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SHAPE OPTIMIZATION FOR A FLUID-ELASTICITY
SYSTEM

JEAN-FRANÇOIS SCHEID AND JAN SOKOLOWSKI

Abstract. In this paper, we are interested in a shape optimization
problem for a fluid-structure interaction system composed by an elastic
structure immersed in a viscous incompressible fluid. The cost func-
tional to minimize is an energy functional involving together the fluid
and the elastic parts of the structure. The shape optimization problem is
introduced in the 2-dimensional case. However the results in this paper
are obtained for a simplified free-boundary 1-dimensional problem. We
prove that the shape optimization problem is wellposed. We study the
shape differentiability of the free-boundary 1-dimensional model. The
full characterization of the associated material derivatives is given to-
gether with the shape derivative of the energy functional. A special case
is explicitly solved, showing the relevancy of this shape optimization ap-
proach for a simplified free boundary 1-dimensional problem. The full
model in two spatial dimensions is under studies now.

1. Introduction

Free boundary problems are classical models e.g., for phase transitions
or contact problems in structural mechanics. The optimal control or shape
optimization of free boundary problems are challenging fields of research in
the calculus of variations and in the theory of nonlinear partial differential
equations. The obtained results can be verified by using numerical meth-
ods specific for the models. The questions to be adressed within the shape
optimization framework are the existence and uniqueness of optimal shapes
as well as the necessary and sufficient optimality conditions. The velocity
method of shape sensitivity analysis can be applied to shape optimization
problems. The existence of topological derivatives for the energy type shape
functionals in multiphysics can be considered.

An important class of free boundary problems [2] are variational inequal-
ities [3]. The optimal control [1] and the shape optimization [10] of vari-
ational inequalities are well understood for unilateral constraints. In such
a case the polyhedricity property of the solution with respect to the shape
can be exploited. The concurrent approach is the penalization technique as
it is described e.g., in [1]. The multiphysics models are new and important
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branch of applied shape optimization. In this paper a simple model of this
type is rigorously analyzed from the point of view of sensitivity analysis.
We present an approach of shape optimization to fluid structure interaction
which can be generalized to more complex structures.

We consider an elastic structure immersed in a viscous incompressible
fluid. Let ω ⊂⊂ Ω′S ⊂⊂ Ω ⊂ R2 be three bounded domains where Ω′S
and Ω are simply-connected domains. The deformed elastic body occupies
the domain ΩS = Ω′S \ ω ⊂ R2 and the elastic structure is attached to
the inner fixed boundary ∂ω. The fluid fills up a bounded domain ΩF =
Ω \ Ω′S = Ω \ (ΩS ∪ ω) surrounding the elastic body ΩS . We denote by

ΩS

ΩF

ΓFS

ω

n

Σ

Figure 1. The geometry of the fluid-elasticity system

ΓFS = ∂ΩF ∩ ∂ΩS the boundary between the fluid and the elastic structure
and we have ∂ΩF = ΓFS ∪ Σ where Σ = ∂Ω. The boundary Σ corresponds
also to the outer boundary of the fluid domain ΩF (see Figure 1).

The fluid flow is governed by the Stokes equations for the velocity u and
the pressure p of the fluid:

−divσ(u, p) = f in ΩF(1.1)
divu = 0 in ΩF(1.2)

where σ(u, p) = 2νD(u)− pId is the Cauchy stress tensor with the symetric
strain tensor D(u) = 1

2

(
∇u +∇u>

)
. The fluid is subjected to a given force

f and ν is the viscosity of the fluid. At the boundary of the fluid domain,
we impose

(1.3) u = 0 on ∂ΩF = ΓFS ∪ Σ.

The elastic structure ΩS is a deformation of a given reference bounded
domain Ω0 ⊂ R2 by a mapping X i.e. ΩS = X(Ω0) (see Figure 2).
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ΩS

ω

Ω0

Figure 2. The elastic structure ΩS is a deformation of a
reference domain Ω0

The deformation mapping is given by X = Id + w where w is the elastic
displacement of the structure which satisfies the linearized elasticity equation

(1.4) −divΠ(w) = g in Ω0

where Π is the second Piola-Kirchhoff stress tensor of the elastic structure
given by

(1.5) Π(w) = λtr(D(w))Id + 2µD(w)

with the Lamé coefficients λ > 0, µ > 0. The elastic body is subjected to
a given external force g. Since the elastic structure is clamped to the inner
boundary ∂ω, we have X(∂ω) = ∂ω and

(1.6) w = 0 on ∂ω.

We also denote by Γ0 the outer boundary of Ω0 and we have ΓFS = X(Γ0).

