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The drainage of vertical foam films governs their life time. For foam film supported on a rectangu-
lar solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves
a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width.
Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we
measure the horizontal and vertical components of the velocity in a draining film, thus providing
the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm/s
are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of
the film, with comparable downwards and horizontal components. Scaling laws are proposed for all
characteristic velocities, coupling gravitational effects and capillary suction.

PACS numbers: 47.15.gm,47.55.dk,82.70.Rr,82.70.Uv,83.50.Lh

The gravity drainage of a foam film governs its thin-
ning and its ultimate rupture, and is thus a key factor in
foam stability. A vertical thin film of pure liquid breaks
into droplets and disappears in a fraction of second. In
foam films, surfactants ensure the stability with respect
to hole formation, but are also at the origin of a surface
tension gradient, i. e. a Marangoni force, which balances
the film weight [1, 2]. In their seminal work, Mysels et
al. [1] distinguished two kinds of drainage, associated to
foaming solutions producing either rigid or mobile inter-
faces. The rigid ones can resist to in-plane shear stress
and thus remain static during drainage. Consequently,
a Poiseuille flow, driven by the gravity g, develops be-
tween the interfaces with a typical velocity, known as the
Reynolds velocity, scaling as vR = ρgh20/η, where ρ and η
are respectively the density and the viscosity of the aque-
ous solution, and h0 is the thickness of the film. When
h0 = 3 µm, vR ≈ 100 µm/s. Mobile interfaces, in con-
trast, can deform and flow. However, Mysels et al. still
assume that the interface area is locally conserved: the
mobile interfaces are described as an inextensible two di-
mensional liquid with an interface shear viscosity ηs. In
this latter case, drainage is much faster and the velocity
of the fluid is close to the interface velocity. Because of
its low resistance to shear, complex instabilities can de-
velop in the film, as marginal regeneration [3–5] or 2D
turbulence [6–8].

For mobile films, the typical drainage time is propor-
tional to the film width [1, 3], which is a clear experimen-
tal signature of a drainage dominated by lateral bound-
ary effects. Close to the meniscus connecting a thin film
to a solid frame, the interface curvature, and the re-
sulting Laplace pressure, are non-negligible and induce
a pressure-driven flow from the film toward the menis-
cus. This phenomenon produces a pinching of the film
along the menisci both with rigid [9] or mobile interfaces
[5, 10]. In case of vertical films with mobile interfaces,
these film thickness inhomogeneities are unstable in a

gravity field [11–13]: the thinnest parts, at the edge of
the film, move upwards, while the thickest ones, in the
center of the film, move downwards. This results into a
net volume flux downwards, which has been conjectured
by Mysels et al. to dominate the drainage process for
mobile films [1].

In this paper, we measure the velocity field in such a
vertical mobile film and we provide the first quantitative
measurement of the horizontal component of the velocity,
which is shown to be of the same order of magnitude as
the vertical one. On the basis of the ideas developed by
Mysels et al., which, to our best knowledge, never led to
quantitative predictions, we build original scaling laws
for both the upward and the downward velocities.

The film thickness can be precisely measured by in-
terferometry and its time evolution provides some in-
formation on the fluid velocity [15–17]. However only
the component normal to the thickness gradient is avail-
able. An alternative is to use tracers [18, 19], but they
slightly deform the film which, in a vertical film, leads
to artefactual gravity induced motion. Here, we pro-
pose a novel technique, based on fluorescent labeling of
the flow, which overcomes these drawbacks. Our surfac-
tant solution is made of 10 g/L sodium dodecyl sulfate
(SDS), 0.1 g/L fluorescein sodium and 10 % wt glyc-
erol in pure water. The equilibrium surface tension is
γ = 37 mN/m, the bulk viscosity η = 1.3 mPa · s and the
density ρ = 103 kg/m3. Films are created on a vertical
metallic frame of thickness 1 mm and internal width 2W .
The frame is withdrawn from the solution at a constant
speed U0 = 5 mm/s and stops at t = 0 when the film
height reaches H = 20mm. The film remains connected
to the bath via a horizontal meniscus, oriented along the
x-axis. The y-axis is vertical, with its origin at the level
of the solution reservoir (see Fig. 2).

