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Abstract. We propose a multi-agent based Distributed Hybrid algo-
rithm for the Graph Coloring Problem (DH-GCP). DH-GCP applies a
tabu search procedure with two different neighborhood structures for its
intensification. To diversify the search into unexplored promising regions,
two crossover operators and two types of perturbation moves are per-
formed. All these search components are managed by a multi-agent model
which uses reinforcement learning for decision making. The performance
of the proposed algorithm is evaluated on well-known DIMACS bench-
mark instances.

1 Introduction

Given an undirected graph G = (V,E) with vertex set V and edge set E. A
legal (or proper) k-coloring of G (k is an integer) is a partition of V , i.e., S =
{V1, V2, ..., Vk} where each subset Vr ⊂ V is an independent set (also called a
legal color class) such that no two vertices of Vr are linked by an edge. Given k
colors, the k-coloring problem (k-COL) is to find a legal k-coloring. The graph
coloring problem (GCP) is to determine the smallest integer k (i.e., the chromatic
number χG of G) such that there exists a legal k-coloring of G.

GCP has numerous important applications in practice and is known to
be computational difficult. Given its relevance, GCP is certainly among the
most studied NP-hard problems [8]. Among the large number of GCP solution
approaches (see e.g., [12,20]), most of them are based on neighborhood search
[1,2,5,6,15–17,22,27], hybrid population search [4,7,9,10,18,19,21,23,26] or
other hybrid scheme [14,24,28]. More GCP methods can be found in [8,12,20].

In this paper, we study a distributed algorithm for GCP which is based on
the principle of multi-agent systems. As our general solution strategy, we adopt
the very popular k-fixed penalty approach [12] which was used in many previous
algorithms like [5,6,9,12,18,19,23]. With this approach, we fix the number k of
colors and seek a legal k-coloring among all possible (legal or illegal) k-colorings.
Given a k-coloring S, the evaluation or fitness function f(S) calculates the num-
ber of conflicts induced by S, i.e., the number of edges whose end-points are
colored with the same color. Thus, f(S) = 0 indicates that S is a legal coloring.
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The algorithm tries to solve the k-coloring problem by minimizing the fitness
function f . Finally, to approximate the chromatic number of G, we try to solve
a series of k-coloring problems with decreasing values of k.

The rest of the paper is organized as follows. Section 2 describes the proposed
algorithm. Section 3 presents the experimental results achieved on DIMACS
benchmark instances. Finally, Sect. 4 concludes the paper.

2 A Distributed Hybrid Algorithm for GCP

The proposed distributed hybrid algorithm for GCP (DH-GCP) explores a set of
interacting agents which are local optimization procedures, crossover operators
and perturbation techniques. The coordination of these agents is realized in an
informed way using reinforcement learning. The learning mechanism modifies
and adapts the search strategy according to the experiences obtained during
the search process. The agents are learners and players that ensure the role of
intensification and diversification to explore the given search space. This study
constitutes a continuation of our recent work on multi-agent based optimization
applied to the quadratic assignment problem [25].

2.1 Weight Matrix with Reinforcement Learning

Reinforcement learning aims to learn what to do and how to plan situations to
actions, in order to maximize a numerical reward signal. In most forms of learn-
ing, the learner is told which actions to take, but for reinforcement learning, the
learner needs to discover the action that leads to the best reward based on pre-
vious experiences. A learner must be able to learn from its own experiences to
make decisions. In the proposed DH-GCP algorithm, decisions or actions corre-
spond to techniques of diversification or intensification to apply and experiences
are acquired during the search progress. Following [13], we use decision rules
represented by a couple (Condition,Action). Let C be the set of conditions
describing the search progress and A the set of actions or decisions to perform.
For a condition Ci, a weight Wij (initialized to 0) is associated to each action
Aj . We use the following equation [13] to calculate the probability P (Ci, Aj) for
applying an action Aj based on a condition Ci:

P (Ci, Aj) =
Wij∑
j∈A Wij

(1)

