Φ(f0) =
∫
X f0 dµ. To this end, we denote by C the support

of f0 and fix ε > 0. Let F ⊂ Γ be a finite set. Define Y = C ∪B ∪ (∪g∈F g−1B). Since µ(Y ) <∞,
we can find a net of positive functions ϕi ∈ L1(Y ) such that

(7.3) lim
i

∫
Y
ϕif dµ = Φ(f), for all f ∈ L∞(Y ).

Then for all g ∈ F and every f ∈ L∞(B) we have that f, g−1 · f ∈ L∞(Y ) and hence

(7.4) lim
i

∫
B

(g · ϕi − ϕi)f dµ = lim
i

∫
Y
ϕi(g

−1 · f − f) dµ = Φ(g−1 · f − f) = 0.

Denote by A the set of positive functions ϕ ∈ L1(Y ) such that |
∫
Y ϕf0 dµ− Φ(f0)| < ε and∫

B ϕ dµ = Φ(1B). Then 7.3 and 7.4 imply that 0 = (0)g∈F belongs to the weak closure of

AF := {((g · ϕ− ϕ)|B)g∈F |ϕ ∈ A} ⊂ L1(B)|F |.
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Since AF is a convex set, its weak and norm closures concide. Thus, 0 belongs to the norm
closure of AF , for every finite set F ⊂ Γ. It follows that there is a sequence ϕn ∈ A such that
lim
n→∞

‖g · ϕn − ϕn‖1,B = 0, for all g ∈ Γ. Since
∫
B ϕn dµ = Φ(1B) = µ(B), for all n, condition (3)

gives that lim
n→∞

‖ϕn − 1‖1,B = 0. Further, we get that lim
n→∞

‖ϕn − 1‖1,gB = 0, for all g ∈ Γ.

Since Y ∈ CB(X), we deduce that lim
n→∞

‖ϕn − 1‖1,Y = 0. Since |
∫
Y ϕnf0 dµ− Φ(f0)| < ε, for all n,

we get that |
∫
Y f0 dµ− Φ(f0)| 6 ε. As ε > 0 is arbitrary, we conclude that Φ(f0) =

∫
X f0 dµ. �

(3) =⇒ (4). Assume that (3) holds and that (4) is false. Then we can find a sequence ξn ∈ L2(X)

such that
∫
B ξn dµ = 0 and ‖ξn‖2,B =

√
µ(B), for all n, and lim

n→∞
‖g · ξn− ξn‖2,B = 0, for all g ∈ Γ.

Moreover, we may assume that ξn is real-valued, for all n.

Define ϕn := |ξn|2 ∈ L1(X). Then
∫
B ϕn dµ = µ(B) and lim

n→∞
‖g · ϕn − ϕn‖1,B = 0, for all g ∈

Γ. By using condition (3) we deduce that lim
n→∞

‖ϕn − 1‖1,B = lim
n→∞

‖|ξn|2 − 1‖1,B = 0. Since

ξn is real-valued, it follows that there exists a sequence {An} of measurable subsets of X such
that lim

n→∞
‖ξn − (1An − 1X\An)‖2,B = 0. By using the defining properties of {ξn} we get that

lim
n→∞

µ((gAn∆An) ∩B) = 0 and lim
n→∞

µ(An ∩B) = µ(B)/2. This contradicts condition (2), which,

as shown above, is equivalent to (3). �

(4) =⇒ (3). The proof of this implication is easy and so we leave it to the reader. �

(2) =⇒ (5). To prove this final implication, we need a lemma whose proof we leave to the reader.

Lemma 7.7. Let (X,µ) be a standard measure space. Let ν be a Borel probability measure on X
which is equivalent to µ. Let {An} be a sequence of measurable subsets of X. Then lim

n→∞
ν(An) = 0

if and only if lim
n→∞

µ(An ∩B) = 0, for every measurable set B ⊂ X with µ(B) <∞.

Now, let ν be a Borel probability measure on X which is equivalent to µ. Let {An} be a sequence
of measurable subsets of X such that lim

n→∞
ν(gAn∆An) = 0, for all g ∈ Γ. Lemma 7.7 implies that

lim
n→∞

µ((gAn∆An)∩B) = 0, for all g ∈ Γ. Since condition (2) holds, we get lim
n→∞

µ(An∩B) = µ(B).

Using the almost Γ-invariance of {An}, it follows that lim
n→∞

µ(An ∩ C) = µ(C) and hence that

lim
n→∞

µ(Acn ∩ C) = 0, for all C ∈ FB(X). Since the action Γ y (X,µ) is ergodic, we have that

µ(X \(∪g∈ΓgV )) = 0. By combining the last two facts we deduce that lim
n→∞

µ(Acn∩B) = 0, for every

measurable set B ⊂ X with µ(B) < ∞. Applying Lemma 7.7 again yields that lim
n→∞

ν(Acn) = 0.

This implies that the asymptotically invariant sequence {An} is trivial. �

7.2. Absolute continuity of invariant finitely additive measures. Towards proving implica-
tion (2) =⇒ (1) from Theorem 7.1 we first establish that any Γ-invariant finitely additive measure
on C(G) is absolutely continuous with respect to mG.

Proposition 7.8. Let G be a l.c.s.c. group and Γ < G be a countable dense subgroup such that
Γ ∩ G0 is non-amenable, for any open subgroup G0 < G. Let ν : C(G) → [0,∞) be a Γ-invariant,
finitely additive measure.

If B ∈ C(G) and |B| = 0, then ν(B) = 0.

Proposition 7.8 is proved by adapting an argument due to Tarski, who used the Banach-Tarski
paradox to show that any SO(n + 1)-invariant, finitely additive measure defined on the Lebesgue
subsets of Sn, n > 2, is absolutely continuous with respect to the Lebesgue measure (see [Lu94,
Proposition 2.2.12]). As such, we need to recall the notion of equidecomposability:
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Definition 7.9. Let Γ y X be an action of a group Γ on a set X. Denote by P(X) the power
set of X and let B,C ∈ P(X). We say that B is Γ-equidecomposable to C if we can decompose
B = ∪ki=1Bi and C = ∪ki=1Ci with Bi ∩ Bj = Ci ∩ Cj = ∅, for all 1 6 i < j 6 k, and there exist
g1, ..., gk ∈ Γ such that giBi = Ci, for all 1 6 i 6 k. In this case, we write B ∼ C.

Also, we write B - C if B ∼ C0, for some subset C0 ⊂ C. More generally, if m and n are positive
integers, we say that mB is equidecomposable to nC (and write mB ≺ nC) if we can decompose B
in m ways and use translations with elements of Γ to rebuild n copies of C. Note that the following
cancellation law holds: if mB ∼ mC, then B ∼ C (see [Lu94, page 13]). With this terminology, B
is said to be paradoxical if B ∼ 2B.

The proof of Proposition 7.8 relies on the following two lemmas, the first of which is due to Breuillard
and Gelander.

Lemma 7.10. [BG04] Let G be a l.c.s.c group and Γ < G be a countable dense subgroup. Assume
that Γ ∩G0 is non-amenable, for every open subgroup G0 < G.

Then at least one of the following two conditions holds:

(1) Γ contains a non-abelian free subgroup which is not discrete in G.
(2) There exists a compact subgroup K < G such that Γ ∩K is non-amenable.

Proof. LetG0 be the connected component of the identity inG. ThenG/G0 is a totally disconnected
lcsc group and therefore admits an open compact subgroup L. SinceG0 := L·G0 is an open subgroup
of G, it is enough to prove the conclusion of the lemma for the inclusion Γ ∩G0 < G0. Thus, after
replacing G by G0, we may assume that G is a compact extension of a connected group.