We first performed film thickness measurements for dif-
ferent frame widths (see Supp. Mat.) and evidenced a
drainage time proportional to the frame width, character-
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istic of mobile interfaces. We then focused on the veloc-
ity measurements using the experimental set-up shown
in Fig. 1, with the W = 10 mm frame.

FIG. 1. Sketch of our experimental setup.

We use a 20 mW 473 nm laser line, splitted into two
parts Bf and Bp of equal power. Two convergent lenses
of focal lengths 10mm (L1) and 200 mm (L2) expand
Bf to a diameter of approximately 20 mm, to excite the
fluorescence over the whole film. This component is cap-
tured, with magnifications between 1 and 5, by a Nikon
D7000 digital cameras Cf fitted with the appropriate fil-
ter. The laser hits the film approximately 5◦ off from its
perpendicular which allows for Cf to be mounted strictly
perpendicular to the film without being saturated by the
incoming light.

The beam Bp, on the other hand, is reflected off an ad-
justable mirror and through a motorized shutter which
pulses it. It is then focused on the film surface by a
convergent lens (Lp) of focal length 100 mm: the light
arriving at the film is intense enough to photobleach the
fluorophore and thus produce a dark spot on the film.
Depending on the experiment, we used 125 ms or 10 ms
pulses, which created respectively 100 µm and 40 µm di-
ameter spots. The shutter and the camera are synchro-
nised with an accuracy of ±3 ms.

We first focus on the central portion of the film. At a
given location (xpl, ypl), we photobleached one dark spot
(with a 125 ms pulse) every 250 ms from t = 0 and took
one picture just after the laser pulse (see Fig. 2 (right)).
The spots remain well contrasted during few seconds, al-
though they travel over a distance much greater than
their diameter. This proves experimentally that velocity
gradients across the film are negligible, as we anticipated
in the introduction. We repeated the experiment with
different positions (xpl, ypl) of the photobleaching laser,
with two series of measure at each location. We found
a good reproducibility of the flow excepted for the series
at the bottom of the film, since it is a region where the
velocities are dominated by eddy circulations, and are
both much higher and more random. For each series, the
position of all the spots visible at t = 1 s are reported
in Fig. 2 (left), which shows the global structure of the
flow.
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FIG. 2. (Left) Streaklines recorded just after t = 1 s, visu-
alised with the photobleached spots produced every 250 ms
from t = 0 to t = 1s (so five spots) at the location marked with
+. The thick black line represents the frame supporting the
film. Spots coming from different photobleaching locations
have been recorded on a different film. For each location, two
spots series are shown (• and ), obtained on two different
films, thus evidencing the very good reproducibility of the
flow, excepted for the bottom of the film. (Right) Example
of experimental image of photobleached spots.
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FIG. 3. x- (left) and y- (right) components of the fluid velocity
within the film, at t = 1 s, same data as in Fig. 2. Data are
segregated by height in 5 series (5.4, 8.4, 11.4, 14.4 and 17.4
mm above the solution), indicated by horizontal lines. Data
points are offset (vertically) from these base lines according
to the value of the velocity. Dashed lines are straight line
fits for the x- component (from top to bottom, the slopes are
[-0.16; -0.1; -0.07; -0.13; 0.30 ] s−1 ) and constant fits for the
y- component (from top to bottom: [-0.19 ; -1.1 ; -1.2 ; -2.2 ;
-2.9] mm/s).

At each time t, the distance between the last two spots
gives a direct measure of the velocity at the location
(xpl, ypl). The relative error on the velocity is mainly
due to the spot size and is less than 10%. Its x- and y-
components at t = 1 s are plotted in Fig. 3 for the same
locations as in Fig. 2, excepted the lower most line. At
this time, the film thickness is 4.7 µm at y = 9 mm (see
Supp. Mat.) and 1.6 µm at y=19 mm (data not shown).
In the following, orders of magnitude are obtained using
h0 ∼ 3 µm. Both velocity components are of the order
of 1 mm/s, which is 10 times larger than the Reynold
velocity. For each height in the film, the x component
has been fitted by a straight line. The fitting functions
vanish at a position xa close to 0 (|xa| < 0.3mm for every
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FIG. 4. y- components of the fluid velocity, at t = 1 s, close
to the right lateral meniscus (same presentation as in Fig. 3,
with a different set of data). Measurements are made 4, 10, 16
and 22 mm from the surface of the bath. The black vertical
solid and dashed lines represent respectively the frame and
the tip of the meniscus (i.e. the edge of the film). Colored
dashed lines represent the function v−fit(y) +Aexp[(x−x0)/`]

given as guide for the eyes, with ` = 0.5mm, v−fit(y) obtained

from the data of Fig. 3, x0 = 8.5mm and A = [20− 30] mm/s
for y = [10−16] mm. The relative errors varies from less than
10% far from the meniscus to 50% for the data points with
the highest velocities, very close to the meniscus.