At the beginning of the algorithm (i.e., first iterations of Algorithm2), the
improvement situation is assigned to a default condition. According to the weight
matrix W , the most appropriate action for this condition is selected based on the
probability given in Eq. (1). Then, at the end of each generation, the performed
action is evaluated and the concerned weight value is increased if there is an
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Fig. 1. An example of the reinforcement learning procedure with weight matrix: We
suppose that the current condition is C4 (e.g., the local best solution has not been
improved in recent 10 generations). Under this condition, action A2 (e.g., activate
crossover agents) is performed for the current generation (this action has the high-
est value in the matrix) and obtained a further improvement. Then, reinforcement is
applied by adjusting the weight W42 to augment the chance of selecting again the
applied action under this condition (e.g. W42 = 3 × 0.5 + 1 = 2.5). The weight W41 is
decreased by µ (e.g. W41 = 1 × 0.5 = 0.5)

improvement in solution quality. A credit assignment is used to perform rein-
forcement learning in order to select the beneficial experiences and determine a
reward for them. Here, an experience is represented as a triplet (condition Ci,
action Aj , improvement V ). When a new best local or global solution is found,
the weight value Wij which is related to the action of this generation is rein-
forced by adding a reward rate σ to Wij . Before adding the reinforcement value,
the weight values Wij in the decision matrix is decreased with an evaporation
value μ, in order to enlarge the influence of the new reward obtained in the
current generation. The reinforcement with reward σ is then performed using
the following equations [13]:

W ′
ij = μ × W ′′

ij (2)

Wij = μ × W ′
ij + σ (3)

where W ′
ij is the weight value before the reinforcement, W ′′

ij is the weight value
before the evaporation, μ is the evaporation value and σ is the learning factor.

Figure 1 shows an illustrative example of this reinforcement learning process
(See Sect. 2.3 for more details). In the proposed algorithm, this matrix is used
by the mediator agent (Sect. 2.3) and the tabu search agents (Sect. 2.4).

2.2 Agent Interaction in DH-GCP

The proposed DH-GCP is a distributed approach composed of interacting
agents. Each agent has a local view of the problem, but the collaboration of
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Algorithm 1. DH-GCP general procedure
Require: Graph G, number of colors k, four types of agents: mediator agent, two tabu

search agents, perturbation agent and two crossover agents
Ensure: The best k-coloring Sbest

1: while A legal k-coloring Sbest not reached do
2: The mediator agent starts the algorithm by initialing the search and then decides

to trigger tabu search agents or crossover agents based on its weight matrix
(Algorithm 2)

3: if The mediator agent decides to activate tabu search agents then
4: The tabu search agents are activated and the mediator agent waits for a k-

coloring from the activated tabu agents (Algorithm 3)
5: if An activated tabu search agent needs to trigger a perturbation agent then
6: The tabu search agent actives the required perturbation agent and waits

for solution from the perturbation agent (Sect. 2.5)
7: The perturbation agent is killed after sending the k-coloring found to the

corresponding tabu search agent
8: end if
9: if An tabu search agent wants to cooperate with other tabu search agent

then
10: The requiring tabu search agent waits for a new k-coloring from other tabu

search agent (Algorithm 3)
11: end if
12: The tabu search agents are killed after sending the best solutions generated

during their search to the mediator agent
13: end if
14: if The mediator agent decides to activate crossover agents then
15: The crossover agents are activated and the mediator agent waits for the best

k-coloring from the crossover agents (Sect. 2.6)
16: The crossover agents are killed after sending new solutions to the mediator

agent
17: end if
18: end while
19: Return The best legal k-coloring found Sbest from the mediator agent

these agents can help find good solutions for GCP. We consider the follow-
ing agents: the mediator agent, the tabu search agents, the perturbation agent
and the crossover agents. Figure 2 describes the architecture of DH-GCP while
Algorithm 1 presents the general procedure of DH-GCP. Algorithms 2 and 3
describe the behaviors of the mediator agent and the tabu search agents.

The DH-GCP algorithm explores several search cycles (generations, see the
‘while’ structure of Algorithm 2). In each cycle, the mediator agent is responsible
to decide which agents will be activated using its weight matrix according to
the state of search process. The activated agents can be tabu search agents
or crossover agents (Algorithm 2). During the process of tabu search agents,
they can trigger the perturbation agent (to diversify the search). Note that
agents are not activated in a pre-specified order. Instead, their activation depends
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Fig. 2. Agent communication in DH-GCP: Mediator agent is the agent who manages
the search according to the improvement realized, tabu search agents ensure search
intensification while crossover agents and perturbation agent are responsible for diver-
sification

on the past learning experiences and is dynamically adjusted. In the following
subsections, we explain the behaviors of each type of agents.

2.3 Mediator Agent

The mediator agent selects other agents to trigger based on its weight matrix
(Sect. 2.1). When other agents (tabu search agents or crossover agents) are trig-
gered, the mediator agent waits for (improved) solutions received from these
agents and to record the received solutions in the shared memory (archive). The
behavior of the mediator agent is described in Algorithm2.

