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LAGUERRE BASIS FOR INVERSE PROBLEMS

F. COMTE(1) & V. GENON-CATALOT(2)

Abstract. We present a series of inverse problems of nonparametric statistics which have an
easy solution using projection estimators on a Laguerre basis. The models are Yi = XiUi, Zi =
Xi+Vi, Wi = (Xi+Vi)Ui, Ti = XiUi+Vi, i = 1, . . . , n where the Xi’s and Vi’s are nonnegative,
the Xi’s are i.i.d. with unknown density f , the Vi’s are i.i.d. with known density fV , the Ui’s
are i.i.d. with uniform density on [0, 1]. The sequences (Xi), (Ui), (Vi) are independent. We aim
at estimating f on R+ in the four cases of indirect observations of (X1, . . . , Xn). We propose
projection estimators using a Laguerre basis and give upper bounds of their L2-risks on specific
Sobolev-Laguerre spaces. In each case, a data-driven procedure is described and proved to
perform automatically the bias variance compromise.
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1. Introduction

The aim of this paper is to present a series of inverse problems of nonparametric statistics
which have an easy solution using projection estimators on a Laguerre basis. The paper is partly
a review of some recent results but also contains new aspects.
Consider X1, . . . , Xn n i.i.d. non negative random variables with unknown density f . If the
Xi’s are observed and if f belongs to L2(R+), nonparametric estimators of f can be built by
using a projection method on an orthonormal basis of L2(R+). The basis of normalized Laguerre
functions is a possibility and has the advantage of being composed of R+-supported functions.
If the Xi’s are not directly observed, the estimation of f is an inverse problem. Depending on
the kind of observations, the estimation of f can be difficult. In what follows, we consider four
cases of indirect observations of the Xi’s and show that the use of a projection method on a
Laguerre basis leads to an explicit and implementable solution.
First, we assume that observations are

(1) Yi = XiUi, i = 1, . . . , n

where the sequences (Xi), (Ui) are independent and (Ui) are i.i.d. with uniform distribution
on [0, 1]. The model Yi = XiUi is called multiplicative censoring model and covers several
important statistical problems, in particular estimation under monotonicity constraints (see
e.g. Vardi(1989)). Numerous papers deal with the estimation of f for model (1) whether
by nonparametric maximum likelihood (Vardi (1989), Vardi and Zhang (1992), Asgharian et
al. (2012)), by projection methods (Andersen and Hansen (2001), Abbaszadeh et al. (2012,2013))
or kernel methods (Brunel et al. (2015)). In Belomestny et al. (2016), the estimation of f by
projection estimators on a Laguerre basis is investigated in the more general situation where Ui
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has beta(r, k)-distribution. An adaptive procedure is proposed. We recall the results therein in
the case where Ui has uniform distribution. Moreover, under a slight additional assumption, an
improvement of the risk bound is provided in Comte and Dion (2017) and the adaptive procedure
is modified accordingly.
Second, we consider observations Z1, . . . , Zn such that

(2) Zi = Xi + Vi, i = 1, . . . , n.

where Xi, Vi are nonnegative random variables, (Vi) are i.i.d. with known density fV and the
sequences (Xi), (Vi) are independent. Density estimation from noisy observations is also the
subject of a huge number of contributions. For real-valued random variables, this deconvolution
problem is classically solved by Fourier methods. However, recently, the study of one-sided
errors, i.e. Vi ≥ 0, was motivated by applications in the field of finance (see Jirak et al. (2014))
or in survival models, (see van Es et al. (1998), Jongbloed (1998)). In particular, Mabon (2016)
proposes for model (2) projection estimators of f using a Laguerre basis whose properties allow
deconvolution of densities on R+. We detail this approach.
Finally, we combine the two previous situations. This can be done in two ways which are not
equivalent. On one hand, we assume that observations are:

(3) Wi = (Xi + Vi)Ui, i = 1, . . . , n.

On the other hand, we assume that observations are

(4) Ti = XiUi + Vi, i = 1, . . . , n.

The sequences (Xi), (Ui), (Vi) are supposed to be independent. In each case, we show how to
build projections estimators of f on a Laguerre basis and propose a data-driven choice of the
dimension of the projection space.
The Laguerre basis is related to specific function spaces, the Sobolev-Laguerre spaces (see e.g.
Shen (2000) and Bongioanni and Torrea (2007)). The link between projection coefficients and
regularity conditions in these spaces has been described in Comte and Genon-Catalot (2015).
In each of the above models, we exhibit explicit relations between the projection coefficients of
the density of the observed variables in the Laguerre basis and the projection coefficients of the
unknown density f . This allows to build projection estimators of f . We provide risk bounds for
the estimators, allowing to compute upper bounds for the rates of convergence. Afterwards, we
propose a data-driven procedure leading to an adaptive estimator performing automatically the
bias variance compromise.
In Section 2, we describe the basis and the Sobolev-Laguerre spaces. In Section 3, for the purpose
of comparison with the other models, we study the case of direct observations of X1, . . . , Xn.
Sections 4-6 deal with the four successive models. In Section 7, we review some extensions and
other inverse problems that can be solved by the Lagurre appproach. Section 8 contains a recap
of useful formulae for Laguerre functions and all proofs. In the Appendix, we give the Talagrand
inequality used for proving the adaptation results.

2. About Laguerre bases and spaces

We start by presenting the Laguerre basis that we have chosen and the Sobolev-Laguerre
spaces. More details on Laguerre functions are given in Section 8.1.

2.1. Laguerre basis. Below we denote the scalar product and the L2-norm on L2(R+) by:

∀s, t ∈ L2(R+), 〈s, t〉 =

∫ +∞

0
s(x)t(x)dx, ‖t‖2 =

∫ +∞

0
t2(x)dx.
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Consider the Laguerre polynomials (Lj) and the Laguerre functions (ϕj) given by

(5) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, ϕj(x) =

√
2Lj(2x)e−x1Ix≥0, j ≥ 0.

The collection (ϕj)j≥0 constitutes a complete orthonormal system on L2(R+), and is such that
(see Abramowitz and Stegun (1964)):

(6) ∀j ≥ 1, ∀x ∈ R+, |ϕj(x)| ≤
√

2.

For h ∈ L2(R+), we can develop h on the Laguerre basis with:

h =
∑
j≥0

aj(h)ϕj , aj(h) = 〈h, ϕj〉.

When h is a density, a0(h) = 〈h, ϕ0〉 =
√

2
∫ +∞

0 h(x)e−xdx > 0.
By convention, we set ϕj = 0 if j ≤ −1 and define the vector of coefficients of h on (ϕ0, . . . , ϕm−1):

~am−1(h) := t(aj(h))0≤j≤m−1.

We define the m-dimensional space Sm = span(ϕ0, ϕ1, . . . , ϕm−1). The function

hm =
m−1∑
j=0

aj(h)ϕj

is the orthogonal projection of h on Sm.

2.2. Sobolev-Laguerre spaces. For s ≥ 0, the Sobolev-Laguerre space with index s (see
Bongioanni and Torrea (2007)) is defined by:

(7) W s = {h : R+ → R, h ∈ L2(R+),
∑
k≥0

ksa2
k(h) < +∞}.