According to the action-reaction principle, we have∫
Γ0

Π(w)n0 · v ◦X dΓ =

∫
ΓFS

σ(u, p)n · v dΓ

for all function v defined on ΩF . We denote by n0 the normal unit vector
directed outwards to the domain Ω0 and n is the unit normal vector to ΓFS
directed from ΩS to ΩF . This leads to the local relation

(1.7) Π(w)n0 = (σ(u, p) ◦X) cof (∇X)n0 on Γ0,

where cof (∇X) denotes the cofactor matrix of the jacobian matrix (for an
invertible matrix A, we have A−1 = 1

det(A)cof(A)>). The relation (1.7) can
also be written on the boundary ΓFS with

(1.8) σ(u, p)n =
(
Π(w) ◦X−1

)
cof
(
∇X−1

)
n on ΓFS .
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In summary, the fluid-elasticity system for (u, p,w) reads as

−divσ(u, p) = f in ΩF(1.9)
divu = 0 in ΩF(1.10)

u = 0 on ∂ΩF = ΓFS ∪ Σ(1.11)
−divΠ(w) = g in Ω0(1.12)

w = 0 on ∂ω(1.13)
Π(w)n0 = (σ(u, p) ◦X) cof (∇X)n0 on Γ0.(1.14)

In [7], the authors prove the existence of a solution to (1.9)–(1.14) using
a fictitious domain approach and a fixed point procedure involving conver-
gence of domains. This article contains in particular some interesting ideas
that should be helpful for the shape optimization study associated to (1.9)–
(1.14). We also mention the results in [6] where the existence of a solution to
a coupled fluid-elasticity system for Stokes equation with a nonlinear elastic
structure is established. A similar system to (1.9)–(1.14) has also been stud-
ied in [4] with the stationary Navier-Stokes equations and where the elastic
structure is assumed to be a StVenant–Kirchhoff material involving the first
nonlinear Piola–Kirchhoff stress tensor (see also [11]).

Remark. Due to the incompressibility property of the fluid, the volume of
the elastic structure is conserved during the deformation. Hence, we must
have |ΩS | = |Ω0| and the elastic displacement w satisfies

(1.15)
∫

Ω0

det(∇X) dy = |Ω0|.

We shall consider the shape optimization for a free boundary problem
originated from the fluid-structure interaction. There is the following struc-
ture of coupled fields. Given a reference domain Ω0 for the elasticity part
of the system and a vector field V defined on Γ0, we solve the elasticity
subproblem and find the displacement field w = w(V) on Γ0 from the fol-
lowing boundary value problem with nonhomogeneous Neumann boundary
condition

−divΠ(w) = g in Ω0(1.16)
w = 0 on ∂ω(1.17)

Π(w)n0 = V on Γ0.(1.18)

In other words, we consider the Neumann-to-Dirichlet mapping associated
with the elastic body. As a result, the deformation field X = X(V) is
determined for the boundary of the fluid subdomain

X = Id + w.
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The Stokes problem for (u, p) = (u(V), p(V)) is solved in the new subdomain
ΩF :

−divσ(u, p) = f in ΩF(1.19)
divu = 0 in ΩF(1.20)

u = 0 on ∂ΩF = ΓFS ∪ Σ(1.21)

and the fixed point condition for V on Γ0 reads

V = (σ(u(V), p(V)) ◦X(V)) cof (∇X(V))n0 on Γ0

The existence of solutions for the free boundary problem is already shown
in [7] and in [6] for a nonlinear elastic structure. We are interested in the
question of shape sensitivity analysis for the free boundary problem. The
first problem to solve is the stability of the free boundary with respect to the
sequence of domains Ωk

0. Such sequence is produced by shape optimization
techniques applied to a given shape functional. In such a case, Ωk

0 → Ω∞0 is
the minimizing sequence and we want to assure that the corresponding fixed
point conditions on Γk0 the outer boundary of Ωk

0:

Vk = (σ(uk(Vk), pk(Vk)) ◦Xk(Vk)) cof (∇Xk(Vk))n0 on Γk0,

also converges to the fixed point condition in the limiting domain Ω∞0 . To
our best knowledge such results are not known in the literature.

Shape optimization formulation. We describe the shape optimization
problem associated to (1.9)–(1.14). We aim to determine the optimal refer-
ence domain for which an energy type functional is minimum. More precisely,
we want to determine a bounded domain Ω?

0 ∈ Uad which minimizes

(1.22) min
Ω0∈Uad

J(Ω0)

where Uad is the set of admissible domains :

Uad = {Ω0 ⊂ R2, Ω0 = D0 \ ω where D0 is a simply-connected,
bounded and regular domain containing ω}.

The energy functional J(Ω0) is defined by

(1.23) J(Ω0) =

∫
ΩF

|D(u)|2 dx + η

∫
Ω0

|D(w)|2 dy

with a given parameter η > 0 and where u and X = Id + w satisfy (1.9)–
(1.14). In (1.23), we use the notation |D(u)|2 = D(u) : D(u) where the
double product « : » is defined by A : B =

∑
i,j AijBij for two matrices A

and B. The energy functional J(Ω0) is composed by a fluid energy term and
the elastic energy of deformation weighted by the parameter η.
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2. A one-dimensional free-boundary model

In order to appreciate the relevance of the shape optimization problem
presented in the introduction, we study a simplified one-dimensional free-
boundary model. This system reads as follows. Let y0 ∈ (0, 1) be given. We
are seeking for two scalar functions u and w satisfying

(2.1) −∂xxu(x) = f(x), x ∈ (0, x∗)
u(0) = u(x∗) = 0

(2.2) −∂yyw(y) = g(y), y ∈ (y0, 1)
w(1) = 0

The (free) boundary point x∗ is obtained by the deformation of the reference
point y0 with

(2.3) x∗ = x∗(y0) = y0 + w(y0).

We also impose

(2.4) ∂xu(x∗) = ∂yw(y0)

which is the 1d-analogous of (1.14). We point out that the 1d-model does
not account for the "volume conservation" constraint (1.15) derived in the
2d model.

