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RESUMO
A solução ótima para o problema de Correlação de Clusters (Correlation Clustering ou

CC) pode ser utilizada como medida do nível de equilíbrio em redes sociais de sinais, onde in-
terações positivas (amizade) e negativas (antagonismo) estão presentes. Metaheurísticas têm sido
utilizadas com sucesso para resolver não apenas este, como também outros problemas difícies de
otimização combinatória, por serem capazes de fornecer soluções sub-ótimas em um tempo ra-
zoável. Este trabalho propõe uma implementação alternativa de busca local baseada em GPGPUs,
a qual pode ser utilizada em conjunto com as metaheurísticas GRASP e ILS existentes para o prob-
lema CC. Esta nova abordagem supera, em tempo de execução, o procedimento de busca local até
então aplicado, com a mesma qualidade de solução.

PALAVRAS CHAVE. CUDA, GPGPU, VND, GRASP, ILS, Correlação de Clusters.

Área Principal: MH - Metaheurísticas

ABSTRACT
The solution of the Correlation Clustering (CC) problem can be used as a criterion to

measure the amount of balance in signed social networks, where positive (friendly) and negative
(antagonistic) interactions take place. Metaheuristics have been used successfully for solving not
only this problem, as well as other hard combinatorial optimization problems, since they can pro-
vide sub-optimal solutions in a reasonable time. In this work, we present an alternative local search
implementation based on GPGPUs, which can be used with existing GRASP and ILS metaheuris-
tics for the CC problem. This new approach outperforms the existing local search procedure in
execution time, with the same solution quality.
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1. Introduction
Structural (or social) balance is considered a fundamental social process. It has been used

to explain how the feelings, attitudes and beliefs, which the social actors have towards each other,
can promote the formation of stable (but not necessarily conflict-free) social groups. The balance of
a social system tends to follow the human tendency to preserve a cognitive consistency of hostility
and friendship. The principle is simple: "my friend’s friend is my friend, my friend’s enemy is
my enemy, my enemy’s friend is my enemy, my enemy’s enemy is my friend" (Heider, 1946).
Absence of balance creates a kind of tension in the group members’ minds that can eventually lead
to changes in their opinions. Once balance is achieved, it tends to be stable, since no cognitive
dissonance could change the state (Hummon and Doreian, 2003).

Determining the structural balance of a signed social network has been a key aspect in
the study of the structure and origin of tensions and conflicts in a network of individuals whose
mutual relationships are characterizable in terms of friendship and hostility. Structural balance
theory was first formulated by Heider (1946) with the purpose of describing sentiment relations
between people pertaining to a same social group (like/dislike, love/hate, trust/distrust). Signed
graphs were then introduced by Cartwright and Harary (1956), who formalized Heider’s theory
stating that a balanced social group could be partitioned into two mutually hostile subgroups each
having internal solidarity. In the last decades, signed graphs have shown to be a very attractive
discrete structure for social network researchers (Doreian and Mrvar, 1996; Inohara, 1998; Yang
et al., 2007; Abell and Ludwig, 2009; Doreian and Mrvar, 2009; Facchetti et al., 2011). Different
criteria and solution approaches have been used in the literature so as to quantify and evaluate
balance in a signed social network (Doreian and Mrvar, 2009; Leskovec et al., 2010; Facchetti
et al., 2011; Srinivasan, 2011).

Clustering is the action of partitioning individual elements into groups based on their
similarity. Clustering problems defined on signed graphs arise in many scientific areas (Bansal
et al., 2002; Gülpinar et al., 2004; DasGupta et al., 2007; Traag and Bruggeman, 2009; Huffner
et al., 2010; Macon et al., 2012; Figueiredo and Frota, 2014). The common element among these
applications is the collaborative vs. conflicting environment in which they are defined. The solution
of clustering problems defined on signed graphs can be used as a criteria to measure the degree
of balance in social networks (Doreian and Mrvar, 1996, 2009; Figueiredo and Moura, 2013). By
considering the original definition (Heider, 1946) of structural balance, the optimal solution of
the very known Correlation Clustering (CC) Problem (Bansal et al., 2002) arises as a measure for
the degree of balance in a social network. Alternative measures to the structural balance and the
clustering problems associated with them have also been recently discussed (Doreian and Mrvar,
2009; Figueiredo and Moura, 2013).