The following results have been proved in Section 7 of Comte and Genon-Catalot (2015) and
Section 7.2 of Belomestny et al. (2016).
For s integer, if h : R+ → R belongs to L2(R+), then

(8) |h|2s :=
∑
k≥0

ksa2
k(h) < +∞.

is equivalent to the property that h admits derivatives up to order s − 1, with h(s−1) being
absolutely continuous and for m = 0, . . . , s− 1, the functions

ξm+1(x) := x(m+1)/2(h(x)ex)(m+1)e−x = x(m+1)/2
m+1∑
j=0

(
m+ 1

j

)
h(j)(x)

belong to L2(R+). Moreover, for m = 0, 1, . . . , s− 1,

‖ξm+1‖2 =
∑

k≥m+1

k(k − 1) . . . (k −m)a2
k(h).

For h ∈W s with s integer, we set ‖h‖20 = ‖h‖2 and for s ≥ 1

(9) ‖h‖s = ‖ξs‖ = [
∑
k≥s

k(k − 1) . . . (k − s+ 1)a2
k(h)]1/2.
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Now we set

‖|h‖|2s :=
s∑
j=0

‖h‖2j .

Then it holds that, when s is integer, the two norms ‖|h‖|s and |h|s are equivalent.
We define the ball W s(D) by (see (7)-(8)):

W s(D)
.
=

{
f ∈W s, |f |2s =

∞∑
k=0

ksa2
k(f) ≤ D

}
.

3. Projection estimators of f in the Laguerre basis when Xi’s are observed

We assume that f belongs to L2(R+) and provide for each m ≥ 1, a projection estimator of f
by estimating the coefficients aj(f), j = 0, . . . ,m − 1. In the case where the Xi’s are observed,
we define the empirical and unbiased estimator of aj(f) by

âj(X) =
1

n

n∑
i=1

ϕj(Xi) and the projection estimator f̂Xm =
m−1∑
j=0

âj(X)ϕj .

Clearly, f̂Xm an unbiased estimator of fm =
∑m−1

j=0 aj(f)ϕj , the orthogonal projection of f on

Sm. By the Pythagoras Theorem, we have ‖f̂Xm − f‖2 = ‖f − fm‖2 + ‖f̂Xm − fm‖2 . As (ϕj)j is

orthonormal, we get ‖f̂Xm − fm‖2 =
∑m−1

j=0 (âj(X)− aj(f))2 and

E[(âj(X)− aj(f))2] =
1

n
Var(ϕj(X)) ≤ 1

n
E(ϕ2

j (X)).

Therefore, with (6), we obtain the risk bound:

(10) E(‖f̂Xm − f‖2) ≤ ‖f − fm‖2 + 2
m

n
.

Remark 3.1. The risk bound decomposition (10) classically involves a bias term ‖f − fm‖2 =∑
j≥m a

2
j (f) which is decreasing with m and a variance term of order m/n which is increasing

with m. Therefore, to evaluate the rate of convergence, we have to perform a compromise to
select relevantly m.

For f ∈ W s(D), ‖f − fm‖2 =
∑

j≥m a
2
j (f) ≤ Dm−s. Choosing mopt = [n1/(s+1)] in the r.h.s.

of (10) implies

E(‖f̂Xmopt
− f‖2) ≤ C0(s,D)n−s/(s+1)

where C0(s,D), is a constant depending on s and D only. The following lower bound result is
proved in Belomestny et al. (2016) implying that the above rate is minimax optimal on Sobolev-
Laguerre balls (up to a logarithmic term).

Theorem 3.1. Assume that s is an integer, s > 1.
Then for any estimator f̂n built as a measurable function of X1, . . . , Xn, for any ε > 0 and for
n large enough,

sup
f∈W s(D)

Ef
[
‖f̂n − f‖2

]
% ψn, ψn = n−s/(s+1)/ log(1+ε)/(s+1)(n).

Remark 3.2. On some concrete examples, faster rates of convergence of the L2-risk may be
obtained. Exponential distributions provide examples of such a case. If X has exponential
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distribution E(θ), θ > 0, then the projection coefficients are given by ak(f) =
√

2[θ/(θ +

1)] ((θ − 1)/(θ + 1))k and the bias can be explicitly computed,

‖f − fm‖2 =
∞∑
k=m

a2
k(f) =

θ

2

∣∣∣∣θ − 1

θ + 1

∣∣∣∣2m .
Therefore, the bias is exponentially decreasing. Consequently, for mopt = log(n)/ρ, with ρ =

| log[|(θ − 1)/(θ + 1)|]|, the rate of the L2-risk of f̂Xmopt
is of order [log(n)]/n . This kind of

result can be generalized to the case of a density f defined as a mixture of exponential densities
and to Gamma distributions Γ(p, θ), with p an integer (see Comte and Genon-Catalot (2015),
Mabon (2015)). More precisely, if fp is the density Γ(p, θ),

ak(fp) =

√
2

Γ(p)

(
θ

θ + 1

)p
Sp,k

(
2

θ + 1

)
, with Sp,k(x) =

dp−1

dxp−1

[
xp−1(1− x)k

]
.

This term can be computed explicitly and we get the bound, for p ≥ 2 and C0(p, θ) a constant
depending on p and θ only,

|ak(fp)| ≤ C0(p, θ)kp−1

∣∣∣∣θ − 1

θ + 1

∣∣∣∣k .
Thus for m ≥ p− 1,∑

k≥m
[ak(fp)]

2 ≤ C(p, θ)m2(p−1)

(
θ − 1

θ + 1

)2m

, with 0 < C(p, θ) < +∞.

Note that the bias is null for θ = 1 and m > p−1, which is expected since fp ∈ Sp−1. Moreover,
the bias order depends on θ.

Of course, if we know that f belongs to some parametric model, it is better to use a parametric
method. But, in our framework, f is unknown, so we have to face all situations. This is why a
data-driven choice of the dimension of the projection space has to be done.
The interest of the adaptive procedure is that it realizes automatically the finite sample bias-
variance compromise and also automatically reaches the best possible asymptotic rate without
requiring any knowledge on the bias order. The data-driven choice of m mimicks the min-
imization of the squared bias-variance bound using estimators of the risk bound terms. As
‖f − fm‖2 = ‖f‖2 −‖fm‖2, the squared bias is estimated by −‖f̂Xm ‖2, getting rid of ‖f‖2 which
is unknown but constant (not depending on m). Thus we set, for κ a numerical constant,

m̂X = arg min
m∈{1,...,n}

(
−‖f̂Xm ‖2 + penX(m)

)
, penX(m) = κ

m

n
.

It follows from Massart (2007), Chapter 7, Theorem 7.5 that there exists a numerical value κ0

such that for all κ ≥ κ0,

E(‖f̂Xm̂X
− f‖2) ≤ 3 inf

m∈{1,...,n}

(
‖f − fm‖2 + penX(m)

)
+
C

n
,

where C is a constant depending on ‖f‖.