By the structure theory of locally compact groups [MZ55, Theorem 4.6], we can find a compact
normal subgroup K < G such that H := G/K is a real Lie group. By replacing G with an open
subgroup, we may assume that H is connected. Denote by p : G→ H the quotient homomorphism.
Let h be the Lie algebra of H and consider the adjoint homomorphism q :=Ad: H → GL(h). Since
H is connected, the kernel of q is equal to the center Z(H) of H.

By applying the topological Tits alternative [BG04, Theorem 1.3] to the inclusion of q(p(Γ)) into
GL(h) ∼= GLdim(H)(R) (endowed with the standard Euclidean topology), we are in one of two cases:
(i) q(p(Γ)) contains a free dense subgroup, or (ii) q(p(Γ)) contains an open solvable subgroup Σ.

In case (i), there is a free subgroup ∆ < Γ such that q(p(∆)) is dense in q(p(Γ)). Since p(Γ) is dense
inH, we get that p(∆)Z(H) is dense inH. Hence, p([∆,∆]) = [p(∆), p(∆)] = [p(∆)Z(H), p(∆)Z(H)]
is dense in [H,H] (where as usual, [∆,∆] denotes the commutator subgroup of ∆). Note that [H,H]
is not discrete in H. Otherwise, since H is connected, H would be abelian. Thus, p([∆,∆]) is not
discrete in H. Since K is compact, we conclude that [∆,∆] is a free subgroup of Γ which is not
discrete in G, which proves (1).

In case (ii), we have that q−1(Σ) is an open subgroup of p(Γ). Since H is connected and p(Γ) < H
is dense, it follows that q−1(Σ) = p(Γ). Since the kernel of q is equal to Z(H), we get that
p(Γ)/(q−1(Σ) ∩ Z(H)) ∼= Σ. Given that Σ is solvable and Z(H) is abelian, we conclude that p(Γ)
is amenable. Since Γ is non-amenable, we derive that Γ ∩K is non-amenable, which proves (2). �

Lemma 7.11. Let G be a lcsc group and Γ < G be a countable dense subgroup such that Γ∩G0 is
non-amenable, for every open subgroup G0 < G.

Then any sets B,C with compact closures and non-empty interiors are Γ-equidecomposable.
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Proof. Since G is a l.c.s.c. group, we can find a left-invariant compatible metric d on G which is
proper, in the sense that the closed ball Br(x) := {y ∈ G|d(x, y) 6 r} is compact, for every r > 0
and x ∈ G (see e.g. [CdH14]). We denote Br = Br(e), for all r > 0.

The idea of the proof is to show that there exists a bounded set D ⊂ G which has non-empty
interior and is paradoxical. By Lemma 7.10 we are in one of two cases.

Case 1. Γ contains a non-abelian free subgroup Γ0 which is not discrete in G.

We claim that D := B1 is paradoxical. Assume by contradiction that B1 is not paradoxical. Then
by a theorem of Tarski (see [Wa93, Corollary 9.2]) we can find a Γ-invariant, finitely additive
measure ϕ : P(G)→ [0,∞] such that ϕ(B1) = 1. Note that if r > 0, then we can find g1, ..., gn ∈ Γ
such that Br ⊂ ∪ni=1giB1 and B1 ⊂ ∪ni=1giBr. From this we deduce that 0 < ϕ(Br) < ∞, for all
r > 0. We define ρ : (0,∞) → (0,∞) by letting ρ(r) = ϕ(Br). Then ρ is an increasing function
and hence has at most countably many points of discontinuity.

Let s > 0 be a point at which ρ is continuous. Next, we define Φ : P(G) → [0, 1] by letting
Φ(A) = ϕ(A ∩ Bs)/ϕ(Bs), for every A ∈ P(G). Then Φ is a finitely additive measure, Φ(G) = 1,
and we have the following

(7.5) lim
g∈Γ, g→e

sup
A∈P(G)

|Φ(gA)− Φ(A)| = 0.

To see this, let g ∈ G and A ∈ P(G). Then we have that g−1Bs \ Bs ⊂ Bs′ \ Bs and that
Bs \ g−1Bs ⊂ Bs \Bs′′ , where s′ = s+ d(g, e) and s′′ = max{s− d(g, e), 0}. Since ρ is continuous at
s, we get that lim

g→e
ϕ(g−1Bs \Bs) = 0 and lim

g→e
ϕ(Bs \ g−1Bs) = 0. Moreover, if g ∈ Γ, then we have

that |ϕ(gA ∩ Bs) − ϕ(A ∩ Bs)| = |ϕ(A ∩ g−1Bs) − ϕ(A ∩ Bs)| 6 ϕ(g−1Bs \ Bs) + ϕ(Bs \ g−1Bs).
The combination of these two facts clearly implies 7.5.

Now, let a and b be two free generators of Γ0. Let gn ∈ Γ0\{e} be a sequence such that lim
n→∞

gn = e.

Note that for every g ∈ Γ0 \{e}, at least one of the pairs {g, aga−1} and {g, bgb−1} generates a copy
of F2. Therefore, after passing to a subsequence and after eventually swapping a and b, we may
assume that gn and hn = agna

−1 generate a copy of F2, for all n. Note that lim
n→∞

gn = lim
n→∞

hn = e.

We define X = tn>1Xn, where Xn = G, to be the disjoint union of infinitely many copies of G.
Let c and d be two free generators of F2. Let lim

n
be a bounded linear functional on `∞(N) which

extends the limit. We consider an action F2 y X given by c ·x = gnx and d ·x = hnx, for all n > 1
and x ∈ Xn. Finally, we define Ψ : P(X)→ [0, 1] by Ψ(A) = lim

n
Φ(A∩Xn), for all A ∈ P(X). Then

Ψ is a finitely additive measure and Ψ(X) = 1. Moreover, Ψ is F2-invariant. Indeed, let A ∈ P(X)
and write A = tn>1An, where An ⊂ Xn. Since lim

n→∞
gn = e, equation 7.5 implies that

Ψ(c ·A) = lim
n

Φ(gnAn) = lim
n

Φ(An) = Ψ(A).

Similarly, if follows that Ψ(d ·A) = Ψ(A). Altogether, Ψ : P(X)→ [0, 1] is an F2-invariant, finitely
additive measure with Ψ(X) = 1. However, since the action F2 y X is free, this contradicts the
non-amenability of F2. Thus, we conclude that B1 is paradoxical.

Case 2. There exists a compact subgroup K < G such that Γ0 := Γ ∩K is non-amenable.

Let D ∈ C(G) be a K-invariant set with non-empty interior. Since the left multiplication action
Γ0 y D is free and Γ0 is non-amenable, we get that D is Γ0-paradoxical and hence Γ-paradoxical.

Altogether, we have shown the existence of a subset D ⊂ G which has non-empty interior and is
paradoxical. Let B,C ⊂ G be two bounded subsets with non-empty interior.
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Since Γ < G is dense, we can find integers p, q > 1 such that B - pD and D - qC. Since D
is paradoxical, we have 2nD - D, for all integers n > 1. By combining these facts, we get that
qB - qpD - 2qpD - D - qC. The cancellation law implies that B - C. Similarly, we get that
C - B, and [Lu94, Proposition 2.1.2.] implies that B ∼ C, as desired. �

Proof of Proposition 7.8. Let ν : C(G)→ [0,∞) be a Γ-invariant, finitely-additive measure and
B ∈ C(G) such that |B| = 0. We will show that ν(B) = 0. To this end, let ε > 0.