From a practical point of view, in solving the clustering problem treated in this paper,
heuristic approaches are primarily of interest, since large social networks may have to be ana-
lyzed (Kunegis et al., 2009; Leskovec et al., 2010; Facchetti et al., 2011). For example, online net-
works with two opposite kinds of relationships are nowadays very common. Slashdot, a technology-
related news website, includes a feature which allows users to tag each other as friends or foes, thus
allowing users to rate other users negatively. On online review websites such as Epinions users can
either like or dislike other people’s reviews. This behavior can be modeled as a signed network,
where edge weights can be either greater or less than 0, representing positive or negative relation-
ships respectively. The definition of a measure to represent the imbalance of a social network adds
itself a degree of approximation to the task of evaluating balance in a social network. Thus, it is
imperative that the clustering problem associated with this measure be solved efficiently.

To our knowledge, there are three metaheuristic approaches applied to the CC problem.
Zhang et al. (2008) proposes genetic algorithms to the CC problem, with an application to docu-
ment clustering. This strategy was impossible to reproduce though, for the absence of information
about how the genetic operators are applied. Drummond et al. (2013) presents a Greedy Random-



ized Adaptive Search Procedure (GRASP) (Feo and Resende, 1995) implementation capable of
efficiently solving the problem in networks of up to 800 vertices. Later, based on this work, Lev-
orato et al. (2014) introduced an Iterated Local Search (ILS) (Lourenço et al., 2003) metaheuristic
for the CC problem, which outperformed, in processing time, the GRASP metaheuristic proposed
earlier, with similar or improved solution quality. By observing the great amount of time spent on
the processing of larger graphs, we saw an opportunity to extend the aforementioned GRASP and
ILS algorithms with a new implementation of local search that can solve the problem faster.

In this work, we present a parallel local search procedure for the CC problem, accelerated
by General Purpose Graphics Processing Units (GPGPUs). Then, by applying the proposed local
seach in the GRASP and ILS metaheuristics, we show the improvements over the existing sequential
local search procedure. The paper is organized as follows. Section 2 presents the Correlation
Clustering problem, including a mathematical formulation and a literature review of it. Section
3 describes the parallel local search algorithm for the CC problem that runs on the GPU, while
Section 4 lists the experimental results of it as well as a comparison with other available solution
approaches. Finally, Section 5 presents our concluding remarks.

2. The CC problem
Correlation Clustering (Bansal et al., 2002) is a clustering technique motivated by the

problem of document clustering, in which given a large corpus of documents such as web pages, one
wants to find their optimal partition into clusters. The problem consists of minimizing the number
of unrelated pairs that are clustered together, plus the number of related pairs that are separate. In
this section, we formally describe the CC problem and present a mathematical formulation of it,
followed by a literature review.

2.1. Mathematical Formulation
Let G = (V,E) be an undirected graph where V is the set of n vertices and E is the

set of edges. In this text, a signed graph is allowed to have parallel edges but no loops. Also,
we assume that parallel edges always have opposite signs. For a vertex set S ⊆ V , let E[S] =
{(i,j) ∈ E | i,j ∈ S} denote the subset of edges induced by S. For two vertex sets S,W ⊆ V ,
let E[S : W ] = {(i,j) ∈ E | i ∈ S, j ∈ W}. One observes that, by definition, E[S : S] = E[S].
Consider a function s : E → {+,−} that assigns a sign to each edge in E. An undirected graph G
together with a function s is called a signed graph. An edge e ∈ E is called negative if s(e) = −
and positive if s(e) = +. Let E− and E+ denote, respectively, the set of negative and positive
edges in a signed graph.