4. Projection estimator of f in the Laguerre basis when Yi’s are observed

Now, our aim is to build an estimator of f from the observations Y1, . . . , Yn, still taking into
account that all variables are nonnegative.
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4.1. Preliminary properties and formulas. The construction relies on the following steps.
We have

fY (y) =

∫ +∞

y

f(u)

u
du1y≥0.

Let F (x) =
∫ x

0 f(t) dt, FY (y) =
∫ y

0 fY (t) dt. Elementary computations yield that, for any y ≥ 0,

(11) f(y) = −yf ′Y (y), F (y) = FY (y)− yfY (y).

The second equality implies

(12) lim
y→0

y fY (y) = lim
y→+∞

y fY (y) = 0.

Lemma 4.1. (1) Let t : R→ R be bounded, derivable, then

(13) E(t(Y ) + Y t′(Y )) = Et(X).

(2) Assume that E(X) < +∞. Let t ∈ L2(R+), then E(Y 2t2(Y )) ≤ E(X)‖t‖2.

Equality (13) is the basement of the estimation procedure. Using it, we can link the coefficients
of f and fY on the Laguerre basis and these relations are used for building the projection
estimators.

Proposition 4.1. For all j ≥ 0,

(14) aj(f) = 〈f, ϕj〉 = 〈fY , (yϕj)′〉

Relation (14) is just an application of (13).
Moreover, using formula (30) (see Section 8.1), we get a0(f) = (1/2)a0(fY ) + (1/2)a1(fY ) and
for j ≥ 1,

aj(f) = − j
2
aj−1(fY ) +

1

2
aj(fY ) +

j + 1

2
aj+1(fY ).

Introducing the matrix Hm = ([Hm]k,`)1≤k,`≤m with size m × (m + 1) given by [Hm]k,` = 0 if
` 6= k − 1, k, k + 1 and [Hm]1,1 = 1/2, [Hm]1,2 = 1/2 and for k ≥ 2,

(15) [Hm]k,k−1 = −k − 1

2
, [Hm]k,k =

1

2
, [Hm]k,k+1 =

k

2
,

we obtain the linear relation between the vectors of coefficients of f and fY :

~am−1(f) = Hm~am(fY ).

4.2. Projection estimator and upper risk bound. Consequently, we define a collection of
projection estimators of f by:

(16) f̂m =

m−1∑
j=0

âjϕj , with âj =
1

n

n∑
i=1

[Yiϕ
′
j(Yi) + ϕj(Yi)].

We also have for m ≥ 1, setting ~̂am−1 = t(âj)0≤j≤m−1, ~̂am(Y ) = t(âj(Y ))0≤j≤m, the following

relation which is convenient to compute the estimator

(17) ~̂am−1 = Hm
~̂am(Y ) with âj(Y ) :=

1

n

n∑
i=1

ϕj(Yi).
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Proposition 4.2. Let f̂m be given by (16).
If E(X1) < +∞, then we have

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + 4E(Y1)
m2

n
+ 2

m

n
.

Otherwise, we have

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 +
2m3

n
+

3m

2n
.

These bounds are given in Belomenstny et al. (2016) and in Comte and Dion (2017). We
deduce from Proposition 4.2 rates of convergence of the estimator on the Sobolev-Laguerre
spaces described in Section 2.2.

Corollary 4.1. Assume that f ∈W s(D). Let f̂m be given by (16).
If E(X1) < +∞, then choosing mopt = [ns+2] gives

E(‖f̂mopt − f‖2) ≤ C1(s,D)n−s/(s+2)

where C1(D, s) is a constant depending on D and s.
Otherwise, choosing mopt = [ns+3] gives

E(‖f̂mopt − f‖2) ≤ C2(s,D)n−s/(s+3)

where C2(D, s) is a constant depending on D and s.

Remark 3.2 applies here. For exponential, Gamma or mixed Gamma densities f , the bias is
exponentially decreasing. Thus, the same choice mopt yields a rate of order [log(n)]2/n.

4.3. Adaptive estimation. We propose a penalization method to select m automatically. For
κ a numerical constant, let

(18) m̂ = arg min
m∈Mn

(
−‖f̂m‖2 + pen(m)

)
with pen(m) = κ

m log(m+ 2)

n
(1 + 2E(Y1)m)

and

Mn = {m ∈ {1, . . . , n}, m ≤
√
n}.

Theorem 4.1. Assume that E(X1) < +∞. Let f̂m be given by (16)and m̂ by (18). There exists
a constant κ0 such that for any κ ≥ κ0, we have

(19) E(‖f̂m̂ − f‖2) ≤ C1 inf
m∈Mn

(
‖f − fm‖2 + pen(m)

)
+
C2

n

where C1 is a numerical constant (C1 = 4 suits) and C2 is a positive constant depending on
E(Y1).

The estimator f̂m̂ realizes an automatic trade-off between the squared bias ‖f−fm‖2, and the
variance, increased by a logarithmic term. The penalty contains the unknown quantity E(Y1):
to compute the estimator, this term is replaced by the empirical mean Ȳn =

∑n
i=1 Yi/n and it

is possible to prove that the bound (19) still holds (see Comte and Dion (2017)).
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5. Projection estimator of f when Zi = Xi + Vi are observed

5.1. Projection estimator and risk bound. A consequence of Model (2) is

fZ(x) = f ? fV (x) =

∫ x

0
f(u)fV (x− u)du.

By using (34), this convolution equation can be rewritten:

∞∑
k=0

ak(fZ)ϕk(x) =
+∞∑
j=0

+∞∑
k=0

aj(f)ak(fV )ϕj ? ϕk(x)

=
∞∑
k=0

ϕk(x)
k∑
`=0

2−1/2 (ak−`(fV )− ak−`−1(fV ))a`(f).

Define the m×m triangular matrix Vm = (vi,j)0≤i,j≤m−1 where

(20) vi,j = 2−1/2(〈fV , ϕi−j〉1Ii−j≥0 − 〈fV , ϕi−j−1〉1Ii−j−1≥0).

As vi,j = v(i − j)1Ii−j≥0, Vm is a Toeplitz triangular matrix with diagonal elements vi,i =

2−1/2〈fV , ϕ0〉 > 0. It is thus invertible and for all m ≥ 1,

(21) ~am−1(fY ) = t(aj(f))0≤j≤m−1 = V−1
m [(aj(fZ))0≤j≤m−1] = V−1

m ~am−1(fZ),

Formula (20) relies on a convolution property of the Laguerre functions (ϕj) (Formula (34),
Section 8.1) which can be used in R+-deconvolution. The projection estimator of f on Sm based
on (Z1, . . . , Zn) is given by

(22) f̃m =
m−1∑
j=0

ãjϕj , ~̃am−1 = t(ãj)0≤j≤m−1 = V−1
m
~̂am−1(Z), m ≥ 1

where ~̂am−1(Z) = [(âj(Z))0≤j≤m−1] and âj(Z) is defined by

(23) âj(Z) :=
1

n

n∑
i=1

ϕj(Zi).

The following risk bound holds (Mabon (2016)):

Proposition 5.1. Assume that ‖fV ‖∞ < +∞. Let f̃m be given by (22). Then we have

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 + (2 ∨ ‖fV ‖∞)
‖V−1

m ‖2F
n

where ‖A‖2F = Tr( tAA).