Let C ∈ C(G) be a set with non-empty interior such that ν(C) < ε. By Lemma 7.11 we have B - C,
hence we can find a subset D ⊂ C such that B ∼ D. We can therefore decompose B = ∪ki=1Bi and
D = ∪ki=1Di such that Bi ∩ Bj = Di ∩Dj = ∅, for all 1 6 i < j 6 k, and there exist g1, ..., gk ∈ Γ
such that giBi = Di, for all 1 6 i 6 k. Since |B| = 0, we get |Di| = |Bi| = 0, for all 1 6 i 6 k.
In particular, Bi, Di are measurable sets with compact closures, for all 1 6 i 6 k. Since ν is

Γ-invariant, we deduce that ν(B) =
∑k

i=1 ν(Bi) =
∑k

i=1 ν(Di) = ν(D). Therefore, since D ⊂ C,
we conclude that ν(B) 6 ν(C) < ε showing that ν(B) = 0 because ε > 0 was arbitrary. �

7.3. Proof of Theorem 7.1. We are now ready to prove Theorem 7.1. Let S ⊂ L∞c (G,mG) be
the set of functions of the form

∑n
i=1 ci1Ai , where c1, ..., cn ∈ C and A1, ..., An ∈ C(G).

(1) =⇒ (2). Assume that (1) holds true. Let Φ : L∞c (G,mG) → C be a Γ-invariant, positive
linear functional. Then ν : C(G)→ [0,∞) given by ν(A) = Φ(1A) is a Γ-invariant, finitely additive
measure. Since (1) holds, we can find α > 0 such that ν(A) = α|A|, for all A ∈ C(G). Then we
clearly have that Φ(f) = α

∫
G f dmG, for all f ∈ S.

Let f ∈ L∞c (G,mG) be a real-valued function. Then −‖f‖∞1B 6 f 6 ‖f‖∞1B, where B denotes
the support of f . Since Φ is a positive, we get that −α|B|‖f‖∞ 6 Φ(f) 6 α|B|‖f‖∞. Moreover, we
may find a sequence {fn} of real-valued functions which belong to S and whose support is included
in B such that lim

n→∞
‖f − fn‖∞ = 0. By applying the above inequality to f − fn, it follows that

Φ(f) = lim
n→∞

Φ(fn) = lim
n→∞

α
∫
G fn dmG = α

∫
G f dmG. This proves condition (2). �

(2) =⇒ (1). By using Proposition 7.8, Φ : S → C given by Φ(f) =
∑n

i=1 ciν(Ai), for every
f =

∑n
i=1 ci1Ai ∈ S, is a well-defined Γ-invariant positive linear functional. Moreover, if B is the

support of f , then |Φ(f)| 6 ν(B)‖f‖∞. By arguing as above, we get that Φ extends to a Γ-invariant
positive linear functional Φ : L∞c (G,mG)→ C. By applying (2) to Φ, the conclusion follows. �

(2) ⇐⇒ (3). Let B ∈ C(G) be a set with non-empty interior. Then L∞B (G,mG) = L∞c (G,mG) by
Remark 7.5 and the conclusion follows from Theorem 7.6. �

(3) =⇒ (4). This follows from the implication (4) =⇒ (5) from Theorem 7.6. �

(4) =⇒ (3). Assume that Γ y (G,mG) is strongly ergodic and let ν be a Borel probability measure
on G which is equivalent to mG. Let B ∈ C(G) be an open set with compact closure.

Let {An} be a sequence of measurable subsets of G such that |An ∩ B| > 0, for all n, and
lim
n→∞

|(gAn∆An) ∩ B|/|An ∩ B| = 0, for all g ∈ Γ. Since L∞B (G,mG) = L∞c (G,mG), Theorem

7.6 guarantees that in order to prove local spectral gap with respect to B, it suffices to show that
lim
n→∞

|An ∩B| = |B|.

After passing to a subsequence, we may assume that the limit ` = lim
n→∞

|An ∩ B| exists. By using

the strong ergodicity assumption and Lemma 7.7 it is easy to see that if ` > 0, then ` = |B|. Thus,
in order to derive the conclusion, it suffices to prove that ` = 0 leads to a contradiction. We will
achieve this by adapting the “averaging” argument from [AJN07, Lemma 14].

Now, we let C = B−1B and D = BC. We claim that supn |An ∩D|/|An ∩ B| < ∞. Indeed, since
D ∈ C(G) and ∪g∈ΓgB = G, we can find h1, ..., hp ∈ Γ such that D ⊂ ∪pi=1hiB. Then we have that
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|An ∩D| 6
∑p

i=1 |h
−1
i An ∩B| 6 p|An ∩B|+

∑p
i=1 |(h

−1
i An∆An) ∩B| and the claim follows. Since

` = 0, the claim implies that lim
n→∞

|An ∩D| = 0 and we can find κ ∈ (0, 1) such that

(7.6)
[ |C|
|An ∩D|

]
> κ

|C|
|An ∩B|

, for all n.

We continue with the following claim:

Claim. If A ⊂ G is a measurable set and p > 1 is an integer, then∫
Cp
|(Ag−1

1 ∪ ... ∪Ag
−1
p ) ∩B| dg1...dgp = |C|p

∫
B

(
1−

(
1− |A ∩ xC|)

|C|

)p)
dx.

Proof of the claim. Let q > 1 be an integer and put βq =
∫
Cq |Ag

−1
1 ∩ ... ∩Ag−1

q ∩B| dg1...dgq. By
using Fubini’s theorem we have that

βq =

∫
Cq

(∫
B

1Ag−1
1

(x)...1Ag−1
q

(x) dx
)

dg1...dgq

=

∫
B

(∫
Cq

1x−1A(g1)...1x−1A(gq) dg1...dgq

)
dx

=

∫
B
|x−1A ∩ C|q dx =

∫
B
|A ∩ xC|q dx.

Now, the inclusion-exclusion principle gives that the left side of the claimed identity is equal to
αp =

∑p
q=1(−1)q−1

(
p
q

)
βq |C|p−q. In combination with the above, the claim follows. �

As one may observe, the claim deals with right translates while the group that we consider is not
necessarily unimodular. We will then have to consider the constant τ = sup{∆(g) , g ∈ C}, where
∆ is the modular function on G. This constant is finite since C has compact closure.

Since lim
t→0

(1− t)
1
t = 1

e , we can find ε ∈ (0, 1) such that

(7.7) (1− t)[ 1
t
] <

1

2
, for all t ∈ (0, ε].

Since lim
n→∞

|An ∩D| = 0, we can find N such that |An ∩D|/|C| 6 ε, for all n > N .

Fix n > N and let pn := |B|
2τ |C|

[
|C|

|An∩D|

]
. Also, let x ∈ B. Then we have that B ⊂ xC and hence

|An ∩B| 6 |An ∩ xC|.
Defining tn = |An ∩ B|/|C| we see that tn 6 |An ∩D|/|C| 6 ε. By (7.6) we get pn > α

tn
> α[ 1

tn
],

where α = κ|B|
2τ |C| . By using (7.7) we deduce that

1−
(

1− |An ∩ xC|
|C|

)pn
> 1− (1− tn)pn > 1− (1− tn)α[ 1

tn
] > 1− 1

2α
.

