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In this paper, we are interested in a shape optimization problem for a fluid-structure interaction system composed by an elastic structure immersed in a viscous incompressible fluid. The cost functional to minimize is an energy functional involving together the fluid and the elastic parts of the structure. The shape optimization problem is introduced in the 2-dimensional case. However the results in this paper are obtained for a simplified free-boundary 1-dimensional problem. We prove that the shape optimization problem is wellposed. We study the shape differentiability of the free-boundary 1-dimensional model. The full characterization of the associated material derivatives is given together with the shape derivative of the energy functional. A special case is explicitly solved, showing the relevancy of this shape optimization approach for a simplified free boundary 1-dimensional problem. The full model in two spatial dimensions is under studies now.

Introduction

Free boundary problems are classical models e.g., for phase transitions or contact problems in structural mechanics. The optimal control or shape optimization of free boundary problems are challenging fields of research in the calculus of variations and in the theory of nonlinear partial differential equations. The obtained results can be verified by using numerical methods specific for the models. The questions to be adressed within the shape optimization framework are the existence and uniqueness of optimal shapes as well as the necessary and sufficient optimality conditions. The velocity method of shape sensitivity analysis can be applied to shape optimization problems. The existence of topological derivatives for the energy type shape functionals in multiphysics can be considered.

An important class of free boundary problems [START_REF] Friedman | Variational principles and free-boundary problems[END_REF] are variational inequalities [START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]. The optimal control [START_REF] Barbu | Optimal control of variational inequalities[END_REF] and the shape optimization [START_REF] Sokołowski | Introduction to shape optimization: shape sensitivity analysis[END_REF] of variational inequalities are well understood for unilateral constraints. In such a case the polyhedricity property of the solution with respect to the shape can be exploited. The concurrent approach is the penalization technique as it is described e.g., in [START_REF] Barbu | Optimal control of variational inequalities[END_REF]. The multiphysics models are new and important branch of applied shape optimization. In this paper a simple model of this type is rigorously analyzed from the point of view of sensitivity analysis. We present an approach of shape optimization to fluid structure interaction which can be generalized to more complex structures.

We consider an elastic structure immersed in a viscous incompressible fluid. Let ω ⊂⊂ Ω S ⊂⊂ Ω ⊂ R 2 be three bounded domains where Ω S and Ω are simply-connected domains. The deformed elastic body occupies the domain Ω S = Ω S \ ω ⊂ R 2 and the elastic structure is attached to the inner fixed boundary ∂ω. The fluid fills up a bounded domain Ω F = Ω \ Ω S = Ω \ (Ω S ∪ ω) surrounding the elastic body Ω S . We denote by

Ω S Ω F Γ F S ω n Σ Figure 1.
The geometry of the fluid-elasticity system Γ F S = ∂Ω F ∩ ∂Ω S the boundary between the fluid and the elastic structure and we have ∂Ω F = Γ F S ∪ Σ where Σ = ∂Ω. The boundary Σ corresponds also to the outer boundary of the fluid domain Ω F (see Figure 1).

The fluid flow is governed by the Stokes equations for the velocity u and the pressure p of the fluid:

-div σ(u, p) = f in Ω F (1.1) div u = 0 in Ω F (1.2)
where σ(u, p) = 2νD(u) -pI d is the Cauchy stress tensor with the symetric strain tensor D(u) = 1 2 ∇u + ∇u . The fluid is subjected to a given force f and ν is the viscosity of the fluid. At the boundary of the fluid domain, we impose (1.3) u = 0 on ∂Ω F = Γ F S ∪ Σ.

The elastic structure Ω S is a deformation of a given reference bounded domain Ω 0 ⊂ R 2 by a mapping X i.e. Ω S = X(Ω 0 ) (see Figure 2). The deformation mapping is given by X = I d + w where w is the elastic displacement of the structure which satisfies the linearized elasticity equation (1.4) -div Π(w) = g in Ω 0

where Π is the second Piola-Kirchhoff stress tensor of the elastic structure given by (1.5) Π(w) = λtr(D(w))I d + 2µD(w)

with the Lamé coefficients λ > 0, µ > 0. The elastic body is subjected to a given external force g. Since the elastic structure is clamped to the inner boundary ∂ω, we have X(∂ω) = ∂ω and

(1.6) w = 0 on ∂ω.

We also denote by Γ 0 the outer boundary of Ω 0 and we have Γ F S = X(Γ 0 ).

According to the action-reaction principle, we have

Γ 0 Π(w)n 0 • v • X dΓ = Γ F S σ(u, p)n • v dΓ
for all function v defined on Ω F . We denote by n 0 the normal unit vector directed outwards to the domain Ω 0 and n is the unit normal vector to Γ F S directed from Ω S to Ω F . This leads to the local relation

(1.7) Π(w)n 0 = (σ(u, p) • X) cof (∇X) n 0 on Γ 0 ,
where cof (∇X) denotes the cofactor matrix of the jacobian matrix (for an invertible matrix A, we have A -1 = 1 det(A) cof(A) ). The relation (1.7) can also be written on the boundary Γ F S with

(1.8) σ(u, p)n = Π(w) • X -1 cof ∇X -1 n on Γ F S .
In summary, the fluid-elasticity system for (u, p, w) reads as

-div σ(u, p) = f in Ω F (1.9) div u = 0 in Ω F (1.10) u = 0 on ∂Ω F = Γ F S ∪ Σ (1.11) -div Π(w) = g in Ω 0 (1.12) w = 0 on ∂ω (1.13) Π(w)n 0 = (σ(u, p) • X) cof (∇X) n 0 on Γ 0 . (1.14)
In [START_REF] Halanay | Existence of a Steady Flow of Stokes Fluid Past a Linear Elastic Structure Using Fictitious Domain[END_REF], the authors prove the existence of a solution to (1.9)-(1.14) using a fictitious domain approach and a fixed point procedure involving convergence of domains. This article contains in particular some interesting ideas that should be helpful for the shape optimization study associated to (1.9)- (1.14). We also mention the results in [START_REF] Grandmont | Existence for a three-dimensional steady state fluid-structure interaction problem[END_REF] where the existence of a solution to a coupled fluid-elasticity system for Stokes equation with a nonlinear elastic structure is established. A similar system to (1.9)-(1.14) has also been studied in [START_REF] Galdi | Steady flow of a Navier-Stokes liquid past an elastic body[END_REF] with the stationary Navier-Stokes equations and where the elastic structure is assumed to be a S t Venant-Kirchhoff material involving the first nonlinear Piola-Kirchhoff stress tensor (see also [START_REF] Surulescu | On the stationary motion of a Stokes fluid in a thick elastic tube: a 3D/3D interaction problem[END_REF]). We shall consider the shape optimization for a free boundary problem originated from the fluid-structure interaction. There is the following structure of coupled fields. Given a reference domain Ω 0 for the elasticity part of the system and a vector field V defined on Γ 0 , we solve the elasticity subproblem and find the displacement field w = w(V) on Γ 0 from the following boundary value problem with nonhomogeneous Neumann boundary condition

Remark

-div Π(w) = g in Ω 0 (1.16) w = 0 on ∂ω (1.17) Π(w)n 0 = V on Γ 0 . (1.18)
In other words, we consider the Neumann-to-Dirichlet mapping associated with the elastic body. As a result, the deformation field X = X(V) is determined for the boundary of the fluid subdomain

