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This paper describes a semiclassical field theory approach to the topological properties of spatially featureless

Affleck-Kennedy-Lieb-Tasaki type valence bond solid ground states of antiferromagnets in spatial dimensions

one to three. Using nonlinear sigma models set in the appropriate target manifold and augmented with topo-

logical terms, we argue that the path integral representation of the ground state wave functional can correctly

distinguish symmetry protected topological ground states from topologically trivial ones. The symmetry protec-

tion feature is demonstrated explicitly in terms of a dual field theory, where we take into account the nontrivial

spatial structure of topological excitations which are caused by competition among the relevant ordering ten-

dencies. A temporal surface contribution to the action originating from the bulk topological term plays a central

role in our study. We discuss how the same term governs the behavior of the so-called strange correlator. In

particular, we find that the path integral expression for the strange correlator in two dimensions reduces to the

well-known Haldane expression for the two point spin correlator of antiferromagnetic spin chains.

PACS numbers: 03.65.Vf, 11.10.Ef, 75.10.Jm, 75.10.Kt

I. INTRODUCTION

A. Motivations

It is becoming increasingly clear that topological order in

quantum many-body systems is one of the rare instances of a

subject lying at a major intersection point of disciplines, link-

ing different subdivisions of physics to each other as well as

with modern mathematics and quantum information theory.

The concept of symmetry protected topological (SPT) states1,

a relatively recent addition to the topics which comes under

this umbrella, was conceived out of an effort to extract those

relevant features of Z2 topological insulators which can be

generalized to a wider variety of systems and protecting sym-

metries - (1) a gapped ground state in d dimensions possessing

only a short-ranged entanglement which nevertheless, under

an imposed symmetry, cannot be perturbed smoothly into a

topologically trivial state, and (2) accompanying gapless sur-

face states which turn out to be anomalous in the sense that

they cannot be realized in a detached (d − 1) dimensional

((d − 1)d) system. The interdisciplinary nature of the sub-

ject becomes evident by observing the wealth of different ap-

proaches that have been incorporated to characterize and clas-

sify SPT states. These include but are not limited to matrix

product states (MPS) and their generalizations to tensor net-

works1, entanglement spectra2, group cohomology3, Chern-

Simons theory4, nonlinear sigma (NLσ) models5–7, mixed

gauge-gravity anomalies8, and the cobordism invariance of

topological quantum field theories (TQFT)9. The relation be-

tween MPS representations for (1+1)d SPT states and their

corresponding TQFT’s is discussed in Ref.10.

Right from the very inception of generalized (bosonic)

SPT states, a quantum spin chain in the Haldane gap phase

has been the prime example of a strongly correlated sys-

tem that can be understood as a physical implementation of

this new and subtle type of topological order. The consid-

erable knowledge accumulated through work starting in the

1980’s on the entanglement properties of quantum spin sys-

tems proved to be instrumental in establishing this key find-

ing, among which are notions such as string order param-

eters11–14 and the closely related nonlocal uniform transfor-

mations15, the Affleck-Kennedy-Lieb-Tasaki (AKLT) parent

Hamiltonian and the MPS representation of its soluble valence

bond solid (VBS) ground state16,17. It was shown using these

tools, in combination with the more recently devised entan-

glement spectra, that a Z2 classification of the Haldane gap

phase ensues when either one of the following symmetries is

imposed on the system: time-reversal, link-inversion, and π
rotation with respect to the x, y, and z axes. Stated more

plainly, the ground state of the antiferromagnetic Heisenberg

spin chain is, under such symmetry constraint, an SPT state

when the spin quantum number S is an odd integer, while be-

ing trivial (i.e., can be adiabatically deformed without going

through a quantum phase transition into a product state lack-

ing short ranged entanglement) when S is even2. It is natural

to expect that the AKLT construction will also generate SPT

states in higher dimensions. In addition, such featureless VBS

states are of prime importance in that they are prototypical

examples of tensor networks or projected entangled-pair state

representations.

In the present paper we will be concerned with another,

equally popular approach to quantum antiferromagnets: the

semiclassical mapping onto a NLσ model type low energy ef-

fective field theory, which first appeared in in the pioneering

work of Haldane18. It is known that on a qualitative level, i.e.,

in regard to issues such as the existence/absence of a spec-

tral gap, and the ground state degeneracy, this semiclassical

picture and the line of study mentioned in the previous para-

graph conform with each other reasonably well, for both one

and two spatial dimensions, despite their being rooted in very

different languages19,20.

Notwithstanding the affinity exhibited by the two ap-
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proaches, the wealth of knowledge that had been gained from

the Haldane mapping onto semiclassical sigma models has not

been fully exploited as an insightful window into the topolog-

ical order of AKLT-like ground states in gapped spin systems.

(See however the remarks toward the end of this section where

we do mention related work.) Indeed, whether such an under-

taking is possible at all is by no means trivial. In (1+1)d, for

example, the Haldane mapping successfully discriminates be-

tween the gapless half-odd S and the gapful integer S cases.

It is not apparent though, how to use the same effective theory

to reproduce the further classification of the gapped system

into the topological S=odd case and the trivial S=even case.

A similar task in higher dimensions would seem even more

tedious if not impossible. The core of the problem apparently

boils down to whether one can devise a program that enables

us to correctly extract the global properties of the ground state,

starting with an appropriate low energy action. We were in-

spired in this regard by the work of Xu and Senthil5, where

several ground state wave functions belonging to SPT phases

is treated in the path integral framework, an approach which

potentially links the effective action - especially the topolog-

ical term, to properties of the ground state. (To some extent

the latter feature is predated by Refs.21,22.) Our main objec-

tive will be to show in a comprehensive manner how semi-

classical field theories do in fact offer an alternative and of-

ten intuitive route towards determining whether an AKLT-like

ground state in a gapped Heisenberg antiferromagnet lies in

an SPT or a topologically trivial phase. A major advantage of

the present approach lies in the manifest S-dependence of all

results, a consequence of the S-dependence of the topologi-

cal action. This in turn enables us to leisurely compare notes

between our results and those inferred by the AKLT-VBS pic-

ture, which also yields a clear S-dependent structure for the

topological property of the ground state.

Our main argument basically invokes nothing more in-

volved than the semiclassical mapping of antiferromagnets

and a careful treatment of the resulting Berry phases (theta

term in (1+1)d, monopole Berry phases in (2+1)d, etc.) via a

meron-gas approximation23, all of which are techniques well-

documented in textbooks24–26 and review articles27. The hope

therefore is that for some condensed matter physicists our ex-

amples will serve to demystify aspects of SPT states that of-

ten calls for the use of more sophisticated mathematical ap-

proaches. While we will highlight the (2+1)d problem (which,

as explained below, is the case which allows for the most

generic analysis from a symmetry perspective), we will first

use the (1+1)d case to build up our general strategy, and will

also offer a discussion as to how the scheme generalizes to

(3+1)d.

B. Summary of approach

As the following two sections are each focused specifically

on one and two spatial dimensions, we would like to outline

here the general idea that are common to both, as well as to

Sec. V A, where an attempt at a generalization to 3d is made.

The semiclassical O(3) NLσ model description of antiferro-

magnetic systems employs a vector field n of unit norm rep-

resenting the direction of the staggered magnetization. The

original argument of Haldane for spin chains18,19 asks how the

partition functionZ[n(τ, x)] is affected by the topology of the

space-time configuration n(τ, x). Relevant to the latter is the

mapping from compactified Euclidean space-time to the tar-

get space of the order parameter, which is classified in terms

of the second homotopy group π2(S2), labeled explicitly via

the integer-valued winding number

Qτx =
1

4π

∫

dτdxn · ∂τn× ∂xn ∈ Z.

It is this winding number that was famously found to enter

the path integral expression for Z[n(τ, x)], in the form of a

theta term, c.f., Eq. (1), which has crucial implications on the

energy spectrum and the spin correlation.

In the present study, in contrast, we are interested in the

global properties of the ground state wave functionalΨ[n(r)],
i.e., the probability amplitude associated with the snapshot

configuration n(r) (with r representing the spatial coordi-

nate in d spatial dimensions). The relevant mapping here is

that from space (as opposed to space-time) to the target man-

ifold. Let us specialize for the moment to the case d = 1, for

which this mapping is classified in terms of the first homotopy

group, π1. For the generic situation, where the order param-

eter is free to roam over the whole of S2, this of course is a

trivial map, as π1(S2) = 0. It is clear that in order to obtain

a nontrivial first homotopy group we will need to restrict the

target manifold to S1 (since π1(S
1) = Z). This motivates

us to investigate in Sec. II the easy-plane spin chain situa-

tion, where the bulk order parameter prefers to take values on

S1. Here, a crucial distinction from a purely planar spin chain

arises upon taking into account the effects of space-time vor-

tex configurations, where the order parameter can escape into

the third dimension at the core, forming a meron configura-

tion23,27. Recalling that the S = 1 Haldane phase extends into

the easy-plane regime of the XXZ spin chain all the way down

to but not including the XY limit28 also serves as a physical

motivation for this choice. We will find that the study of the

effective theory and the accompanying wave functional Ψ for

such a situation indeed leads to a distinction between odd and

even S ground states.

The same program is carried out for d = 2 in Sec. III. Here

the focus is on even S, for which featureless AKLT-like states

can form on the square lattice. Unlike in the 1d case, the anal-

ysis is performed without having to impose a restriction on the

target manifold, since π2(S
2) = Z, which as mentioned be-

fore is the homotopy relation that was central to the Haldane

conjecture for spin chains. By essentially tracing over the pro-

cedure in Sec. II of deriving an effective action and using it to

study the behavior of the ground state, we find that it leads us

to a discrimination between the topological properties of the

S = 2 × odd and S = 2 × even cases. We will seek ad-

ditional insight into this problem through the behavior of the

so-called strange correlator29 in Sec. IV. Interestingly, we find

that once set in this language, the same Z2 classification for

2d gapped spin systems can now be viewed as a direct conse-

quence of the original (1+1)d Haldane argument, submitted to
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a mere renaming of coordinates. Some of the main features of

our findings in Secs. II and III are listed in Table I.

A generalization of this approach to (3+1)d, which follows

naturally from this table, and is an inevitable consequence of

the homotopy relation πd(S
d) = Z (d: spatial dimension),

forces us to think in terms of an O(4) NLσ model. While the

physical contents of this artificially constructed effective the-

ory is not straightforward to foresee, we present arguments in

Sec. V A suggesting that it turns out to be a dual representa-

tion of the VBS state on a cubic lattice.

C. Relation/difference with previous work

As a final note before proceeding to the main study, it is

appropriate to briefly remark on and clarify the differences

with work that have some overlap with ours, either in terms of

physical context or technicality.

Ref.6 suggests an intuitive argument for understanding in

terms of NLσ models how it is that the Z2 classification

of 1d antiferromagnets, pointed out in Ref.2, comes about.

Here, one considers a system consisting of two NLσ mod-

els in (1+1)d, each with a theta term. By sweeping the

strength of the interchain interaction, the authors consider

what phases are adiabatically connected to each other with-

out a gap-closing occurring in between (which is confirmed

via a numerical test on coupled spin chains), arriving at the

aforementioned classification. The simplicity of this argu-

ment is appealing, though strictly speaking, it is not totally

clear whether testing numerically for a specific choice of S
will suffice in making a general-S statement. It is also not

evident whether the argument can be generalized to higher di-

mensions.

We note that in the terminology of e.g. Refs.30,31, both the

2d and 3d states that are taken up in this article fall into the cat-

egory of weak SPTs, in the sense that translational symmetry

plays a role in protecting their topological nature. Refs.31,32

employ a semiclassical, nonlinear sigma model approach to

the S = 1 AKLT state on a 2d square lattice, which is also

a weak SPT state, but not totally featureless in contrast to the

cases discussed below. It was suggested that this particular

state may have some relevance to the iron based superconduc-

tor compound FeSe.