The Initial Solution. The mediator agent creates an initial legal coloring using
the greedy largest saturation degree heuristic (DSATUR) [3]. Then, starting
with this initial coloring, it randomly displaces the vertices whose color number
is higher than the given color number k to a color class between [1, k]. This
procedure usually leads to an illegal k-coloring which will be repaired by the
DH-GCP algorithm.

Conditions and Actions of Weight Matrix. The weight matrix of the medi-
ator agent is composed of two types of actions: A1 corresponds to activating
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Algorithm 2. Mediator agent behavior
Require: Graph G, number of class k, parameters: improvement threshold interval

interval, consecutive non-improving iterations max opt.
Ensure: A best legal k-coloring Sbest found so far
1: S ← Generate initial k − coloring S0 {Sect. 2.3}
2: Sbest ← S0 {Sbest records the best k-coloring found so far}
3: fbest ← f0 {fbest records the best objective value of the best k-coloring reached so

far}
4: opt ← 0 {opt is the counter for consecutive non-improving local optimum}
5: W ← 0 {W is the weight matrix of the mediator agent}
6: pop ← ∅ {pop is the archive of elite solutions found during the search}
7: while A legal k-coloring Sbest not reached (fbest �= 0) do
8: Update W using interval, opt and max opt {Sects. 2.1 and 2.3}
9: Action type ← Select an action to activate based on W {Sect. 2.3}

10: if Action type = tabu search agents then
11: Trigger tabu search agents and send Sbest to them
12: else
13: Trigger crossover agents and send Sbest to them
14: opt ← 0
15: end if
16: S1 ← ∅, S2 ← ∅ {S1 and S2 are k-colorings received from the activated agents}
17: if S1 �= ∅ AND S2 �= ∅ then
18: if f(S1) ≤ f(S2) then
19: S ← S1

20: else
21: S ← S2

22: end if
23: tr ← Exist(S1, S2, pop) {Check if S1 and/or S2 are in the archive pop}
24: if tr = false then
25: add S1 and/or S2 to pop {add both k-colorings or one of them in pop}
26: end if
27: if f(S) ≤ fbest then
28: Sbest ← S
29: fbest ← f(S)
30: else
31: opt ← opt + 1
32: end if
33: else
34: block this agent {The mediator agent waits for k-coloring from other activated

agents}
35: end if
36: end while
37: Return Sbest

the tabu search agents, and A2 corresponds to activating the crossover agents.
The conditions, which cover significant situations that may occur in the search
process, are:
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– C1 = The algorithm does not reach m0 generations (cycles);
– C2 = The local or global best solution is improved in recent m1 generations

and this improvement is a small improvement in the fitness function value f ;
– C3 = The local or global best solution is improved in recent m1 generations

and this improvement is a large improvement in the fitness function value f ;
– C4 = The global best solution has not been improved in recent m2 generations.

This solution is a deep local optimum or an optimum solution.

where m0, m1 and m2 are parameters set by the user according to the total gen-
eration number. When there is a large improvement obtained by the application
of an action between two successive generations (this corresponds to the situa-
tions C1 and C3), it is better to apply an intensification process by triggering
the tabu search agents. If the mediator agent observes no improvement or an
insignificant improvement (this corresponds to the situations C2 and C4), the
search needs to be diversified by activating crossover agents. After each genera-
tion (i.e., when the activated agents return their found solution), the mediator
agent updates its weight matrix (see Sect. 2.1).

Archive of Elite Solutions. The mediator agent saves the best k-coloring,
received from tabu search agents and crossover agents, in an archive. The archive
represents a shared memory between all agents. It is updated by the mediator
agent with new solutions of good quality.

2.4 Tabu Search Agents

The mediator agent can activate two tabu search agents, when it observes that
the search process needs to be intensified (lines 4 – 11 of Algorithm 2). Each tabu
search agent applies a specific strategy based on a particular neighborhood to
seek new solutions (line 7 to line 10 of Algorithm 3). During the search, a tabu
search agent can exchange its solutions with another alive tabu search agent or
with a perturbation agent (line 14 to line 28 of Algorithm3). These communica-
tions depend on a weight matrix(lines 16 and 17 of Algorithm 3). At the end of
each tabu search agent run, the best k-coloring found by each agent is sent to the
mediator agent (line 36 of Algorithm 3). The behavior of the tabu search agent is
described in Algorithm 3. Below, we define the used neighborhood structures for
each tabu search agent. Then, we explain the conditions and actions employed
by them.