X = I d + w. The Stokes problem for (u, p) = (u(V), p(V)) is solved in the new subdomain Ω F : -div σ(u, p) = f in Ω F (1.19) div u = 0 in Ω F (1.20) u = 0 on ∂Ω F = Γ F S ∪ Σ (1.21)
and the fixed point condition for V on Γ 0 reads

V = (σ(u(V), p(V)) • X(V)) cof (∇X(V)) n 0 on Γ 0
The existence of solutions for the free boundary problem is already shown in [START_REF] Halanay | Existence of a Steady Flow of Stokes Fluid Past a Linear Elastic Structure Using Fictitious Domain[END_REF] and in [START_REF] Grandmont | Existence for a three-dimensional steady state fluid-structure interaction problem[END_REF] for a nonlinear elastic structure. We are interested in the question of shape sensitivity analysis for the free boundary problem. The first problem to solve is the stability of the free boundary with respect to the sequence of domains Ω k 0 . Such sequence is produced by shape optimization techniques applied to a given shape functional. In such a case, Ω k 0 → Ω ∞ 0 is the minimizing sequence and we want to assure that the corresponding fixed point conditions on Γ k 0 the outer boundary of Ω k 0 :

V k = (σ(u k (V k ), p k (V k )) • X k (V k )) cof (∇X k (V k )) n 0 on Γ k 0 ,
also converges to the fixed point condition in the limiting domain Ω ∞ 0 . To our best knowledge such results are not known in the literature. Shape optimization formulation. We describe the shape optimization problem associated to (1.9)- (1.14). We aim to determine the optimal reference domain for which an energy type functional is minimum. More precisely, we want to determine a bounded domain Ω 0 ∈ U ad which minimizes (1.22) min

Ω 0 ∈U ad J(Ω 0 )
where U ad is the set of admissible domains :

U ad = {Ω 0 ⊂ R 2 , Ω 0 = D 0 \ ω where D 0 is a simply-connected,
bounded and regular domain containing ω}.

The energy functional J(Ω 0 ) is defined by

(1.23) J(Ω 0 ) = Ω F |D(u)| 2 dx + η Ω 0 |D(w)| 2 dy
with a given parameter η > 0 and where u and X = I d + w satisfy (1.9)-(1.14). In (1.23), we use the notation |D(u)| 2 = D(u) : D(u) where the double product « : » is defined by A : B = i,j A ij B ij for two matrices A and B. The energy functional J(Ω 0 ) is composed by a fluid energy term and the elastic energy of deformation weighted by the parameter η.

A one-dimensional free-boundary model

In order to appreciate the relevance of the shape optimization problem presented in the introduction, we study a simplified one-dimensional freeboundary model. This system reads as follows. Let y 0 ∈ (0, 1) be given. We are seeking for two scalar functions u and w satisfying (2.1)

-∂ xx u(x) = f (x), x ∈ (0, x * ) u(0) = u(x * ) = 0 (2.2) -∂ yy w(y) = g(y), y ∈ (y 0 , 1) w(1) = 0
The (free) boundary point x * is obtained by the deformation of the reference point y 0 with (2.3)

x * = x * (y 0 ) = y 0 + w(y 0 ).
We also impose

(2.4) ∂ x u(x * ) = ∂ y w(y 0 )
which is the 1d-analogous of (1.14). We point out that the 1d-model does not account for the "volume conservation" constraint (1.15) derived in the 2d model.

The energy functional associated to the system (2.1),(2.2) is given by (2.5)

J(y 0 ) = x * 0 |∂ x u| 2 dx + η 1 y 0 |∂ y w| 2 dy
with a parameter η > 0. The one-dimensional shape optimization problem consists in finding the reference point y 0 ∈ I 0 that minimizes (2.6) min y 0 ∈I 0 J(y 0 ).

where I 0 = {y 0 ∈ (0, 1) such that x * = x * (y 0 ) ∈ (0, 1)}.

2.1. Well-posedness. In this section, we show that for y 0 ∈ (0, 1) and for f and g small enough, the problem (2.1)-(2.4) admits a unique solution (u, w, x * ) with x * ∈ (0, 1). This will be proved by a fixed point argument using the contraction mapping theorem. Let us fix y 0 ∈ (0, 1), f ∈ L 2 (0, 1) and g ∈ L 2 (0, 1). We introduce the mapping T :

(2.7)

T (s) = y 0 + v(s, y 0 ) for s ∈ (0, 1),

where v is the solution of (2.8) (2.9)

-∂ yy v(s, y) = g(y), y ∈ (y 0 , 1) v(s, 1) = 0 ∂ y v(s, y 0 ) = ∂ x u(s)
-∂ xx u(x) = f (x), x ∈ (0, s) u(0) = u(s) = 0
For any s ∈ (0, 1), Problem (2.9) admits a unique solution u = u(s, •) ∈ H 1 0 (0, s) ∩ H 2 (0, s). The derivative ∂ x u is then continuous in [0, s] and Problem (2.8) also admits a unique solution v = v(s, •) ∈ H 2 (y 0 , 1). It is clear that x * ∈ (0, 1) is a fixed point for T i.e. x * = T (x * ) if and only if (u(x * , •), v(x * , •), x * ) is a solution of Problem (2.1)-(2.4). The following existence result holds.

Proposition 2.1. Let 0 ≤ ε < 1, y 0 ∈ (ε, 1) and f, g ∈ L ∞ (0, 1). There exists δ 0 = δ 0 (y 0 , ε) > 0 such that if f ∞ + g ∞ ≤ δ 0 then Problem (2.1)- (2.4) admits a unique solution (u, w, x * ) with u ∈ H 2 (0, x * ), w ∈ H 2 (y 0 , 1)
and x * ∈ (ε, 1) which satisfies the following relation

(2.10) x * = y 0 + 1 y 0 (1 -y)g(y) dy + (1 -y 0 ) x * x * 0 xf (x) dx.
Moreover, δ 0 can be choosen as a non-decreasing function of y 0 with

(2.11) δ 0 (y 0 , ε) = 2 min(1, y 0 -ε 1 -y 0 , 1 3(1 -y 0 ) ) > 0.
Proof. Let ε ∈ [0, 1). We prove that for sufficiently small f and g, the mapping T defined by (2.7) maps the interval (ε, 1) into itself and T is a contraction mapping on (ε, 1). This ensures the existence and the uniqueness of a fixed point x * ∈ (ε, 1) for T .

According to (2.7), if |v(s, y 0 )| < min(y 0 -ε, 1 -y 0 ) for all s ∈ (ε, 1) then T (s) ∈ (ε, 1) for all s ∈ (ε, 1). Let s ∈ (ε, 1) be fixed. We estimate v(s, y 0 ) with respect to f and g. To this end, let us write

v(s, y 0 ) = - 1 y 0 ∂ y v(s, y) dy = - 1 y 0 ∂ y v(s, y)∂ y ϕ(y) dy,
with ϕ(y) = y -1. Since ϕ(1) = 0 and ∂ y ϕ ≡ 1 in (y 0 , 1), we obtain by integrating by parts

v(s, y 0 ) = 1 y 0 ∂ yy v(s, y) (y -1)dy + ∂ y v(s, y 0 ) (y 0 -1) = - 1 y 0 g(y) (y -1)dy + ∂ y v(s, y 0 ) (y 0 -1) = - 1 y 0 g(y) (y -1)dy + ∂ x u(s) (y 0 -1), (2.12)
thanks to the boundary condition in (2.8). In addition, starting from (2.9) we have