Remark 3.1 still applies here. The bias term is unchanged. For the variance term, it is of order
‖V−1

m ‖2F /n, which is increasing in m because of the special form of V−1
m (lower triangular and

Toeplitz, see Mabon (2016)).
We can deduce from Proposition 5.1 rates of convergence of the estimator on Sobolev-Laguerre

spaces. In Comte et al. (2017), the order of ‖V−1
m ‖2F in function of m is studied. In particular,

if Vi has a Gamma distribution Γ(r, λ), r ∈ N, r ≥ 1, there exist constants c, C such that

cm2r ≤ ‖V−1
m ‖2F ≤ Cm2r.

Note that the case Vi = 0 and Vm = Id is excluded from this context.
Therefore the following corollary holds:
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Corollary 5.1. Assume that f ∈ W s(D), and that Vi has a Gamma distribution Γ(r, λ), r

integer, r ≥ 1. Then f̃m given by (22) satisfies, for mopt = [n2r+s]

E(‖f̃mopt − f‖2) ≤ C(s,D)n−s/(2r+s).

Remark 5.1. • For V ∼ E(λ) = γ(1, λ), we have [Vm]i,i = λ/(1 + λ) and

(24) [Vm]i,j = −2λ
(λ− 1)i−j−1

(λ+ 1)(i−j+1)
if j < i

and [Vm]i,j = 0 otherwise. We can compute [V−1
m ]i,j = (λ + 1)/λ if i = j, 2/λ if i > j

and 0 otherwise. Note that

‖V−1
m ‖2F = 2

m2

λ2
+m(1 +

2

λ
− 1

λ2
).

• For V ∼ Γ(2, µ), we have [Vm]i,i = (µ/(1 + µ))2, [Vm]i+1,i = −4µ2/(1 + µ)3 and

(25) [Vm]i,j = 4(i− j − µ)µ2 (µ− 1)i−j−2

(µ+ 1)i−j+2
if i > j + 1

and [Vm]i,j = 0 otherwise.

5.2. Adaptive estimation. A data driven method to relevantly select m can be proposed and
yields an automatic bias variance compromise. Let us define, for κ a numerical constant,

(26) m̃ = arg min
m∈Mn

(
−‖f̃m‖2 + p̃en(m)

)
with p̃en(m) = κ

log(2 + ‖V−1
m ‖2F )‖V−1

m ‖2F
n

where

Mn = {m ∈ N∗, m ≤ n/ log(2 + n), ‖V−1
m ‖2F ≤ n}.

Theorem 5.1. Let f̃m be given by (22) and m̃ by (26). There exists a numerical constant κ0

such that for any κ ≥ κ0, we have

E(‖f̃m̃ − f‖2) ≤ C1 inf
m∈Mn

(
‖f − fm‖2 + p̃en(m)

)
+
C2

n
.

6. Combining the models

6.1. Projection estimator when Wi = (Xi +Vi)Ui are observed. Now we combine the two
previous procedures. We define the projection estimator f̌m by

(27) f̌m =
m−1∑
j=0

ǎjϕj , with ~̌am−1 = V−1
m
~̌am−1(W )

and

ǎj(W ) =
1

n

n∑
i=1

[Wiϕ
′
j(Wi) + ϕj(Wi)], ~̌am−1(W ) = t(ǎ0(W ), . . . , ǎm−1(W )).

Note that, as previously, with Hm is defined by (15),

~̌am−1(W ) = Hm
~̂am(W ), ~̂am(W ) = t(â0(W ), . . . , âm(W )), âj(W ) =

1

n

n∑
i=1

ϕj(Wi).
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Proposition 6.1. Let f̌m be given by (27). If E(W1) < +∞, then we have

E(‖f̌m − f‖2) ≤ ‖f − fm‖2 + 2‖V−1
m ‖2op

(
2E(W1)

m2

n
+
m

n

)
,

where ‖A‖2op = λmax( tA A), the largest eigenvalue of the matrix tA A.

If Vi = 0, i.e. Vm = Id, then ‖V−1
m ‖2op = 1, so we recover the first result of Proposition 4.2.

Let

M̌n = {m ∈ N,m2 ≤ n/ log(n+ 2), m2‖V−1
m ‖2op ≤ n}

and, for κ a numerical constant,

ˇpen(m) = κ log(2 +m2‖V−1
m ‖2op)‖V−1

m ‖2op

(
2E(W1)

m2

n
+
m

n

)
.

Then setting

m̌ = arg min
m∈M̌n

(
−‖f̌m‖2 + ˇpen(m)

)
,

we can prove an adaptation result for f̌m̌ analogous to the ones of Theorems 4.1 and 5.1. The
proof being analogous is omitted.

6.2. Projection estimator when Ti = XiUi + Vi are observed. Define Km with size m ×
(m+ 1) by

Km := HmV
−1
m+1.

Then, we have

~am−1(f) = Km~am(fT ).

Thus we can define the estimator of f by

(28) f̆m =

m−1∑
j=0

ăjϕj , ~̆am−1 = Km
~̂am(T )

where

âj(T ) =
1

n

n∑
i=1

ϕj(Ti), and ~̂am = t(â0, . . . , âm), ~̆am−1 = t(ă0, . . . , ăm−1).

Proposition 6.2. Assume that ‖fV ‖∞ < +∞. Then,

E(‖f̆m − f‖2) ≤ ‖f − fm‖2 + (2‖̌fV ‖∞)‖Hm‖2op

‖V−1
m+1‖2F
n

.

It follows from Corollary 2.1 in Belomestny et al. (2016) and its proof (for k = 1), that
‖Hm‖2op ≤ 3(m+ 1)2. Therefore, in this case, if Vi = 0, then V−1

m+1 = Id and ‖V−1
m+1‖2F = m+ 1

and we recover the variance order of the second Inequality of Proposition 4.2.

In this case too, we can propose a data-driven selection of m leading to an adaptive estimator.
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7. Extensions and concluding remarks

In this paper, the use of a Laguerre basis to estimate a function f ∈ L2(R+) is illustrated in
several examples of inverse problems. Projection estimators which are easy to implement are
built and studied. Data-driven choices of the projection dimension can be proposed leading to
adaptive estimators.

In Mabon (2016), Belomestny et al. (2016), Comte and Dion (2017), the adaptive estimators
for additive and multiplicative censoring models are studied and implemented. The choice of the
constant κ in the penalty is a specific difficulty of the method: indeed, the theoretical constant κ0

obtained in proofs is not optimal and generally much too large. Finding the optimal theoretical
value is hard but in practice, the constant κ is calibrated by preliminary simulations.