Neighborhoods. A candidate solution for GCP can be generated by changing
the color class of vertices. Different modifications lead to different neighborhood
structures. In this work, we explore 3 neighborhoods: the vertex neighborhood
which changes the color of some conflicting vertices, the class neighborhood
which changes the color of some or all vertices of a conflicting color class, and the
non-increasing neighborhood which changes the color of some vertices without
increasing the total number of conflicting edges.
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Algorithm 3. Tabu search agents behavior
Require: Graph G, number of colors k, A k-coloring Sbest received from media-

tor agent, parameters: maximum iterations iteration max, improvement threshold
interval interval, consecutive non-improving iterations max opt TS.

Ensure: A k-coloring Sbest TS

1: S ← S0 {S is the current k-coloring found by each tabu search agent}
2: Tabu list ← 0 {Tabu list is the tabu list, Sect. 2.4}
3: Q ← 0 {Q is the weight matrix of each tabu search agent, Sect. 2.4}
4: opt = 0 {opt is the counter for consecutive non-improving local optima for each

tabu search agent}
5: S1 ← S0 {S1 is the k-coloring obtained in generation iteration − 1}
6: while iteration ≤ iteration max do
7: S ← Generate the best neighboring k-coloring {Sect. 2.4}
8: Update Tabu list
9: if f(S) ≤ f(Sbest TS) then

10: Sbest TS ← S
11: else
12: opt = opt + 1
13: end if
14: if (f(S) − f(S1) < interval)or (opt = max opt TS) then
15: Sperturbed ← ∅ {Sperturbed is a k-coloring received from other agents (tabu

search agent or perturbation agent}
16: Update Q {Update the weight matrix based on the improvement of the current

solution, opt, interval and max opt TS, Sect. 2}
17: Action exchange ← Select the agent to trigger based on Q
18: if Action exchange=Activating perturbation agent then
19: Activate the perturbation agent and send it the current k-coloring S
20: opt=0 {opt is reset to 0, only when strong perturbation behaviour is trigged,

Sect. 2.5}
21: end if
22: if Action exchange=Activating other tabu search agent then
23: Request the current k-coloring of other tabu search agent
24: end if
25: Let Sperturbed be the perturbed solution received from the perturbation agent

or other tabu search agent
26: if Sperturbed �= ∅ then
27: S ← Sperturbed

28: else
29: block this agent {Tabu search agent waits for a solution from other agents}
30: end if
31: else
32: S1 ← S {Tabu search agent applies tabu search without exchanging solutions

with other agents}
33: end if
34: iteration = iteration + 1
35: end while
36: Return Sbest TS to mediator agent
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Neighborhood Exploration Strategies. In DH-GCP, we use two comple-
mentary neighborhood strategies due to the cooperation act realized by each
tabu search agent. One of these strategies, performed by our first tabu search
agent, changes the colors of conflicting vertices to produce new k-colorings. This
is done by moving a conflicting vertex x from its original color class Vi to the best
possible other color class Vj (i �= j) (this change or move is denoted by (x, i, j)).
The new color class for each conflicting vertex x is chosen among those which are
not assigned to vertices adjacent to x. Among these color classes found, the best
possible color class (in terms of fitness minimization) is selected for the consid-
ered conflicting vertex. Our second tabu search age nt uses the same mechanism
of selecting the best color class to be assigned to vertices as the first tabu search
agent. The difference is that these vertices are not the set of conflicting vertices,
but the adjacent of conflicting vertices. The tabu search agent chooses the best
color class for each vertex belonging to the set of adjacent vertices of conflict
vertices. The best color affected must not belong to the color classes affected to
conflicting vertices.

For these two neighborhood strategies, tabu search agents evaluate each move
using an incremental evaluation technique [6,9,10]. This technique consists of
maintaining a special data structure that records the move values for each can-
didate neighborhood move.

Tabu List. Each tabu search agent uses a tabu list to forbid the reverse moves.
When a move (x,i,j) is generated, vertex x is forbidden to move back to color
class Vi for the next h iterations (called tabu tenure). The tabu tenure is dynam-
ically determined by h = f(S)+ r(10) where r(10) is a random number between
1 and 10 [10]. The stop condition of each tabu search is a fixed number of iter-
ations.

Conditions and Actions of Weight Matrix. The actions considered by the
tabu search agents are as follows:

– A1 = activating other tabu search agents;
– A2 = activating the strong perturbation behavior in the perturbation agent;
– A3 = activating the reduced perturbation behavior in the perturbation agent.