- s 0 ∂ xx u(x) φ(x)dx = s 0 f (x) φ(x)dx, with φ(x) = x.
Integrating by parts, using φ(0) = 0 and ∂ x φ ≡ 1 in (0, s) together with the boundary conditions for u in (2.9), we get

∂ x u(s) = - 1 s s 0 xf (x) dx. (2.13)
Combining (2.12) with (2.13), we finally obtain

(2.14) v(s, y 0 ) = 1 y 0 (1 -y)g(y) dy + (1 -y 0 ) s s 0 xf (x) dx.
We are now in position to estimate v(s, y 0 ) :

|v(s, y 0 )| ≤ g ∞ 1 y 0 (1 -y) dy + (1 -y 0 ) s f ∞ s 0 x dx ≤ (1 -y 0 ) 2 2 g ∞ + s 2 (1 -y 0 ) f ∞ ≤ (1 -y 0 ) 2 ( g ∞ + f ∞ ) (2.15)
We choose f and g such that

(2.16) g ∞ + f ∞ ≤ 2 min( y 0 -ε 1 -y 0 , 1)
so that we have |v(s, y 0 )| < min(y 0 -ε, 1 -y 0 ) and thus T (s) ∈ (ε, 1). Now, we prove that T is a contraction mapping on (0, 1). According to (2.14), we have, for any s 1 , s 2 ∈ (0, 1),

s 1 = s 2 , T (s 1 ) -T (s 2 ) = v(s 1 , y 0 ) -v(s 2 , y 0 ) = (1 -y 0 ) 1 s 1 s 1 0 xf (x) dx - 1 s 2 s 2 0 xf (x) dx .
Without loss of generality we assume that s 1 > s 2 and we write

T (s 1 ) -T (s 2 ) = (1 -y 0 ) 1 s 1 - 1 s 2 s 2 0 xf (x) dx + 1 s 1 s 1 s 2 xf (x) dx .
This leads to

|T (s 1 ) -T (s 2 )| ≤ (1 -y 0 ) f ∞ 1 s 1 - 1 s 2 s 2 2 2 + 1 s 1 s 1 2 2 - s 2 2 2 ≤ (1 -y 0 ) 2 f ∞ s 2 s 1 + s 1 + s 2 s 1 |s 1 -s 2 | .
Since s 1 > s 2 , we obtain

(2.17) |T (s 1 ) -T (s 2 )| < 3 2 (1 -y 0 ) f ∞ |s 1 -s 2 |
We choose f such that

(2.18) f ∞ ≤ 2 3(1 -y 0 ) , so that |T (s 1 ) -T (s 2 )| < |s 1 -s 2 |
and thus T is a contraction mapping on (0, 1).

Let δ 0 = δ 0 (y 0 , ε) = 2 min(1, y 0 -ε 1-y 0 , 1 3(1-y 0 ) ) > 0. Combining (2.16
) with (2.18), we conclude that if g ∞ + f ∞ ≤ δ 0 then T admits a unique fixed point x * ∈ (ε, 1) which thus satisfies (2.10).

2.2.

A fixed domain formulation. In this section we transform the 1d fluid-elastic system (2.1)-(2.4) in a nonlinear problem posed in reference intervals. Let us fix two reference points x0 , ŷ0 ∈ (0, 1). For given s and t ∈ (0, 1), we introduce the one-to-one regular mappings ϕ s and φ t defined in [0, 1] such that

(2.19) ϕ s ([0, x0 ]) = [0, s] with ϕ s (0) = 0, ϕ s (x 0 ) = s φ t ([ŷ 0 , 1]) = [t, 1] with φ t (ŷ 0 ) = t, φ t (1) = 1, with (2.20) ϕ x0 ≡ I d , φ ŷ0 ≡ I d .
We suppose that ϕ s ∈ C 2 ([0, 1]) for all s ∈ (0, 1) and s → ϕ s (x) belongs to C 1 (0, 1) for all x ∈ [0, 1]. Similarly, we suppose φ t ∈ C 2 ([0, 1]) for all t ∈ (0, 1) and t → φ t (y) belongs to C 1 (0, 1) for all y ∈ [0, 1]. We have that ϕ s > 0 in [0, x0 ], for all s ∈ (0, 1) and φ t > 0 in [ŷ 0 , 1], for all t ∈ (0, 1).

Let (u, w, x * ) be the solution of (2.1)-(2.4). Then we define the following changes of variables

(2.21) û(x) = u(x), f (x) = f (x) with x = ϕ x * (x) for x ∈ [0, x0 ], ŵ(ŷ) = w(y), ĝ(ŷ) = g(y) with y = φ y 0 (ŷ) for ŷ ∈ [ŷ 0 , 1].
The functions (û, ŵ) satisfy the following nonlinear problem posed in the reference intervals [0, x0 ] and [ŷ 0 , 1]:

(2.22) -∂ x 1 ϕ x * (x) ∂ x û(x) = ϕ x * (x) f (x), x ∈ (0, x0 ) û(0) = û(x 0 ) = 0 (2.23) -∂ ŷ 1 φ y 0 (ŷ) ∂ ŷ ŵ(ŷ) = φ y 0 (ŷ) ĝ(ŷ), ŷ ∈ (ŷ 0 , 1) ŵ(1) = 0 (2.24) 1 ϕ x * (x 0 ) ∂ x û(x 0 ) = 1 φ y 0 (ŷ 0 ) ∂ ŷ ŵ(ŷ 0
). The mappings ϕ x * and φ y 0 can be chosen for instance, as the unique solutions of the two problems (2.25)

ϕ x * = 0 in (0, x0 ) ϕ x * (0) = 0, ϕ x * (x 0 ) = x * φ y 0 = 0 in (ŷ 0 , 1) φ y 0 (ŷ 0 ) = y 0 , φ y 0 (1) = 1 that is (2.26) ϕ x * (x) = x * x0 x = y 0 + ŵ(ŷ 0 ) x0 x for x ∈ [0, x0 ] φ y 0 (ŷ) = (y 0 -1) (ŷ 0 -1) (ŷ -1) + 1 for ŷ ∈ [ŷ 0 , 1]
With that choices for ϕ x * and φ y 0 , the unknows (û, ŵ) satisfy (2.27)

-∂ xx û(x) = ( y 0 + ŵ(ŷ 0 ) x0 ) 2 f (x), x ∈ (0, x0 ) û(0) = û(x 0 ) = 0 -∂ ŷ ŷ ŵ(ŷ) = ( y 0 -1 ŷ0 -1 ) 2 ĝ(ŷ), ŷ ∈ (ŷ 0 , 1) ŵ(1) = 0 ( x0 y 0 + ŵ(ŷ 0 ) )∂ x û(x 0 ) = ( ŷ0 -1 y 0 -1 )∂ ŷ ŵ(ŷ 0 ) 2.3.
Existence of an optimal interval. We shall prove that the optimal problem (2.5),(2.6) admits an optimal reference point y 0 . More precisely, we have the following result