The energy functional associated to the system (2.1),(2.2) is given by

(2.5) J(y0) =

∫ x∗

0
|∂xu|2 dx+ η

∫ 1

y0

|∂yw|2 dy

with a parameter η > 0. The one-dimensional shape optimization problem
consists in finding the reference point y0 ∈ I0 that minimizes

(2.6) min
y0∈I0

J(y0).

where I0 = {y0 ∈ (0, 1) such that x∗ = x∗(y0) ∈ (0, 1)}.

2.1. Well-posedness. In this section, we show that for y0 ∈ (0, 1) and for
f and g small enough, the problem (2.1)–(2.4) admits a unique solution
(u,w, x∗) with x∗ ∈ (0, 1). This will be proved by a fixed point argument
using the contraction mapping theorem.

Let us fix y0 ∈ (0, 1), f ∈ L2(0, 1) and g ∈ L2(0, 1). We introduce the
mapping T :

(2.7) T (s) = y0 + v(s, y0) for s ∈ (0, 1),

where v is the solution of

(2.8)
−∂yyv(s, y) = g(y), y ∈ (y0, 1)

v(s, 1) = 0
∂yv(s, y0) = ∂xu(s)
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Figure 3. The bound δ0(y0, 0) on f and g for the well-
posedness of (2.1)–(2.4) for y0 ∈ (0, 1).

(2.9) −∂xxu(x) = f(x), x ∈ (0, s)
u(0) = u(s) = 0

For any s ∈ (0, 1), Problem (2.9) admits a unique solution u = u(s, ·) ∈
H1

0 (0, s)∩H2(0, s). The derivative ∂xu is then continuous in [0, s] and Prob-
lem (2.8) also admits a unique solution v = v(s, ·) ∈ H2(y0, 1). It is
clear that x∗ ∈ (0, 1) is a fixed point for T i.e. x∗ = T (x∗) if and only
if (u(x∗, ·), v(x∗, ·), x∗) is a solution of Problem (2.1)–(2.4). The following
existence result holds.

Proposition 2.1. Let 0 ≤ ε < 1, y0 ∈ (ε, 1) and f, g ∈ L∞(0, 1). There
exists δ0 = δ0(y0, ε) > 0 such that if ‖f‖∞+ ‖g‖∞ ≤ δ0 then Problem (2.1)–
(2.4) admits a unique solution (u,w, x∗) with u ∈ H2(0, x∗), w ∈ H2(y0, 1)
and x∗ ∈ (ε, 1) which satisfies the following relation

(2.10) x∗ = y0 +

∫ 1

y0

(1− y)g(y) dy +
(1− y0)

x∗

∫ x∗

0
xf(x) dx.

Moreover, δ0 can be choosen as a non-decreasing function of y0 with

(2.11) δ0(y0, ε) = 2 min(1,
y0 − ε
1− y0

,
1

3(1− y0)
) > 0.

Proof. Let ε ∈ [0, 1). We prove that for sufficiently small f and g, the
mapping T defined by (2.7) maps the interval (ε, 1) into itself and T is a
contraction mapping on (ε, 1). This ensures the existence and the uniqueness
of a fixed point x∗ ∈ (ε, 1) for T .

According to (2.7), if |v(s, y0)| < min(y0 − ε, 1− y0) for all s ∈ (ε, 1) then
T (s) ∈ (ε, 1) for all s ∈ (ε, 1). Let s ∈ (ε, 1) be fixed. We estimate v(s, y0)



8 J.-F. SCHEID AND J. SOKOLOWSKI

with respect to f and g. To this end, let us write

v(s, y0) = −
∫ 1

y0

∂yv(s, y) dy = −
∫ 1

y0

∂yv(s, y)∂yϕ(y) dy,

with ϕ(y) = y − 1. Since ϕ(1) = 0 and ∂yϕ ≡ 1 in (y0, 1), we obtain by
integrating by parts

v(s, y0) =

∫ 1

y0

∂yyv(s, y) (y − 1)dy + ∂yv(s, y0) (y0 − 1)

= −
∫ 1

y0

g(y) (y − 1)dy + ∂yv(s, y0) (y0 − 1)

= −
∫ 1

y0

g(y) (y − 1)dy + ∂xu(s) (y0 − 1),(2.12)

thanks to the boundary condition in (2.8). In addition, starting from (2.9)
we have

−
∫ s

0
∂xxu(x)φ(x)dx =

∫ s

0
f(x)φ(x)dx,

with φ(x) = x. Integrating by parts, using φ(0) = 0 and ∂xφ ≡ 1 in (0, s)
together with the boundary conditions for u in (2.9), we get

∂xu(s) = −1

s

∫ s

0
xf(x) dx.(2.13)

Combining (2.12) with (2.13), we finally obtain

(2.14) v(s, y0) =

∫ 1

y0

(1− y)g(y) dy +
(1− y0)

s

∫ s

0
xf(x) dx.