A Čech cohomology based approach (generally suited to

derive a geometrical quantization) to SPT ground states of

NLσ models with a theta term was set forth in Ref.33. While

the 1d analysis carried out on the O(3) NLσ model is of direct

relevance to the problem we take up in this paper, the same

scheme as extended to 2d necessarily applies (owing to ho-

motopical reasons) to the O(4) NLσ model with a theta term,

whose relation with the featureless 2d AKLT-like state in 2d

is unclear. This same effective 2+1d field theory is also the

subject of several other work4–6, where the interest again is

on slightly different physical situations (such as variants of

quantum Hall systems) from that explained in the previous

subsections.

In Ref.34, a Chern-Simons theory approach is combined

with abelian bosonization to arrive at a Z2 classification for

the specific case of the S = 2 AKLT state on a square lattice.

The method employed, while efficient, is tied to the dimen-

sionality d = 2. It is not straightforward to see whether this

analysis generalizes to 3d.

The focus of the present paper is on the topological proper-

ties of AKLT type ground states as seen through semiclassical

effective field theories. Meanwhile the existence of featureless

SPT phases outside of the AKLT category has been addressed

in Refs.35,36. An important future problem along this interest-

ing line of development would be to seek a field theoretical

description of such states.

As already mentioned, we will find in Sec. V A that the

physics of the (3+1)d AKLT state can be casted into a variant

of the O(4) NLσ model, whereas a different effective action,

i.e. the O(5) NLσ model with a theta term is employed in

several earlier work (e.g. Ref.5 ) as a prototypical description

of a (3+1)d SPT state. While it is not apparent whether a

precise relation between the two approaches exists, it is worth

remarking that both actions may be regarded as descendants of

a common model, the O(6) NLσ model with a Wess-Zumino

term, obtained through symmetry reductions. (Please consult

Appendix B for details.)

II. 1D CASE: PLANAR ANTIFERROMAGNET

For the reason stated in the previous section, we choose to

study the planar limit, and a strong easy-plane anisotropy will

be assumed for this purpose. Furthermore, as we are inter-

ested in identifying SPT states, we focus on the integer-S case,

where the system can form a ground state with an energy gap

(the Haldane gap) without having to break translational sym-

metry. It will be useful to keep in mind that in the VBS pic-

ture25, we are concentrating on ground states with a spatially

featureless distribution of the valence bonds (which requires

that S be an integer). Related material, mostly in the context

of magnetization plateau phases, have appeared in Refs.37–39.

However it is instructive to reorganize the argument so as to

set the stage for (2+1)d, as many of the crucial elements arise

here in a simpler setting. Unless stated to the contrary, we use

throughout this article the convention ~ = 1, and will work in

Euclidean space-time.

A. Effective action

We begin with the effective action derived by Haldane for

the antiferromagnetic Heisenberg spin chain,

Seff [n(τ, x)] =
1

2g

∫

dτdx
{

(∂τn)
2 + (∂xn)

2
}

+ iΘQτx.

(1)

The first term is the standard O(3) NLσ model. We shall gen-

erally refer to actions such as this, which are of a nontopologi-

cal nature, as kinetic terms. For brevity, the spin wave velocity

here and henceforth is set to unity. The remaining term is the

topological theta term, whose coefficient is Θ ≡ 2πS19. Our

first task is to take the planar limit in a manner that will pre-

serve the relevant topological properties of Seff . In terms of
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FIG. 1: (Color online) (a) The rewriting, following Ref.40, of the

staggered summation over planar spin Berry phases (3) into the net

space-time vorticity (4). The directions of the vertical arrows on the

temporal links account for the staggering of the Berry phases. Each

arrow contributes to the action the piece iS(−1)j∆τφ. The auxiliary

horizontal arrows on the spatial links stand for ±iS∆xφ. (b) An

illustration depicting how space-time vortices induce a discontinuous

jump (i.e., a phase slip) in the winding number (9) associated with

the snapshot configuration.

the planar configuration n
pl ≡ (cosφ, sinφ, 0), we find, fol-

lowing, e.g., Ref.40, that the appropriate modification of (1)

turns out to be of the form

Spl
eff [φ(τ, x)] =

1

2g

∫

dτdx
{

(∂τφ)
2 + (∂xφ)

2
}

+ iπSQv,

(2)

where the quantityQv appearing in the topological term is the

space-time vorticity of the angular field φ, i.e.

Qv =
1

2π

∫

dτdx(∂τ∂x − ∂x∂τ )φ ∈ Z.

While the derivation of the kinetic term is straightforward

and obvious, the topological term perhaps requires clarifica-

tion since, by observing that Qτx = 0 for the planar config-

uration n
pl(τ, x), one may be lead to expect that topological

terms should be absent from the effective action. To see why

this is not the case, it is best to go back to the fact that the theta

term in Eq. (1) arose as the continuum limit of the summation

over the spin Berry phases at each site19, i.e.,

Stot
BP = iS

∑

j

(−1)jω[nj(τ)], (3)

where ω is the solid angle subtended by the local n vector.

If we now plug into this equation the planar configuration

n
pl(τ, x), and introduce an auxiliary discretized space-time

grid40, we have, with the aid of Fig. 1,

Stot
BP =iS

∑

j

(−1)j
∫

dτ∂τφj(τ)

=i2πS
∑

j̄

Yj̄Qv(j̄). (4)

The second line is a rewriting into a summation over spatial

links (labeled by index j̄), whereQv(j̄) is the space-time vor-

ticity associated with the j̄-th link, and the weight Yj̄ = 1 if

j̄ is odd while Yj̄ = 0 if j̄ is even (Fig. 1(a)). Since only

the odd links contribute to the total Berry phase, taking the

continuum limit involves the insertion of a factor 1/2 upon

converting summations to integrals (or equivalently we may

assign to every link the average weight of 〈Y 〉 = 1/2), and

we arrive at

Stot
BP = i2πS〈Y 〉Qv = iπSQv, (5)

as claimed.

Having established our effective theory, we now proceed

to make the case that the action just constructed represents

an SPT state when S is an odd integer. In support of this

claim, we will first discuss the nature of the edge states and the

ground state wave function, both of which follow immediately

from our effective action. This will suggest that the odd S and

evenS cases differ in their topological properties (thus placing

them in different phases), and only the former is susceptible to

the global behavior of the spin configuration. We then go on to

investigate the effect that an explicit breaking of an imposed

symmetry will have on the integrity of the topological nature

of the odd S ground state.

Our goal is not to exhaust all protecting symmetries listed

in the classification table3, but instead to utilize our approach

to see at least one symmetry which protects the odd S ground

state in action. To this end we will impose on our model a

bond-centered inversion symmetry, which is present in the ini-

tial lattice model, and discuss how it provides such a protec-

tion. An explicit discussion on how this imposition severely

constrains the dual vortex theory is given toward the end of

this section. We expect that similar arguments can be worked

out for the other protecting symmetries.

B. Edge states

A noteworthy fact utilized in the following is that the theta

term action as written in the CP1 representation25,

SΘ = i
Θ

2π

∫

dτdx(∂τax − ∂xaτ ) (Θ = 2πS), (6)

continues to be valid even in the planar limit, as opposed to

that in the O(3) representation whose naive use breaks down

in this limit as mentioned above. (A brief summary of the

CP1 framework is provided in the next section.) This can

be checked by substituting aµ = ∂µφ/2, a legitimate gauge

choice for the CP1 connection corresponding to n
pl, into (6),

and seeing that it reproduces the correct topological term (5).

Manifestly being a total derivative, the action (6) gives rise to

surface terms for an open space-time manifold. With an open

boundary condition in the spatial direction, it generates at the

two spatial edges the actions

Sedge = ±iS
∫

dτaτ , (7)

where the plus/minus sign below corresponds to the surface

contributions at the right/left edge of the 1d system. Noting

that these are just half the Berry phase actions of isolated spin

S objects, we see that for integer S, (7) describes the spin

Berry phase associated with the fractional spin-S/2 objects

that appear at the open ends of spin chains in the Haldane gap

state41.



5

C. Ground state wave functional

For our purpose of investigating the bulk ground state prop-

erties, we suppress the above edge state effects by imposing

a spatial periodic boundary condition. However, a surface

term in the temporal (imaginary time) direction, inheriting the

“fractionalized” nature exhibited by its spatial counterpart (7)

will now play a governing role. This becomes evident when

we incorporate the functional integral representation of the

ground state wave functional5,

Ψ [φ(x)] =

∫ φ(x)

φi(x)

Dφ(τ, x)e−Spl
eff

[φ(τ,x)],

where the Feynman sum extends over all paths for which the

initial configuration φi(x) evolves into φ(x) at the terminal

imaginary time. The duration of the evolution in imaginary

time should be sufficiently long so that the system will project

onto the ground state. The surface contribution turns out to

depend solely on the topology of the fixed final configuration

φ(x) and may therefore be placed outside of the functional

integral sign5,37, which is analogous to decomposing the par-

tition function for a theory including a theta term into topo-

logical sectors, each weighted with an overall phase factor42.

Thus, up to the factor deriving from the kinetic (nontopologi-

cal) term, we obtain

Ψ[φ(x)] ∝ e−iπSQx = (−1)SQx , (8)

where

Qx ≡ 1

2π

∫

pbc

dx∂xφ(x) ∈ Z (9)

is the winding number associated with the snapshot configu-

ration at the final time. Hence, for the odd S case the ground

state wave functional is sensitive to the parity (i.e., even/odd)

ofQx, whereas for even S, it is insensitive to the global topol-

ogy of the configuration.

D. Dual theory

Further information pertaining to the distinction between

the odd S and even S cases comes from submitting the ac-

tion (2) to standard duality transformation procedures. When

combined with the usual dilute vortex gas approximation, this

results in a vortex field theory given by the Lagrangian density

L1d
vortex =

g

8π2
(∂µϕ)

2 + 2z cos(ϕ− πS) (10)

where z is the vortex fugacity. (Details of this derivation albeit

in a different physical context can be found in Ref.37.) The

cosine term is assumed to be relevant, since we are interested

in disordered spin states. It is clear that the optimal value of

ϕ which minimizes this term depends on whether S is odd or

even, suggesting that the ground state for the two cases belong

to different phases.

E. Symmetry protection

Up to now it sufficed to simply treat the vortices as ob-

jects with featureless cores, as in the XY model. In order

to discuss how the symmetry protection of the global proper-

ties of the ground state works, we will need to recall that we

are working with a three-component field in the easy plane

limit. This anisotropic system takes advantage of the fact that

the singularity at the vortex core can be avoided by letting

the field at the center escape into the out of plane direction,

i.e., by forming meron configurations. (The term meron here

and in later sections refers, as originally introduced into the

physics literature in the context of quantum chromodynam-

ics43, to a space-time configuration corresponding to half an

instanton. Composites of these minimal configurations may

also be referred to as merons, unless confusion is anticipated.)

Characterized by fractional topological chargesQτx = ±1/2,

merons will make nontrivial contributions to the theta term in

(1). They come in four varieties, since for a given sense of

winding (clockwise/counterclockwise) of the planar spins far

from the center, the field at the core has the option of pointing

upward or downward. First we must verify that incorporating

the meron picture will not alter the form of our vortex field

action (10). For this, we have merely to draw on the results

of Refs.23,27, where a fugacity expansion which takes into ac-

count the Berry phase effects of all four types of merons was

performed. The meron gas action thus found has the form

L1d
mer =

g

8π2
(∂µϕ)

2 + 2z cos(πS) cosϕ, (11)

where the emphasis in those references was in the vanishing

of the prefactor cos(πS) for half-integral S, lending support

to the Haldane conjecture. For our case of interest, S ∈ Z,

it is apparent that (11) reproduces (10). Let us now imagine

turning on a staggered magnetic field in the z (out of plane)

direction, so that a staggered magnetization δmẑ is induced

per site. This will have two essential effects on merons: (1)

the n-field at the center now has a fixed preference (points

upward) (2) the theta term contribution from each meron un-

dergoes the shift ±iπS → ±iπ(S− δm), where the modified

value derives from the area of the northern hemisphere region

of S2 bounded by the latitude z = δm/S (the overall sign is

determined by the winding direction). These changes result in

a new Lagrangian density

L′1d
mer =

g

8π2
(∂µϕ)

2 + 2z cos[ϕ− (π(S − δm))]. (12)

It is clear that sweeping δm in (12) by changing the strength

of the staggered magnetic field will cause the optimal value

of the field ϕ to shift continuously while keeping the value of

the cosine term unchanged. This implies that the application

of the staggered magnetic field enables us to deform the odd

S ground state smoothly into that for even S without closing

the energy gap, placing them in the same phase. Indeed, both

states are connected to the S − δm = 0 phase, i.e., the fully

polarized Néel ordered phase, which can be represented as a

direct product (trivial) state. As this procedure can be prohib-

ited by imposing onto the system a bond-centered inversion
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symmetry, we conclude that the odd S ground state is an SPT

state protected by this symmetry, apparently belonging to a

different phase from the even S ground state.