The set of the conditions are:

– C1 = the local best k-coloring is improved in recent q1 generations and this
improvement is a small improvement in the fitness function value f ;

– C2 = the local best k-coloring is improved in recent q2 generations;
– C3 = the local best k-coloring is improved in recent q3 generations and q3 > q2.

where q1, q2 and q3 are parameters set by the user according to the total gener-
ation number.
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Each of these conditions promotes a certain action. Thus, C1 increases the
chance of activating other tabu search agent, to reinforce intensification. C2 and
C3 reinforce the action of triggering the perturbation agent, in order to increase
diversification. The selection of the most suitable action is controlled by the
corresponding weight matrix of each tabu search agent.

2.5 Perturbation Operator Agent

The perturbation agent, triggered by tabu search agents (lines 18–20 of
Algorithm 3), creates a disturbed k-coloring solution by exploring two types of
perturbations. The new k-coloring is then sent to the tabu search agent (line 25
of Algorithm 3) for further improvement.

Reduced Perturbation Technique. The reduced perturbation technique can
be triggered when a tabu search agent observes a slight search stagnation (con-
dition C2 of Sect. 2.4). From the k-coloring received from the tabu search agent,
the perturbation agent makes t moves to create a new solution, where each move
changes randomly the color of a conflicting vertex of the incumbent solution. The
number t of moves is chosen randomly between 1 and conf (where conf is the
number of conflicting vertices).

Strong Perturbation Technique. The strong perturbation technique is per-
formed when a tabu search agent tabu search agent observes deep search stagna-
tion. The perturbation agent uses the shared archive of elite k-colorings to create
a new solution. It extracts the number of occurrence of each vertex x colored by
each color class Vi. Starting with an uncolored graph, each vertex x is colored
with a color class Vi which has the smallest occurrence number. Dedicated data
structures are employed to avoid the creation of the same solution for future
calls to the perturbation agent.

2.6 Crossover Agents

When the mediator agent decides to activate the crossover agents (line 13 of
Algorithm 2), two crossover agents are created based on two different operators
from the literature: the AMPaX operator [18] and the GPX operator [10]. The
new k-coloring solutions from the two crossover agents are sent to the mediator
agent to continue the search process. Experimental results showed that the joint
use of these two crossover operators performs better than any of them used alone.

3 Experimentation

3.1 Experimental Results

In this section, we present experimental results of our DH-GCP algorithm on a
set of well-known DIMACS coloring benchmarks and compare the results with
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Table 1. Computational results of DH-GCP on the set of difficult DIMACS challenge
benchmarks

DH-GCP

Instances |V | |E| dens k∗ References k hit time(m)