We are now in position to estimate v(s, y0) :

|v(s, y0)| ≤ ‖g‖∞
∫ 1

y0

(1− y) dy +
(1− y0)

s
‖f‖∞

∫ s

0
x dx

≤ (1− y0)2

2
‖g‖∞ +

s

2
(1− y0)‖f‖∞

≤ (1− y0)

2
(‖g‖∞ + ‖f‖∞)(2.15)

We choose f and g such that

(2.16) ‖g‖∞ + ‖f‖∞ ≤ 2 min(
y0 − ε
1− y0

, 1)

so that we have |v(s, y0)| < min(y0 − ε, 1− y0) and thus T (s) ∈ (ε, 1).

Now, we prove that T is a contraction mapping on (0, 1). According to
(2.14), we have, for any s1, s2 ∈ (0, 1), s1 6= s2,

T (s1)− T (s2) = v(s1, y0)− v(s2, y0)

= (1− y0)

(
1

s1

∫ s1

0
xf(x) dx− 1

s2

∫ s2

0
xf(x) dx

)
.
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Without loss of generality we assume that s1 > s2 and we write

T (s1)− T (s2) = (1− y0)

((
1

s1
− 1

s2

)∫ s2

0
xf(x) dx+

1

s1

∫ s1

s2

xf(x) dx

)
.

This leads to

|T (s1)− T (s2)| ≤ (1− y0)‖f‖∞
(∣∣∣∣ 1

s1
− 1

s2

∣∣∣∣ s2
2

2
+

1

s1

∣∣∣∣s1
2

2
− s2

2

2

∣∣∣∣)
≤ (1− y0)

2
‖f‖∞

(
s2

s1
+
s1 + s2

s1

)
|s1 − s2| .

Since s1 > s2, we obtain

(2.17) |T (s1)− T (s2)| < 3

2
(1− y0)‖f‖∞ |s1 − s2|

We choose f such that

(2.18) ‖f‖∞ ≤
2

3(1− y0)
,

so that |T (s1) − T (s2)| < |s1 − s2| and thus T is a contraction mapping on
(0, 1).

Let δ0 = δ0(y0, ε) = 2 min(1, y0−ε1−y0 ,
1

3(1−y0)) > 0. Combining (2.16) with
(2.18), we conclude that if ‖g‖∞ + ‖f‖∞ ≤ δ0 then T admits a unique fixed
point x∗ ∈ (ε, 1) which thus satisfies (2.10). �

2.2. A fixed domain formulation. In this section we transform the 1d
fluid-elastic system (2.1)-(2.4) in a nonlinear problem posed in reference in-
tervals. Let us fix two reference points x̂0, ŷ0 ∈ (0, 1). For given s and
t ∈ (0, 1), we introduce the one-to-one regular mappings ϕs and φt defined
in [0, 1] such that

(2.19)
ϕs([0, x̂0]) = [0, s] with ϕs(0) = 0, ϕs(x̂0) = s

φt([ŷ0, 1]) = [t, 1] with φt(ŷ0) = t, φt(1) = 1,

with

(2.20) ϕx̂0 ≡ Id, φŷ0 ≡ Id.

We suppose that ϕs ∈ C2([0, 1]) for all s ∈ (0, 1) and s 7→ ϕs(x) belongs
to C1(0, 1) for all x ∈ [0, 1]. Similarly, we suppose φt ∈ C2([0, 1]) for all
t ∈ (0, 1) and t 7→ φt(y) belongs to C1(0, 1) for all y ∈ [0, 1]. We have that
ϕ′s > 0 in [0, x̂0], for all s ∈ (0, 1) and φ′t > 0 in [ŷ0, 1], for all t ∈ (0, 1).

Let (u,w, x∗) be the solution of (2.1)-(2.4). Then we define the following
changes of variables

(2.21)
û(x̂) = u(x), f̂(x̂) = f(x) with x = ϕx∗(x̂) for x̂ ∈ [0, x̂0],

ŵ(ŷ) = w(y), ĝ(ŷ) = g(y) with y = φy0(ŷ) for ŷ ∈ [ŷ0, 1].
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The functions (û, ŵ) satisfy the following nonlinear problem posed in the
reference intervals [0, x̂0] and [ŷ0, 1]:

(2.22) −∂x̂
(

1
ϕ′
x∗ (x̂)

∂x̂û(x̂)
)

= ϕ′x∗(x̂) f̂(x̂), x̂ ∈ (0, x̂0)

û(0) = û(x̂0) = 0

(2.23) −∂ŷ
(

1
φ′y0 (ŷ)∂ŷŵ(ŷ)

)
= φ′y0(ŷ) ĝ(ŷ), ŷ ∈ (ŷ0, 1)

ŵ(1) = 0

(2.24) 1
ϕ′
x∗ (x̂0)

∂x̂û(x̂0) = 1
φ′y0 (ŷ0)∂ŷŵ(ŷ0).