height), with a slope ∂vx/∂x = −0.11± 0.05 s−1, except
for the lowest series where the slope is positive. The y
component, on the other hand, is negative and roughly
independent on x up to 2 mm from the edges. It increases
(in magnitude) from top to bottom and its mean value,
given in the caption of Fig. 3 for each height y, is well
fitted by the law v−fit(y) = 0.22y − 4 with y in mm and

v−fit in mm/s.
The measure of the upward velocities close to the edges

required a second series of experiments, with better spa-
tial and temporal resolutions. Indeed, in this region
of the film, velocities and velocity gradients are much
higher. For these reasons, photobleached spots disappear
within 100 ms and cannot be tracked over multiple im-
ages. Instead, we photobleach the spot with a 10 ms laser
pulse, and image the system 10 to 60 ms later, when the
spot is still trackable. Its distance from the photobleach-
ing location provides its velocity. Fig. 4 shows the data
from these measurements. The most striking result is a
very large increase in the magnitude of the vertical veloc-
ity, from its characteristic downward value v− ∼ 1mm/s
to a characteristic upward value v+ ∼ 20mm/s close to
the meniscus. At middle height of the film, the typical
distance of variation can be estimated as ` ∼ 0.5 mm.
This series of measurements is not as precise as the pre-
vious one, since in the worst cases both the time of travel
of the spot between creation and capture, the exposure
time of the camera and the duration of the laser pulse are
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FIG. 5. Vertical component of the velocity as a function of
time. Top figure: film center, at the positions (in mm) •
(x=0.17, y=8.3), (-2.7,8.3), N (-1.4,11.3), H (1.5,11.5); Bot-
tom figure: film right side • (9.1,16) (8.8,16), N (9.1,10), H
(8.8,10). The solid black line is the mean value of all data
sets.

of the same order (5− 10 ms), leading to relative errors
ranging from less than 10% to 50% as specified in the
caption of Fig. 4.

The velocity field has been determined over the whole
life-time of the films, and vertical velocity values mea-
sured both in the middle of the film and close to the
meniscus are plotted as a function of time in Fig. 5.
The whole drainage process slowly decelerates with time,
while keeping a similar structure.

Because we measure both the horizontal and vertical
velocities, we can determine for the first time the in-
terface extension during the drainage process. In the
central part of the film, the fits made in Fig. 3 lead to
∂vx/∂x = −0.11±0.05 s−1 and ∂vy/∂y ≈ 0.2±0.02 s−1.
Our data thus evidence that div2Dv > 0, and that some
interface extension occurs. The two velocity derivatives
are nevertheless of similar order of magnitude (and op-
posite sign) in the whole film, excepted at the bottom
of the film (y < 6mm), where the derivative along y can
not be precisely measured. The prediction of the velocity
field, taking into account this interface extension, would
require an experimental determination of the coupling
between the film extension and the dynamical surface
tension. This is still an experimental challenge [14, 20].
However, we believe that a model based on the original
assumption of Mysels et al. of an inextensible interface,
as the one developped below, may capture a large part
of the physics.

We consider the elementary piece of film S of area
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dx dy and thickness h(x, y), as depicted in Supp. Mat.
Its weight is ρgh ∼ 3 10−2Pa, which determines the rel-
evant order of magnitude for the forces. The Laplace
pressure term and the inertial terms are both maximal
in the pinched region, where they scale respectivelly as
γh20/`