For Model (1) and for Model (2), the estimation of the survival function S(x) = P(X1 > x)
can be done, still using a Laguerre basis, under the assumption that S is in L2(R+), which holds

if E(X1) =
∫ +∞

0 S(x)dx < +∞. A natural idea would be to assume that f belongs to L2(R+)
and integrate the development of f under maybe additional assumptions, using Formulae (31)
and (33). However there is a wiser approach and we need not assume that f belongs to L2(R+)
to build estimators of S in Models (1) and (2). Indeed, in Model (1), it follows from formula
(11) that S(x) = SY (x) + xfY (x), where SY (x) is the survival function of Y1. The estimation
procedure, developed in Comte and Dion (2017), is based on

〈ϕj , S〉 =

∫ +∞

0
E(1IY1>x)ϕj(x)dx+ E[Y1ϕj(Y1)] = E[Φj(Y1) + Y1ϕj(Y1)].

In Model (2), Mabon (2016) proves the basic relation

SZ(x) = SX ? fV (x) + SV (x)

and deduce the estimation procedure.
Extensions of the results presented here are possible. First, the case of multiplicative censoring

is investigated in Belomestny et al. (2016) when the multiplicative noise Ui has beta(r, k)
distribution with r, k integers, r, k ≥ 1. Second, as in Chesneau (2013), we can consider that

Ui = U
(1)
i . . . U

(`)
i with U

(j)
i ’s i.i.d. and uniform. Third, the case of noisy observations with

unknown distribution of the noise V is studied in Comte and Mabon (2016). A preliminary
sample of the Vi’s is then required for identifiability.

Other models and inverse problems have been investigated with the use of a Laguerre basis.
First, the estimation of f from the observations

y(ti) =

∫ ti

0
g(ti − τ)f(τ)dτ + σεi, i = 1, . . . , n

where f , g : R+ → R+, g is known and (εi) are i.i.d. centered with unit variance is studied in
Comte et al.. (2017). The solution is provided in two steps: estimation of the regression function
f ? g and deconvolution.
The Laguerre basis (ϕj)j is especially well-fitted for estimating the mixture density from i.i.d.
mixed Poisson observations. In Comte an Genon-Catalot (2015), upper and lower risk bounds
are obtained.
The estimation of the density of interarrival times Di = Ti − Ti−1 in the renewal model

Rt =
∑
i≥0

1ITi≤t, t ∈ [0, T ]

is a difficult problem. The Laguerre basis is a convenient tool for continuous time observations
of Rt, which gets even crucial for discrete time observations, see Comte and Duval (2016).
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All these examples show that, as long as nonnegative random variables are involved in the
model, the Laguerre basis is a powerful and adequate tool for solving estimation problems.

8. Proofs

8.1. Formulae for Laguerre functions. The Laguerre polynomials (Lj) (see (5)) are orthog-
onal with respect to the weight function e−x. Therefore, Laguerre bases can be defined with a
parameter a > 0 by setting

ϕa
j (x) =

√
aLj(ax)e−ax/21R+(x).

We focus on the choice a = 2 which is especially convenient for computing derivatives or integrals
of the basis functions and denote ϕa

j by ϕj for a = 2.
We give several formulae which are used in the present paper and others which are not used but
are necessary for the extensions mentionned in Section 7. Formula (22.7.12) in Abramowitz and
Stegun (1964) states that

(29) xLj(x) = −(j + 1)Lj+1(x) + (2j + 1)Lj(x)− jLj−1(x).

implying

(30) (yϕj(y))′ = ϕj(y) + yϕ′j(y) = − j
2
ϕj−1(y) +

1

2
ϕj(y) +

j + 1

2
ϕj+1(y).

By elementary computations, we get∫ +∞

0
ϕj(x)dx =

√
2(−1)j .

The functions ϕj , ϕ
′
j , ϕ
′′
j are uniformly bounded. We already mentioned that ∀x ≥ 0, |ϕj(x)| ≤√

2. By Lemma 6.1 in Comte and Genon-Catalot (2015), it holds that, for all x ≥ 0,

|ϕ′j(x)| ≤
√

2(2j + 1) ≤ 2
√

2(j + 1), |ϕ′′j (x)| ≤ 2
√

2(j + 1)2.

Consequently, for all x ≥ 0,∑̀
j=0

ϕ2
j (x) ≤ 2(`+ 1),

∑̀
j=0

[ϕ′j(x)]2 ≤ 8(`+ 1)3,
∑̀
k=0

[ϕ′′j (x)]2 ≤ 8(`+ 1)5.

The functions ϕ′j(x) and

(31) Φj(x) =

∫ +∞

x
ϕj(u)du

belong the the space Sj spanned by (ϕ0, . . . , ϕj) and we can compute their components on the
Laguerre basis which allows to compute easily their L2-norms.

Proposition 8.1.

(32) ϕ′0(x) = −ϕ0(x), ϕ′j(x) = −ϕj(x)− 2

j−1∑
k=0

ϕk(x), j ≥ 1.

(33) Φ0(x) = ϕ0(x), Φj(x) = ϕj(x) + 2(−1)j
j−1∑
k=0

(−1)kϕk(x).
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Proof. The following equality holds ϕ′j(x) = −ϕj(x) + 2
√

2e−xL′j(2x) which is a polynomial

function of degree j multiplied by e−x. Thus, it can be decomposed as ϕ′j(x) =

j∑
k=0

a
(j)
k ϕk(x)

with

a
(j)
k = 〈ϕ′j , ϕk〉 =

∫ +∞

0
ϕ′j(x)ϕk(x)dx = [ϕj(x)ϕk(x)]+∞0 −

∫ +∞

0
ϕj(x)ϕ′k(x)dx

= −ϕj(0)ϕk(0)−
∫ +∞

0
ϕj(x)ϕ′k(x)dx = −2− 〈ϕj , ϕ′k〉 = −2− a(k)

j

Notice that this formula is also true when k = j: 〈ϕ′j , ϕj〉 =
∫ +∞

0 ϕ′j(x)ϕj(x)dx = −(1/2)ϕ2
j (0) =

−2/2 = −1. Thus we obtain:

ϕ′j(x) =

j∑
k=0

a
(j)
k ϕk(x) = −2

j∑
k=0

ϕk(x)−
j∑

k=0

〈ϕj , ϕ′k〉ϕk(x)

= −ϕj(x)− 2

j−1∑
k=0

ϕk(x)−
j−1∑
k=0

〈ϕj , ϕ′k〉ϕk(x)

Note that the 〈ϕj , ϕ′k〉 are zero for k ≤ j − 1. Thus we obtain (32).

Then integrating from x to +∞ formula (32) for j ≥ 1, we obtain ϕj = Φj + 2
∑j−1

k=0 Φk.
Thus, Φj = ϕj − ϕj−1 − Φj−1. Using that Φ0 = ϕ0, we obtain by elementary induction Φj =

ϕj + 2
∑j

k=1(−1)kϕj−k, which implies formula (33). �

Proposition 8.2. ‖ϕ(`)
j ‖2 ≤ 2`+1(j + 1)2`−1 for ` ≥ 1 and j ≥ 0.

Proof. It follows from formula (32) that

t(ϕ
(`)
0 . . . ϕ

(`)
m−1) = A` t(ϕ0 . . . ϕm−1)

where m×m matrix A is a lower triangular Toeplitz matrix defined by [A]i,j = a(i− j)1i−j≥0,
a(0) = −1, a(k) = −2 for k ≥ 1. We can write

A = −Idm − 2

m−1∑
k=1

Jk,

where J is the lower triangular Jordan matrix of order m (sub-diagonal coefficients equal to 1,
and all others null), which satisfies Jm = 0. The matrix A` is also lower triangular Toeplitz and

we denote by a(`)(i− j) its coefficients. Using that Jm = 0 and A` = A×A`−1, we get{
a(`)(0) = −a(`−1)(0), a(`)(1) = −2a(`−1)(0)− a(`−1)(1),

a(`)(k) = −2a(`−1)(0)− a(`−1)(k)− 2
∑k−1

p=1 a
(`−1)(p), for k ≥ 1.