By combining this inequality with the claim above, we find gn,1, gn,2, ..., gn,pn ∈ C such that Ãn :=

∪pni=1Ang
−1
n,i satisfies

(7.8) (1− 1

2α
)|B| < |Ãn ∩B|, for all n > N.

Moreover, we also have the upper bound

(7.9) |Ãn ∩B| 6
pn∑
i=1

|Ang−1
i ∩B| 6

pn∑
i=1

|An ∩Bgi|τ 6 τpn|An ∩D| 6
|B|
2
, for all n > N.
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Finally, let g ∈ Γ and K ∈ C(G). We claim that lim
n→∞

|(gÃn∆Ãn) ∩K| = 0. To this end, note that

gÃn∆Ãn ⊂ ∪pni=1(gAn∆An)g−1
n,i . Denote L = KC and notice that Kgn,i ⊂ L. Also, since B ⊂ D,

we get that pn 6 |C|/|An ∩B|. By combining all of these facts we get that

|(gÃn∆Ãn) ∩K| 6
pn∑
i=1

|(gAn∆An)g−1
n,i ∩K|

6 pnτ |(gAn∆An) ∩ L| 6 τ |C| |(gAn∆An) ∩ L|
|An ∩B|

.

Since L ∈ C(G), we have that lim
n→∞

|(gAn∆An) ∩ L|/|An ∩B| = 0. This proves our claim.

Let µ be a Borel probability measure on G which is equivalent to mG. By combining the claim
and Lemma 7.7 we get that lim

n→
µ(gÃn∆Ãn) = 0, for all g ∈ Γ. Since the action Γ y (G,mG) is

strongly ergodic, we conclude that lim
n→∞

µ(Ãn)(1− µ(Ãn)) = 0. By applying Lemma 7.7 again, we

get that lim
n→∞

|Ãn ∩ B|(|B| − |Ãn ∩ B|) = 0. This however contradicts the inequalities (7.8) and

(7.9). We have therefore shown that the case ` = 0 leads to a contradiction, as desired. �

8. Proofs of Corollaries G and H

8.1. Proof of Corollary G. We only treat the case when H is trivial. The general case can then
be deduced in a similar fashion as in the proof of Corollary C. Assume that the conclusion is false.

Then we can find a sequence of non-negligible measurable sets An ⊂ B such that |An| 6 |B|2 and

(8.1)
|(gAn ∩B) \An|

|An|
→ 0, for every g ∈ Γ.

Our first goal is to show that the sets An are equidistributed, in the following sense:

(8.2) lim
n

|C ∩An|
|An|

=
|C|
|B|

, for every C ∈ C(B).

To this end, we denote by C(B) the collection of all measurable subsets of B, and define a finitely

additive measure ν : C(B)→ [0, 1] by letting ν(C) = limn
|C∩An|
|An| , for every C ∈ C(B).

Let us first show that ν(gC) = ν(C), whenever C ∈ C(B) and g ∈ Γ satisfy gC ⊂ B. Since

|gC ∩An| = |C ∩ g−1An| = |C ∩ (g−1An ∩B)| 6 |C ∩An|+ |(g−1An ∩B) \An|,

dividing by |An| and using (8.1) yields that ν(gC) 6 ν(C). Since the same argument shows that
ν(C) = ν(g−1(gC)) 6 ν(gC), the assertion follows.

Next, we claim that ν extends to a Γ-invariant finitely additive measure ν̃ : C(G) → [0,∞). Let
C ∈ C(G). Since Γ is dense in G, we can find a measurable partition {Ci}ki=1 of C and g1, ..., gp ∈ Γ
such that giCi ⊂ B, for every 1 6 i 6 p. We define ν̃(C) =

∑p
i=1 ν(giCi). To see that ν̃ is

well-defined, consider another measurable partition {Dj}qj=1 of C and h1, ..., hq ∈ Γ such that

hjDj ⊂ B, for every 1 6 j 6 q. Then for all i, j, we have that gi(Ci ∩Dj), hj(Ci ∩Dj) ⊂ B, thus
ν(gi(Ci ∩Dj)) = ν(hj(Ci ∩Dj)). Using this fact we derive that

p∑
i=1

ν(giCi) =

p∑
i=1

( q∑
j=1

ν(gi(Ci ∩Dj))
)

=

q∑
j=1

( p∑
i=1

ν(hj(Ci ∩Dj))
)

=

q∑
j=1

ν(hjDj),

showing that ν̃ is well-defined. It is now clear that ν̃ is finitely additive and extends ν.
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Since the action Γ y G has local spectral gap and ν̃(B) = 1, Theorem D implies that ν̃(C) = |C|
|B| ,

for every C ∈ C(G), thus proving (8.2).

Note that α := infn |An| > 0. Otherwise, after replacing {An}n with a subsequence, we may assume
that

∑
n |An| < B. But then C = B \ (∪nAn) would satisfy ν̃(C) = ν(C) = 0, while |C| > 0.

Define ηn = 1An −
|An|
|B| 1B ∈ L

2(B). Further, let g ∈ Γ, and note that if A ⊂ B is a subset, then

gA \A ⊂ ((gA ∩B) \A) ∪ (gB \B). Using this, for every n we get that

‖g · ηn − ηn‖2 6 ‖1gAn − 1An‖2 + ‖1gB − 1B‖2
=
√

2|gAn \An|+
√

2|gB \B|

6
√

2|(gAn ∩B) \An)|+ 2|gB \B|+
√

2|gB \B|.

In combination with (8.1) it follows that limn ‖g · ηn − ηn‖2 6 2
√

2|gB \B|.

Let ε > 0 such that supg∈Bε(1) |gB \B| < α
128 . By applying Theorem 6.7 we can find a probability

measure µ supported on Γ∩Bε(1) and a finite dimensional subspace V ⊂ L2(B) such that we have

‖µ ∗ F‖2 <
√
α

4
√
|B|
‖F‖2, for every F ∈ L2(B)	 V . By using the previous paragraph we have

lim
n
‖µ ∗ ηn − ηn‖2 6 sup

g∈Bε(1)
2
√

2|gB \B| <
√
α

4
.

Moreover, since ‖ηn‖22 = |An|(1 − |An||B| ) and |An| 6 |B|
2 , we deduce that

√
α

2 < ‖ηn‖2 <
√
|B|.

Using this, we conclude that limn ‖µ ∗ ηn‖2 >
√
α

4 >
√
α

4
√
|B|

supn ‖ηn‖2. On the other hand, (8.2)

implies that ηn → 0, weakly in L2(B). This gives a contradiction, and finishes the proof of the
main assertion.

Let us prove the moreover assertion. Assuming that this assertion is false, we can find a sequence

of non-negligible measurable sets An ⊂ B such that |An| 6 |B|2 and (8.1) holds for all g ∈ Γ∩Bε(1).

Let B0 ⊂ B be a non-negligible measurable set with B0B
−1
0 ⊂ Bε(1). Put A′n := An ∩ B0

and assume that limn
|A′n|
|An| > 0. We claim that limn |A′n| = |B0|. Indeed, it is easy to see that

limn
|gA′n∩B0\A′n|

|A′n|
= 0, for every g ∈ Γ∩Bε(1). Since gB0∩B0 6= ∅ forces g ∈ Bε(1), the last identity

holds for every g ∈ Γ, and the first part of the proof implies the claim.

Finally, choose a neighborhood B1 of the identity such that B1B
−1
1 ⊂ Bε(1). Denote by C the set of

x ∈ B such that limn
|An∩B1x|
|An| > 0. By the claim, if x ∈ C, then limn |An∩B1x∩B| = |B1x∩B| > 0.