Proposition 2.2. Let 0 < ε 1 < ε 2 < 1 and f, g ∈ L ∞ (0, 1). There exists η 0 = η 0 (ε 1 ) > 0 such that if f ∞ + g ∞ ≤ η 0 then there exists y * 0 ∈ [ε 1 , ε 2 ] that realizes min y 0 ∈[ε 1 ,ε 2 ] J(y 0 ). Proof. We fix 0 < ε 1 < ε 2 < 1. We define η 0 (ε 1 ) = δ 0 (ε 1 , ε 1 /2) > 0 where δ 0 is given by (2.11) in Proposition 2.1. We choose f, g ∈ L ∞ (0, 1) such that f ∞ + g ∞ ≤ η 0 (ε 1 ) = δ 0 (ε 1 , ε 1 /2). Since δ 0 is a non-decreasing function of y 0 , we have η 0 (ε 1 ) ≤ δ 0 (y 0 , ε 1 /2) for all y 0 ∈ [ε 1 , ε 2 ]. According to Propo- sition 2.1, Problem (2.1)-(2.4) admits a unique solution for all y 0 ∈ [ε 1 , ε 2 ], with x * ∈ [ε 1 /2, 1). Thus, J is well-defined in [ε 1 , ε 2 ]. Let (y n ) n≥1 ∈ [ε 1 , ε 2 ] be a minimizing sequence of J i.e. lim n→+∞ J(y n ) = inf y 0 ∈[ε 1 ,ε 2 ] J(y 0 ).
There exists a subsequence still denoted y n and y * 0 ∈ [ε 1 , ε 2 ] such that lim n→+∞ y n = y * 0 . We have to prove that lim n→+∞ J(y n ) = J(y * 0 ). We denote by 

(u n , w n , x * n ) ∈ H 2 (0, x * n ) × H 2 (y n , 1) × [ε 1 /2, 1) the solution of (2.28) -∂ xx u n (x) = f (x), x ∈ (0, x * n ) u n (0) = u n (x * n ) = 0 -∂ yy w n (y) = g(y), y ∈ (y n , 1) w n (1) = 0 ∂ x u n (x * n ) = ∂ y w n (y n ) x * n = y n + w n (y n ) According to
ϕ(x) = y n + ŵn (y * 0 ) y * 0 x for x ∈ [0, ŷ * 0 ] φ(ŷ) = (y n -1) (y * 0 -1) (ŷ -1) + 1 for ŷ ∈ [ŷ * 0 , 1]
The functions (û n , ŵn ) satisfy

(2.30) -∂ xx ûn (x) = ( yn+ ŵn(y * 0 ) y * 0 ) 2 f (x), x ∈ (0, y * 0 ) ûn (0) = ûn (y * 0 ) = 0 (2.31) -∂ ŷ ŷ ŵn (ŷ) = ( yn-1 y * 0 -1 ) 2 ĝ(ŷ), ŷ ∈ (y * 0 , 1) ŵn (1) = 0 ( y * 0 yn+ ŵn(y * 0 ) )∂ x ûn (y * 0 ) = ( y * 0 -1 yn-1 )∂ ŷ ŵn (y * 0 ) Since x * n = y n + w n (y n ) = y n + ŵn (y * 0 ) ∈ [ε 1 /2, 1)
, we deduce from (2.30) that ûn H 2 (0,y * 0 ) ≤ C where C > 0 is a constant independent of n. Then there exists a subsequence still denoted ûn and û0 ∈ H 2 (0, y * 0 ) such that ûn n→+∞ û0 weakly in H 2 (0, y * 0 ). From (2.31), we deduce that ŵn H 2 (y * 0 ,1) ≤ C where C > 0 is a constant independent of n. Then there exists a subsequence still denoted ŵn and ŵ0 ∈ H 2 (y * 0 , 1) such that ŵn n→+∞ ŵ0 weakly in H 2 (y * 0 , 1) and ŵ0 satisfies

(2.32) -∂ ŷ ŷ ŵ0 (ŷ) = ĝ(ŷ), ŷ ∈ (y * 0 , 1) ŵ0 (1) = 0.
Since x * n = y n + ŵn (y * 0 ) and due to the compactness of the embedding

H 2 (y * 0 , 1) → C 1 ([y * 0 , 1]), we deduce that lim n→+∞ x * n = x * 0 with (2.33) x * 0 = y * 0 + ŵ0 (y * 0 ) ∈ [ε 1 /2, 1] ⊂ (0, 1].
In addition, we obtain that û0 satisfies

(2.34) -∂ xx û0 (x) = ( y * 0 + ŵ0 (y * 0 ) y * 0 ) 2 f (x), x ∈ (0, y * 0 ) û0 (0) = û0 (y * 0 ) = 0
and due to the compactness of the embedding H 2 (0,

y * 0 ) → C 1 ([0, y * 0 ]) we have (2.35) ( y * 0 y 0 + ŵ0 (y * 0 ) )∂ x û0 (y * 0 ) = ∂ ŷ ŵ0 (y * 0 )
We transform the problem (2.34), (2.35) on the interval (0, x * 0 ) by using the change of variables û0 (x) = u 0 (x) with (see Section 2.2)

(2.36) x = x * 0 y * 0 x = y * 0 + ŵ0 (y * 0 ) y * 0 x for x ∈ [0, y * 0 ].
Thus the function u 0 satisfies (2.37)

-∂ xx u 0 (x) = f (x), x ∈ (0, x * 0 ) u 0 (0) = u 0 (x * 0 ) = 0 ∂ x u 0 (x * 0 ) = ∂ ŷ ŵ0 (y * 0 )
Moreover, using the change of variable (2.29) we have

J(y n ) = x * n 0 |∂ x u n | 2 dx + η 1 yn |∂ y w n | 2 dy = ( y * 0 y n + ŵn (y * 0 )
)

y * 0 0 |∂ x ûn | 2 dx + η( y * 0 -1 y n -1 ) 1 y * 0 |∂ ŷ ŵn | 2 dŷ
We deduce that (2.38)

lim n→+∞ J(y n ) = ( y * 0 y * 0 + ŵ0 (y * 0 )
)

y * 0 0 |∂ x û0 | 2 dx + η 1 y * 0 |∂ ŷ ŵ0 | 2 dŷ
Using the change of variable (2.36) with (2.33) in the right hand side of (2.38), we obtain

(2.39) lim n→+∞ J(y n ) = x * 0 0 |∂ x u 0 | 2 dx + η 1 y * 0 |∂ ŷ ŵ0 | 2 dŷ = J(y * 0 )
where (u 0 , ŵ0 ) satisfies (2.32),(2.37). The proof is then complete.

2.4. Shape differentiability. In this section, we prove the existence of the material derivatives associated to the solution (u, w) of the coupled problem (2.1)-(2.4). A full characterization of the material derivatives is given as the solution of an adjoint problem. For a given t ∈ (0, 1), we consider the following problem for (u t , w t , x * t ):

(2.40)

-∂ xx u t (x) = f (x), x ∈ (0, x * t ) u t (0) = u t (x * t ) = 0 -∂ yy w t (y) = g(y), y ∈ (t, 1) w t (1) = 0 ∂ x u t (x * t ) = ∂ y w t (t) x * t = t + w t (t).
Let y 0 ∈ (0, 1) and γ > 0 given. We choose t ∈ (y 0 -γ, y 0 + γ) ∩ (0, 1). We assume that the functions f , g ∈ W 1,∞ (0, 1) and

(2.41)

f L ∞ (0,1) + g L ∞ (0,1) ≤δ 0 (y 0 -γ, y 0 -2γ) = 2 min 1, γ 1 -y 0 + γ , 1 3(1 -y 0 + γ)
where δ 0 is given by (2.11). Since δ 0 (y 0 , ε) is a non-decreasing function of y 0 , choosing ε = y 0 -2γ we have δ 0 (y 0 -γ, y 0 -2γ) ≤ δ 0 (t, y 0 -2γ) for all t ∈ (y 0 -γ, y 0 + γ). Then, according to Proposition 2.1, Problem (2.40) admits a unique solution (u t , w t , x * t ) ∈ H 2 (0, x * t ) × H 2 (t, 1) × (y 0 -2γ, 1), for all t ∈ (y 0 -γ, y 0 + γ) ∩ (0, 1).