Now we have

‖ϕ(`)
j ‖

2 =

j−1∑
k=0

[a(`)(k)]2 ≤ [a(`−1)(0)]2 +

j−1∑
k=0

k∑
p=0

[a(`−1)(p)]2(4 + 1 + 4(k − 1))

≤
j−1∑
k=0

(4k + 1)
k∑
p=0

[a(`−1)(p)]2

≤ ‖ϕ(`−1)
j ‖2(4

j(j − 1)

2
+ 1) ≤ 2(j + 1)2‖ϕ(`−1)

j ‖2
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As for ` = 1, we have ‖ϕ(1)
j ‖2 = 1 + 4j ≤ 4(1 + j), the result follows. �

The following convolution property (formula 22.13.14 in Abramowitz and Stegun (1964)) makes
the Laguerre basis relevant in the deconvolution setting

(34) ϕk ? ϕj(x) =

∫ x

0
ϕk(u)ϕj(x− u)du = 2−1/2 (ϕk+j(x)− ϕk+j+1(x))

where ? stands for the convolution product.

8.2. Proof of formula 11 and Lemma 4.1. The first equality is elementary. For y ≥ 0,

F̄Y (y) =

∫ +∞

y
fY (z)dz =

∫ +∞

y

∫ +∞

z

f(x)

x
dxdz =

∫
(

∫ x

y
dz)

f(x)

x
1Iy≤xdx

=

∫ +∞

y
(x− y)

f(x)

x
dx =

∫ +∞

y
f(x)dx− y

∫ +∞

y

f(x)

x
dx = F̄ (y)− yfY (y).

By (11), yfY (y) tends to 0 as both y tends to +∞ and 0. Therefore, integrating by parts yields
as t is bounded,∫
R+

fY (y)(t(y) + yt′(y))dy = [fY (y)yt(y)]+∞0 −
∫
R+

yt(y)(fY (y))′dy = −
∫ +∞

0
yt(y)(−f(y)

y
)dy

=

∫ +∞

0
t(y)f(y)dy.

Note that EY 2t2(Y ) ≤ EX2t2(UX). Then,

EX2t2(UX) =

∫
x≥0,0≤u≤1

x21[0,1](u)f(x)t2(ux)dxdu =

∫ +∞

0
xf(x)(

∫ x

0
t2(v)dv)dx ≤ E(X)‖t‖2.

2

8.3. Proof of Proposition 4.2. We have ‖f̂m− f‖2 = ‖f − fm‖2 + ‖f̂m− fm‖2 by Pythagoras

Theorem. Also, ‖f̂m − fm‖2 =
∑m−1

j=0 (âj − aj)2 where aj = E(âj) = 〈f, ϕj〉. Now we bound in
two different ways the expectation of this last term.
We first assume that E(X1) < +∞. We have

E(‖f̂m − fm‖2) =
m−1∑
j=0

Var(âj) =
1

n

m−1∑
j=0

Var[Y1ϕ
′
j(Y1) + ϕj(Y1)]

≤ 1

n

m−1∑
j=0

E
[
(Y1ϕ

′
j(Y1) + ϕj(Y1))2

]
=

1

n

m−1∑
j=0

{
E
[
(Y1ϕ

′
j(Y1))2

]
+ E

[
2Y1ϕ

′
j(Y1)ϕj(Y1) + ϕ2

j (Y1)
]}

Formula (13) applied to t = ϕ2
j yields

E
[
2Y1ϕ

′
j(Y1)ϕj(Y1) + ϕ2

j (Y1)
]

= E(ϕ2
j (X1)) ≤ 2.

By Formula (32), ‖ϕ′j‖2 = 1 + 4j, therefore, using Lemma 4.1,

E
[
(Y1ϕ

′
j(Y1))2

]
≤ E(X1)‖ϕ′j‖2 = (1 + 4j)E(X1).
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It follows that

E(‖f̂m − fm‖2) ≤ 1

n

m−1∑
j=0

[(4j + 1)E(X1) + 2) =
2m

n
[1 + (2m− 1)E(Y1)]

≤ 4
m2

n
E(Y1) + 2

m

n
,

using that E(X1) = 2E(Y1). This gives the first bound of Proposition 4.2.

Now, we no longer assume that E(X1) < +∞. Relation (30) and the Cauchy-Schwarz inequality
imply

E[‖f̂m − fm‖2] =

m−1∑
j=0

Var(âj) ≤
1

n

m−1∑
j=0

E[(Y1ϕ
′
j(Y1) + ϕj(Y1))2]

=
1

n

m−1∑
j=0

E{[[(yϕj(y))′)](Y1)]2]}

≤ 1

n

m−1∑
j=0

3E

[(
j

2
ϕj−1(Y1)

)2

+

(
1

2
ϕj(Y1)

)2

+

(
j + 1

2
ϕj+1(Y1)

)2
]
.

Then we use that

E

[(
j

2
ϕj−1(Y )

)2
]

=

∫ (
j

2
ϕj−1(y)

)2

fY (y)dy ≤ ‖ϕj−1‖2∞
(
j

2

)2 ∫
fY (y)dy ≤ 1

2
j2

and it yields

E[‖f̂m − fm‖2] ≤ 3

n

m−1∑
j=0

(
j2

2
+

1

2
+

(j + 1)2

2

)

≤ 3

2n

(
m3

3
+m+m3

)
≤ 2m3

n
+

3m

2n
.(35)

This gives the second bound stated in Proposition 4.2.2

8.4. Proof of Theorem 4.1. Let us define, for t a function from R+ into R, the contrast

(36) γn(t) = ‖t‖2 − 2

n

n∑
i=1

[t(Yi) + Yit
′(Yi)].

For t =
∑m−1

j=0 ajϕj , γn(t) =
∑m−1

j=0 (aj − âj)
2 −

∑m−1
j=0 â2

j . Thus, f̂m = argmin
t∈Sm

γn(t) and

γn(f̂m) = −‖f̂m‖2. We notice that

(37) γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2νn(t− s)

where

(38) νn(t) =
1

n

n∑
i=1

[φt(Yi)− Eφt(Yi)], with φt(y) = (yt(y))′ = t(y) + yt′(y)
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and Eφt(Yi) = 〈t, f〉. By definition of f̂m̂, for all m ∈ Mn, we have γn(f̂m̂) + pen(m̂) ≤
γn(fm) + pen(m). Set for simplicity of notations m ∨m′ = m∗ and

(39) Bm,m′ = {t ∈ Sm∗ , ‖t‖ = 1}.
Using (37) yields

‖f̂m̂ − f‖2 ≤ ‖f − fm‖2 + 2νn(f̂m̂ − fm) + pen(m)− pen(m̂)

≤ ‖f − fm‖2 +
1

4
‖f̂m̂ − fm‖2 + 4 sup

t∈Bm,m̂

ν2
n(t) + pen(m)− pen(m̂)

≤ ‖f − fm‖2 +
1

2
‖f̂m̂ − f‖2 +

1

2
‖fm − f‖2 + 4 sup

t∈Bm,m̂

ν2
n(t) + pen(m)− pen(m̂)

Therefore,

‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 8 sup
t∈Bm,m̂

ν2
n(t) + 2pen(m)− 2pen(m̂)

≤ 3‖f − fm‖2 + 2pen(m) + 8( sup
t∈Bm,m̂

ν2
n(t)− p(m, m̂)) + 8p(m, m̂)− 2pen(m̂).(40)

Now, p(m,m′) must be determined such that

(41) ∃κ0, a numerical constant, such that ∀κ ≥ κ0, 4 p(m,m′) ≤ pen(m) + pen(m′).