Since B is open, it is easy to check that C is both an open and closed subset. This contradicts the
connectedness of B. �

8.2. Proof of Corollary H. Let S = {g1, ..., gk} be a finite symmetric subset of G. Recall that

the operator PS : L2(B) → L2(B) is given by PS(F ) = 1
k

∑k
i=1

(
1B∩giB gi · F + 1B\giB F

)
. We

start by giving a useful formula for 〈PS(F ), F 〉. Since 1B\giBF = F − 1B∩giBF , we get that

〈PS(F ), F 〉 = ‖F‖22 −
1

k

k∑
i=1

(
‖F‖22,B∩giB − 〈1B gi · F,1giB F 〉

)
.
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Since ‖gi · F − F‖22,B∩giB = ‖F‖2
2,B∩g−1

i B
+ ‖F‖22,B∩giB − 2<〈1B gi · F,1giB F 〉, for all i, and S is

symmetric, we deduce that

(8.3) 〈PS(F ), F 〉 = ‖F‖22 −
1

2k

k∑
i=1

‖gi · F − F‖22,B∩giB.

Since ‖g · F − F‖2,B∩gB 6 2‖F‖2, this calculation implies that PS is symmetric and ‖PS‖ 6 1.

Moreover, if there is 1 6 i 6 k such that B ∩ giB = ∅, then 〈PS(F ), F 〉 > (−1 + 2
k )‖F‖22, and

therefore the spectrum of PS satisfies σ(PS) ⊂ [−1 + 2
k , 1].

Assume that the conclusion of Corollary H is false. Thus, the restriction of PS to L2(B) 	 C1B
has norm 1, for every finite symmetric set S ⊂ Γ. Fix g ∈ Γ such that gB ∩ B = ∅. It follows
that 1 ∈ σ(PS |L2(B)	C1B ), for every finite symmetric set S ⊂ Γ which contains g. Using (8.3)

we conclude that there is a sequence Fn ∈ L2(B) 	 C1B such that ‖Fn‖2 = 1, for all n, and
‖g · Fn − Fn‖2,B∩gB → 0, for every g ∈ Γ.

We claim that Fn → 0, weakly. Indeed, any weak limit point F of {Fn} satisfies F (g−1x) = F (x),
for all g ∈ Γ and almost every x ∈ B ∩ gB. It is clear that F can be extended to a Γ-invariant
function F̃ ∈ L2

loc(G). Since Γ < G is dense, F̃ and therefore F must be a constant function. Since
F has zero integral, we get that F ≡ 0, which proves the claim.

Next, we define a finitely additive measure ν : C(B) → [0, 1] by letting ν(C) = limn ‖Fn‖22,C . It is

easy to check that ν(gC) = ν(C), whenever C ∈ C(B) and g ∈ Γ satisfy gC ⊂ B. By repeating the

reasoning from the proof of Corollary G it follows that ν(C) = |C|
|B| , for every C ∈ C(B). Since

‖g · Fn − Fn‖2 6 ‖g · Fn − Fn‖2,B∩gB + ‖Fn‖2,B\g−1B + ‖Fn‖2,B\gB,

we get that limn ‖g · Fn − Fn‖2 6 2
√
|gB\B|
|B| , and the proof of Corollary G gives a contradiction. �

Appendix A. Proof of Lemma 4.1

Let G be a connected simple Lie group with trivial center and denote by g its Lie algebra. The goal
of this appendix is to prove Lemma 4.1. To this end, by relying on results from [dS14, Ta06] and
following closely the proof of [BdS14, Lemma 2.5], we first prove the following `2-flattening lemma.

In order to do so, it will be more convenient to work with an invariant metric on G, rather than
the ‖.‖2-metric used in the rest of the paper. We therefore fix an Euclidean structure on g, and
endow G with the corresponding left-invariant Riemannian metric, denoted by d.

For further reference, we note that there is a constant C > 1 such that

(A.1) C−1 log(1 + ‖x−1y − 1‖2) 6 d(x, y) 6 C log(1 + ‖x−1y − 1‖2), for all x, y ∈ G.

Indeed, it suffices to show that C−1 log(1 + ‖x − 1‖2) 6 d(x, 1) 6 C log(1 + ‖x − 1‖2), for x ∈ G.
This is clear if x belongs to a small enough neighborhood V of the identity. On the other hand,
if x 6∈ V , then one can easily prove such an inequality by using the KAK decomposition of G
(see [LMR00, Section 3] for details).

Let δ > 0. We denote by B(x, δ) = {y ∈ G|d(x, y) < δ} the open ball of radius δ centered at x ∈ G,

and by A[δ] = ∪x∈AB(x, δ) the δ-neighborhood of a set A ⊂ G, both with respect to the metric d.
For a probability measure µ on G, we denote µδ = µ ∗Qδ, where

Qδ =
1B(1,δ)

|B(1, δ)|
.
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Lemma A.1 (`2-flattening, [BdS14]). Let G be a connected simple Lie group with trivial center.
Given α, κ > 0, there exists ε > 0 such that the following holds for any δ > 0 small enough:

Suppose that µ is a symmetric Borel probability measure on G such that

(1) supp(µ) ⊂ B(1, ε log 1
δ ),

(2) ‖µδ‖2 > δ−α, and

(3) (µ ∗ µ)(H [ρ]) 6 δ−ερκ, for all ρ > δ and an proper closed connected subgroup H < G.

Then ‖µδ ∗ µδ‖2 6 δε‖µδ‖2.

Notation. We use the notation O(ε) to denote a positive quantity which is bounded by Cε,
for some constant C > 0 depending only on G. We also use the notation φ � ψ for functions
φ, ψ : (0,∞) → (0,∞) to mean the existence of a constant C depending only on G such that
φ(δ) 6 Cψ(δ), for any small enough δ > 0. If φ� ψ and ψ � φ, we write φ ' ψ.

A.1. Ingredients of the proof of Lemma A.1. The proof of Lemma A.1 relies on Bourgain and
Gamburd’s strategy [BG05,BG06]. In order to implement this strategy, we use de Saxcé’s product
theorem [dS14, Theorem 3.9]. Recall that if A is a subset of G and δ > 0, then N(A, δ) denotes
the least number of open balls of radius δ needed to cover A.

Theorem A.2 (product theorem, [dS14]). Let G be a simple Lie group of dimension d. Then there
exists a neighborhood U of the identity in G such that the following holds.

Given α ∈ (0, d) and κ > 0, there exist ε0 = ε0(α, κ) and τ = τ(α, κ) > 0 such that, for any δ > 0
small enough, if A ⊂ U is a set satisfying

(1) N(A, δ) 6 δ−d+α−ε0,
(2) N(A, ρ) > ρ−κδε0, for all ρ > δ, and
(3) N(AAA, δ) 6 δ−ε0N(A, δ),

then A is contained in a neighborhood of size δτ of a proper closed connected subgroup of G.

To prove Lemma A.1, we will also need Tao’s non-commutative Balog-Szemerédi-Gowers Lemma
[Ta06, Theorem 6.10]. If A,B are subsets of a metric group G and δ > 0, then the δ-multiplicative
energy Eδ(A,B) is defined as Eδ(A,B) = N({(a, b, a′, b′) ∈ A × B × A × B | d(ab, a′b′) 6 δ}, δ).
The following inequality will be used in the proof of Lemma A.1

Eδ(A,B)� δ−3d‖1A ∗ 1B‖22.