The mappings ϕx∗ and φy0 can be chosen for instance, as the unique solutions
of the two problems

(2.25) ϕ′′x∗ = 0 in (0, x̂0)
ϕx∗(0) = 0, ϕx∗(x̂0) = x∗

φ′′y0 = 0 in (ŷ0, 1)
φy0(ŷ0) = y0, φy0(1) = 1

that is

(2.26)
ϕx∗(x̂) =

x∗

x̂0
x̂ =

y0 + ŵ(ŷ0)

x̂0
x̂ for x̂ ∈ [0, x̂0]

φy0(ŷ) =
(y0 − 1)

(ŷ0 − 1)
(ŷ − 1) + 1 for ŷ ∈ [ŷ0, 1]

With that choices for ϕx∗ and φy0 , the unknows (û, ŵ) satisfy

(2.27)

−∂x̂x̂û(x̂) = (y0+ŵ(ŷ0)
x̂0

)2f̂(x̂), x̂ ∈ (0, x̂0)

û(0) = û(x̂0) = 0

−∂ŷŷŵ(ŷ) = (y0−1
ŷ0−1)2ĝ(ŷ), ŷ ∈ (ŷ0, 1)

ŵ(1) = 0

( x̂0
y0+ŵ(ŷ0))∂x̂û(x̂0) = ( ŷ0−1

y0−1)∂ŷŵ(ŷ0)

2.3. Existence of an optimal interval. We shall prove that the optimal
problem (2.5),(2.6) admits an optimal reference point y0. More precisely, we
have the following result

Proposition 2.2. Let 0 < ε1 < ε2 < 1 and f, g ∈ L∞(0, 1). There exists
η0 = η0(ε1) > 0 such that if ‖f‖∞+ ‖g‖∞ ≤ η0 then there exists y∗0 ∈ [ε1, ε2]
that realizes min

y0∈[ε1,ε2]
J(y0).

Proof. We fix 0 < ε1 < ε2 < 1. We define η0(ε1) = δ0(ε1, ε1/2) > 0 where
δ0 is given by (2.11) in Proposition 2.1. We choose f, g ∈ L∞(0, 1) such that
‖f‖∞ + ‖g‖∞ ≤ η0(ε1) = δ0(ε1, ε1/2). Since δ0 is a non-decreasing function
of y0, we have η0(ε1) ≤ δ0(y0, ε1/2) for all y0 ∈ [ε1, ε2]. According to Propo-
sition 2.1, Problem (2.1)–(2.4) admits a unique solution for all y0 ∈ [ε1, ε2],
with x∗ ∈ [ε1/2, 1). Thus, J is well-defined in [ε1, ε2]. Let (yn)n≥1 ∈ [ε1, ε2]
be a minimizing sequence of J i.e. limn→+∞ J(yn) = infy0∈[ε1,ε2] J(y0).
There exists a subsequence still denoted yn and y∗0 ∈ [ε1, ε2] such that
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limn→+∞ yn = y∗0. We have to prove that limn→+∞ J(yn) = J(y∗0). We
denote by (un, wn, x

∗
n) ∈ H2(0, x∗n)×H2(yn, 1)× [ε1/2, 1) the solution of

(2.28)

−∂xxun(x) = f(x), x ∈ (0, x∗n)
un(0) = un(x∗n) = 0

−∂yywn(y) = g(y), y ∈ (yn, 1)
wn(1) = 0

∂xun(x∗n) = ∂ywn(yn)
x∗n = yn + wn(yn)

According to Section 2.2, we transform the system (2.28) on a fixed domain
independent of n by setting ûn(x̂) = un(x) with x = ϕ(x̂) for x̂ ∈ [0, ŷ∗0] and
ŵn(ŷ) = wn(y) with y = φ(ŷ) for ŷ ∈ [ŷ∗0, 1]. The functions ϕ and φ (see
(2.26)) are given by

(2.29)
ϕ(x̂) =

yn + ŵn(y∗0)

y∗0
x̂ for x̂ ∈ [0, ŷ∗0]

φ(ŷ) =
(yn − 1)

(y∗0 − 1)
(ŷ − 1) + 1 for ŷ ∈ [ŷ∗0, 1]

The functions (ûn, ŵn) satisfy

(2.30) −∂x̂x̂ûn(x̂) = (
yn+ŵn(y∗0)

y∗0
)2f̂(x̂), x̂ ∈ (0, y∗0)

ûn(0) = ûn(y∗0) = 0

(2.31)

−∂ŷŷŵn(ŷ) = (yn−1
y∗0−1 )2ĝ(ŷ), ŷ ∈ (y∗0, 1)

ŵn(1) = 0

(
y∗0

yn+ŵn(y∗0))∂x̂ûn(y∗0) = (
y∗0−1
yn−1)∂ŷŵn(y∗0)

Since x∗n = yn + wn(yn) = yn + ŵn(y∗0) ∈ [ε1/2, 1), we deduce from
(2.30) that ‖ûn‖H2(0,y∗0) ≤ C where C > 0 is a constant independent of
n. Then there exists a subsequence still denoted ûn and û0 ∈ H2(0, y∗0)
such that ûn⇀n→+∞ û0 weakly in H2(0, y∗0). From (2.31), we deduce that
‖ŵn‖H2(y∗0 ,1) ≤ C ′ where C ′ > 0 is a constant independent of n. Then
there exists a subsequence still denoted ŵn and ŵ0 ∈ H2(y∗0, 1) such that
ŵn⇀n→+∞ ŵ0 weakly in H2(y∗0, 1) and ŵ0 satisfies

(2.32) −∂ŷŷŵ0(ŷ) = ĝ(ŷ), ŷ ∈ (y∗0, 1)
ŵ0(1) = 0.

Since x∗n = yn + ŵn(y∗0) and due to the compactness of the embedding
H2(y∗0, 1) ↪→ C1([y∗0, 1]), we deduce that limn→+∞ x

∗
n = x∗0 with

(2.33) x∗0 = y∗0 + ŵ0(y∗0) ∈ [ε1/2, 1] ⊂ (0, 1].