3 ∼ 3 10−3Pa, and ρh0∂v
+/∂t ∼ 3.10−3Pa and

ρh0(v+)2/H ∼ 10−4 Pa (with ∂v+/∂t ∼ 1m/s2 from
Fig. 5). Both will be neglected in the following. As ~v is
uniform across the film, only in-plane velocity derivatives
are relevant and these derivatives are independent on z.
The viscous stress, integrated across the thickness of the
film, thus becomes σ2D

ij = η∗(∂vi/∂xj + ∂vj/∂xi) with i
and j equal to x or y and η∗ = 2ηs + h η. The term h η
is of the order of 3 · 10−9 Pa · s ·m, which is much smaller
than ηs [21]. It is thus neglected in the viscous force
div2Dσ2D ≈ 2ηs∆

2Dv acting on S.
With these assumptions, the equation of motion of S is

given by 0 = 2∇2Dγ + 2ηs∆
2Dv − ρghey. In the central

part of the film, velocity gradients are small and the film
weight is simply balanced by the surface tension gradient,
which thus plays a dominant role in the dynamics. How-
ever, taking the curl of the previous equation and using
the relation div2Dv = 0, allows us to rewrite it without
the variable γ:

2ηs∆
2D∆2Dvy = ρg

∂2h

∂x2
. (1)

Close to the meniscus, the film thickness is hm � h0 in
a domain of width ` along the meniscus, and the deriva-
tive along x dominates. A simplified scaling relation
can thus be deduced from eq. 1, ηsv

+/`2 ∼ ρgδh, with
δh = h0 − hm ∼ h0. The downward velocity v− at the
same height is given by the conservation of the interface
area in the domain between y and the top of the film,
v+`+ v−W = 0 (using l�W ), leading to

v− ∼ −ρg
ηs

h0`
3

W
. (2)

Note that the downward volume flux across the hori-
zontal line at position y is v+`hm+v−Wh0 ≈ v−Wh0 (as
hm � h0). This flux is at the origin of the film drainage.

Using the experimental values of ` and h0 previously
obtained, the predicted velocities are v+ ∼ 20 mm/s and
v− ∼ 1 mm/s if ηs ≈ 4 10−7 N · s/m. This value is of the
same order as the value ηs = 0.8 10−7 Pa · s ·m reported
in [21, 22] for the same SDS concentration.

The last unknown parameter in eq. 2 is the pinch width
`. In the simpler case of a horizontal film of thickness h0
put into contact, at the time t = 0, with a meniscus of
radius r, the pinch characteristics scale at long time as
hm ∼ r(τ/t)1/2 and ` ∼ h0(t/τ)1/4, with τ = ηh0/γ
[9]. In a vertical film, the dynamics can be schematized
as follows: the large scale circulation brings a piece of
film of thickness h0 in contact with the lower part of the
vertical meniscus; this piece of film then rises with the

velocity v+ along the meniscus and reaches the height
y after a delay td ∼ y/v+. Inserting this time scale in
the previous scaling we predict hm ∼ r(τv+/y)1/2 and
` ∼ h0(y/(v+τ))1/4. With y = 1 cm, we get the orders
of magnitude hthm ∼ 100 nm (with r ∼ 0.3 mm) and
`th ∼ 0.2 mm. This last value is consistent with ` ≈ 0.5
mm obtained Fig. 4. Replacing ` in eq. 2 allows us to
propose finally a prediction for the drainage velocity in
mobile foam films:

v− ∼ −h
2
0

W

(
ρgγy

ηsη

)1/2

. (3)

The order of magnitude of our predictions for v−, v+

and ` are consistent with our experimental observations,
as well as the scaling v− ∼ 1/W and v+/v− ∼ −W/`.
We thus believe that the main physical ingredients have
been captured by the model.

In conclusion, our technique allowed us to evidence a
large scale recirculation in a draining foam film, with
mobile interfaces. This technique also provides the
first quantitative measurement of film extension during
drainage. Scaling laws for the different characteristic ve-
locities are obtained with a simple model, based on the
fact that the direct gravity drainage is negligible in com-
parison with the capillary drainage induced by the lateral
meniscus. The gravity is nevertheless crucial, as it trig-
gers the recirculation at the film scale, which constantly
brings thick film in contact with the lateral meniscus.
This limits the film pinching and thus makes the cap-
illary drainage much more efficient than in a horizontal
film. A refined theoretical treatment of (i) the film exten-
sion and (ii) the coupling between the pinching process
and the upward convection of the pinch would certainly
improve our predictions. Qualitatively, the extension of
the film interface induced by its own weight should in-
crease the downward velocity in the central part of the
film.
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