Indeed, define f : A×B×A→ G by f(a, b, a′) = a′−1ab, S = {(a, b, a′) ∈ A×B×A|f(a, b, a′) ∈ B},
and T = {(a, b, a′, b′) ∈ A × B × A × B|d(b′, f(a, b, a′)) 6 δ}. Then we have ‖1A ∗ 1B‖22 = |S| and
δd|S| � |T | � δ4dN(T, δ) = δ4dEδ(A,B), which together prove the desired inequality.

Recall that a subset H ⊂ G is called a K-approximative subgroup, for some K > 1, if it is symmetric
and there is a symmetric set X ⊂ HH of cardinality at most K such that HH ⊂ XH.

Theorem A.3 (non-commutative Balog-Szemerédi-Gowers lemma, [Ta06]). Let G be a Lie group
endowed with a left-invariant Riemannian metric. Then there exist constants c > 0 and R > 0 such
that the following holds for any δ ∈ (0, 1) and K > 2.

Suppose that A,B are non-empty subsets of G contained in B(1, 1) such that

Eδ(A,B) >
1

K
N(A, δ)

3
2N(B, δ)

3
2 .

Then there is a Kc-approximate subgroup H of G and elements x, y ∈ G such that
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• N(H, δ) 6 Kc N(A, δ)
1
2N(B, δ)

1
2 ,

• N(xH ∩A, δ) > K−cN(A, δ),
• N(Hy ∩B, δ) > K−cN(B, δ),
• x, y ∈ B(1, R) and H ⊂ B(1, R).

A final ingredient in the proof of Lemma A.1 is an approximation of the measure µδ by dyadic level
sets [LdS13]. A family of sets {Ai}i∈I is called essentially disjoint if there is a constant C such that
the intersection of more than C distinct sets Ai is empty.

Lemma A.4. [LdS13] Let µ be a Borel probability measure on G. Let δ ∈ (0, 1) and C be a maximal
δ-separated subset of G. Define C0 = {x ∈ C|0 < µ2δ(x) 6 1} and Ci = {x ∈ C|2i−1 < µ2δ(x) 6 2i},
for i > 1. For i > 0, let Ai = ∪x∈CiB(x, δ). Then we have the following

(1) at most O(1) log 1
δ of the sets Ai are non-empty,

(2) Ai is an essentially disjoint union of balls of radius δ, for all i > 0,
(3) µδ �

∑
i>0 2i1Ai and

∑
i>0 2i1Ai � µ3δ.

Proof. These assertions follow from [LdS13, Lemma 4.4], but for completeness, we include a proof.
Since |µ2δ(x)| 6 1

|B(1,2δ)| � δ−d, for any x ∈ G, (1) is immediate. Note that the balls {B(x, δ)}x∈C
cover G, while the balls {B(x, δ2)}x∈C are disjoint. Since a ball of radius 3δ can contain at most

O(1) disjoint balls of radius δ
2 , the balls {B(x, δ)}x∈C are essentially disjoint. This implies (2).

To prove (3), let y ∈ G. If x ∈ G is such that y ∈ B(x, δ), then

µδ(y) =
µ(B(y, δ))

|B(1, δ)|
6
µ(B(x, 2δ))

|B(1, δ)|
� µ(B(x, 2δ))

|B(1, 2δ)|
= µ2δ(x),

and similarly µ2δ(x) � µ3δ(y). Assuming µδ(y) > 0, let x ∈ C with y ∈ B(x, δ). Then µ2δ(x) > 0,
hence x ∈ Ci and y ∈ Ai, for some i > 0. This implies that µδ(y)� µ2δ(x)1Ai(y) 6 2i1Ai(y).

On the other hand, if y ∈ Ai, for i > 0, then there is x ∈ C such that y ∈ B(x, δ) and µ2δ(x) > 2i−1.
Hence, 2i1Ai(y) = 2i < 2µ2δ(x) � µ3δ(y). Since the balls {B(x, δ)}x∈C are essentially disjoint, y
belongs to O(1) of the sets {Ai}i>0 and it follows that

∑
i>0 2i1Ai(y)� µ3δ(y). This proves (3). �

Lemma A.5. Let a > 0 and µ be a Borel probability measure on G.

Then supδ<δ′<1 ‖µδ′‖2 � ‖µδ‖2 and ‖µδ‖2 ' ‖µaδ‖2.

Proof. Let 1 > δ′ > δ > 0. Then |B(1, δ)|1B(1,δ′) 6 1B(1,δ) ∗ 1B(1,δ+δ′) and thus

Qδ′ 6
|B(1, δ + δ′)|
|B(1, δ′)|

Qδ ∗Qδ+δ′ � Qδ ∗Qδ+δ′ .

We further get that ‖µ ∗Qδ′‖2 � ‖(µ ∗Qδ) ∗Qδ+δ′‖2 6 ‖µ ∗Qδ‖2, thus proving the first inequality.
To prove the second inequality we may assume a > 1. Then for any x ∈ G we have

µaδ(x) =
µ(B(x, aδ))

|B(1, aδ)|
>
|B(1, δ)|
|B(1, aδ)|

µ(B(x, δ))

|B(1, δ)|
� µδ(x).

Thus, ‖µaδ‖2 � ‖µδ‖2. Since ‖µaδ‖2 � ‖µδ‖2 by the above, we are done. �
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A.2. Proof of Lemma A.1. Assume that ‖µδ ∗µδ‖2 > δε‖µδ‖2, for some ε > 0. Following closely
the proof of [BdS14, Lemma 2.5], we will reach a contradiction for any ε small enough.

Let U be the neighborhood of 1 ∈ G provided by Theorem A.2, and let 0 < r < 1 with B(1, r) ⊂ U .
Let R be the constant given by Theorem A.3, and {Ai}06i�log 1

δ
be the sets given by Lemma A.4.

Let C > 1 the constant appearing in inequality (A.1). By using (A.1) one easily checks that

(A.2) d(x−1, y−1) 6 Ce2Cd(x,1)(eCd(x,y) − 1), for any x, y ∈ G.

Assume that 3Cε < 1. Let 0 6 i� log 1
δ . Since supp(µ) ⊂ B(1, ε log 1

δ ), we get that Ai is contained

in B(1, ε log 1
δ + 3δ). Since |B(1, ε log 1

δ + 3δ)| = δ−O(ε) and |B(1, δ
3Cε

8 )| = δO(ε), Ai can be covered

by at most δ−O(ε) sets of diameter at most δ3Cε

2 . Since Ai is a union of balls of radius δ, and

δ 6 δ3Cε

2 , for δ small enough, we can decompose Ai = ∪δ−O(ε)

k=1 Ai,k, where each set Ai,k is the union

of some of the balls of radius δ that make up Ai, and has diameter at most δ3Cε. Moreover, by

(A.2) the diameter of A−1
i,k is at most Ce2C(ε log 1

δ
+3δ)(eCδ

3Cε − 1) ' δCε. Thus, for δ small enough,

Ai,k has diameter at most min{1, r} and A−1
i,k has diameter at most 1, for all k.

Before continuing, let us also note that

(A.3) δO(ε)N(A, δ) 6 N(Ah, δ) 6 δ−O(ε)N(A, δ),

for every set A ⊂ B(1, ε log 1
δ + 3δ) and any h ∈ B(1, ε log 1

δ + 3δ + 1). Indeed, by using (A.2) it is

immediate that B(1, δ1+O(ε)) ⊂ h−1B(1, δ)h ⊂ B(1, δ1−O(ε)), which easily implies (A.3).