We emphasize that the solution (u, w, x * ) of (2.1)-(2.4) coincides with the solution of (2.40) with t = y 0 , i.e. (u, w, x * ) = (u y 0 , w y 0 , x * y 0 ). Moreover, since we choose f , g ∈ W 1,∞ (0, 1), the solution of (2.1)-(2.4) has the additionnal regularity

(2.42) (u, w) ∈ H 3 (0, x * ) × H 3 (y 0 , 1).
We are dealing with a fixed domain formulation by using the one-to-one regular mappings ϕ s and φ t defined on [0, 1] such that (see Section 2.2) :

(2.43)

ϕ s ([0, x * ]) = [0, s] with ϕ s (0) = 0, ϕ s (x * ) = s φ t ([y 0 , 1]) = [t, 1] with φ t (y 0 ) = t, φ t (1) = 1, with (2.44) ϕ x * ≡ I d , φ y 0 ≡ I d .
We suppose that ϕ s ∈ C 2 ([0, 1]) for all s ∈ (0, 1) and s → ϕ s (x) belongs to C 1 (0, 1) for all x ∈ [0, 1]. Similarly, we suppose φ t ∈ C 2 ([0, 1]) for all t ∈ (0, 1) and t → φ t (y) belongs to C 1 (0, 1) for all y ∈ [0, 1]. We have that ϕ s > 0 in [0, x * ], for all s ∈ (0, 1) and φ t > 0 in [y 0 , 1], for all t ∈ (0, 1).

Following [5, p.13-14], we shall say that a map F : t ∈ R → f (t) ∈ X where X is a Banach space, is weakly continous at t = t 0 if for any sequence t n → t 0 as n → ∞, we have f (t n ) f (t 0 ) weakly in X. The map F is weakly-differentiable at t = t 0 if for any sequence t n → t 0 , there exists f (t 0 ) ∈ X such that f (tn)-f (t 0 ) tn-t 0 f (t 0 ) weakly in X as n → ∞. Proposition 2.3. Let y 0 ∈ (0, 1) and γ ∈ (0, 1/4) given. We assume that f , g ∈ W 1,∞ (0, 1) satisfy (2.41). For all t ∈ (y 0 -γ, y 0 + γ) ∩ (0, 1), we consider the solution (u t , w t , x * t ) of (2.40) and let (ϕ s , φ t ) be the mappings defined by (2.43),(2.44). Then, the map F : t → (u t • ϕ x * t , w t • φ t , x * t ) ∈ H 2 (0, x * )×H 2 (y 0 , 1)×(0, 1) defined for t ∈ (y 0 -γ, y 0 +γ)∩(0, 1), is weaklycontinuous and weakly-differentiable at t = y 0 and the associated material derivative ( u, ẇ, ẋ * ) ∈ H 2 (0, x * ) × H 2 (y 0 , 1) × R is the solution of (2.45)

-∂ xx u = -ẋ * ∂ xx (∂ x u) dϕ s ds | s=x * in (0, x * ) u(0) = u(x * ) = 0 -∂ yy ẇ = -∂ yy (∂ y w) dφ t dt |t=y 0 in (y 0 , 1) ẇ(1) = 0 (2.46) ∂ x u(x * ) -ẋ * ∂ x u(x * ) d ds ϕ s (x * ) | s=x * = ∂ y ẇ(y 0 ) -∂ y w(y 0 ) d dt φ t (y 0 ) |t=y 0
Moreover, the derivative ẋ * is given by

(2.47) ẋ * = 1 -d * -(1 -y 0 )g(y 0 ) 1 + (1 -y 0 )(d * /x * -f (x * )) with d * = 1 x * x * 0 xf (x) dx.
Proof. We first prove that the map F : t → (u t (ϕ x * t ), w t (φ t ), x * t ) is weaklycontinuous at t = y 0 . More precisely, we shall prove that x * t → x * and u t (ϕ x * t ) u weakly in H 2 (0, x * ), w t (φ t ) w weakly in H 2 (y 0 , 1) as t → y 0 .

According to (2.10), for all t ∈ (y 0 -γ, y 0 + γ) ∩ (0, 1), x * t satisfies (2.48)

x * t = t + 1 t (1 -y)g(y) dy + (1 -t) x * t x * t 0 xf (x) dx.
Since x * t ∈ (0, 1), there exists a subsequence t n → y 0 such that x * tn → x ∈ [0, 1] which satisfies (2.49) x = y 0 +

1 y 0 (1 -y)g(y) dy + (1 -y 0 ) x x 0 xf (x) dx.
Since x * is the unique point satisfying (2.49) (see (2.10)), we have x = x * . We can also prove that the whole sequence x * t is converging with t → y 0 . Thus, we have (2.50)

x * t → x * as t → y 0 . Now, we turn to the convergence of u t and w t . Using the changes of variables û = u t (ϕ x * t ) and ŵ = w t (φ t ) (see (2.21)) with x = ϕ x * t (x) and y = φ t (ŷ), the system (2.40) becomes (see (2.22), (2.23) and (2.24)):

(2.51) -∂ x 1 ϕ x * t ∂ x û = ϕ x * t f (ϕ x * t ) in (0, x * ) û(0) = û(x * ) = 0 (2.52) -∂ y 1 φ t ∂ y ŵ = φ t g(φ t ) in (y 0 , 1) ŵ(1) = 1 (2.53) 1 ϕ x * t (x * ) ∂ x û(x * ) = 1 φ t (y 0 ) ∂ y ŵ(y 0 )
We introduce

(2.54) c 1,t = û -u = u t (ϕ x * t ) -u ∈ H 2 (0,
x * ) and substracting (2.51) with (2.40) at t = y 0 for u, we get (2.55)

-∂ x 1 ϕ x * t ∂ x c 1,t -∂ x 1 ϕ x * t -1 ∂ x u = ϕ x * t f (ϕ x * t ) -f in (0, x * ) c 1,t (0) = c 1,t (x * ) = 0
Due to (2.50) and the fact that ϕ s L ∞ (0,x * ) → 1 as s → x * , we have

(2.56) 1 ϕ x * t -1 L ∞ (0,x * ) ---→ t→y 0 0, ϕ x * t f (ϕ x * t ) -f L ∞ (0,x * ) ---→ t→y 0 0.
As a result, we deduce from (2.55) that for |t -y 0 | small enough,

c 1,t H 2 (0,x * ) ≤ C
where C > 0 does not depend on t. Thus, there exists a subsequence t n → y 0 and c 1 ∈ H 2 (0, x * ) such that c 1,tn c 1 weakly in H 2 and c 1 satisfies

-∂ xx c 1 = 0 in (0, x * ) c 1 (0) = c 1 (x * ) = 0
Thus, we have c 1 ≡ 0 in (0, x * ) and in addition we can prove that the whole sequence c 1,t is converging to 0. Thus, (2.57)

u t (ϕ x * t ) u weakly in H 2 (0, x * ) as t → y 0 .
Moreover, from the compactness of the embedding of