Without going into details we mention that the intuitive dis-

cussion of the foregoing paragraphs can also be summarized

more formally by noting that the field ϕ changes sign under

bond-centered inversion. This transformation property can

be deduced through a detailed inspection of the dual action

(written in the first quantization language) for the space-time

vortex. (Physically, this is closely related to the fact that the

vortex creation operator is equivalent to the order parameter

of the staggered magnetization. It is analogous to identifying

the monopole creation operator with the VBS order parameter

in 2d44.) Thus, imposing bond-centered inversion symmetry

will prohibit perturbations which violate the invariance with

respect to the sign inversion of ϕ. It is this property that pro-

tects the SPT phase in the preceding argument.

We end this section with a discussion on how the intro-

duction of bond alternation will affect the system, a prob-

lem which will have some relevance to later sections. Since

this perturbation only breaks site-centered inversion symme-

try and does not violate the bond-centered symmetry just men-

tioned, it should not enable the SPT state to deform into a

topologically trivial state without experiencing a collapse of

the spectral gap. Seeing how this comes about will serve as a

useful test for the validity of the present framework. To that

end we recall that in the semiclassical description of antiferro-

magnet spin chains in terms of the O(3) NLσ model, perturb-

ing with a bond alternation results in a shift of the vacuum

angle Θ = 2πS → Θ = 2πS(1 − δ), where δ ∈ [−1, 1]
parametrizes the strength of the perturbation which modu-

lates the the exchange interaction of the spin chain via Ĥ =
∑

j JSj ·Sj+1 →
∑

j J(1−(−1)jδ)Sj ·Sj+1
45,46. For con-

creteness, we focus on the case where S = 1. In the absence

of bond alternation (δ = 0), the vacuum angle is Θ = 2π.

While the arguments of the preceding paragraphs only apply

to the easy plane case, we nevertheless know, e.g., from the

analysis in Ref.2 that the ground state should lie in an SPT

phase for the generic O(3) case as well, provided the large

S mapping correctly inherits the entanglement properties and

topological order of the spin chain’s ground state. (We will

return to the easy plane situation shortly.) Meanwhile, when

δ = 1, which corresponds to Θ = 0, the system reduces to

an array of decoupled dimer pair segments, which is a prod-

uct state and as such is topologically trivial. Now consider

sweeping the parameter δ between these two values, which in

turn sweeps Θ from 2π to 0. It is widely believed that there

is an intervening gapless point at Θ = π, implying that the

systems at the two ends of this sweeping process belong to

different phases. The same conclusion can be reached in the

language of the easy plane system used in this section. Unlike

the case where a staggered magnetic field was turned on, the

n-vector at the meron core, whose orientation is unaffected

by the turning on of a finite δ, now has the freedom to point

in either the up (+ẑ) or down (−ẑ) direction. This results in a

meron theory which is very different from (12):

L′′1d
mer =

g

8π2
(∂µϕ)

2 + 2z cos
Θ

2
cosϕ,

where Θ = 2π(1−δ). Hence we see in the present framework

also, through the vanishing of the cosine term, that the system

closes its spectral gap upon reaching the point Θ = π. All

of this is consistent with the assertion made in the beginning

of this paragraph, i.e., that the site centered inversion symme-

try is not a protecting symmetry of the present SPT phase,

since breaking that symmetry failed to provide a smoothly

connecting path in parameter space between topological and

trivial states. In contrast, we will see in the following sections

that bond alternation enters in a much more essential way into

the discussion of symmetry protection of antiferromagnets in

higher dimensions. We will return to this issue in Sec. V B.

III. 2D ANTIFERROMAGNET

A. Effective action

The 2d case proceeds via a step-by-step analogy with the

preceding 1d problem. Our first task will be to identify the ap-

propriate 2d counterpart of the action (2), from which we can

salvage surface terms dictating the behavior of spatial edge

states (if any) and the ground state wave function.

We start by considering the possible spatial patterns of the

VBS states that can be formed on a square lattice. Clearly

this has a strong S-dependence, and in particular, a spatially

featureless VBS state can form only if S is even integer. Since

a gapped system which has the latter as its ground state is the

direct extension (in VBS language) of a 1d antiferromagnet

with a Haldane gap, we will focus in this section on the even

S case.

Meanwhile in the field theory approach, it is widely known

that when only smoothly varying configurations are consid-

ered, the action derived for the square lattice Heisenberg

model contains no topological terms24. The situation changes

drastically once we allow for singular configurations, whose

contribution becomes significant in the paramagnetic (strong

coupling) phase. Berry-phase terms associated with space-

time monopoles will then come into play, giving rise to S-

dependent quantum effects that are in complete agreement

with the VBS picture19,20,47. These monopoles are the 2d

analogs of the space-time vortices from the previous section,

and will be of our main concern here.

A monopole in the present context is an event linked to a

dual site (denoted below as j̄), at which quantum tunneling

occurs between instantaneous configurations characterized by

different skyrmion numbers

Qxy =
1

4π

∫

dxdyn · ∂xn× ∂yn ∈ Z.

The monopole charge Qmon(j̄) ∈ Z is the number by which

Qxy changes between two time slices enclosing a monopole

event. Haldane noted that Qmon(j̄) can also be viewed as the

vorticity (associated with the plaquette to which j̄ belongs) of

the solid angle ω[n(τ, r)], where the latter quantity is traced

out on the unit sphere S2 by the image of the unit vector n(r)
evolving in imaginary time (r is a lattice site). This alterna-
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FIG. 2: (Color online) The spatial distribution of the weight Yj̄ enter-

ing (via eq.(13)) the Berry phases associated with monopoles resid-

ing on the dual sites j̄ (i.e., the center of the plaquettes of the direct

lattice). Each plaquette is assigned a sublattice index (A, B, C, D) co-

inciding with that of the vertex to the southwest of the center (dashed

lines).

tive view allows one to easily evaluate the Berry phase left be-

hind by each monopole event. To explicitly write down such

a Berry phase action, we break up the system into four sublat-

tices (see Fig. 2(a)). This term then reads19

SBP = i4πS
∑

j̄

Yj̄Qmon(j̄), (13)

where the summation is taken with respect to dual sites, and

the weight Yj̄ assumes one of the four values 0, 1/4, 1/2, 3/4

depending on which sublattice the dual site j̄ is associated

with (Fig. 2). (We can associate a dual site with the sublattice

to which the nearest direct site to its southwest, say, belongs.)

It is readily seen that a uniform shift of all Yj̄’s by −1/4
has no physical consequences when S is an even integer. We

thus take advantage of this shift invariance so as to present our

results below in the most convenient (but otherwise equiva-

lent) form. To this end, we “block-transform” the lattice into

an array of enlarged two by two cells (in units of the lattice

constant), each consisting of four plaquettes. In going to the

continuum limit, we mimic the procedure of the previous sec-

tion and replace the shifted weights Ỹj̄ = Yj̄ − 1/4 with its

spatial average 〈Ỹ 〉 = 1/8 taken among the four plaquettes

within the cells. This coarse graining leads us to

SBP
cont.
= i4πS〈Ỹ 〉Qtot

mon = i
S

4

∫

dτd2rǫµνλ∂µ∂νaλ, (14)

where in the final form the total monopole charge Qtot
mon was

written using the CP1 representation. We remind the reader

that in the latter language, the vector n is traded for a unit-

norm two-component spinor z (satisfying z†z = 1) via the

relation n = z† σ

2 z, where σ = t(σx, σy, σz) are the Pauli

matrices. The U(1) connection is defined as aµ = iz†∂µz,

and we have used the identity

1

4π
n · ∂µn× ∂νn =

1

2π
(∂µaν − ∂νaµ).

Having determined the topological term, we turn our attention

to the kinetic part of the action. A suitable point of depar-

ture for studying topological effects in 2d antiferromagnet is

the lattice QED action40,48, which may be regarded as having

arisen from the NLσ model by incorporating quantum effects.

In the continuum limit, this action simply takes the form of a

Maxwellian term (∝ f2
µν). Combining the two contributions,

we arrive at the 2d counterpart of (2),

S2d
eff =

1

2K

∫

dτd2r(ǫµνλ∂νaλ)
2 + i

πS

2
Qtot

mon

=

∫

dτd2r
{ 1

2K
(ǫµνλ∂νaλ)

2 + i
S

4
ǫµνλ∂µ∂νaλ

}

,

(15)

where K is a nonuniversal coupling constant.

Below we submit the effective action (15) to the same se-

quence of examinations employed in the previous section. The

surface term and ground state wave functionals studied in the

next two subsections lead us to expect that the cases where

S = 2 × odd integer are SPT states. Here as well as in the

3d generalization of Sec. V A, the role played by the bond-

centered inversion symmetry in the 1d case is taken over by

lattice translational symmetry, which is present in the original

lattice system. The consequence of imposing (and violating

thereafter) the latter symmetry to the dual monopole theory is

detailed in Sec. III E.

B. Edge states

As was the case for the vortex Berry phase term in 1d, the

monopole Berry phase term of (15) is a total derivative, and

will give rise to surface terms at open boundaries. First, in

order to extract Berry phases related to possible edge states,

we impose periodic boundary conditions in the τ and x direc-

tions, and an open boundary condition in the y direction. At

the two open surfaces which are both lines running in the x
direction, we pick up the surface terms,

Sy-edge = ±iS
4

∫

dτdx(∂τax − ∂xaτ ) = ±iπS
2
Qτx, (16)

where the plus and minus sign is each associated with the up-

per and lower edge of the 2d system. When S is 2 times an

odd number (S = 2, 6, 10, . . .) the surface actions coincide

with the theta term in (1) with Θ = π (mod 2π), which de-

scribes massless spin chains. When S is an integer multiple of

4 (S = 4, 8, . . .), Eq. (16) corresponds to Θ = 0 (mod 2π),
for which (1) describes massive spin chains. It is also clear

that the same surface Berry phase terms arise at the x edges

with the roles of x and y interchanged if we assume an open

boundary condition in the x direction. We will come back to

these edge states toward the end of this section.

C. Ground state wave functional

We turn next to the ground state wave functional. Proceed-

ing exactly as in 1d, we find, up to factors coming from kinetic
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terms,

Ψ[n(r)] =

∫ n(r)

ni(r)

Dn(τ, r)e−S2d
eff

∝e−iπS
2 Qxy = (−1)

S
2 Qxy , (17)

As in the previous 1d discussion, this clearly is suggestive of a

Z2 classification: the sign of the wave functional is sensitive to

the parity of the snapshot skyrmion number Qxy when S ≡ 2
(mod 4), while this sensitivity to topology is absent for the

case S ≡ 4 (mod 4).