A partition of V is a division of V into non-overlapping and non-empty subsets. Consider
a partition P = {S1,S2, . . . ,Sl} of V . The cut edges and the uncut edges related with this partition
are defined, respectively, as the edges in sets
∪1≤i<j≤lE[Si : Sj ] and ∪1≤i≤lE[Si]. Let we be a nonnegative edge weight associated with edge
e ∈ E. Also, for 1 ≤ i, j ≤ l, let

Ω+(Si,Sj) =
∑

e∈E+∩E[Si:Sj ]

we and Ω−(Si,Sj) =
∑

e∈E−∩E[Si:Sj ]

we.

The imbalance I(P ) of a partition P is defined as the total weight of negative uncut edges and
positive cut edges, i.e.,

I(P ) =
∑
1≤i≤l

Ω−(Si,Si) +
∑

1≤i<j≤l
Ω+(Si,Sj). (1)

Likewise, the balance B(P ) of a partition P can be defined as the total weight of positive uncut
edges and negative cut edges. Clearly, B(P ) + I(P ) =

∑
e∈E we. That being said, we are ready to

give a formal definition to the CC problem.



Problem 2.1 (CC problem) Let G = (V,E,s) be a signed graph and we be a nonnegative edge
weight associated with each edge e ∈ E. The correlation clustering problem is the problem of
finding a partition P of V such that the imbalance I(P ) is minimized or, equivalently, the balance
B(P ) is maximized.
Observe that the given definition comprises a weighted version of the problem. To obtain a non-
weighted version, it suffices to make we = 1, for each e ∈ E.

The classical mathematical formulation for the CC problem is an integer linear program-
ming (ILP) model proposed to uncapacitated clustering problems (Mehrotra and Trick, 1998). In
this formulation a binary decision variable xij is assigned to each pair of vertices i,j ∈ V , i 6= j,
and defined as follows: xij = 0 if i and j are in a common set; xij = 1 otherwise. The model
minimizes the total imbalance.

minimize
∑

(i,j)∈E−

wij(1− xij) +
∑

(i,j)∈E+

wijxij (2)

subject to xip + xpj ≥ xij , ∀ i,p,j ∈ V, (3)

xij = xji, ∀ i,j ∈ V, (4)

xij ∈ {0,1}, ∀ i,j ∈ V. (5)

The triangle inequalities (3) say that if i and p are in a same cluster as well as p and j, then vertices
i and j are also in a same cluster. Constraint (4) written to i,j ∈ V establishes that variables xij and
xji assume always the same value in this formulation. Constraints (5) impose binary restrictions to
the variables while the objective function (2) minimizes the total imbalance defined by equation (1).
Even though this formulation is polynomial-sized, having n(n−1) variables and n3+n2 constraints,
notice that, according to constraints (4), half of the variables can be eliminated, which reduces both
the number of variables and constraints of the formulation.

A set partitioning formulation (Mehrotra and Trick, 1998) is proposed in the literature to
uncapacitated clustering problems and could also be used in the solution of the CC problem. As
we can expect, these two formulations are not appropriate solution approaches when time limit is
a constraint in the solution process. The authors in Figueiredo and Moura (2013) report that the
classical formulation starts to fail (time limit set to 1h) with random instances of 40 vertices and
negative density equal to 0.5.
2.2. Literature Review

To the best of our knowledge, the CC problem, as defined in the previous section, was
addressed for the first time in Doreian and Mrvar (1996) (not under this name) where its heuristic
solution was used as a criteria for analyzing structural balance in social networks. The heuris-
tic approach proposed by the authors is a simple greedy neighborhood search procedure that as-
sumes a prior knowledge of the number of clusters in the solution. This heuristic is implemented
in software Pajek (Batagelj and Mrvar, 2008). Lately, motivated by the solution of a document
clustering problem, the unweighted version of the CC problem was formalized in Bansal et al.
(2002). The weighted version of the problem was addressed in Demaine et al. (2006). The CC
problem has been largely investigated from the point of view of constant factor approximation al-
gorithms and has been applied in the solution of many applications, including portfolio analysis in
risk management (Huffner et al., 2010), biological systems (DasGupta et al., 2007; Huffner et al.,
2010), efficient document classification (Bansal et al., 2002), detection of embedded matrix struc-
tures (Gülpinar et al., 2004) and community structure (Traag and Bruggeman, 2009; Macon et al.,
2012).