H 2 (0, x * ) into C 1 ([0, x * ]), we deduce that (2.58) ∂ x c 1,t (x * ) → 0 as t → y 0 , that is (2.59) ∂ x u t (ϕ x * t )(x * ) → ∂ x u(x * ) as t → y 0 . Now, we introduce (2.60) c 2,t = ŵ -w = w t (φ t ) -w ∈ H 2 (y 0 , 1).
Substracting (2.52) and (2.53) with (2.40) at t = y 0 for w, we get (2.61) -∂ y

1 φ t ∂ y c 2,t -∂ y 1 φ t -1 ∂ y w = (φ t g(φ t ) -g) in (y 0 , 1) c 2,t (1) = 0 1 ϕ x * t (x * ) ∂ x c 1,t (x * ) + ( 1 ϕ x * t (x * ) -1)∂ x u(x * ) = 1 φ t (y 0 ) ∂ y c 2,t (y 0 ) + ( 1 φ t (y 0 ) -1)∂ y w(y 0 )
We deduce that for all v ∈ H 1 (y 0 , 1) with v(1) = 0, we have (2.62)

1 y 0 1 φ t (y) ∂ y c 2,t (y)∂ y v(y) dy+ 1 ϕ x * t (x * ) ∂ x c 1,t (x * ) + ( 1 ϕ x * t (x * ) -1)∂ x u(x * ) v(y 0 ) = 1 y 0 1 φ t (y) -1 ∂ y w(y)∂ y v(y) dy + 1 y 0 φ t (y)g(φ t (y)) -g(y) v(y) dy,
We recall that φ t > 0 in [y 0 , 1] and φ t L ∞ (y 0 ,1) → 1 as t → y 0 . Then, (2.63)

1 φ t -1 L ∞ (y 0 ,1) ---→ t→y 0 0, φ t g(φ t ) -g L ∞ (0,x * ) ---→ t→y 0 0.
We take v = c 2,t in (2.62). Using (2.58) and the trace inequality |v(y 0 )| ≤ C ∂ y v L 2 (y 0 ,1) for all v ∈ H 1 (y 0 , 1) with v(1) = 0, where C is independent of v, we obtain that for |t -y 0 | small enough,

c 2,t H 1 (y 0 ,1) ≤ C
where C > 0 does not depend on t. Going back to the strong form (2.61), we get a uniform bound for ∂ xx c 2,t L 2 (y 0 ,1) with respect to t and thus for |t -y 0 | small enough, we have

(2.64) c 2,t H 2 (y 0 ,1) ≤ C
where C > 0 does not depend on t. Thus, there exists a subsequence t n → y 0 and c 2 ∈ H 2 (y 0 , 1) such that c 2,tn c 2 weakly in H 2 and c 2 satisfies

(2.65) -∂ yy c 2 = 0 in (y 0 , 1) c 2 (1) = 0
We can prove that the whole sequence c 2,t is converging. We have c 2,t (y 0 ) → c 2 (y 0 ) as t → y 0 . Furthermore, since c 2,t (y 0 ) = w(y 0 ) -w t (φ t (y 0 )) = -y 0 + x * + t -x * t , we deduce that c 2,t (y 0 ) → 0 as t → y 0 thanks to (2.50). Hence, we obtain that c 2 (y 0 ) = 0 and using (2.65) we conclude that c 2 ≡ 0 in (y 0 , 1). We have proved that (2.66) w t (φ t ) w weakly in H 2 (y 0 , 1) as t → y 0 .

The properties (2.50),(2.57),(2.66) show that the map

F : t → (u t • ϕ x * t , w t • φ t , x * t ) is weakly-continuous at t = y 0 .
Now, let us prove the weak-differentiability of F at t = y 0 . We first prove that the map t → x * t is differentiable at t = y 0 . Let us introduce (2.67)

τ t = x * t -x * h with h = t -y 0 .
Starting from (2.10) and (2.48), we obtain that τ t satisfies the relation

(2.68) 1 - (1 -t) x * t S t -d * τ t = 1 + R t -d * with d * = 1 x * x * 0 xf (x) dx R t = 1 t -y 0 y 0 t (1 -y)g(y) dy S t = 1 x * t -x * x * t x * xf (x) dx
We clearly have

|S t | x * t ≤ f ∞ and |d * | x * t ≤ x * 2x * t f ∞ and then (1 -t) x * t S t -d * ) ≤ (1 -y 0 + γ) 1 + x * 2x * t f ∞
for all t ∈ (y 0 -γ, y 0 + γ). Since x * t → x * as t → y 0 , we deduce that for |t -y 0 | small enough, we have

(1 -t) x * t S t -d * ) ≤ 2(1 -y 0 + γ) f ∞ .
The assumption (2.41) ensures that f ∞ ≤ 2γ 1 -y 0 + γ and then we obtain

(1 -t) x * t S t -d * ) ≤ 4γ
and therefore, for |t -y 0 | small enough,

(2.69) 1 - (1 -t) x * t S t -d * ≥ 1 -4γ > 0.
Hence τ t is well defined by (2.68) for |t -y 0 | small enough. Moreover, when t → y 0 , we have

(2.70) R t → -(1 -y 0 )g(y 0 ) S t → x * f (x * )
Thus, there exists ẋ * ∈ R such that (2.71) τ t → ẋ * as t → y 0 and we deduce from (2.68) and (2.70) that ẋ * satisfies

(2.72) ẋ * = 1 -d * -(1 -y 0 )g(y 0 ) 1 + (1 -y 0 )(d * /x * -f (x * ))
Now, we turn to the differentiability of û and ŵ. We define (2.73)

d 1,t = û -u h = u t (ϕ x * t ) -u h , d 2,t = ŵ -w h = w t (φ t ) -w h , with h = t -y 0 . The function d 1,t ∈ H 2 (0, x * ) satisfies (2.74) -∂ x 1 ϕ x * t ∂ x d 1,t -∂ x 1 h 1 ϕ x * t -1 ∂ x u = 1 h ϕ x * t f (ϕ x * t ) -f in (0, x * ) d 1,t (0) = d 1,t (x * ) = 0
From (2.50), (2.71), we deduce that (2.75)

1 h 1 ϕ x * t -1 + ẋ * dϕ s ds | s=x * L ∞ (0,x * ) -→ 0 as t → y 0 (2.76) 1 h ϕ x * t f (ϕ x * t ) -f -ẋ * d ds ϕ s f (ϕ s ) | s=x * L ∞ (0,x * ) -→ 0 as t → y 0
As a result, we deduce from (2.74) that for |t -y 0 | small enough,

d 1,t H 2 (0,x * ) ≤ C
where C > 0 does not depend on t. Thus, there exists a subsequence t n → y 0 and u ∈ H 2 (0, x * ) such that d 1,tn u weakly in H 2 and u satisfies (2.77)

-∂ xx u + ẋ * ∂ x dϕ s ds | s=x * ∂ x u = ẋ * d ds (ϕ s f (ϕ s )) | s=x * in (0, x * ) u(0) = u(x * ) = 0
Using the fact that u ∈ H 3 (0, x * ) and -∂ xxx u = ∂ x f in (0, x * ), we obtain by straightforward calculations that

∂ x dϕ s ds | s=x * ∂ x u - d ds ϕ s f (ϕ s ) | s=x * = ∂ xx (∂ x u) dϕ s ds | s=x * in (0, x * ) Then (2.77) becomes (2.78) -∂ xx u = -ẋ * ∂ xx (∂ x u) dϕ s ds | s=x * in (0, x * ) u(0) = u(x * ) = 0
In addition it can be proved that the whole sequence d 1,t is converging to u * .