D. Dual theory

To look into this distinction more closely, we recast the

QED-like effective action (15) into a dual theory describing

a monopole condensate, along the lines of Ref.49. In paral-

lel with the (1+1)d problem of the previous section, we be-

gin by applying duality transformation tricks to (15) to ex-

tract a Lagrangian density for the monopole charge density

ρmon ≡ 1
2π ǫµνλ∂µ∂νaλ consisting of a Coulombic and a

Berry phase term,

L2d
dual =

2π2

K
ρmon

1

−∂2 ρmon + i
πS

2
ρmon. (18)

This proceeds as follows. After submitting the Maxwellian

term to the Hubbard-Stratonovich transformation

1

2K
(ǫµνρ∂νaρ)

2 → K

2
J2
µ + iǫµνρJµ∂νaρ,

aµ is decomposed into monopole and monopole-free sectors:

aµ = amµ + arµ (ǫµνρ∂µ∂νa
m
ρ = 2πρmon, ǫµνρ∂µ∂νa

r
ρ = 0).

Integrating over arµ then yields the constraint ǫµνρ∂νJρ = 0,

which can be solved by the introduction of an auxiliary scalar

field ϕ satisfying ∂µϕ/(2π) = Jµ. We thus obtain

L′2d
dual =

K

8π2
(∂µϕ)

2 + i(
πS

2
− ϕ)ρmon. (19)

Integrating over ϕ produces (18). The action (19) bears a

form suitable for performing a small fugacity (dilute gas) ex-

pansion49, which is our next step. Restricting to excitations

with monopole charges ±1, we thus arrive at the effective

monopole field theory

L2d
mon =

K

8π2
(∂µϕ)

2 + 2z cos(ϕ− πS

2
), (20)

where, as expected, the two cases S ≡ 2 (mod 4) and S ≡ 4
(mod 4) clearly correspond to different ground states when

the cosine term is dominant and is optimized.

E. Symmetry protection

To proceed to the symmetry-protection aspect of the ground

state, we reflect on how we had treated the corresponding

problem for the 1d planar antiferromagnet and follow the

route that it suggests. The key lied in viewing our O(2) Berry

phase term (5) as the anisotropic limit of a theta term for

an underlying O(3) field theory, where the planar spins were

competing with a third, out-of-plane component. Turning on

and varying the strength of an external field linearly coupled

to the third component therefore enabled us to continuously

change the norm of the planar spin, and hence the Berry phase

that the spin motion sweeps out. This in turn allowed the

system to interpolate smoothly, without encountering a gap

closing, between the two ground states which had exhibited

topologically distinct behaviors in the absence of the external

field.

For the 2d O(3) problem, we will argue that the “underly-

ing theory” with a larger symmetry, in which an appropriate

anisotropic limit will be taken afterwards, takes the form of

two interrelated copies of O(4) NLσ models with theta terms.

Though the details become slightly more involved, the chain

of logic remains essentially the same as before.

Our starting point is to view the Berry phase term (14),

which was derived on the basis of the O(3) NLσ model de-

scription of antiferromagnets, as having descended from a the-

ory of competing orders between antiferromagnetic and VBS

orders. In two dimensions, this theory can be conveniently

expressed50 in the framework of the O(5) NLσ model with a

Wess-Zumino (WZ) term,

S =

∫

dτd2r
1

2g
(∂µn)

2 + SWZ, (21)

where n = t(n1, . . . , n5) is now a five component unit vector

with the first three components representing the antiferromag-

netic order while n4 and n5 stand for the dimer order in the

x and y directions, respectively. The definition of the WZ ac-

tion is stated most accurately in the language of differential

geometry51,52. It reads

SWZ ≡ 2πik

∫

M×[0,1]

ñ
∗Ω(S4),

where k ∈ Z is the level, Ω(S4) the normalized

volume form on the target manifold T = S4 (i.e.,
∫

T Ω(S4) = 1), and ñ(u, τ, r) (u ∈ [0, 1]) is a

smooth extension of the map n(τ, r) defined so that

ñ(u = 0, τ, r) is set to point to the north pole of S4,

while ñ(u = 1, τ, r) = n(τ, r). Finally ñ
∗ is the pull-

back to the extended base manifold M × [0, 1], where

M ∼ S3 is the compactified space-time manifold. Written

explicitly in terms of components of ñ, this reads SWZ =
i2πk

vol(S4)

∫ 1

0 du
∫

dτdxdyǫabcdeña∂uñb∂τ ñc∂xñd∂yñe, with

vol(S4) = 8π2/3 the volume of the 4-sphere.

We start with a collection of 2S copies of action (21), where

the levels are set to k = 1. Our immediate objective is to

couple and organize these actions in such a way that repro-

duces the basic features of the spin-S (: even integer) AKLT

state, in which every link of the square lattice in both the x
and y directions, is populated with S/2 singlet bonds. As

discussed before, this state contains the essence of our effec-

tive theory derived within the O(3) framework. In particu-

lar, it is a nondegenerate spin-singlet state with a spectral gap
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above the ground state, as well as spatially uniformity (i.e,.

no bond alternation) and isotropy (invariance with respect to

the interchange of x and y). Loosely speaking, the idea of the

O(5) construction is to let each copy of the action (21) con-

tribute an S = 1/2 degree of freedom to each site, which acts

as the fundamental building block of the well-known AKLT

construction. Half of these 2S “spinons” residing on each

site are to participate in singlet (or valence) bonds extend-

ing in the x direction, while the other half are used to form

bonds in the y direction. To implement this, we break up the

2S actions into two groups, each consisting of S subsystems

strongly coupled together ferromagnetically, i.e. in a Hund

rule-like manner. In one of the groups, the component n5 is

suppressed to zero (to form the valence bonds in the x direc-

tion), while in the other, n4 = 0 (the y bonds). Thus we

now have two O(4) NLσ models, each for the unit 4-vector

N1 ≡ t(n1, n2, n3, n4) and N2 ≡ t(n1, n2, n3, n5). The

reduction of the target manifold from O(5)/O(4) ∼ S4 to

O(4)/O(3) ∼ S3 causes the WZ term in (21) to transform

into a theta term of the O(4) model. The leading part of the

action describing the network of singlets forming in the x di-

rection is therefore SI[N1] = SI
NLσ[N1] + SI

Θ[N1], where

the first term is the kinetic term of the O(4) NLσ model, while

the second is the theta term,

SI
Θ[N 1] = iΘIQI

τxy. (22)

in which ΘI = πS and

QI
τxy ≡

∫

M
N

∗
1Ω(S

3)

=
1

vol(S3)

∫

dτd2rǫabcdna∂τnb∂xnc∂ynd,

(a, b, c, d = 1, 2, 3, 4)

is the skyrmion number (i.e., the Brouwer degree) associ-

ated with the space-time configuration of N1. The action

SII[N 2] = SII
NLσ[N2] + SII

Θ[N 2] is obtained likewise, also

with the vacuum angle ΘII = πS.

Alternatively, we can regard actions SI and SII as having

each derived from a “coupled-wire construction”53,54. In this

scheme, one starts with (again illustrating with the case of SI)

an array of (1+1)d O(4) NLσ models with level-2S WZ terms,

each running along the x direction, and infinitely stacked in

the y direction. Each of these actions describes the compe-

tition between antiferromagnetic and dimer ordering in the x
direction, at a fixed y coordinate. Imposing the presence of

antiferromagnetic correlations in the stacking (y) direction as

well implies that the WZ terms alternate in sign as we move

along the y axis. It is easy to see that the summation over these

(1+1)d actions then yields, in the continuum limit, the (2+1)d

action SI53,54. The coupled-wire construction of SII runs in a

similar fashion.

So far, we have not specified how the two O(4) NLσ mod-

els SI and SII are coupled with each other. In fact, it turns

out that the structure of the theory will fix itself from physical

requirements when we develop the duality picture in terms

of topological defects. We now turn to this issue. First, to

establish the connection with the O(3) theory of the preced-

ing subsections, we need to further introduce anisotropy terms

into SI and SII, which favor antiferromagnetic ordering over

dimer formation. For sufficiently strong anisotropy, our sys-

tem basically behaves as O(3) NLσ models. An important

difference arises though when we consider topological exci-

tations. Namely, the singular instantons (i.e., monopoles) of

the O(3) theory are replaced by continuous meron excitations;

at what was formerly the monopole singularity, the field es-

capes into the now-available fourth direction and takes the

value, in the case of SI, N1 = (0, 0, 0, q1), where q1 = ±1,

while away from the center it assumes an O(3) monopole-

like configuration N1 = (nmon(r), 0). Here, for simplicity,

we have employed a rotationally symmetric ansatz and de-

noted as r the radial distance in Euclidean space-time with

respect to the meron center. The least costly among these

O(4) meron configurations have the half-integral topological

charges QI
τxy = ±1/2, and may therefore be regarded as

“half-instantons”.

To determine the effective theory for merons, we impose the

following two requirements: (1) that it reproduces the Berry

phase of the O(3) monopoles and (2) that it reproduces the

Coulombic interaction between monopoles, (which is needed

since the merons have the same asymptotic behavior as the

monopoles, which governs the mutual interaction). The first

condition is already fulfilled at this point of the construction,

as can be checked by substituting QI
τxy = ±1/2 into (22),

and comparing with the monopole Berry phase generated by

the second term of the action (15) for the lowest monopole

chargesQtot
mon = ±1. This of course applies to the N2 merons

as well. The second condition serves as a crucial guide to de-

veloping the theory further. To incorporate it, we introduce

into the effective action an auxiliary scalar field ϕ which me-

diates the meron-meron interaction:

L2d
eff =

K

8π2
(∂µϕ)

2 + iπS(ρImer+ ρIImer)− i2ϕ(ρ̃Imer+ ρ̃IImer).

(23)

The second term of the right hand side is the meron Berry

phases, where the topological charge density of type I and II

merons is respectively denoted as ρImer and ρIImer:

∫

dτd2rραmer = Qα
τxy (α = I, II).

The field ϕ plays the role of a fictitious electromagnetic scalar

potential which couples to the merons as described by the

third term in the right hand side of (23). Here, ρ̃I,IImer stands

for modified topological charge densities with the following

definitions:

ρ̃Imer ≡
∑

i

qi1Q
I,i
τxyδ

(3)(xµ − xI,iµ ), (24a)

ρ̃IImer ≡
∑

i

qi2Q
II,i
τxyδ

(3)(xµ − xII,iµ ), (24b)

where the summation runs over all type I (24a) or type II (24b)

meron events, taking place at the space-time coordinates xα,iµ .

Finally, in accordance with previous notations, qia(= ±1)
stands for the value of n4 (when a = 1) or n5 (when a = 2)
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at the center of each meron. These densities are defined so as

to generate the proper interaction, as can be checked by inte-

grating out ϕ; it takes into account that while Qα,i
τxy depends

on the sign of qia, the interaction should not.

Having fixed the contents of the effective meron theory, we

can now submit it to a small fugacity expansion, retaining only

those events with minimal topological chargesQα,i
τxy = ±1/2.

The partition function for the meron gas is thus

Z =

∫

Dϕe−
∫
d3x K

8π2 (∂µϕ)2
∞
∑

N I
+=0

∞
∑

N I
−

=0

∞
∑

N II
+=0

∞
∑

N II
−

=0

(zei
πS
2 )N

I
+

N I
+!

(ze−iπS
2 )N

I
−

N I
−!

(zei
πS
2 )N

II
+

N II
+!

(ze−iπS
2 )N

II
−

N II
−!

×
(

∫

d3xI,i+

∑

qi1=±1

e−iqi1ϕ(xI,i
+ )

)N I
+
(

∫

d3xI,i−
∑

qi1=±1

eiq
i
1ϕ(xI,i

−

)
)N I

−

×
(

∫

d3xII,i+

∑

qi2=±1

e−iqi2ϕ(xII,i
+ )

)N II
+
(

∫

d3xII,i−
∑

qi2=±1

eiq
i
2ϕ(xII,i

−

)
)N II

−

=

∫

Dϕ exp
[

−
∫

d3x
{ K

8π2
(∂µϕ)

2 + 8z cos
(πS

2

)

cosϕ
}]

,

where the plus and minus signs appearing in the suffices indi-

cate the sign of the topological chargeQα,i
τxy. For instance,N I

+

is the number of type I merons for which Qα,i
τxy = +1/2. The

rest of the notation is self-explanatory. Hence, the Lagrangian

density of the meron-field theory is

L2d =
K

8π2
(∂µϕ)

2 + 8z cos
(πS

2

)

cosϕ, (25)

which, upon rescaling reveals to be an exact reproduction of

(20). (Recall that throughout this section S is an even integer.)