In addition, we obtain that û0 satisfies

(2.34) −∂x̂x̂û0(x̂) = (
y∗0+ŵ0(y∗0)

y∗0
)2f̂(x̂), x̂ ∈ (0, y∗0)

û0(0) = û0(y∗0) = 0
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and due to the compactness of the embedding H2(0, y∗0) ↪→ C1([0, y∗0]) we
have

(2.35) (
y∗0

y0 + ŵ0(y∗0)
)∂x̂û0(y∗0) = ∂ŷŵ0(y∗0)

We transform the problem (2.34), (2.35) on the interval (0, x∗0) by using the
change of variables û0(x̂) = u0(x) with (see Section 2.2)

(2.36) x =
x∗0
y∗0
x̂ =

y∗0 + ŵ0(y∗0)

y∗0
x̂ for x̂ ∈ [0, y∗0].

Thus the function u0 satisfies

(2.37)
−∂xxu0(x) = f(x), x ∈ (0, x∗0)

u0(0) = u0(x∗0) = 0

∂xu0(x∗0) = ∂ŷŵ0(y∗0)

Moreover, using the change of variable (2.29) we have

J(yn) =

∫ x∗n

0
|∂xun|2 dx+ η

∫ 1

yn

|∂ywn|2 dy

= (
y∗0

yn + ŵn(y∗0)
)

∫ y∗0

0
|∂x̂ûn|2 dx̂+ η(

y∗0 − 1

yn − 1
)

∫ 1

y∗0

|∂ŷŵn|2 dŷ

We deduce that

(2.38) lim
n→+∞

J(yn) = (
y∗0

y∗0 + ŵ0(y∗0)
)

∫ y∗0

0
|∂x̂û0|2 dx̂+ η

∫ 1

y∗0

|∂ŷŵ0|2 dŷ

Using the change of variable (2.36) with (2.33) in the right hand side of
(2.38), we obtain

(2.39) lim
n→+∞

J(yn) =

∫ x∗0

0
|∂xu0|2 dx+ η

∫ 1

y∗0

|∂ŷŵ0|2 dŷ = J(y∗0)

where (u0, ŵ0) satisfies (2.32),(2.37). The proof is then complete. �

2.4. Shape differentiability. In this section, we prove the existence of the
material derivatives associated to the solution (u,w) of the coupled problem
(2.1)-(2.4). A full characterization of the material derivatives is given as the
solution of an adjoint problem.

For a given t ∈ (0, 1), we consider the following problem for (ut, wt, x
∗
t ):

(2.40)

−∂xxut(x) = f(x), x ∈ (0, x∗t )
ut(0) = ut(x

∗
t ) = 0

−∂yywt(y) = g(y), y ∈ (t, 1)
wt(1) = 0

∂xut(x
∗
t ) = ∂ywt(t)

x∗t = t+ wt(t).
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Let y0 ∈ (0, 1) and γ > 0 given. We choose t ∈ (y0 − γ, y0 + γ) ∩ (0, 1). We
assume that the functions f , g ∈W 1,∞(0, 1) and

(2.41)
‖f‖L∞(0,1) + ‖g‖L∞(0,1) ≤δ0(y0 − γ, y0 − 2γ)

= 2 min

(
1,

γ

1− y0 + γ
,

1

3(1− y0 + γ)

)
where δ0 is given by (2.11). Since δ0(y0, ε) is a non-decreasing function of
y0, choosing ε = y0 − 2γ we have δ0(y0 − γ, y0 − 2γ) ≤ δ0(t, y0 − 2γ) for
all t ∈ (y0 − γ, y0 + γ). Then, according to Proposition 2.1, Problem (2.40)
admits a unique solution (ut, wt, x

∗
t ) ∈ H2(0, x∗t )×H2(t, 1)× (y0−2γ, 1), for

all t ∈ (y0 − γ, y0 + γ) ∩ (0, 1).
We emphasize that the solution (u,w, x∗) of (2.1)-(2.4) coincides with

the solution of (2.40) with t = y0, i.e. (u,w, x∗) = (uy0 , wy0 , x
∗
y0). More-

over, since we choose f , g ∈ W 1,∞(0, 1), the solution of (2.1)-(2.4) has the
additionnal regularity

(2.42) (u,w) ∈ H3(0, x∗)×H3(y0, 1).

We are dealing with a fixed domain formulation by using the one-to-one
regular mappings ϕs and φt defined on [0, 1] such that (see Section 2.2) :

(2.43)
ϕs([0, x

∗]) = [0, s] with ϕs(0) = 0, ϕs(x
∗) = s

φt([y0, 1]) = [t, 1] with φt(y0) = t, φt(1) = 1,

with

(2.44) ϕx∗ ≡ Id, φy0 ≡ Id.

We suppose that ϕs ∈ C2([0, 1]) for all s ∈ (0, 1) and s 7→ ϕs(x) belongs
to C1(0, 1) for all x ∈ [0, 1]. Similarly, we suppose φt ∈ C2([0, 1]) for all
t ∈ (0, 1) and t 7→ φt(y) belongs to C1(0, 1) for all y ∈ [0, 1]. We have that
ϕ′s > 0 in [0, x∗], for all s ∈ (0, 1) and φ′t > 0 in [y0, 1], for all t ∈ (0, 1).