Since µδ �
∑

i 2i1Ai 6
∑

i,k 2i1Ai,k , we get that

δε‖µδ‖2 6 ‖µδ ∗ µδ‖2 6
∑

06i,j�log 1
δ

16k,l6δ−O(ε)

‖2i1Ai,k ∗ 2j1Aj,l‖2.

Since the sum on the right contains δ−O(ε) terms, we can find 0 6 i, j � log 1
δ and 1 6 k, l 6 δ−O(ε)

such that if we denote A′i = Ai,k and A′j = Aj,l, then

‖2i1A′i ∗ 2j1A′j‖2 > δ
O(ε)‖µδ‖2.

We claim that i > 0. Note that ‖1A0‖1 = |A0| 6 |B(1, ε log 1
δ + 3δ)| = δ−O(ε) and ‖1A0‖2 = δ−O(ε).

Moreover, if j > 0, then ‖2j1A′j‖1 6 ‖2
j1Aj‖1 � ‖µ3δ‖1 = 1 (by Lemma A.4). Young’s inequality

gives that ‖1A0 ∗ 2j1A′j‖2 6 ‖1A0‖2‖2j1A′j‖1 6 δ−O(ε), for any j > 0. Since δO(ε)‖µδ‖2 > δO(ε)−α,

we cannot have i = 0, provided ε > 0 is small enough. Similarly, we must have that j > 0.

Since ‖2j1A′j‖2 6 ‖2
j1Aj‖2 � ‖µ3δ‖2 ' ‖µδ‖2 (by Lemma A.5), Young’s inequality gives that

δO(ε)‖µδ‖2 6 ‖2i1A′i ∗ 2j1A′j‖2 6 ‖2
i1A′i‖1‖2

j1A′j‖2 6 2i|A′i‖µδ‖2.

This implies that

(A.4) 2i|A′i| = δO(ε) and similarly 2j |A′j | = δO(ε).

Next, since 2i|A′i| 6 2i|Ai| � ‖µ3δ‖1 = 1, we deduce that

δO(ε)‖µδ‖2 6 ‖2i1A′i ∗ 2j1A′j‖2 6 ‖2
i1A′i‖2‖2

j1A′j‖1 � 2i|A′i|
1
2 6 |A′i|−

1
2 .
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Using that ‖µδ‖2 > δ−α, it follows that |A′i| 6 δ
α
2
−O(ε). Since A′i is an essentially disjoint union of

balls of radius δ, we have |A′i| ' δdN(A′i, δ). Altogether, we deduce that

(A.5) N(A′i, δ) 6 δ
−d+α

2
−O(ε) and similarly N(A′j , δ) 6 δ

−d+α
2
−O(ε).

By combining the inequalities 2i|A′i|
1
2 = ‖2i1A′i‖2 6 ‖µ3δ‖2 ' ‖µδ‖2 and 2i|A′i| � 1 with the fact

that |A′i| ' δdN(A′i, δ), we derive that

‖1A′i ∗ 1A′j‖
2
2 > δ

O(ε)2−2i−2j‖µδ‖22 > δO(ε)2−i−j |A′i|
1
2 |A′j |

1
2

= δO(ε)(2i|A′i|)−1|A′i|
3
2 (2jA′j)

−1|A′j |
3
2

> δ3d+O(ε)N(A′i, δ)
3
2N(A′j , δ)

3
2 .

Since A′i and A′j
−1 have diameters at most 1, we can find g, h ∈ B(1, ε log 1

δ + 3δ + 1) such that

gA′i ⊂ B(1, 1) and A′jh ⊂ B(1, 1). On the other hand, combining the last inequality with A.3 yields

Eδ(gA
′
i, A
′
jh)� δ−3d‖1gA′i ∗ 1A′jh‖

2
2 = δ−3d‖1A′i ∗ 1A′j‖

2
2

> δO(ε)N(A′i, δ)
3
2N(A′j , δ)

3
2

> δO(ε)N(gA′i, δ)
3
2N(A′jh, δ)

3
2

By applying Theorem A.3 to gA′i and A′jh, we deduce the existence of a δ−O(ε)-approximate sub-

group H ⊂ B(1, R) and elements z, t ∈ B(1, R) such that N(H, δ) 6 δ−O(ε)N(gA′i, δ)
1
2N(A′jh, δ)

1
2 ,

N(zH∩gA′i, δ) > δO(ε)N(gA′i, δ) and N(Ht∩A′jh, δ) > δO(ε)N(A′jh, δ). Let v = g−1z and w = th−1.

By using (A.3) we further get that

(A.6) N(H, δ) 6 δ−O(ε)N(A′i, δ)
1
2N(A′j , δ)

1
2 ,

(A.7) N(vH ∩A′i, δ) > δO(ε)N(A′i, δ) and N(Hw ∩A′j , δ) > δO(ε)N(A′j , δ).

The next claim allows us to replace H with its 4δ-neighborhood:

Claim. H̃ := H [4δ] satisfies the following:

(1) µδ(vH̃ ∩A′i) > δO(ε).

(2) N(H̃2, δ) 6 N(H̃6, δ) 6 δ−O(ε)N(H̃, δ).

Proof of the claim. (1) Recall that there is a subset C′i ⊂ Ci such that A′i = ∪x∈C′iB(x, δ). Since

N(vH ∩ A′i, δ) > δO(ε)N(A′i, δ) by (A.7), we get that vH intersects at least δO(ε)N(A′i, δ) of the

balls {B(x, δ)}x∈C′i . Thus, vH̃ ∩ A′i = (vH)[4δ] ∩ A′i contains at least δO(ε)N(A′i, δ) of the balls

{B(x, 3δ)}x∈C′i . Since the balls {B(x, δ)}x∈C′i and hence the balls {B(x, 3δ)}x∈C′i are essentially

disjoint, vH̃∩A′i must contain at least δO(ε)N(A′i, δ) disjoint balls from the collection {B(x, 3δ)}x∈C′i .

On the other hand, for every x ∈ Ci we have that µ2δ(x) > 2i−1 and hence

µδ(B(x, 3δ)) > µ(B(x, 2δ)) = |B(1, 2δ)|µ2δ(x)� δd2i.
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Since δdN(A′i, δ) ' |A′i|, and 2i|A′i| = δO(ε) by A.4, we finally derive that

µδ(vH̃ ∩Ai) > δO(ε)N(A′i, δ)δ
d2i ' δO(ε)2i|A′i| = δO(ε).

(2) Let X ⊂ G be a set of cardinality δ−O(ε) such that HH ⊂ HX. Since H ⊂ B(1, R) and R is an

absolute constant, by using (A.2) it follows that H̃H̃ ⊂ (HH)[O(1)δ], and thus H̃H̃ ⊂ H [Dδ]X, for
some constant D > 1. Let S ⊂ H be a maximal set such that the balls {B(x, δ)}x∈S are disjoint.

Then ∪x∈SB(x, δ) ⊂ H [δ] and H ⊂ ∪x∈SB(x, 2δ), therefore H [Dδ] ⊂ ∪x∈SB(x, (D+ 2)δ). Let Y be
a set of cardinality O(1) with B(1, (D+ 2)δ) ⊂ B(1, δ)Y . Then B(x, (D+ 2)δ) ⊂ B(x, δ)Y , for any

x ∈ G, implying that H [Dδ] ⊂ H [δ]Y . Altogether, we get that H̃H̃ ⊂ H [δ]Z ⊂ H̃Z, where Z = Y X.
Since H̃ is symmetric, we have H̃H̃ ⊂ Z−1H̃. Since the cardinality of Z is δ−O(ε), (2) follows. �

Let us show that for ε > 0 small enough, the set H̃2 ∩U satisfies the assumptions of Theorem A.2.
Firstly, using (2) above in combination with (A.5) and (A.6) we get that

(A.8) N(H̃2 ∩ U, δ) 6 N(H̃2, δ) 6 δ−d+α
2
−O(ε).