We now imagine applying an external field which couples

to n4 through a Lagrangian density which can take e.g., the

form Lext = −Aextn4 (Aext > 0). We assume that its only

primary effect is to induce a nonzero bulk expectation value

δ4 for the n4 component of the 4-vector N 1, leaving N2 es-

sentially unaffected. The assumption should be valid for suf-

ficiently small δ4. This has two major consequences for the

structure of the type I merons.

1) At the meron core, N1 will now choose to align with the

introduced field, i.e., prefer q1 = 1 over the other alternative

q1 = −1. Thus, instead of summing over q1 = ±1 in the

fugacity expansion, we are now to restrict to q1 = 1.

2) Far away from the meron core, N 1 is lifted from the equa-

tor of S3 (i.e., n4 = 0) to the latitude n4 = δ4. A straight-

forward calculation which also takes into account that q1 = 1
at the core shows that the topological charge of the meron is

now

QI
τxy =

1

2
(1− δ′)

δ′ ≡ 2

π

(

arcsin δ4 − δ4

√

1− δ24

)

. (26)

Incorporating these two changes into the meron gas approxi-

n4

δ4

FIG. 3: (Color online) The modified topological charge Qτx for the

case n4 = δ4. The sphere shown schematically is S3. The topo-

logical charge is given by the shaded area (=
∫ arccos δ

0
4π sin2 θdθ)

divided by vol(S3) = 2π2.

mation, we find that (25) modifies to

L2d =
K

8π2
(∂µϕ)

2+2z cos
(πS(1− δ′)

2
− ϕ

)

+4z cos
(πS

2

)

cosϕ.

Let us now add on a second external field which couples to

n5 but is otherwise similar to the first one. This induces the

nonzero bulk expectation value δ5 for the n5 component of

N2. By repeating the above procedure, we obtain the effec-

tive field theory,

L2d =
K

8π2
(∂µϕ)

2+2z cos
(πS(1− δ′)

2
− ϕ

)

+2z cos
(πS(1− δ′′)

2
− ϕ

)

, (27)

where δ′′ = (2/π)(arcsin δ5 − δ5
√

1− δ25). Due to the form

of the cosine terms in (27), along with the fact that δ′ (δ′′)
is a monotonic function of δ4 (δ5) which increases from 0 to

1 in the interval δ4 ∈ [0, 1] (δ5 ∈ [0, 1]), it is clear that we

can tune δ4 and δ5 continuously without closing the excitation

gap, up to the values which satisfy S(1 − δ′) = S − 2 and
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S(1−δ′′) = S−2. (These values can be made to be small for

large enough S in accordance with the underlying assumption

of our construction. This is another indicator that this study

should be regarded as a semiclassical large S theory, as is al-

ways the case for Haldane-type NLσ model treatments.) This

implies that through the introduction of dimerization in both

the x and y directions, we can smoothly connect the spin-S
and spin-(S − 2) AKLT states, which had been topologically

distinct in the absence of these perturbations. We note that

the generation of δ′ and δ′′ affects the system by “depleting”

the effective spin moment on each site viz S → S(1 − δ′)
or S → S(1 − δ′′), which is basically the same role that the

external staggered magnetic field played in our discussion of

the 1d antiferromagnet.

The symmetry prohibiting this perturbation is the one-site

translational symmetry. This leads us to expect that the

present SPT phase belongs to the SO(3) × trans. category

in the classification table of SPT phases55, which is consistent

with the discussion in Refs.30,56,57, as well as with a Chern-

Simons approach to this problem34. The protecting symme-

try obtained through the foregoing discussion can be intu-

itively understood in terms of edge states. For the case of

Seff = S/2, the edge states are spin-S/4 spin chains. When

S ≡ 2 (mod 4), S/4 is a half odd integer, and the Lieb-

Schultz-Mattis theorem58 states that this edge state cannot be

gapped out without breaking the one-site translational symme-

try. The distinction between level-even and level-odd SU(2)

Wess-Zumino-Witten (WZW) theories was recently discussed

in terms of conformal field theories59. The findings of that

work apparently conform with our Z2 classification and its

relation to the edge states. As was the case in 1d, the fore-

going discussion focused on a limited portion (in this case

SO(3)× trans.) within the classification table55, basically be-

cause it was necessary to retain the SO(3) symmetry of the

spin space for homotopical reasons. Still we think that it does

offer insights into how symmetry actually acts to prevent topo-

logically nontrivial ground states from degrading into trivial

ones.

IV. STRANGE CORRELATOR

A. Generalities

The winding number dependent phase factor characterizing

our ground state wave functional, i.e., Eq. (8) for d = 1 and

Eq. (17) for d = 2, is formally identical (upon identifying a

spatial coordinate with imaginary time) to a theta term con-

tribution to the Feynman weight of the O(d + 1) NLσ model

in ((d − 1) + 1)d Euclidean space-time. To substantiate this

analogy further, it is interesting to look into the modulus of

the wave functional as well, whose explicit form we had not

incorporated until now. There are several ways to infer that

the relevant contribution can be casted into the form of a Eu-

clidean Feynman weight coming from the kinetic term of the

NLσ model action. One can draw, e.g., from the fact that the

AKLT wave function under a periodic boundary condition in-

deed takes this form in the continuum limit12. (We can alterna-

tively employ standard functional Schrödinger approaches to

a quantum field theory42, and treat the NLσmodel via large-N
approximation to arrive at the same conclusion.) With these

additional information on the structure of the wave function-

als, we have, for d = 1,

Ψ[φ(x)] =Ne−W [φ(x)],

W [φ(x)] ≡
∫

dx
[ 1

2g̃
(∂xφ)

2 + i
Θ

2π
∂xφ

]

, (28)

with Θ = πS, while for d = 2,

Ψ[n(r)] =Ne−W [n(r)],

W [n(r)] ≡
∫

d2r
[ 1

2g̃
(∂αn)

2 + i
Θ

4π
n · ∂xn× ∂yn

]

,

(29)

where Θ = πS/2. In these equations, the prefactor N stands

for normalization constants, while the notation g̃ is meant to

discriminate this coefficient from coupling constants appear-

ing earlier in this paper.

The above wave functionals exhibit strong similarities to

those proposed in Ref.29 for SPT states in antiferromagnets,

but differ in that theta terms appear in place of WZ terms. The

discrepancy, of course, can be traced back to the use of differ-

ent actions, in our case, Eqs. (2) and (15). It is well known that

the presence of a theta term within an effective action induces

a quantum interference among different topological sectors,

which can have dominant effects on the behavior of the parti-

tion function. It is natural to ask whether similar effects can

arise from the “theta terms” in (28) and (29). It turns out, as

we discuss in a moment, that the so-called strange correlator

introduced in Ref.29 can be employed to see that the above

theta terms do differentiate, through a quantum interference

effect, between gapped ground states with and without (short-

ranged) topological order.

To motivate this study, we take the example of (29) and first

consider the continuum expression for the equal-time two-

point spin correlator

C(ri, rj) ≡
〈Ψ|Ŝ(ri) · Ŝ(rj)|Ψ〉

〈Ψ|Ψ〉 ,

where |Ψ〉 is the ground state. Expanding in terms of the in-

stantaneous spin coherent states {|n(r)〉}, this amounts to

C(ri, rj) =(−1)ηij (S + 1)2

×
∫

Dn(r)|Ψ[n(r)]|2n(ri) · n(rj)
∫

Dn(r)|Ψ[n(r)]|2 , (30)

where ηij = 1 if ri and ri belong to different sublattices,

and ηij = 0 otherwise, and it is understood that the contin-

uum limit be taken on plugging in the configuration n(r).
The representation (30) is valid for a generic wave functional

Ψ[n(r)], and a detailed derivation can be found in Chap. 7 of

Ref.25.

Returning to the case at hand, we see that the right hand side

of (30) depends only on the absolute square of Ψ[n(r)], ren-

dering the phase factor associated with the theta term of (29)
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ineffective. After all, we are dealing with gapped systems,

which should exhibit short range spin ordering irrespective of

whether or not there is topological order. This motivates us to

consider a simple, albeit artificial modification to this correla-

tor wherein the theta term does play an explicit role,

CS(ri, rj) ≡
〈Ψ0|Ŝ(ri) · Ŝ(rj)|Ψ〉

〈Ψ0|Ψ〉
= (−1)ηij (S + 1)2

×
∫

Dn(r)Ψ0[n(r)]
∗Ψ[n(r)]n(ri) · n(rj)

∫

Dn(r)Ψ0[n(r)]∗Ψ[n(r)]
, (31)

where the second equality can be verified for any |Ψ〉 and |Ψ0〉
in a manner completely parallel to deriving (30). Here we

choose the newly introduced state vector |Ψ0〉 to be, in the

n-representation, the wave functional (29)) without the theta

term. Lacking any susceptibility to the global topology of the

system, it is reasonable to expect that this choice of |Ψ0〉 de-

scribes a topologically trivial gapped state, which enables us

to identify (31) with the strange correlator proposed in Ref.29,

as applied to our effective action. A parallel construction for

the d = 1 case using (28) is readily carried out.

B. 1d case

We now examine the behavior of these correlators, start-

ing with d = 1. We explicitly display the ~-dependence in

the equations appearing in this subsection as well as in Ap-

pendix A. Choosing one of the two probe spins to reside at the

origin, the counterpart of (31) in the d = 1 case reads

CS(X, 0) =
2(−1)X(S + 1)2

Z

∫

pbc

Dφ(x) cosφ(X) cosφ(0)

× e−
1
~

∫
dx[~

2

g̃
(∂xφ)

2+i~ Θ
2π ∂xφ],

Z ≡
∫

pbc

Dφ(x)e− 1
~

∫
dx[~

2

g̃
(∂xφ)

2+i~ Θ
2π ∂xφ]. (32)

For the sake of simplicity, let us leave aside the prefactor

(−1)X(S + 1)2 in the discussion below, i.e. up to eq.(35)

and in Appendix A as well, since it is present regardless of

the functional form of the field φ. (The additional factor of

2 accounts for the correction needed to convert from the cor-

relation of the planar spin vector to that of cosφ.) Needless

to say it should be reinstated when the actual behavior of the

spin correlation is analyzed. For this purpose, let us introduce

the notation

CS(X, 0) ≡ (−1)X(S + 1)2C̃S(X, 0),

and focus on evaluating C̃S(X, 0). One then recognizes, that

when the coordinate x is formally identified with imaginary

time τ , C̃S(X, 0) becomes identical to the imaginary-time cor-

relator of a planar rotor, or more precisely a point particle

of unit charge constrained to move on the circle S1, which

suffers an Aharonov-Bohm phase owing to the presence of a

magnetic flux of strength Θ/2π (in units of the flux quantum)

piercing the center of the circle25. (Interestingly, a similar

Aharonov-Bohm-type effect plays an important role (though

in somewhat different contexts) in several earlier studies on

SPT states60–62.) The linear dimension in the x direction is

then reinterpreted as β, the period in imaginary time. Below,

we take advantage of the mathematical equivalence with this

quantum mechanical problem to analyze (32).