With such a choice, we obtain

(42) ‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 4pen(m) + 8( sup
t∈Bm,m̂

ν2
n(t)− p(m, m̂)).

The next lemma gives p(m,m′). Recall m∗ = m ∨m′.

Lemma 8.1. Under the assumption of Theorem 4.1, for νn(t) given by (38) and p(m,m′) =
4(1 + 48 log(2 +m∗))m∗(1 + 2E(Y1)m∗)/n ≤ 4× 50 log(2 +m∗)m∗(1 + 2E(Y1)m∗)/n, (41) holds
and moreover,

E

[
( sup
t∈Bm,m̂

ν2
n(t)− p(m, m̂))+

]
≤ K/n.

The proof of Theorem 4.1 is now achieved by taking the expectation of (42), and applying
Lemma 8.1.

8.5. Proof of Lemma 8.1. First notice that,

E

[(
sup

t∈Bm,m̂

ν2
n(t)− p(m, m̂)

)
+

]
≤

∑
m′∈Mn

E

(
sup

t∈Bm,m′
ν2
n(t)− p(m,m′)

)
+

.

We now apply Talagrand’s inequality to bound the r.h.s. of the above term (see Theorem A.1).
Consider the class F = {φt(x) = t(x)+xt′(x), t ∈ Bm,m′}. We compute the corresponding terms
denoted by H2, v and M in Theorem A.1.
To obtain H2, we bound E[ sup

t∈Bm,m′
ν2
n(t)]. For t ∈ Bm,m′ , using that t 7→ νn(t) is linear and

t =
∑m∗−1

j=0 〈t, ϕj〉ϕj with
∑m∗−1

j=0 〈t, ϕj〉2 = 1, we get

ν2
n(t) =

νn
m∗−1∑

j=0

〈t, ϕj〉ϕj

2

=

m∗−1∑
j=0

〈t, ϕj〉νn(ϕj)

2

≤
m∗−1∑
j=0

ν2
n(ϕj).
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Thus it follows from Proposition 4.2 (see the bound (35)),

E[ sup
t∈Bm,m′

ν2
n(t)] ≤

m∗−1∑
j=0

E[ν2
n(ϕj)] =

m∗−1∑
j=0

1

n
Var((Y1ϕ

′
j(Y1) + ϕj(Y1))

≤ 2m∗

n
(1 + 2m∗E(Y1)) := H2.

Now, to obtain v, we note that

Var(Y1t
′(Y1) + t(Y1)) ≤ E[(Y1t

′(Y1) + t(Y1))2] ≤ nH2 := v.

Finally, using Formula (30) and the fact that the ϕj ’s are bounded by
√

2, we get

sup
t∈Bm,m′

sup
y
|(yt(y))′| ≤

m∗−1∑
j=0

(sup
y

(yϕj(y))′)2

1/2

≤

m∗−1∑
j=0

(
√

2(j + 1))2

1/2

≤
√

2/3(m∗)3/2 := M.

We set α = α(m∗) = 24 log(m∗+2), C(α) = 1, p(m,m′) = 2(1+2α(m∗))H2. Applying Theorem
A.1 yields:

E

[(
sup

t∈Bm,m′
ν2
n(t)− 2(1 + 2α(m∗))

2m∗

n
(1 + 2m∗E(Y1))

)
+

]

≤ C

n

(
2m∗(1 + 2m∗E(Y1))

(m∗ + 2)4
+

(m∗)3

n
e−C2

√
E(Y1)n1/4

)
,

for some constants C,C2, using that any m ∈Mn satisfies m ≤
√
n. Consequently,∑

m′∈Mn

E

[(
sup

t∈Bm,m′
ν2
n(t)− 2(1 + 2α(m∗))

2m∗

n
(1 + 2m∗E(Y1))

)
+

]
≤ K1

n

where K1 is a constant and p(m,m′) satisfies 4p(m,m′) ≤ pen(m) + pen(m′) for all κ ≥ 26.52.
2

8.6. Proof of Proposition 5.1. We prove that

(43) E(‖f̃m − fm‖2) ≤ ‖f − fm‖2 +
2m‖V−1

m ‖2op ∧ ‖fV ‖∞‖V−1
m ‖2F

n

where we recall that ‖A‖2F = Tr( tAA) and ‖A‖2op = λmax( tAA) is the maximal eigenvalue of
tAA. The risk of the estimator can be written as usual

‖f̃m − f‖2 = ‖f − fm‖2 + ‖f̃m − fm‖2

where fm =
∑m−1

j=0 aj(f)ϕj is the projection of f on Sm = span(ϕ0, . . . , ϕm−1) and ‖f − fm‖2 is
the square bias term. Next we have

‖f̃m − fm‖2 =

m−1∑
j=0

(ãj − aj(f))2 = ‖V−1
m (~̂a(Z)m−1 − E(~̂a(Z)m−1))‖22,
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where ‖~x‖2 denotes the Euclidean norm of the m-vector ~x. So,

E(‖f̃m − fm‖2) ≤ ‖V−1
m ‖2opE(‖~̂a(Z)m−1 − E(~̂a(Z)m−1)‖22)

≤ ‖V−1
m ‖2op

m−1∑
j=0

Var(âj(Z)) =
1

n
‖V−1

m ‖2op

m−1∑
j=0

Var(ϕj(Z1))

≤ 1

n
‖V−1

m ‖2op

m−1∑
j=0

E(ϕ2
j (Z1)) ≤

2m‖V−1
m ‖2op

n
,

as
∑m−1

j=0 ϕ2
j (x) ≤ 2m, ∀x ∈ R+. Therefore we get

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 + 2
m‖V−1

m ‖2op

n
.

On the other hand,

E(‖f̃m − fm‖2) =
1

n

∑
`

Var

∑
j

[V−1
m ]`,jϕj(Z1)

 ≤ 1

n

∑
`

E

∑
j

[V−1
m ]`,jϕj(Z1)

2
≤ ‖fZ‖∞

n

∑
`

∫ ∑
j

[V−1
m ]`,jϕj(z)

2

dz

=
‖fZ‖∞
n

∑
`

∑
j

[V−1
m ]2`,j ≤

‖fV ‖∞
n
‖V−1

m ‖2F .