Secondly, since A′i has diameter at most r, we get that A′i
−1A′i ⊂ B(1, r) ⊂ U . This implies that

(vH̃ ∩A′i)−1(vH̃ ∩A′i) ⊂ H̃2 ∩ U . In combination with (1) from the claim, it follows that

(A.9) µ̌δ ∗ µδ(H̃2 ∩ U) > µ̌δ((vH̃ ∩A′i)−1)µδ(vH̃ ∩A′i) = µδ(vH̃ ∩A′i)2 > δO(ε).

Let 1 > ρ > δ and x ∈ G such that B(x, ρ)∩U 6= ∅. Then B(1, δ)B(x, ρ)B(1, δ) ⊂ B(x, ρ+O(1)δ).
Since B(x, ρ + O(1)δ) is contained in the (ρ + O(1)δ)-neighborhood of a proper closed connected
subgroup of G, the hypothesis implies that µ ∗µ(B(x, ρ+O(1)δ))� δ−ερκ. By using the fact that
µ and Qδ are symmetric, we get that

µ̌δ ∗ µδ(B(x, ρ)) = (Qδ ∗ µ ∗ µ ∗Qδ)(B(x, ρ))

6 µ ∗ µ(B(1, δ)B(x, ρ)B(1, δ))� δ−ερκ.

Since this holds for any ball of radius ρ that intersects U , in combination with (A.9) it gives that

(A.10) N(H̃2 ∩ U, ρ) > δO(ε)ρ−κ, for all 1 > ρ > δ.

Thirdly, let C ⊂ H̃ be a set of diameter at most r and fix x ∈ C. Since B(1, r) ⊂ U , we get that

x−1C ⊂ C−1C ⊂ H̃2 ∩ U . Thus, N(C, δ) = N(x−1C, δ) 6 N(H̃2 ∩ U, δ). On the other hand, since

H ⊂ B(1, R), we can cover H̃ by O(1) sets of diameter at most r. Altogether, we conclude that

N(H̃, δ)� N(H̃2 ∩ U, δ). Using (2), it follows that

(A.11) N((H̃2 ∩ U)3, δ) 6 N(H̃6, δ) 6 δ−O(ε)N(H̃, δ) 6 δ−O(ε)N(H̃2 ∩ U, δ).

Equations (A.8), (A.10), (A.11) together guarantee that we are in position to apply Theorem A.2

to H̃2 ∩ U . Thus, there is a proper closed connected subgroup L < G such that H̃2 ∩ U ⊂ L[δτ ].
On the other hand, by using (A.9) and reasoning similarly to the above we conclude that

δO(ε) 6 µ̌δ ∗ µδ(H̃2 ∩ U) 6 µ̌δ ∗ µδ(L[δτ ] ∩ U)

6 µ ∗ µ(B(1, δ)(L[δτ ] ∩ U)B(1, δ)) 6 µ ∗ µ(L[δτ+O(1)δ]).

Since the hypothesis implies that µ∗µ(L[δτ+O(1)δ]) 6 δ−ε(δτ +O(1)δ)κ, it is now clear that choosing
ε > 0 small enough yields a contradiction. �
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A.3. Proof of Lemma 4.1. Let α, κ > 0. Let ε > 0 such that the conclusion of Lemma A.1 holds.
Let µ be a symmetric Borel probability measure on G. Then we have

(a) ‖µ ∗ Pδ‖2 ' ‖µ ∗Qδ‖2.

Moreover, assuming that supp(µ) ⊂ Bδ−β (1), for some β > 0, we have that

(b) µ ∗Qδ � δ−O(β) Qδ1−O(β) ∗ µ ∗Qδ1−O(β) .

(c) A[ρ]∩ supp(µ ∗ µ) ⊂ A(δ−O(β)ρ), for any set A ⊂ G and every 1 > ρ > δ.

Indeed, A.1 implies that B(1, δ
2C ) ⊂ Bδ(1) ⊂ B(1, Cδ), for small δ > 0. This readily gives that

Pδ =
1Bδ(1)

|Bδ(1)|
6
|B(1, Cδ)|
|B(1, δ

2C )|
QCδ � QCδ

and similarly Q δ
2C
� Pδ. Therefore, ‖µ ∗ Q δ

2C
‖2 � ‖µ ∗ Pδ‖ � ‖µ ∗ QCδ‖2. On the other hand,

Lemma A.5 implies that ‖µ ∗Q δ
2C
‖2 ' ‖µ ∗Qδ‖2 ' ‖µ ∗QCδ‖2. This altogether proves (a).

By (A.1) we have thatBδ−β (1) ⊂ B(1, 2Cβ log 1
δ ), hence µ and µ∗µ are supported onB(1, 4Cβ log 1

δ ).

To prove (b), we may therefore assume that µ = δx, for some x ∈ B(1, 4Cβ log 1
δ ). Using (A.2)

we get that B(1, 4Cβ log 1
δ )B(1, δ)B(1, 4Cβ log 1

δ ) ⊂ B(1, δ1−O(β)), hence δx ∗ 1B(1,δ) ∗ δx−1 6

1B(1,δ1−O(β)). Since |B(1, δ1−O(β)| � δ−O(β)|B(1, δ)|, this implies that µ ∗Qδ � δ−O(β)Qδ1−O(β) ∗ µ.

Similarly, we have that Qδ � δ−O(β)Qδ ∗Qδ1−O(β) , and combining the last two inequalities implies

(b). Finally, (A.1) gives that ‖x− y‖2 6 δ−O(β)ρ, for any x ∈ G and y ∈ B(1, 4Cβ log 1
δ ) satisfying

d(x, y) < ρ. This clearly implies (c).

To finish the proof, assume that µ additionally satisfies ‖µ∗Pδ‖2 > δ−α, and (µ∗µ)(H(ρ)) 6 δ−γρκ,
for all ρ > δ and any proper closed connected subgroup H < G, for some γ > 0.

By using (a), (c) and Lemma A.5 we get that

• supp(µ) ⊂ B(1, 2Cβ log 1
δ ).

• ‖µ ∗Qδ1−O(β)‖2 � ‖µ ∗Qδ‖2 � δ−α.

• (µ ∗ µ)(H [ρ]) 6 (µ ∗ µ)(H(δ−O(β)ρ)) 6 δ−(γ+κO(β))ρκ, for all ρ > δ and any proper closed
connected subgroup H < G.

If β, γ > 0 are chosen small enough, then Theorem A.1 implies that ‖µδ∗µδ‖2 < δε‖µδ‖2. Moreover,
if β, γ are small enough, then by combining this inequality with (a) and (b) we derive that

‖µ ∗ µ ∗ Pδ‖2 � ‖µ ∗ µ ∗Qδ‖2 6 δ−O(β)‖µ ∗Qδ1−O(β) ∗ µ ∗Qδ1−O(β)‖2
6 δ−O(β)+(1−O(β))ε‖µ ∗Qδ1−O(β)‖2
6 δε−O(β)‖µ ∗Qδ‖2
6 δε−O(β)‖µ ∗ Pδ‖2
6 δγ‖µ ∗ Pδ‖2.

This concludes the proof of Lemma 4.1. �
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