The denominator Z in (32) translates in this language into

the partition function of the rotor. To gain intuition, it is in-

structive to first break this down into a sum of contributions

from individual topological sectors, each characterized by the

number of times the rotor winds in the course of the evolution

in imaginary time,

Z =
∑

m∈Z

e−imΘ

∫

m

Dφ(τ)e−
∫
dτ ~

g̃
(∂τφ)

2

, (33)

where m ≡ 1
2π

∫ β~

0 ∂τφ ∈ Z is the winding number. We re-

call that Θ = πS, which implies that our two cases of interest

are Θ = 0 and Θ = π (mod 2π). While the phase factor

e−imΘ is always unity when Θ = 0, it takes the values ±1,

depending on the parity of m, when Θ = π. This suggests

the possibility of a destructive interference among differentm
sectors in the latter cases, which results in a qualitatively dif-

ferent behavior (generally the suppression of large winding)

of the self-correlator (32) from the former. We now substanti-

ate this expectation.

The corresponding rotor Hamiltonian is

Ĥ =
g̃

4~2

(

π̂ +
~Θ

2π

)2

=
g̃

4

(

N̂ − Θ

2π

)2

, (34)

where the operator π̂ ≡ −i~∂φ is canonically conjugate to φ̂,

and N̂ ≡ i∂φ = −π̂/~ is the number operator which has in-

teger eigenvalues n ∈ Z. The orthonormal eigenstates of (34)

are ψn(φ) = 〈φ|n〉 = 1√
2π
e−inφ, which simultaneously di-

agonalizes N̂ viz. N̂ψn = nψn. The energy eigenvalues are

En = g̃
4 (n− Θ

2π )
2. The ground state is unique for Θ = 0 (cor-

responding to n = 0), while being doubly degenerate when

Θ = π (between the n = 0 and n = 1 states), i.e., when a

π-flux pierces the ring. While this Θ dependence of the spec-

tra is sometimes regarded as a miniature analog of the Hal-

dane gap problem25, it is not immediately obvious (at least to

the authors) what that alone will imply for the the correlator

C̃S(τ, 0) ≡ 2〈cos φ̂(τ) cos φ̂(0)〉. This however turns out to a

rather straightforward exercise in quantum mechanics, which

uses the following identity63 that holds for a general observ-

able Ô:

〈Ô(τ)Ô(0)〉 =〈G|e τ
~
ĤÔe−

τ
~
ĤÔ|G〉

=
∑

n

e−
τ
~
(En−E0)|〈n|Ô|G〉|2,

where |G〉 is the ground state. Using the relation 〈n|e±iφ̂|0〉 =
δn,±1, and taking into account that |G〉 = |0〉 for Θ = 0 and

|G〉 = c0|0〉+ c1|1〉 (such that |c0|2 + |c1|2 = 1) for Θ = π,

we obtain

C̃S(τ, 0) =

{

e−
g̃τ
4~ (Θ = 0)

1
2 (1 + e−

g̃τ
2~ ) (Θ = π).

(35)
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The short-range decay at Θ = 0 and the long-ranged temporal

correlation at Θ = π displayed in (35) can indeed be viewed

as a (0 + 1)d analog of the spin chain problem. Coming back

to our original problem of the 1d planar antiferromagnet, we

conclude that the strange correlator defined by (32) is short-

ranged for even S, while being long-ranged for odd S. Here,

we have considered the limit whereby β is sent to infinity.

For completeness, we detail on the β dependence of the above

quantity in Appendix A.

The above conclusion can be checked against rigorous re-

sults for the AKLT wave function. A method that enables us

to do this with ease for each value of S is to write the wave

function in its MPS form,

|Ψ〉 =
∑

{σn}
A[σ1]A[σ2] · · ·A[σN ]|{σn}〉,

where the σn’s are the value of Sz at each site. We illustrate

the procedure using the simplest case of S = 1, where the A
matrices are given by

A[1] =

(

0 0
− 1√

2
0

)

, A[0] =

(

1
2 0
0 − 1

2

)

, A[−1] =

(

0 1√
2

0 0

)

Let us now write the total number of sites asN , which we take

to be an even number, and assume a periodic boundary condi-

tion. As the topologically trivial state is used in constructing

the strange correlator (c.f., Eq. (31)), we take the large-D state

|Ψ0〉 ≡ |0, 0, . . . , 0〉. The overlap 〈Ψ0|Ψ〉 is then nothing but

the expansion coefficient of the AKLT state associated with

the state vector |0, 0, . . . , 0〉, which by definition is

〈Ψ0|Ψ〉 = Tr(A[0]N ) = 2−(N−1).

We also note that acting on 〈Ψ0| with the operator S+
i S

−
j gen-

erates 2〈. . . 0,−1, 0, . . .0, 1, 0, . . . |, where the nonzero en-

tries −1 and 1 occur at site i and j, respectively. This yields

〈Ψ0|S+
i S

−
j |Ψ〉 =2Tr(A[0]i−1A[−1]A[0]j−i−1A[1]A[0]N−j)

=(−1)j−i22−N .

Combining these, we arrive at

CS(i, j) ≡
〈Ψ0|S+

i S
−
j |Ψ〉

〈Ψ0|Ψ〉 = 2(−1)j−i,

which indicates that (aside from a sign oscillation which de-

pends on the parity of |i − j|) the strange correlator is long-

ranged, in agreement with Ref.29. This can be readily ex-

tended to the higher-S case. For S = 264, we have

A[1] =





0 0 0
− 1√

6
0 0

0 1√
6

0



 , A[0] =
1

3
√
2





1 0 0
0 −2 0
0 0 1



 ,

A[−1] =





0 1√
6

0

0 0 − 1√
6

0 0 0



 ,

where the matrices A[2] and A[−2] are not displayed, as they

are not used for calculating CS. The exact same sequences as

before lead to

CS(i, j) = 9× (−2)N−j+i + (−2)j−i

2N + 2
,

which behaves for sufficiently large and even N as

CS(i, j) ∼ 9(−1/2)i−j,

implying an exponential decay. We conclude this discussion

by mentioning the result for S = 3, in which case A[σ]’s are

4× 4 matrices. We obtain

CS(i, j) = 8× (−3)j−i + (−3)N (−1)j−i − 3N−j+i

3N + 1
.

Once again taking the limit of large and even N , we have

CS(i, j) ∼ 8[(−1)j−i − (1/3)j−i] which further becomes,

when j − i≫ 1,

CS(i, j) ∼ 8(−1)j−i.

The long-ranged behavior of (the absolutely value of) the

strange correlator for odd S, and the exponential decay for

even S agree with the field theoretical result Eq. (35).

C. 2d case

Finally, we turn to the 2d problem. In this case the correla-

tor that we wish to study is

C̃S(R,0) =

∫

Dn(r)e−W [n(r)]
n(R) · n(0)

∫

Dn(r)e−W [n(r)]
,

where W [n(r)] is defined in Eq. (29). The above quantity is

related to the full strange correlator via

CS(R,0) = (−1)η(R,0)(S + 1)2C̃S(R,0).

If we relabel one of the two spatial coordinates (say, y) as τ ,

the imaginary time, this translates exactly into the two-point

(space-time) field-correlator of the (1+1)d O(3) NLσ model

with a theta term, which is the central object discussed in

the original Haldane work on quantum spin chains19. We

know this to exhibit a power law for Θ = π (mod 2π),
which in the present context of 2d antiferromagnets corre-

sponds to S = 2, 6, 10 . . ., while it decays exponentially for

Θ = 0 (mod 2π), which corresponds in the 2d problem to

S = 4, 8, 12 . . .. Thus, rather remarkably, we observe here

an incarnation of the Haldane gap problem for (1+1)d antifer-

romagnets in (2+1)d antiferromagnets. This is understood by

realizing that the strange correlator, the temporal correlator of

an auxiliary system which emerges at the temporal surface,

is the mathematical equivalent of the spatial correlation func-

tion of the spatial edge state29. In the present context, the

latter edge state as inferred from the AKLT picture is a (1+1)d

antiferromagnet with half-integer spin when S = 2, 6, 10 . . .,
while this spin chain has integer spin when S = 4, 8, 12 . . .. In

Ref.65, a numerical study of strange correlators is performed

on antiferromagnetic states in one to three dimensions. While

the motivations and methods differ considerably, we find a full

consistency where the two works do overlap.
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V. DISCUSSIONS

A. Extensions to 3d

Table I summarizes our treatment of AKLT-like SPT states

in 1d (Sec. II) and 2d (Sec. III) antiferromagnets. Two no-

table features that can be read off are (1) the perfect corre-

spondence between the second and fifth entries of each col-

umn, i.e., between the functional forms of the edge state action

Sedge
Θ which comes from the spatial surface term of the effec-

tive action, and the phase of the vacuum wave functional Ψ
which derives from the temporal surface term, and (2) the pat-

tern with which the dimensionality of the system enters into

these quantities.

It is tempting to speculate that this emerging pattern will

persist when semiclassical field theories are worked out along

the same lines for three dimensional AKLT-like states: in

terms of an (as yet unspecified) unit 4-vector N , a simple-

minded generalization of the table would imply the form

Sx-edge
Θ [N (τ, r)] = iπ

S

3
Qτyz, (36)

along with similar surface actions for the y-edge, and

Ψ[N(r)] ∼ e−iπ S
3 Qxyz (37)

where Qτxy and Qxyz are the 3d extensions of the integral-

valued topological numbers which appear in table I, e.g.,

Qτxy =

∫

Mz-edge∼S3

N (τ, x, y)∗Ω(S3). (38)

It is not immediately obvious why and how such a 4-

component unit vector might come to play a leading role in an

effective field theory with a 3d AKLT-like ground state. Nev-

ertheless we shall now argue that this expectation turns out to

be correct. While this is in itself interesting, especially since

we can regard it as a indication that the program carried out

in the previous sections can be continued on to the 3d case as

well, we will not be able to fully establish the topological-

protection aspect of this state, as the field theory becomes

considerably complex than their counterparts in lower dimen-

sions. A full characterization that goes beyond the simple

methods employed in this paper will be left for future work.

Our task is to identify a minimal effective field theory de-

scription capturing the topological properties of spin-S AKLT

states on a cubic lattice. The latter states form only when S
is an integer multiple of 3, wherein each link of the lattice

hosts S/3 valence bonds. Our strategy here will be to work

our way backwards, starting with a somewhat artificially con-

structed model which reproduces Eqs. (36) and (37), and then

to identify the nature of the spin state that it represents.

We choose as our point of departure the most generic

NLσ model describing the competition of antiferromagnetic

and VBS ordering tendencies in 3d, which is the O(6) NLσ
model with a level-1 WZ term. The unit 6-vector for this

theory can be broken down into components as NO(6) =
(NAF,VBSx,VBSy,VBSz), the first entry of which is a

3-vector standing for the antiferromagnetic order parameter,

while the latter three are amplitudes corresponding to VBS

formation along each of the three (x, y, z) spatial directions.

Following the example of the 2d case, we will start with 2S
interacting copies of this model, where S in this case is an

integer multiple of 3.

For reasons to become clear as we proceed, we focus on

the unconventional situation where quantum fluctuations in-

duced by suitable interactions have driven the O(6) theories

into forming an array of coupled (1+1)d wire-like channels

which extend along vertical links (i.e., those running in the z
direction) of the cubic lattice. Within each wire, a competi-

tion takes place between the antiferromagnetic order associ-

ated with the NAF sector of NO(6), and the order parameter

VBSz . It is these two tendencies that will be merged into the

unit 4-vector N ≡ (NAF,VBSz), the relevance of which we

had anticipated a few paragraphs ago. Let us assume that this

competing order takes the form of a (1+1)d O(4) NLσ model

with a WZ term, with the level set at keff = 4S/3. As an ac-

tual quantum disordering process which will result in such a

state, one may wish to keep in mind a 3d variant of the argu-

ments described in Ref.66, although such details will not affect

the following discussion. As a final further requirement, a 1d

spin-S/3 VBS state is formed as a fixed (i.e., nonfluctuating)

configuration, which is set in the background of each O(4)

model. In the simplest case of S = 3, the net background is

an array of 1d S = 1 VBS states. Note that the O(4) theories

together with the background configuration exhaust the total

number of degrees of freedom contained in the original O(6)

model.