A comparison of several heuristic strategies (greedy and local search methods) for the
problem is presented in Elsner and Schudy (2009) and applied to document clustering and nat-
ural language processing (instances of n = 1000), to which ILP does not scale. In this con-
text, the authors’ recommended strategy for solving the CC Problem is a greedy algorithm called
V OTE/BOEM , which can quickly achieve good objective values with tight bounds.



In Yang et al. (2007), the CC problem is called community mining and an agent-based
heuristic is proposed to its solution. As far as we know, there are three metaheuristic approaches
applied to the CC problem. A solution based on genetic algorithms has been proposed in Zhang
et al. (2008) for the CC problem and applied to document clustering, but unfortunately there is no
explanation about how the genetic operators are applied, making it difficult to understand and re-
produce the proposed algorithm. Recently, Drummond et al. (2013) presented a GRASP (Feo and
Resende, 1995) implementation that provides an efficient solution to the CC problem in networks of
up to 8000 vertices. Later on, Levorato et al. (2014) introduced an ILS (Lourenço et al., 2003) meta-
heuristic for the CC problem, which outperformed, in processing time, the GRASP metaheuristic
proposed earlier, with similar or improved solution quality.

3. Parallelizing local search for the CC problem in the GPU
Our work started with an analysis of two existing metaheuristics for the CC problem.

Drummond et al. (2013) report the results obtained with sequential and parallel GRASP procedures.
The algorithm was implemented in C++ with MPI for message passing (Gropp et al., 1999). Then,
based on this work, Levorato et al. (2014) later introduced an ILS metaheuristic for the CC problem,
which outperformed, in processing time, the GRASP algorithm proposed earlier, with similar or
improved solution quality.

By observing the great amount of time spent on the local search phase of the aforemen-
tioned algorithms (Figure 1), we saw an opportunity to improve their performance by extending
both of them with a new implementation of local search, which is capable of solving the problem
faster, without altering the behavior of the metaheuristic. In this section we present a local search
procedure for the CC problem that uses the parallelism offered by GPGPUs.
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Figure 1: Time spent by GRASP and ILS algorithms on sequential 1-opt local search on Slashdot-based
signed graphs.

3.1. Using General Purpose GPUs to solve optimization problems
The use of Graphics Processing Units (GPUs) has been extended to a wide range of ap-

plication domains (e.g. computational science) thanks to the publication of the CUDA (Compute
Unified Device Architecture) development toolkit (NVIDIA, 2015), which allows GPU program-
ming in C-like language. When used as general-purpose computing devices, GPUs can efficiently
accelerate many non-graphics programs, especially vector-and matrix-based codes that exhibit lots
of parallelism with low synchronization requirements. Because their hardware is primarily designed
to perform complex computations on blocks of pixels at high speed and with wide parallelism, GPU
architectures differ substantially from conventional CPU hardware. Therefore, writing efficient pro-
grams to solve combinatorial optimization problems on GPUs is not a straightforward task and re-
quires a huge effort not only at design but also at implementation level. Indeed, several challenges
mainly related to the hierarchical memory management have to be dealt with. The major issues
consist of efficient distribution of data processing between CPU and GPU, thread synchronization,



optimization of data transfer between the different memories, as well as the capacity constraints of
these memories (Van Luong et al., 2013).