The function d 2,t ∈ H 2 (y 0 , 1) satisfies (2.79) -∂ y 

1 φ t ∂ y d 2,t -∂ y 1 h 1 φ t -1 ∂ y w = 1 h (φ t g(φ t ) -g) in (y 0 , 1) d 2,t (1) = 0 (2.80) 1 ϕ x * t (x * ) ∂ x d 1,t (x * ) + 1 h ( 1 ϕ x * t (x * ) -1)∂ x u(x * ) = 1 φ t (y 0 ) ∂ y d 2,t (y 0 ) + 1 h ( 1 φ t (y 0 ) - 1 
(x * ) | s=x * ∂ x u(x * ) = ∂ y ẇ(y 0 ) - d dt φ t (y 0 ) |t=y 0 ∂ y w(y 0 )
The proof of Proposition 2.3 is then complete.

Remark 2.4. Due to the compactness of the embedding of

H 2 (0, x * ) × H 2 (y 0 , 1) into C 1 ([0, x * ]) × C 1 ([y 0 , 1]), Proposition 2.3 ensures that the map t → (u t • ϕ x * t , w t • φ t ) ∈ C 1 ([0, x * ]) × C 1 ([y 0 , 1]
) is (strongly) differentiable at t = y 0 . Now, we are in position to compute the shape derivative of the solution of (2.1)- (2.4). We first extend the solution (u t , w t ) of (2.40) to the whole real line : u t ∈ H 1 0 (0, x * ) is extended by 0 outside the interval (0, x * ), so that we consider u t ∈ H 1 (R). In the same way, w t ∈ H 1 (y 0 , 1) is extended to 0 outside (y 0 , 1) so that we consider w t ∈ L 2 (R).

Proposition 2.5. Under the hypothesis of Proposition 2.3, the map t → (u t , w t ) ∈ L 2 (R) × L 2 (R) is differentiable at t = y 0 . The shape derivatives (u , w ) ∈ H 2 (0, x * ) × H 2 (y 0 , 1) are given by (2.86)

u = u -ẋ * (∂ x u) dϕ s ds | s=x * in (0, x * ) w = ẇ -(∂ y w) dφ t dt |t=y 0 in (y 0 , 1)
and satisfy

(2.87)

∂ xx u = 0 in (0, x * ) u (0) = 0 (2.88) u (x * ) = -ẋ * ∂ x u(x * ) (2.89) ∂ yy w = 0 in (y 0 , 1) w (1) = 0 w (y 0 ) = ẋ * -1 -∂ y w(y 0 ) (2.90) ∂ y w (y 0 ) -g(y 0 ) = ∂ x u (x * ) -ẋ * f (x * ) (2.91)
Proof. The proof is a direct consequence of the derivability of û and ŵ stated in Proposition (2.3) (see also [START_REF] Sokołowski | Introduction to shape optimization: shape sensitivity analysis[END_REF]Proposition 2.32] and [START_REF] Henrot | Variation et optimisation de formes: Une analyse géométrique[END_REF]Lemme 5.3.3]. We start from the relations (2.92)

u t = (u t • ϕ x * t ) • ϕ -1 x * t = û • ϕ -1 x * t w t = (w t • φ t ) • φ -1 t = ŵ • φ -1 t .
The derivability of u t and w t with respect to t at t = y 0 is a direct consequence of the derivability of t → (û, ŵ, x * t ) established in Proposition 2.3. We denote by (u , w ) the derivative of t → (u t , w t ) at t = y 0 . Differentiating (2.92) with t, we obtain at t = y 0 :

u = u -ẋ * (∂ x u) dϕ s ds | s=x * ∈ H 1 (0, x * ) w = ẇ -(∂ y w) dφ t dt |t=y 0 ∈ H 1 (y 0 , 1)
According to Proposition 2. We define the energy functional J associated to the solution (u t , w t , x * t ) of (2.40) by (2.93)

J(t) = x * t 0 |∂ x u t | 2 dx + η 1 t |∂ y w t | 2 dy.
From Proposition 2.5, we deduce the following differentiability result for the function J.

Proposition 2.6. Under the hypothesis of Proposition 2.3, the functional t → J(t) is differentiable at t = y 0 and its derivative at t = y 0 is given by

(2.94) J (y 0 ) = ∂ y w(y 0 ) 2 (1 + ∂ y w(y 0 ) -η) + ∂ y w (y 0 ) (y 0 -1) ∂ y w(y 0 ) 2 -2ηw(y 0 ) with (2.95) ∂ y w (y 0 ) = x * g(y 0 ) -1 + ∂ y w(y 0 ) ∂ y w(y 0 ) + x * f (x * ) (x * + y 0 -1) . 
Proof. From (2.1) and (2.2), we deduce that Moreover, using the regularity of u and u with (2.88), we get

J(t) = x * t 0 f u t dx + η
x * 0 f u dx = - x * 0 (∂ xx u)u dx = x * 0 ∂ x u ∂ x u dx -u (x * )∂ x u(x * ) = x * 0 ∂ x u ∂ x u dx + ẋ * ∂ x u(x * ) 2 = - x * 0 u ∂ xx u =0 dx + u =0 ∂ x u x * 0 + ẋ * ∂ x u(x * ) 2
Then, we have (2.100)

x * 0 f u dx = ẋ * ∂ x u(x * ) 2 .
Similarly, we obtain Combining (2.91) with (2.104),(2.105),(2.88) and(2.90), we obtain the desired formula (2.95) for ∂ y w (y 0 ).

An explicit one-dimensional optimal solution

In this section, we study in details the particular case where the functions f and g are two constants. These constants have to be chosen small enough for ensuring the well-posedness of (2.1)-(2.4) (see Proposition 2.1). We choose f ≡ 1 and g ≡ α ∈ R a constant. The solution of Problem (2.1)-(2.4) is then given by u(x) = - The constant α must be chosen small enough. In order to make certain that x * lies in the interval (0, 1), we shall see that we have to restrict the where x * and c 0 are given by (3.3) and (3.4). This formula provides a fully explicit expression of the functional J with y 0 . The derivative J (y 0 ) of the functional with respect to y 0 can be computed exactly as well as the optimal value y * 0 that minimizes J. It can be checked that this direct calculation coincides with the general formula (2.94),(2.95) given in Proposition 2.6. In the sequel, we do not give this expression for J (y 0 ), we only consider a numerical example of an optimal solution. Numerical example. We choose α = 0.4 and η = 0.442. The energy functional J(y 0 ) is depicted on Figure 5. The minimum of J(y 0 ) is reached at y * 0 0.6868. The corresponding optimal point x * is equal to x * 0.8376. The optimal solutions u and w are drawn on Figure 6. We point out that the functional J has a nontrivial behaviour with respect to y 0 , in particular J is a nonconvex function of y 0 . This indicates the difficulty and the pertinence of the two-dimensional shape optimization problem (1.22),(1.23) introduced at the beginning of this paper.

Conclusion

We introduced a shape optimization problem for a fluid-structure interaction system coupling the Stokes equations with the linear elasticity equation. We have shown that a shape optimization problem for a simplified model in one spatial dimension is well-posed and we are able to fully characterize the shape derivatives associated to this one-dimensional free-boundary problem. All the (variational) technical tools we have employed for the study of the one-dimensional free-boundary problem have been made in the spirit to tackle and solve the two-dimensional shape optimization problem presented in the introduction of this paper. We aim to extend our 1d technics to the two dimensional problem for getting a rigorous statement of the 2d shape derivatives.
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 2 Figure 2. The elastic structure Ω S is a deformation of a reference domain Ω 0

.