The topological part of the low energy action resulting from

the above construction is summarized in the form

SWZ =i2πkeff(−1)x+y

∫

S3×[0,1]

Ñ
∗
(τ, u, z)Ω(S3)

≡i2πkeff(−1)x+yω[N(τ, z)]
∣

∣

x,y
,

where the notations used in the first line follow those which

have already appeared in earlier sections. The factor (−1)x+y

oscillating within the xy plane has resulted from taking into

account the antiferromagnetic correlation between neighbor-

ing 1d channels. Note that the background part of the con-

figuration does not contribute any topological term due to the

lack therein of Berry-phase-generating competing orders.

It is clear that the cross section that shows up if we slice

open this network at a constant-z plane will look like a square

lattice forming on the xy plane. Associated with the sites

of that auxiliary lattice is a staggered array of generalized

“solid angles” ω (which assume integer values, in accor-

dance with our convention of normalizing the volume form,
∫

T =S3 Ω(S
3) = 1). At this point, the reader will have no-

ticed that the summation over Berry phases from each of the

1d channels has essentially reduced to what was encountered

back in Sec. III, when we discussed the O(3) monopole Berry

phases for 2d antiferromagnets. We will now take advantage

of this effective “dimensional reduction” in order to seek the

collective effect of quantum disordering via singular topolog-

ical defects on our networks of 1d states. To this end, consider
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TABLE I: Comparison between (1+1)d easy plane Haldane states and (2+1)d VBS states.

(1+1)d easy plane Haldane state (S: integer) (2+1)d VBS states (S: even integer)

target manifold S1 (planar) S2 (spherical)

topological term at spatial edge theta term of (0+1)d O(2) NLσ model: theta term of (1+1)d O(3) NLσ model:

Sedge

Θ = iπSQτ , Sy-edge
Θ = iπ(S/2)Qτx, etc.,

Qτ ≡ 1
2π

∫
dτ∂τφ Qτx ≡ 1

4π

∫
dτdxn · ∂τn× ∂xn

winding # (snapshot config.) Qx ≡ 1
2π

∫
dx∂xφ Qxy ≡ 1

4π

∫
dxdyn · ∂xn× ∂yn

singular space-time event vortex (phase-slip) ∆τQx 6= 0 monopole ∆τQxy 6= 0

vacuum wave functional Ψ[φ(x)] ∝ e−iπSQx Ψ[n(x, y)] ∝ e−iπ S
2
Qxy

:

:

: O(4) Monopole

 (1+1)d WZW

0 1/4

3/4 1/2

0

3/4

0 1/4 0

FIG. 4: (Color online) A top view (from the +z direction) of a

staggered array of (1+1)d O(4) NLσ models with a WZ term, each

running in the z direction. In a precise analogy with the 2d coun-

terpart discussed in Sec. III, the staggered summation over the WZ

terms is converted into a collection of monopole Berry phases. As

in the 2d case, the weights ζj̄ = 0, 1/4, 1/2, 3/4 are assigned to the

monopoles occurring at the dual sites {j̄}.

the Berry phase accompanying O(4) monopoles, i.e., singular

events, in which quantum tunnelings occur between different

instantaneous values of Qxyz. We follow Ref.19 in viewing

a monopole of charge Qmon(j̄) ∈ Z as a vortex defect of ω,

sitting at the center of a unit square plaquette designated by

the dual lattice index j̄ (Fig. 4). The analog of the Haldane

monopole Berry phase factors are then

SBP = i4πSeff

∑

j̄

ζj̄Qmon(j̄) (39)

where Seff = keff/2 = 2S/3, and as before the ζj̄ takes the

values of 0, 1/4, 1/2, 3/4 depending on the four dual sublat-

tices. Comparing (39) with (13), we find that the case of in-

terest, S = 3 × integer, when translated into the language of

its 2d counterpart corresponds to the even S case. An impor-

tant implication of this correspondence is that the procedure

of Sec. III that lead to the correct continuum limit - which was

developed specifically for even S, is now at our full disposal.

Repeating the arguments of Sec. III, it follows that the con-

tinuum action for the monopole Berry phase and the ground

state wave functional are each given by SBP = iπ Seff

2 Qtot
mon

and Ψ[N(x, y, z)] ∝ e−iπ
Seff
2 Qxyz . The actions for the spa-

tial surfaces are obtained likewise. Inserting Seff = 2S/3 into

these expressions reproduces the expected form (37) and (38),

along with the other surface actions.

What we have said so far does not offer much in the way

of insight into the physical nature of the monopole-condensed

phase of our coupled O(4) theories. As we have already men-

Quantum
Disordered

FIG. 5: (Color online) Thick orange lines depict an array of (1+1)d

O(4) NLσ models with WZ terms at level keff = 4S/3, which are

placed in the background of a prefixed VBSz order (green lines) - see

text for details. Condensation of monopoles results in a 3d AKLT-

like state on the cubic lattice.

tioned, the effective theory that we have discussed should be

regarded as having descended from the O(6) NLσ model with

a WZ term. We will show in Appendix B how a duality re-

lation can be derived within this O(6) theory framework, be-

tween the topological defects (monopoles) of the O(4) vec-

torial fields and VBS-type ordering. In the present context,

the relation implies that the condensation of monopoles with

nonzero Qmon will lead to an enhancement of VBS order

within the xy plane, which is not surprising, in view of the

competition taking place between the various orders - in gen-

eral, the opposing orders (in this case VBSx and VBSy) will

show up at the core of a singular defect (a monopole of the N

field). Since the VBSz order is preformed at the outset of our

construction, we expect that the condensation of monopoles

will lead to the formation of a full-fledged 3d AKLT-like state

on a cubic lattice (Fig. 5). This reasoning lends support to our

assertion that the relevant topological features of such states

are indeed captured by Eq. (37).

The ground state wave functional (37) contains the nontriv-

ial phase factor (−1)Qxyz when S = 3, 9, 15, . . . while the

corresponding expression is trivial for S = 6, 12, 18, . . .. As

in the lower dimension cases, it is clear that this suggests a

Z2 classification of the ground state. That, in turn, is con-

sistent with the VBS picture, where for the former group of

S-values, the 2d states induced at the open surface of AKLT

states on cubic lattices cannot be gapped by forming valence

bonds unless translational symmetry is broken. For the latter

group, a gap can be opened while preserving the translational

symmetry in at least one spatial direction.
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Strange correlators can also be evaluated in further support

of this argument as in the previous section. Indeed, in analogy

with the 1d and 2d cases, the path integral representation for

the strange correlator can be viewed, by making the formal

substitution z → τ , as the two point field correlator for the

(2+1)d O(4) NLσ model supplemented with a theta term with

a vacuum angle of Θ = πS
3 . We can then apply the analysis

on the Θ-dependence of the latter model described in Ref.67

to argue that the strange correlators for the above two groups

of S (corresponding to Θ = 0 and Θ = π) differ sharply in

their behaviors. Namely, for S = 3, 9, . . . (corresponding to

Θ = π) the strange correlator behaves like the two-point field

correlator for a gapless system (a conformal field theory) in

(2+1)d, while for S = 6, 12, . . . (corresponding to Θ = 0) it

can be viewed as the correlator for a gapped system.

Finally we make a brief remark on surface effects. Note

that Eq. (36) implies the surface Berry phase action associated

with a surface lying on a constant-x plane also to be the theta

term of the O(4) sigma model at Θ = π when S = 3, 9, . . ..
The O(4) model with the vacuum angle Θ = π was predicted

in Ref.54 to describe a deconfined quantum critical state of a

2d antiferromagnet. Recall in this regard that Ref.68 makes the

case (also based on a related action) for the emergence of de-

confined quantum criticality on the surface of a 3d bosonic

SPT state. The surface action (36) thus suggests that it is

worthwhile to pursue this intriguing possibility in the present

context of a quantum spin system.

To make the correspondence with the treatment in Secs. II

and III complete, we will need to derive a monopole field

theory. However, the interactions between the three types of

monopoles is not straightforward to work out, and a complete

analysis along this program is left for the future.

B. Role of bond alternation in d = 1 to 3

A somewhat curious aspect of the symmetry protection

mechanism that we have discussed, is how bond alternation

(of more precisely, the VBS order parameter), while only

playing a minor role in 1d, turned out to be absolutely crucial

in the cases of 2d and 3d. We first note that this is intuitively

straightforward once we resort to the VBS picture: in 2d and

3d, singlet-bond formation among unpaired spins belonging to

adjacent sites on an open surface is the simplest way of gap-

ping out a massless surface state, while in contrast, the same

scheme is clearly unavailable in 1d, since the spatial surfaces

are now just isolated points at the two ends of an open chain.

What we have discussed in this paper shows that there is an al-

ternative way of understanding this difference between 1d and

higher dimensions from the viewpoint of competing orders,

and its description in terms of NLσ models. It is worthwhile

to reiterate on this point.

Let us start with 1d, where homotopy group relations dic-

tates that we focus on planar antiferromagnets represented by

O(2) sigma models. In Sec. II E, we looked into how symme-

try protection works, with the device of turning on an external

field which couples to a third, previously suppressed compo-

nent of the vectorial order parameter. Physically, the latter

is just the out of plane component of the antiferromagnetic

order parameter. (Accordingly, the external field is physi-

cally a staggered magnetic field.) The coupling to this ex-

ternal field picks out a favored orientation for this new com-

ponent, which emerges at the core of a meron configuration,

forcing us to perform the meron fugacity expansion via an un-

conventional, restricted sum over configurations. This in turn

resulted in a sine-Gordon field theory whose special form en-

abled us to sweep the system into a topologically trivial state

without passing through a massless point. Imposing a sym-

metry which is in conflict with the presence of a staggered

magnetic field will therefore prohibit the deformation. In con-

trast, turning on bond alternation will not single out a specific

configuration for the meron core, and the sum over meron con-

figurations for that case is therefore carried out in the usual

(unrestricted) way. We saw that as a consequence, the bond

alternation strength will find its way into the vacuum angle

Θ, which results in a collapsing of the spectral gap before the

system is able to deform as a function of the bond alternation

into a topologically trivial state. Hence, unlike the case when

a staggered magnetic field is turned on, introducing bond al-

ternation will not give rise to a continuous deformation path

into a trivial state. The upshot of all this, is that suppressing

bond alternation via the imposition of a symmetry constraint

fails to function as a symmetry protection mechanism.

The fundamental difference of the higher dimensional cases

is that all three components of the antiferromagnetic order pa-

rameter are already (once again as a result of homotopy con-

siderations) incorporated into the NLσ model at the outset.

Thus, generalizing the procedure taken in 1d will necessarily

involve turning on an external field which couples to com-

ponents that compete with antiferromagnetic order. The lat-

ter are, as we have seen, none other than the VBS order pa-

rameters. By basically repeating the analysis of the 1d case,

we find that turning on VBS order will enable us to deform

the ground state into a trivial one without encountering a gap

closing. Conversely, suppressing the VBS order by symmetry

constraints will prevent this smooth deformation.

C. Directions for further applications

We briefly mention two possible directions in which the

present work can be extended.

An obvious generalization of the approach in this paper

would be to the honeycomb lattice in 2d. The monopole

Berry phase in this case has a different S-dependence from

the square lattice69. This leads, e.g., to a ground state degen-

eracy as a function of S having a periodicity of ∆S = 3/2,

which is to be contrasted with ∆S = 2 for the square lattice.

Therefore, we can in principle attempt to simply incorporate

this modification into the scheme of Sec. III. This would imply

that we now focus on the case of S = 3/2 × integer, where

the formation of a featureless VBS state is possible. How-

ever, one immediately sees that the situation here turns out

to be somewhat more subtle than that of Sec. III. This is di-

rectly seen from the simple observation that the generation of

a massless edge state will depend strongly on the geometry of
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the edge, i.e., on how one cuts out the honeycomb lattice with

an open edge. Another manifestation of the same subtlety ap-

pears in the entanglement spectrum of the S = 3/2 VBS state

on the honeycomb lattice70, where the low energy spectrum

is found to exhibit a quadratic dispersion instead of the linear

one (which, intuitively, corresponds to a conformally invari-

ant edge mode) that shows up in the case of a square lattice.