Whenever parallel algorithms are applied to solve optimization problems, it is worth notic-
ing that, in general, for distributed architectures (like MPI), the global performance in metaheuris-
tics is limited by high communication latencies. However, in GPU architectures, performance is
bounded by memory access latencies. This being said, several works have already demonstrated the
potential speedups when using GPUs to accelerate metaheuristics. For example, GRASP, ILS and
EA algorithms have been already adapted to use local search procedures implemented in GPGPU.
Table 1 lists some results available in the literature.

Author Title Speedup
Fujimoto and Tsutsui (2011) A highly-parallel TSP solver

for a GPU computing plat-
form

Up to x24.2

Rocki and Suda (2012) Accelerating 2-opt and 3-opt
local search using GPU in the
travelling salesman problem

From x3 to x26 speedup com-
pared to parallel CPU w/ 32
cores in ILS for TSP

Van Luong et al. (2013) GPU computing for parallel
local search metaheuristic al-
gorithms

From x0.5 up to x73.3 in local
search metaheuristics in GPU

Krüger et al. (2010) Generic local search
(memetic) algorithm on a
single GPGPU chip

Between x70 and x120

Pena et al. Local search for the observer
positioning over terrain prob-
lem

?

Santos et al. Parallel GRASP for the p-
median problem

Between x1.14 and x13.89

Table 1: Speedups obtained when using GPGPUs to accelerate metaheuristics.

3.2. GPGPU architecture and the CUDA programming model
CUDA has made possible the development of algorithms to solve time-consuming prob-

lems using the large number of parallel multiprocessors as well as the high memory bandwidth
provided by GPUs. To accomplish high-performance computing, it is necessary to develop parallel
algorithms that are partially or totally executed on the GPU. The CUDA-enabled graphics cards
are composed of multiple processors, more specifically, Single Instruction Multiple Data (SIMD)
processors called Stream Multiprocessors (SMs), which allow the execution of multiple parallel
threads. Thus, GPU processors can efficiently execute instructions involving operations with data
parallelism, when the same operation is applied to different data.

Depending on the algorithm, GPUs can provide greater processing power than CPUs be-
cause they are specialized in performing parallel tasks involving many calculations. On the other
hand, the CPUs are designed to perform tasks involving execution flow control and data cache. The
physical difference between both architectures can be visualized in Figure 2: GPUs dedicate most
of their area for processing units (in green), while CPUs dedicate most of their area for execution
control and data cache (in yellow and orange, respectively).

A CUDA application consists in code that is executed on CPU and functions (called ker-
nels) that are executed on GPU. The GPU is able to do parallel processing by creating threads such
that each thread may execute the kernel operations on different data. This way, the GPU is used as
a coprocessor to perform certain tasks more efficiently than the CPU.



In CUDA, the processing units (cores) are grouped to share a single instruction unit, so
that threads mapped on these cores execute the same instruction each cycle, but on different data.
Each logical group of threads sharing instructions is called a warp. Moreover, threads belonging to
different warps can execute different instructions on the same cores, but in a different time slot. In
practice, CUDA cores are time-shared between warps, and a group of threads in a warp performs
as a SIMD unit.

That said, modern GPU architectures relax SIMD constraints by allowing threads in a
given warp to execute different instructions. However, these varying instructions cannot be executed
concurrently, since each SIMD unit must execute the same instruction on all cores. This way, the
instructions are serialized in time, which severely degrades performance. This advanced feature is
called SIMT (Single Instruction Multiple Threads) and provides increased programming flexibility
by deviating from SIMD at the cost of performance. Threads executing different instructions in
a warp are said to diverge; if-then-else statements and loop-termination conditions are common
sources of divergence.

Another major concern about CUDA implementation which greatly impacts performance
is memory access. Bottlenecks can appear not only during data transfer between host (CPU) and de-
vice (GPU) memory, but also during memory access on the device; namely, data locality is very im-
portant. Depending on the accessed addresses, concurrent memory requests from multiple threads
from a warp can exhibit three possible behaviors:

• Requests targeting the same address are merged to be one unless they are atomic operations.
In the case of write operations, the value actually written to memory is nondeterministically
chosen from among merged requests;

• Requests exhibiting spatial locality are maximally coalesced. For example, accesses to ad-
dresses i and i + 1 are served by a single memory fetch, as long as they are aligned;

• All other memory requests (including atomic ones) are serialized in a nondeterministic order.