  Due to the incompressibility property of the fluid, the volume of the elastic structure is conserved during the deformation. Hence, we must have |Ω S | = |Ω 0 | and the elastic displacement w satisfies (1.15) Ω 0 det(∇X) dy = |Ω 0 |.

Figure 3 .

 3 Figure3. The bound δ 0 (y 0 , 0) on f and g for the wellposedness of (2.1)-(2.4) for y 0 ∈ (0, 1).

  Section 2.2, we transform the system (2.28) on a fixed domain independent of n by setting ûn (x) = u n (x) with x = ϕ(x) for x ∈ [0, ŷ * 0 ] and ŵn (ŷ) = w n (y) with y = φ(ŷ) for ŷ ∈ [ŷ * 0 , 1]. The functions ϕ and φ (see (2.26)) are given by(2.29) 

|t=y 0 = 0 f u dx + η 1 y 0 2 -

 00102 w (y 0 ) + ∂ y w(y 0 ) ∂ y w(y 0 ) +w(y 0 ) ∂ y w (y 0 ) + ∂ yy w(y 0 ) = w (y 0 )∂ y w(y 0 ) + w(y 0 )∂ y w (y 0 ) + (∂ y w(y 0 )) 2 -w(y 0 )g(y 0 ) (2.98)Combining (2.97) and (2.98), we obtain (2.99) J (y 0 ) =x * gw dy -η ∂ y w(y 0 ) η w (y 0 )∂ y w(y 0 ) + w(y 0 )∂ y w (y 0 ) .

∂dy + w∂ y w 1 y 0 1 y 0 ∂ 1 y 0 ∂y 0 = 0 ∂

 10101000 y w ∂ y w dy + w (y 0 )∂ y w(y 0 ) + w (y 0 )∂ y w(y 0 ) dy = -w(y 0 )∂ y w (y 0 ) + w (y 0 )∂ y w(y 0 ). Relations (2.100), (2.101) with (2.4) in (2.99) lead to (2.102)J (y 0 ) = ( ẋ * -η) ∂ y w(y 0 ) 2 -2ηw(y 0 )∂ y w (y 0 )From (2.90), we have ẋ * = 1 + w (y 0 ) + ∂ y w(y 0 ) and then we can express the derivative J (y 0 ) as follows(2.103) J (y 0 ) = 1 + w (y 0 ) + ∂ y w(y 0 ) -η ∂ y w(y 0 ) 2 -2ηw(y 0 )∂ y w (y 0 ) Now,we derive a relation between w (y 0 ) and ∂ y w (y 0 ). For y ∈ [y 0 , 1], we introduce the function ψ(y) = y -1 which satisfies ∂ y ψ ≡ 1 in [y 0 , 1] and ψ(1) = 0. Then, we write w (y 0 ) =y w (y)∂ y ψ(y) dy = yy w (y) =0 ∂ y ψ(y) dy -∂ y w (y)ψ(y) 1 ∂ y w (y 0 )ψ(y 0 ) and thus we get (2.104) w (y 0 ) = (y 0 -1)∂ y w (y 0 ).Combining (2.103) with (2.104), we obtain the desired formula (2.94).Finally, we turn to the expression of ∂ y w (y 0 ) with respect to ∂ y w(y 0 ). For x ∈ [0, 1], we introduce the function ψ(x) = x which satisfies ∂ x ψ ≡ 1 in [0, 1] and ψ(0) = 0. Then, we writeu (x * ) = x * 0 ∂ x u (x)∂ x ψ(x) dx = -x * xx u (x) =0 ∂ x ψ(x) dx + ∂ x u (x)ψ(x)x * 0 = ∂ x u (x * )ψ(x * ) and thus we have (2.105) u (x * ) = x * ∂ x u (x * ).

1 2 x 1 -

 21 (x -x * ), x ∈ (0, x * ) (3.1) w(y) = c 0 -α 2 (y -1) (y -1), y ∈ (y 0 , y 0 )(3 + y 0 ) + 2y 0 2(1 + y 0 ) (3.4) x * = 2 (α(y 0 -1) -c 0 ) = α(1 -y 0 ) 2 + 2y 0 1 + y 0 .
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 5 Figure 5. The energy functional y 0 → J(y 0 )

Figure 6 .

 6 Figure 6. The optimal solutions u and w.

  )∂ y w(y 0 )Proceeding as for the proof of the continuity of c 2,t (see (2.61)-(2.64)), we deduce from (2.79) that there exists ẇ ∈ H 2 (y 0 , 1) such that d 2,t ẇ weakly in H 2 as t → y 0 and ẇ satisfies Using the fact that w ∈ H 3 (y 0 , 1) and -∂ yyy w = ∂ y g in (y 0 , 1), we obtain by straightforward calculations that

	Moreover, we have that
	(2.81)		1 h	1 φ t	-1 +	dφ t dt |t=y 0 L ∞ (y 0 ,1)	-→ 0 as t → y 0
	(2.82)	1 h	φ t g(φ t ) -g -	d dt	φ t g(φ t ) |t=y 0 L ∞ (y 0 ,1)	-→ 0 as t → y 0
	(2.83)	-∂ yy ẇ + ∂ y		dφ t dt |t=y 0	∂ y w	=	d dt	(φ t g(φ t )) |t=y 0	in (y 0 , 1)
									ẇ(1) = 0
	∂ y	dφ t dt |t=y 0	∂ y w -	d dt	φ t g(φ t ) |t=y 0	= ∂ yy (∂ y w)	dφ t dt |t=y 0	in (y 0 , 1)
	Then (2.83) becomes			
	(2.84)		-∂ yy ẇ = -∂ yy (∂ y w)	dφ t dt |t=y 0	in (y 0 , 1)
				ẇ(1) = 0
	Finally, (2.80) leads to	
	(2.85) ∂ x u(x * ) -ẋ * d ds	ϕ s

  3, we have that (u , w ) ∈ H 2 (0, x * ) × H 2 (y 0 , 1)

	and from (2.45),we deduce that (2.87), (2.88), (2.89) hold. Relation (2.46)
	yields (2.91). Finally, differentiating the relation x * t = t + w t (t) in (2.40)
	leads to (2.90).

  According to the differentiability result established in Proposition 2.5 (see also Remark 2.4), we deduce that J is differentiable at t = y 0 and differentiating (2.96) at t = y 0 leads to (2.97) J (y 0 ) =

	(2.96)								
			0	x *	f u dx + ẋ * [f u] x * =0 0	+η	1 y 0	gw dy -ηg(y 0 )w(y 0 )
											-η	d dt	w t (t)∂ y w t (t)	|t=y 0	.
	Moreover, we have							
	d dt	w t (t)∂ y w t (t)	|t=y 0	=	d dt	w t (t)	|t=y 0	∂ y w(y 0 ) + w(y 0 )	d dt	∂ y w t (t)

1 t gw t dy -ηw t (t)∂ y w t (t).

values of α and y 0 . Indeed, we have that

Then, we introduce the admissible domain D where the parameters (y 0 , α) are allowed to lie for ensuring x * ∈ (0, 1):

The admissible domain D is drawn in Figure 4.

We recall that the energy functional J is given by

with a parameter η > 0. Let α ∈ R be fixed. The shape optimization problem consists in finding the reference point y 0 that minimizes