A coherent understanding on the topological properties in this

case, therefore, will necessarily require a more thorough anal-

ysis, perhaps going beyond the methods employed in this pa-

per.

Another interesting extension of this work would be to the

entanglement spectra of gapped antiferromagnets represented

by the effective field theories derived in this paper. We can

adopt for this purpose the functional integral representation

for reduced density matrices, formulated in Ref.71. Here the

so-called entanglement cut acts as a boundary with a nontriv-

ial topology in Euclidean space. The topological term of the

effective action will therefore contribute surface terms that

live on the entanglement cut to the reduced density matrix,

which in turn will affect the behavior of the entanglement

spectrum. From this perspective, one can say that the latter

entity shares with the strange correlator of Sec. IV the prop-

erty of being a directly manifestation of the topological phase

factor present in the ground state wave functional. We plan to

discuss further details elsewhere.

VI. SUMMARY

In summary, the description of gapped antiferromagnets in

terms of NLσ models with Berry phase terms, an approach

which has been widely used in the literature, was shown to

contain relevant information on the global properties of the

ground state wave functional, enabling one to distinguish SPT

from non-SPT states. This statement holds true provided that

one is careful to select the appropriate target manifold for this

purpose (S1 for the 1d case, etc.), and also to correctly in-

corporate the competition that is present between different or-

dering tendencies. The latter point is important in fixing the

spatial structure of the topological defects of the theory.

Reflecting on the findings of this work, a particularly cru-

cial feature of the theory was the emergence of what may

be called a bulk-temporal boundary correspondence, dictat-

ing how the ground state wave functional responds to topo-

logically nontrivial field configurations. One can see that ul-

timately it is the temporal counterpart of the fractionalized

edge/surface states of the gapped antiferromagnets (stated

more accurately, the temporal counterpart of the fractional-

ized surface topological term associated with such states) that

determines whether or not the wave functional behaves in a

topologically nontrivial way. The precise correspondence be-

tween the spatial and temporal surface effects has its root in

the common bulk topological action from which both surface

terms descended. We also provided a detailed study on how

this temporal surface effect is reflected in the strange correla-

tor.
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Appendix A: Additional details on the 1d strange correlator

This appendix is a compilation of further details on the 1d

strange correlator as defined by (32) (which is transformed

into an equivalent (0 + 1)d problem, in accordance with the

main text). In particular, we provide the explicit dependence

on the extent β of the temporal domain (τ ∈ [0, β~]), drawing

on methods which appear in the Josephson junction literature,

in particular Ref.72. We begin by solving the imaginary-time

Heisenberg equation of motion (τ = it),

− ~∂τ φ̂(τ) =
[

φ̂(τ), Ĥ
]

.

Explicitly calculating the commutator on the right hand side,

and integrating with respect to τ yields

φ̂(τ)− φ̂(0) =
ig̃τ

2~

(

N̂ − Θ

2π

)

.

An application of the Baker-Hausdorff formula therefore

leads to

eiφ̂(τ)e−iφ̂(0) =exp
[

iφ̂(τ) − iφ̂(0) +
1

2

[

φ̂(τ), φ̂(0)
]

]

=exp
[

− g̃τ

2~

(

N̂ − Θ

2π

)

− g̃τ

4~

]

.

Combining this with our knowledge on the energy eigenvalues

of the Hamiltonian Ĥ, we arrive at the following expression

for the thermal average of the operator of the preceding equa-

tion:

〈eiφ̂(τ)e−iφ̂(0)〉 = e−
g̃τ
4~

Z

∞
∑

n=−∞
e−

βg̃
4 (n− Θ

2π )2− g̃τ
2~ (n− Θ

2π ),

(A1)

where Z ≡
∑∞

n=−∞ exp[−βg̃
4 (n − Θ

2π )
2]. It is straightfor-

ward to check via the replacement n → −(n + 1) that the

above is invariant with respect to the simultaneous transfor-

mations τ → ~β − τ and Θ → −Θ. This implies that for the

cases under consideration in the main text, where Θ = −Θ
(mod 2π)), the correlation starts to rebuild when τ/~ exceeds

β/2. Let us now focus on the situation β ≫ τ/~ > 0. Further

impose the condition βg ≫ 1 which makes the level spacings

large, causing only the lowest energy states (n = 0 for Θ = 0
and n = 0, 1 for Θ = π) to give relevant contributions. An
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inspection of (A1) immediately shows then that (35) is repro-

duced under these conditions.

While the above discussion employed the canonical quan-

tization formalism to arrive at the “n-representation”, we can

also approach the same problem in the path integral frame-

work, which is more in line with the winding number rep-

resentation of (33). A direct contact with the latter, short-

circuiting the actual path integration, can be achieved by ap-

plying the Poisson summation formula to (A1):

〈eiφ̂(τ)e−iφ̂(0)〉

=
1

Z
e
− g̃τ(~β−τ)

4β~2

∞
∑

m=−∞

∫ ∞

−∞
dye−

βg̃
4 (y− Θ

2π+ τ
β~

)2−i2πmy

=
1

Z
e
− g̃τ(~β−τ)

4β~2

√

4π

βg̃

∞
∑

m=−∞
e−imΘe−

β
g̃
( 2πm

β
)2+i 2πmτ

β~ .

(A2)

It is apparent that had we carried out the path integral, the

factor e−imΘ in the final line would have come from the theta

term, while exp[−β
g̃
(2πm

β
)2] has its origin in the kinetic term

of the (0+1)d O(2) NLσ model, both of which can be checked

easily by substituting the classical path φ(τ) = 2πm
β~

τ into the

Euclidean Feynman weight e−
1
~
S , where the action is

S[φ(τ)] =
∫ β~

0

dτ
[

~
2

g̃
(∂τφ)

2 + i~
Θ

2π
∂τφ

]

.

The square root prefactor derives from integrating out the

quadratic fluctuation (periodic in τ ) around this path.

We conclude this appendix by mentioning that mathemati-

cally, the rewriting of (A1) into (A2) is intimately related73–75

to the modular group transformation properties of the Jacobi

theta function,

ϑ3(z, τ) ≡
∞
∑

n=−∞
eiπτn

2+i2πzn.

This function changes under the transformation τ → −1/τ as

ϑ3(z/τ,−1/τ) =
√
−iτeiπz2

τ ϑ3(z, τ). (A3)

We first rewrite Eq. (A1) as

〈eiφ̂(τ)e−iφ̂(0)〉 = 1

Z
e−

βg̃Θ2

16π2 + g̃τΘ
4π~

− g̃τ
4~

×ϑ3
(

− iβg̃Θ

8π2
+
ig̃τ

4π~
,
iβg̃

4π

)

.

The application of Eq. (A3) to this gives us

ϑ3

(

− iβg̃Θ

8π2
+
ig̃τ

4π~
,
iβg̃

4π

)

=

√

4π

βg̃
e

βg̃
4 ( Θ

2π− τ
~β

)2ϑ3

(

− Θ

2π
+

τ

~β
,
i4π

βg̃

)

=

√

4π

βg̃
e

βg̃
4 ( Θ

2π− τ
~β

)2
∞
∑

m=−∞
e−

4π2m2

βg̃
−i(Θ− 2πτ

~β
)m,

so that

〈eiφ̂(τ)e−iφ̂(0)〉

=
1

Z
e
− g̃τ(~β−τ)

4~2β

√

4π

βg̃

∞
∑

m=−∞
e−imΘe−

β
g̃
( 2πm

β
)2+i 2πmτ

~β ,

reproducing (A2).

Appendix B: Duality relation in the 3d O(6) model

Here, we derive the duality relation which is mentioned in

Sec. V A. We start by briefly recalling the basic features of the

massive Dirac fermion which generates, via a gradient expan-

sion scheme, the O(6) NLσ model with a WZ term. While the

discussion in Sec. V A involves multiple copies of such NLσ
model actions which interact among each other, it suffices for

the present purpose to focus on a single such copy. We will

adopt the fermionic representation of Refs.50,76. In this con-

vention, the Dirac fermion Ψ is an 8-component spinor with

an internal spin degree of freedom -the number of components

derives from grouping (prior to taking the continuum limit)

the sites of the original lattice fermions into cubic plaquettes,

each containing eight members. The fermionic action has the

structure

SF =

∫

dτd3rΨ̄(1l ⊗ i 6∂ + M̂)Ψ (B1)

where the symbol ⊗ stands for the direct product between op-

erators acting on spin and Dirac indices, and 1l is an iden-

tity operator. The 8×8 Dirac matrices comprising a closed

Clifford algebra consist of the four space-time components

γ0, . . . , γ3, and three generators of chiral transformations that

we here denote by γ5x, γ5y and γ5z . The mass matrix M̂ can

then be written as

M̂ = m[NAF · σ ⊗ 1l + i(VBSx)1l ⊗ γ5x

+ i(VBSy)1l ⊗ γ5y + i(VBSz)1l ⊗ γ5z ].

The unit 6-vector

NO(6) ≡ (NAF,VBSx,VBSy,VBSz),

is a composite order parameter describing the competition be-

tween antiferromagnetic and VBS orders. Submitting this

fermionic theory to a derivative expansion77 yields the effec-

tive action,

Seff =

∫

M

1

2g
(∂µNO(6))

2 + 2πi

∫

M×[0,1]

Ñ
∗
O(6)Ω(S

5),

where we have adopted the notations of the main text, with M
standing for the compactified Euclidean space-time manifold

which for the case in question is isomorphic to S4. The second

term on the right hand side is a level-1 WZ action.

Let us now source the fermionic action (B1) with the fol-

lowing term

Ssc ≡
∫

dτd3rΨ̄axyµ (1l ⊗ γµγ5xγ5y)Ψ

≡
∫

dτd3raxyµ jxyµ ,
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in which the source field axyµ is coupled to a Noether-

type current generated by a rotation of the VBS order pa-

rameter (VBSx,VBSy,VBSz) with respect to the z axis

of the parameter space. (Note that the triplet of matrices

{γ5y, γ5z , γ5yγ5z} close under the SU(2) algebra.) We will

now evaluate the vacuum expectation value

〈jxyµ 〉 = δ

δaxyµ
Seff [NO(6), a

xy
µ ]

∣

∣

∣

a
xy
µ =0

,

where Seff [NO(6), a
xy
µ ] ≡ − ln

∫

DΨDΨ̄e−(SF+Ssc). Intro-

ducing the notation SF + Ssc ≡
∫

dτd3rΨ̄DΨ, this quantity

can be rewritten as

〈jxyµ 〉 = Tr

[

(D†D)−1D† δD

δaxyµ

] ∣

∣

∣

∣

a
xy
µ =0

. (B2)

To make contact with the discussion of the main text, consider

the situation VBSx = VBSy = 0 whereupon the effective ac-

tion reduces to an O(4) NLσ model, whose action is a func-

tional of the 4-vector N ≡ (NAF,VBSz), which now has a

unit norm. Expanding the right hand side of (B2) in powers of

6∂M̂ , and taking into account that the trace of the product of all

seven Dirac matrices Tr[γ0 · · · γ4γ5x · · · γ5z] is nonvanishing,

we are lead to the relation

〈jxyτ 〉 ∝ Qxyz, (B3)

where Qxyz is the winding number defined by

Qxyz ≡
∫

{(x,y,z)}∼S3

N
∗Ω(S3) ∈ Z.

Since the above quantity changes between different time-

slices in the presence of O(4) monopoles, the relation (B3)

implies that monopoles violate the conservation of the cur-

rent jxyµ . This in turn implies that monopole condensation

enhances VBS ordering within the xy plane. As mentioned in

the main text, this is naturally understood by observing that

the monopole excitation in the O(4) theory has a core which

can escape into the VBSx-VBSy plane.
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