DSJC250.5 250 15,668 0.50 28 [10,11,14,16,19,22,23,26,28] 28 10/10 5

DSJC500.1 500 12,458 0.10 12 [2,11,14,16,19,21–23,26,28] 12 10/10 6

DSJC500.5 500 62,624 0.50 47 [21] - - -

48 [2,10,11,14,16,19,22,26,28] 48 10/10 85

DSJC500.9 500 112,437 0.90 126 [2,11,14,16,19,21–23,26,28] 126 10/10 320

DSJC1000.1 1000 49,629 0.10 20 [2,10,11,14,16,19,21–23,26,28] 20 10/10 441

DSJC1000.5 1000 249,826 0.5 82 [21] - - -

83 [10,14,19,22,23,28] 83 10/10 205

DSJC1000.9 1000 449,449 0.90 222 [2,10,14,16,21–23,26,28] 222 4/10 801

DSJR500.1c 500 121,275 0.97 85 [14,16,19,23,26,28] 85 10/1 6

DSJR500.5 500 58,862 0.47 122 [14,16,23,24,26,28] 122 3/10 480

R250.5 250 14,849 0.48 65 [2,14,19,23,26,28] 65 10/10 42

R1000.1c 1000 485,090 0.97 98 [2,14,19,23,26,28] 98 10/10 55

R1000.5 1000 238,267 0.48 234 [16] - - -

238 [26] 240 2/10 1120

le450 15c 450 16,680 0.17 15 [11,14,16,19,22,26,28] 15 10/10 40

le450 15d 450 16,750 0.17 15 [11,14,16,19,22,26,28] 15 10/10 50

le450 25c 450 17,343 0.17 25 [2,14,19,23,26,28] 25 10/10 120

le450 25d 450 17,425 0.17 25 [2,14,19,23,26,28] 25 10/10 42

flat300 26 0 300 21,633 0.48 26 [2,14,19,26,28] 26 10/10 40

flat300 28 0 300 21,695 0.48 29 [18,22] 30 5/10 500

flat1000 50 0 1000 245,000 0.49 50 [11,14,16,19,21,22,26,28] 50 10/10 40

flat1000 60 0 1000 245,830 0.49 60 [11,14,16,19,21,22,26,28] 60 10/10 45

flat1000 76 0 1000 246,708 0.49 81 [14,21] - - -

82 [19,23,26,28] 82 10/10 280

C2000.5 2000 999,836 0.50 145 [14] - - -

146 [28] 147 1/5 8000

latin sqr 10 900 307,350 0.76 97 [26] 98 2/10 600

other state-of-the-art coloring algorithms from the literature. Our DH-GCP algo-
rithm was programmed in Java using the multi-agent platform Jade. The pro-
gram was run on a computer with a Core I5 2.5 GHz, 8 GB of RAM.

Each instance was solved 10 times independently (5 times for very large
graphs). The algorithm was stopped when a legal k-coloring was found or the
fixed execution timeout was reached. For all instances, a timeout limit of 10 days
was used except for the large graph C2000.5 where a limit of 20 days (note
that large computing times were usually allowed in the literature on GCP). We
adjusted the parameters of the proposed algorithms by an experimental study.
The number of iterations for each tabu search agent (iter max) was fixed to
1000. The parameters max opt (for mediator agent) and max opt TS (for tabu
search agent), that evaluate the improvement of solutions between generations,
were fixed to 20 and 2 respectively. For interval, we considered the same value
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10 for the same agents. The rate μ used in updating the weight matrices was
fixed to 0.9.

Table 1 summarizes the computational results of our DH-GCP algorithm.
Columns 2–4 show the features of the tested instance: the number of vertices
(|V |), the number of edges (|E|) and the density of the graph (dens). Columns
5 and 6 corresponds to the best known results k∗ ever reported in the literature
and the corresponding references. The remaining columns give the computational
results of our DH-GCP algorithm: the smallest number of colors needed to obtain
a legal k-coloring, the success rate (#hit) and the average time for reaching the
best legal k-coloring (time in minutes).

Table 1 shows that the results obtained by our DH-GCP algorithm are com-
petitive with respect to many state of the art algorithms in terms of solution
quality (i.e., the number of colors used). It can reach previous best known
results except for 7 very difficult cases (DSJC500.5, DSJC1000.5, flat300 28 0,
flat1000 76 0, latin sqr 10, C2000.5 and R1000.5) for which few algorithms are
able to attain the best known results. For these 7 instances, the deviation between
our results and the best-known results is respectively 0.021 (for DSJC500.5),
0.012 (for DSJC1000.5), 0.034 (for flat300 28 0), 0.012 (for flat1000 76 0), 0.002
(for R1000.5), 0.013 (for C2000.5) and 0.01 (for latin sqr 10) respectively. Even
if we do not show detailed comparisons with individual algorithms due to space
limit, we mention that the results achieved by DH-GCP remain competitive
compared with many reference coloring algorithms in terms of solution quality.

4 Conclusion

The proposed distributed hybrid algorithm for the Graph Coloring Problem
(DH-GCP) relies on the principles of multi-agent systems to explore a search
space with the help of an ensemble of working agents (tabu search agents,
crossover agents, perturbation agents). These agents are coordinated by a medi-
ator agent using a reinforcement learning mechanism in order to make right
search decisions. Decisions are influenced by a learning-based probabilistic strat-
egy which dynamically adjusts the application probability of a particular action
under a specific condition. According to whether the search process needs to be
intensified or diversified, the mediator agent triggers, based on a weight matrix,
either an intensification agent (tabu search agents) or a diversification agent
(perturbation agents, crossover agents).

The proposed algorithm was assessed on a set of 23 difficult DIMACS coloring
benchmarks. The computational results showed that DH-GCP was able to reach
the previous best known results except for 7 very difficult cases and remains
competitive compared to many coloring algorithms. On the other hand, the
current version of the algorithm, which is a proof-of-concept prototype, is rather
time consuming, partially due to the multi-agent platform Jade used for its
implementation. One possible way to improve the computational efficiency of the
algorithm would be to envisage a dedicated distributed implementation. Finally,
both this work and the previous study on the quadratic assignment problem [25]
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demonstrate that the proposed framework is general enough to be adapted to
solve other combinatorial search problems. It would be worthy of investigating
this multi-agent based optimization framework within other settings.
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