Following [5, p.13-14], we shall say that a map F : t ∈ R 7→ f(t) ∈ X
where X is a Banach space, is weakly continous at t = t0 if for any sequence
tn → t0 as n → ∞, we have f(tn) ⇀ f(t0) weakly in X. The map F
is weakly-differentiable at t = t0 if for any sequence tn → t0, there exists
f ′(t0) ∈ X such that f(tn)−f(t0)

tn−t0 ⇀ f ′(t0) weakly in X as n→∞.

Proposition 2.3. Let y0 ∈ (0, 1) and γ ∈ (0, 1/4) given. We assume that
f , g ∈ W 1,∞(0, 1) satisfy (2.41). For all t ∈ (y0 − γ, y0 + γ) ∩ (0, 1), we
consider the solution (ut, wt, x

∗
t ) of (2.40) and let (ϕs, φt) be the mappings

defined by (2.43),(2.44). Then, the map F : t 7→ (ut ◦ ϕx∗t , wt ◦ φt, x
∗
t ) ∈

H2(0, x∗)×H2(y0, 1)×(0, 1) defined for t ∈ (y0−γ, y0 +γ)∩(0, 1), is weakly-
continuous and weakly-differentiable at t = y0 and the associated material
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derivative (u̇, ẇ, ẋ∗) ∈ H2(0, x∗)×H2(y0, 1)× R is the solution of

(2.45)

−∂xxu̇ = −ẋ∗ ∂xx
(

(∂xu)
dϕs
ds |s=x∗

)
in (0, x∗)

u̇(0) = u̇(x∗) = 0

−∂yyẇ = −∂yy
(

(∂yw)
dφt
dt |t=y0

)
in (y0, 1)

ẇ(1) = 0

(2.46) ∂xu̇(x∗)− ẋ∗∂xu(x∗)
d

ds

(
ϕ′s(x

∗)
)
|s=x∗

= ∂yẇ(y0)− ∂yw(y0)
d

dt

(
φ′t(y0)

)
|t=y0

Moreover, the derivative ẋ∗ is given by

(2.47) ẋ∗ =
1− d∗ − (1− y0)g(y0)

1 + (1− y0)(d∗/x∗ − f(x∗))

with d∗ =
1

x∗

∫ x∗

0
xf(x) dx.

Proof. We first prove that the map F : t 7→ (ut(ϕx∗t ), wt(φt), x
∗
t ) is weakly-

continuous at t = y0. More precisely, we shall prove that x∗t → x∗ and
ut(ϕx∗t ) ⇀ u weakly in H2(0, x∗), wt(φt) ⇀ w weakly in H2(y0, 1) as t→ y0.

According to (2.10), for all t ∈ (y0 − γ, y0 + γ) ∩ (0, 1), x∗t satisfies

(2.48) x∗t = t+

∫ 1

t
(1− y)g(y) dy +

(1− t)
x∗t

∫ x∗t

0
xf(x) dx.

Since x∗t ∈ (0, 1), there exists a subsequence tn → y0 such that x∗tn → x̃ ∈
[0, 1] which satisfies

(2.49) x̃ = y0 +

∫ 1

y0

(1− y)g(y) dy +
(1− y0)

x̃

∫ x̃

0
xf(x) dx.

Since x∗ is the unique point satisfying (2.49) (see (2.10)), we have x̃ = x∗.
We can also prove that the whole sequence x∗t is converging with t → y0.
Thus, we have

(2.50) x∗t → x∗ as t→ y0.

Now, we turn to the convergence of ut and wt. Using the changes of variables
û = ut(ϕx∗t ) and ŵ = wt(φt) (see (2.21)) with x = ϕx∗t (x̂) and y = φt(ŷ), the
system (2.40) becomes (see (2.22), (2.23) and (2.24)):

(2.51) −∂x
(

1
ϕ′
x∗t

∂xû

)
= ϕ′x∗t

f(ϕx∗t ) in (0, x∗)

û(0) = û(x∗) = 0
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(2.52) −∂y
(

1
φ′t
∂yŵ

)
= φ′t g(φt) in (y0, 1)

ŵ(1) = 1

(2.53)
1

ϕ′x∗t (x∗)

∂xû(x∗) =
1

φ′t(y0)
∂yŵ(y0)

We introduce

(2.54) c1,t = û− u = ut(ϕx∗t )− u ∈ H
2(0, x∗)

and substracting (2.51) with (2.40) at t = y0 for u, we get
(2.55)

−∂x
(

1
ϕ′
x∗t

∂xc1,t

)
− ∂x

((
1
ϕ′
x∗t

− 1
)
∂xu

)
=

(
ϕ′x∗t

f(ϕx∗t )− f
)

in (0, x∗)

c1,t(0) = c1,t(x
∗) = 0

Due to (2.50) and the fact that ‖ϕ′s‖L∞(0,x∗) → 1 as s→ x∗, we have

(2.56) ‖ 1

ϕ′x∗t
− 1‖

L∞(0,x∗)

−−−→
t→y0

0, ‖ϕ′x∗t f(ϕx∗t )− f‖L∞(0,x∗)
−−−→
t→y0

0.