Combining the previous bounds implies (43). As ‖V−1
m ‖2F ≤ m‖V−1

m ‖2op, we get the result. 2

8.7. Proof of Theorem 5.1. Let M = maxMn denote the maximal element of the collection.
We follow the lines of the proof of Theorem 4.1, with (36) replaced by

γ̃n(t) = ‖t‖2 − 2〈t, f̃M〉,

and (38) by

ν̃n(t) = 〈t, f̃M − fM〉.
Note that for t ∈ Sm, then ν̃n(t) = 〈t, f̃m − fm〉. Thus we get

‖f̃m̃ − f‖2 ≤ 3‖f − fm‖2 + 2p̃en(m) + 8( sup
t∈Bm,m̃

ν̃2
n(t)− p̃(m, m̃)) + 8p̃(m, m̃)− 2p̃en(m̃).

We must determine p̃(m,m′) such that there exists a numerical constant κ0 for which 4p̃(m,m′) ≤
p̃en(m) + p̃en(m′) for all κ ≥ κ0. The next lemma gives p̃(m,m′) and allows to deduce κ0.

Lemma 8.2. Under the assumptions of Theorem 5.1, for

p̃(m,m′) = 2(2 ∨ ‖fV ‖∞)(1 + 2c log(2 + ‖V−1
m∗‖

2
F ))
‖V−1

m∗‖2F
n

, c ≥ max(3/b, 212/2b2)

where b is the constant given in Theorem A.1, we have

(44) E

( sup
~t∈B(m̃,m)

ν̃2
n(t)− p̃(m, m̃)

)
+

 ≤ K

n
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Finally, we obtain that ∀m ∈Mn,

E(‖f̃m̃ − f‖2) ≤ 3‖f − fm‖2 + 4p̃en(m) + 8
K

n
,

which ends the proof of Theorem 5.1. 2

8.8. Proof of Lemma 8.2. The proof of (44) follows the line of the proof of Proposition 7.1
in Mabon (2015). We detail it and proceed as in the proof of Lemma 8.1. For t ∈ B(m,m′) and
m∗ = m ∨m′, we have

ν̃n(t) = 〈t, f̃m∗ − fm∗〉 =
1

n

n∑
i=1

[ψt(Zi)− E(ψt(Zi))], ψt(x) =

m∗−1∑
j=0

〈t, ϕj〉[V−1
m∗ ~ϕm∗−1(x)]j

where ~ϕm−1(x) = t(ϕ0(x), . . . , ϕm−1(x)) and [~x]j denotes the jth coordinate of vector ~x.
We compute the terms H2, v and M of Theorem A.1 for the class F = {ψt(.), t ∈ B(m,m′)}.

For H2, we bound

E

(
sup

t∈B(m,m′)
ν̃2
n(t)

)
≤

m∗−1∑
j=0

E
(
ν̃2
n(ϕj)

)
≤

m∗−1∑
j=0

E
(
〈ϕj , f̃m∗ − fm∗〉2

)
= E(‖f̃m∗ − fm∗‖2).

From Proposition 5.1, we deduce H2 = (2 ∨ ‖fV ‖∞)‖V−1
m∗‖2F /n. Clearly, v = nH2. To obtain

M , we compute

sup
t∈B(m′,m)

sup
x
|ψt(x)| ≤ sup

x
‖V−1

m∗ ~ϕm∗−1(x)‖2 ≤ ‖V−1
m∗‖op

√
2m∗ := M.

Let α(m∗) = c log(2 + ‖V1
m∗‖2F ), and let us apply Theorem A.1:

E

(
sup

t∈B(m′,m)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C

n

(
‖V−1

m∗‖
2
F exp(−bα(m∗)) +

m∗‖V−1
m∗‖2op

n
exp

(
−
√

2b

7

√
α(m∗)n‖V−1

m∗‖F√
m∗‖V−1

m∗‖op

))

≤ C

n

(
1

‖V−1
m∗‖

2bc−2
F

+ ‖V −1
m∗ ‖

2
F exp

(
−
√

2b

7

√
α(m∗) log(n+ 2)

))
,

where we have used that m∗ ≤ n/ log(n+ 2) and ‖V−1
m ‖2op ≤ ‖V−1

m ‖2F . Therefore

E

(
sup

t∈B(m,m′)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C

n

(
1

‖V−1
m∗‖

2bc−2
F

+
1

‖V−1
m∗‖

√
2cb/7−2

F

)
.

For c ≥ max(3/b, 212/2b2) and as ‖V−1
m ‖2F ≥ 2m∗/a2

0(fV ), which is the sum of squares of diagonal
terms of V−1

m , we get

E

(
sup

t∈B(m,m′)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C ′

n

1

(m∗)4

so that ∑
m′∈Mn

E

(
sup

t∈B(m,m′)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C”/n.

This concludes of Lemma 8.2. 2
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8.9. Proof of Proposition 6.1. The bias variance decomposition is E(‖f̌m − f‖2) = ‖f −
fm‖2 + E(‖f̌m − fm‖2) as clearly E(f̌m) = fm. Next,

E(‖f̌m − fm‖2) = E
(∥∥V−1

m (~̌am−1(W )− ~am−1(fX+V ))
∥∥2

2

)
where fX+V = f ? fV is the density of X1 + V1. Thus

E(‖f̌m − fm‖2) ≤ ‖V−1
m ‖2opE

(
‖~̌am−1(W )− ~am−1(fX+V )‖22

)
= ‖V−1

m ‖2op

1

n

m−1∑
j=1

Var
(
W1ϕ

′
j(W1) + ϕj(W1)

)
.

The proof is ended as the proof of Proposition 4.2. 2

8.10. Proof of Proposition 6.2. As in the proof of Proposition 5.1 (see Inequality( 43), we
have

E(‖f̆m − fm‖2) ≤ ‖f − fm‖2 +
2(m+ 1)‖Km‖2op ∧ ‖fV ‖∞‖Km‖2F

n

≤ ‖f − fm‖2 + (2 ∨ ‖fV ‖∞)
(m+ 1)‖Km‖2op ∧ ‖Km‖2F

n

= ‖f − fm‖2 + (2 ∨ ‖fV ‖∞)
‖Km‖2F

n

≤ ‖f − fm‖2 + (2 ∨ ‖fV ‖∞)
‖Hm‖2op‖V−1

m ‖2F
n

,(45)

by using that ‖Km‖2F ≤ ‖Hm‖2op‖V−1
m ‖2F , see Magnus and Neudecker (1988), sec.6 p.231. 2
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Appendix A. Talagrand’s inequality

The following result follows from the Talagrand concentration inequality.

Theorem A.1. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H and
v such that sup

f∈F
‖f‖∞ ≤M ,

E[sup
f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v. Then for all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
exp

(
−bαnH

2

v

)

+
49M2

bC2(α)n2
exp

(
−
√

2bC(α)
√
α

7

nH

M

))
with C(α) = (

√
1 + α− 1) ∧ 1, and b = 1

6 .

By density arguments, this result can be extended to the case where F is a unit ball of a linear
normed space, after checking that f → νn(f) is continuous and F contains a countable dense
family.