This last behavior, often called the scattering access pattern, greatly reduces memory
throughput, since each memory request utilizes only a few bytes from each memory fetch.

The CUDA programming model includes the notion of shared memory and thread blocks,
a reflection of the underlying hardware architecture as shown in Figure 2. All threads in a thread
block can access the same shared memory, which provides lower latency and higher bandwidth
access than global GPU memory but is limited in size. Threads in a thread block may also commu-
nicate with each other via this shared memory.

3.2.1. Modifying the search algorithm to run in the GPU
Our approach to parallelize the local search procedure followed the Iteration-level Parallel

Model (Van Luong et al., 2013). As can be seen on Figure 3, the evaluation of the neighborhood
is made in parallel. At the beginning of each iteration, the master thread, that runs on the CPU,
duplicates the current solution, which is made available to all threads of the GPU. Each of them
evaluates a specific movement in the neighborhood of candidates, and the results are returned back
to the master.

At this point, it is important to list some optimizations in the Correlation Clustering lo-
cal search algorithm that have been applied for the code to run efficiently in the GPU. First of all,
the graph had to be stored in Compressed Sparse Row format (Figure 4), in order to save space
and avoid unnecessary data transfers between host (CPU) and device (GPU) memory. This rep-
resentation consists of two arrays: column indices and row offsets. The column indices array is
a concatenation of each vertex’s adjacency list into an array of m elements. The row offsets ar-
ray is an n + 1 element array that points at where each vertex’s adjacency list begins and ends
within the column indices array. For example, the adjacency list of vertex v starts at C[R[v]] and
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ends at C[R[v + 1] − 1] (inclusively) and the edge values are stored in elements from E[R[v]] to
E[R[v + 1]− 1].

Also, since it is impossible to store the graph in shared memory (graph is big, shared
memory is too small), the graph was copied to the (slower) GPU global memory. It was then used
to calculate matrices that contain the sum of edge weights between vertex i and every cluster k in



the current solution. As we are processing a signed graph, there are 2 sum matrices: one for positive
edges and the other for negative edges, following the layout depicted in Figure 5. These matrices,
also stored in GPU global memory, contain all the information needed to evaluate the imbalance of
a new clustering configuration, without the need to traverse the graph, thus saving GPU memory
accesses and execution time.

Our parallel approach, although fast, is limited by the GPU’s shared memory size. Access
to the shared memory is very fast, therefore data stored in shared memory can be accessed with very
low latency. However, due to the limitations of GPU architecture, avilable shared memory is limited
to 48kB per MultiProcessor (NVIDIA, 2015)[Appendix G]. Since our local search algorithm stores
the current clustering solution array (to which cluster number a vertex belongs) in shared memory,
it is unable to solve graph instances larger than 12,888 vertices (48 kB/ 4 Bytes [int type]).

v1 v2 vn

k1 0 7 4
k2 1 0 2

kc 3 1 9

v1 v2 vn v1 v2 vn

0 7 4 3 1 9

k1 kc 

Figure 5: Layout of the matrices that store the sum of positive and negative edge weights between vertex vi
and each cluster kc (positiveSumArray and negativeSumArray, respectively).

3.3. CUDA local search kernel implementation

Algorithm 1: 1OptLocalSearchKernel

1 Input: positiveSumArray, negativeSumArray, currentImbalance, clusterArray, number of clusters (c)
2 Output: destImbArray
3 idx = blockIdx.x * blockDim.x + threadIdx.x;
4 i = idx mod n; → Vertex i is in cluster k1
5 k2 = idx div n; → Vertex i is being moved to cluster k2
6 if (i ≤ n and k2 ≤ c+ 1) {
7 k1 = clusterArray[ i ]; → obtains the cluster number of vertex i
8 /* calculates only the difference in positive and negative imbalance */
9 positiveSum = - positiveSumArray[ i+ k2 ∗ n ] + positiveSumArray[ i+ k1 ∗ n ];

10 negativeSum = - negativeSumArray[ i+ k1 ∗ n ] + negativeSumArray[ i+ k2 ∗ n ];
11 destImbArray[ idx ] = currentImbalance + positiveSum + negativeSum;
12 }

Algorithm 1 presents the kernel pseudocode for CUDA CC 1 − opt local search kernel
and Figure 6 summarizes the work executed. Each thread running in the GPU (uniquely identified
by idx) is responsible for calculating the delta of imbalance caused by moving a specific vertex
i to a different cluster, for example, in the range k1 to kc. Afterwards, another kernel performs a
reduction of the results, also in parallel, returning the best move for this specific local search.

Finally, whenever a vertex move is applied due to an improvement in imbalance, a third
CUDA kernel is invoked to update the clustering configuration and the vertex-cluster edge-weight-
sum arrays (positiveSumArray and negativeSumArray) after a change in the clustering. This
update is a necessary step to allow the execution of the variable neighborhood descent procedure,
that is, invoking the 1− opt local search procedure again (new local search iteration), as long as the
obtained clustering solution brings an improvement in imbalance.

Our initial implementation approach consisted of running only the local search algorithm
(1OptLocalSearchKernel) inside the GPU, keeping the reduction of best result and update of the
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Figure 6: GPU thread work representation for 1-opt local search. Each thread idx is responsible for moving
vertex i to a different cluster, from k1 to kc, and to a new cluster (kc + 1).

auxiliary matrices in the CPU. However, poor performance was obtained due to the overhead of
memory transfers between host and device memory: 95% of time spent by local search procedure
did not involve computation, only memory copies between host (CPU) and device (GPU) (memcpy
operation). In the final version of the algorithm, solution reduction and updates of data structures
between local search iterations are also performed in the GPU, which led to the computational
results that shall be presented in the next section.
4. Experimental results

The algorithms described in the previous section were implemented in ANSI C++ and
CUDA. All experiments were performed (with exclusive access) on a workstation with an Intel
Core i7 QuadCore processor @2.66GHz and 32Gb of RAM under Linux Mint 16 operating system.
The workstation is also equipped with NVIDIA Fermi C2050 GPU containing 14 SMs, 32 SPs per
SM and 48 KB of shared memory per SM. CUDA code was written in the "C for CUDA V6.5"
(NVIDIA, 2015) programming environment.

All heuristic outcomes are average results of 5 independent executions. Speedups are
computed by dividing the sequential CPU time with the parallel time, which is obtained with the
same CPU and the GPU acting as a co-processor. The following configuration was used to run the
local search CUDA kernels: (a) Block size of 256; (b) (c+ 1)× n threads in 1− opt search, where
n is the number of vertices of the graph and c is the number of clusters of the current solution.

Computational experiments were carried out on (i) a set of 24 random instances, and (ii)
a set of 5 social networks from the literature. Next, we describe briefly these instances1.

(i) We generated random social networks with n ∈ {400, 600}, varying network density d =
2× |E|/(n2−n) and negative graph density defined here as d− = |E−|/|E|. For each value
of n, we considered a set of 12 random instances having d and d− ranging, respectively, in
sets {0.1, 0.2, 0.5, 0.8} and {0.2, 0.5, 0.8}.

(ii) This set of instances is composed by 5 signed networks extracted from the large scale
social network representing the technology-related news website Slashdot (Leskovec

1all instances are available in http://www.ic.uff.br/∼ yuri/files/CCinst.zip.



et al., 2010; Facchetti et al., 2011), containing the first n vertices, with n ∈
{1000, 2000, 4000, 8000, 10000}.

4.1. Sequential GRASP vs. Sequential GRASP with CUDA local search
In this section, we present the experiments performed with the sequential GRASP algo-

rithm (SeqGRASP) available in Drummond et al. (2013) and the sequential GRASP with CUDA
parallel Variable Neighborhood Descent (SeqGRASP/CUDAVND), when solving random instances
(Table 2) and Slashdot instances (Table 4). Both experiments used the following set of GRASP pa-
rameters:

Time limit Alpha Neighborhood Number of iterations without improvement
2 hours α = 1.0 r = 1 iter = 400

4.2. Sequential ILS vs. Sequential ILS with CUDA local search
Here we list the results of the experiments performed with the sequential ILS algorithm

(SeqILS) available in Levorato et al. (2014) and the sequential ILS with CUDA parallel Variable
Neighborhood Descent (SeqILS/CUDAVND), when solving random instances (Table 3) and Slash-
dot instances (Table 5). The following configuration was used in the ILS procedure:

Time limit Alpha Neighborhood Iterations ILS iterations Perturbation level
2 hours α = 1.0 r = 1 iter = 10 iterMaxILS = 5 perturbMax = 30

5. Concluding remarks
The aim of this paper was to design an efficient parallelization strategy for the implemen-

tation of a parallel local search procedure for the Correlation Clustering problem on GPU. After
applying the procedure, known as CUDAVND, in existing GRASP and ILS metaheuristics for the
CC problem, our experimental results showed significant speedups, outperforming, in processing
time, the local search available in the literature.

The GRASP/CUDAVND algorithm presented an average speedup of x43 (up to x121) on
random instances and x2.9 (up to x4.21) on Slashdot instances, while the ILS/CUDAVND showed
an average speedup of x14 (up to x33) on random instances and x3.5 (up to x5.6) on Slashdot in-
stances. In both algorithms, the solution quality was equal or close to their sequential counterparts.

The next step of our work will focus on improving the analysis of larger signed social net-
works. The numerical experience indicates that, in order to handle instances like Epinions (131,828
vertices and 841,372 edges) or Slashdot (82,144 vertices and 549,202 edges) networks, we need
to implement better parallelization strategies. One possible approach is implementing a hybrid
application, using the parallelism available both in CPU (multicore) and GPU (CUDA).
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Table 3: SeqILS and SeqILS/VND results for random instances in (i).

Instance SeqGRASP SeqGRASP/CUDAVND
n |E−| |E+| w(E−) w(E+) AvgI(P ) AvgT ime AvgI(P ) Gap%I(P ) AvgT ime Speedup

1000 859 5132 859 5132 600.0 23.69 600.0 0.00% 18.75 1.26
2000 3217 17598 3217 17598 2186.0 232.48 2187.4 0.06% 73.93 3.14
4000 8664 40868 8664 40868 6202.6 1415.45 6206.2 0.06% 335.88 4.21
8000 22789 86916 22789 86916 16082.6 7030.32 16087.2 0.03% 2189.18 3.21
10000 29805 109266 29805 109266 20594.6 7200.49 20596.6 0.01% 2680.88 2.69

Average 3180.49 0.03% 1059.72 2.90

Table 4: SeqGRASP and SeqGRASP/VND results for Slashdot instances in (ii).

Instance SeqILS SeqILS/CUDAVND
n |E−| |E+| w(E−) w(E+) AvgI(P ) AvgT ime AvgI(P ) Gap%I(P ) AvgT ime Speedup

1000 859 5132 859 5132 600.2 33.64 600.2 0.00% 15.71 2.14
2000 3217 17598 3217 17598 2187.5 107.42 2201.6 0.64% 38.15 2.82
4000 8664 40868 8664 40868 6218.6 591.84 6213.2 -0.09% 105.96 5.59
8000 22789 86916 22789 86916 16072.1 2229.04 16082.6 0.07% 604.51 3.69
10000 29805 109266 29805 109266 20595.1 3618.14 20600.6 0.03% 1087.89 3.33

Average 1316.01 0.13% 370.44 3.51

Table 5: SeqILS and SeqILS/VND results for Slashdot instances in (ii).
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