As a result, we deduce from (2.55) that for |t− y0| small enough,

‖c1,t‖H2(0,x∗) ≤ C

where C > 0 does not depend on t. Thus, there exists a subsequence tn → y0

and c1 ∈ H2(0, x∗) such that c1,tn ⇀ c1 weakly in H2 and c1 satisfies

−∂xxc1 = 0 in (0, x∗)
c1(0) = c1(x∗) = 0

Thus, we have c1 ≡ 0 in (0, x∗) and in addition we can prove that the whole
sequence c1,t is converging to 0. Thus,

(2.57) ut(ϕx∗t ) ⇀ u weakly in H2(0, x∗) as t→ y0.

Moreover, from the compactness of the embedding ofH2(0, x∗) into C1([0, x∗]),
we deduce that

(2.58) ∂xc1,t(x
∗)→ 0 as t→ y0,

that is

(2.59) ∂xut(ϕx∗t )(x
∗)→ ∂xu(x∗) as t→ y0.

Now, we introduce

(2.60) c2,t = ŵ − w = wt(φt)− w ∈ H2(y0, 1).
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Substracting (2.52) and (2.53) with (2.40) at t = y0 for w, we get
(2.61)

−∂y
(

1
φ′t
∂yc2,t

)
− ∂y

((
1
φ′t
− 1
)
∂yw

)
= (φ′t g(φt)− g) in (y0, 1)

c2,t(1) = 0

1
ϕ′
x∗t

(x∗)∂xc1,t(x
∗) + ( 1

ϕ′
x∗t

(x∗) − 1)∂xu(x∗) = 1
φ′t(y0)

∂yc2,t(y0) + ( 1
φ′t(y0)

− 1)∂yw(y0)

We deduce that for all v ∈ H1(y0, 1) with v(1) = 0, we have

(2.62)∫ 1

y0

1

φ′t(y)
∂yc2,t(y)∂yv(y) dy+

(
1

ϕ′x∗t
(x∗)

∂xc1,t(x
∗) + (

1

ϕ′x∗t
(x∗)

− 1)∂xu(x∗)

)
v(y0)

=

∫ 1

y0

(
1

φ′t(y)
− 1

)
∂yw(y)∂yv(y) dy +

∫ 1

y0

(
φ′t(y)g(φt(y))− g(y)

)
v(y) dy,

We recall that φ′t > 0 in [y0, 1] and ‖φ′t‖L∞(y0,1) → 1 as t→ y0. Then,

(2.63) ‖ 1

φ′t
− 1‖

L∞(y0,1)

−−−→
t→y0

0, ‖φ′tg(φt)− g‖L∞(0,x∗) −−−→t→y0
0.

We take v = c2,t in (2.62). Using (2.58) and the trace inequality
|v(y0)| ≤ C‖∂yv‖L2(y0,1) for all v ∈ H1(y0, 1) with v(1) = 0, where C is
independent of v, we obtain that for |t− y0| small enough,

‖c2,t‖H1(y0,1) ≤ C

where C > 0 does not depend on t. Going back to the strong form (2.61),
we get a uniform bound for ‖∂xxc2,t‖L2(y0,1) with respect to t and thus for
|t− y0| small enough, we have

(2.64) ‖c2,t‖H2(y0,1) ≤ C

where C > 0 does not depend on t. Thus, there exists a subsequence tn → y0

and c2 ∈ H2(y0, 1) such that c2,tn ⇀ c2 weakly in H2 and c2 satisfies

(2.65) −∂yyc2 = 0 in (y0, 1)
c2(1) = 0

We can prove that the whole sequence c2,t is converging. We have c2,t(y0)→
c2(y0) as t→ y0. Furthermore, since c2,t(y0) = w(y0)− wt(φt(y0)) = −y0 +
x∗ + t− x∗t , we deduce that c2,t(y0)→ 0 as t→ y0 thanks to (2.50). Hence,
we obtain that c2(y0) = 0 and using (2.65) we conclude that c2 ≡ 0 in (y0, 1).
We have proved that

(2.66) wt(φt) ⇀ w weakly in H2(y0, 1) as t→ y0.

The properties (2.50),(2.57),(2.66) show that the map F : t 7→ (ut ◦ϕx∗t , wt ◦
φt, x

∗
t ) is weakly-continuous at t = y0.
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Now, let us prove the weak-differentiability of F at t = y0. We first prove
that the map t 7→ x∗t is differentiable at t = y0. Let us introduce

(2.67) τt =
x∗t − x∗

h
with h = t− y0.

Starting from (2.10) and (2.48), we obtain that τt satisfies the relation

(2.68)
(

1− (1− t)
x∗t

(
St − d∗

))
τt = 1 +Rt − d∗

with

d∗ =
1

x∗

∫ x∗

0
xf(x) dx

Rt =
1

t− y0

∫ y0

t
(1− y)g(y) dy

St =
1

x∗t − x∗

∫ x∗t

x∗
xf(x) dx

We clearly have
|St|
x∗t
≤ ‖f‖∞ and

|d∗|
x∗t
≤ x∗

2x∗t
‖f‖∞ and then∣∣∣∣(1− t)x∗t

(
St − d∗)

∣∣∣∣ ≤ (1− y0 + γ)

(
1 +

x∗

2x∗t

)
‖f‖∞

for all t ∈ (y0 − γ, y0 + γ). Since x∗t → x∗ as t → y0, we deduce that for
|t− y0| small enough, we have∣∣∣∣(1− t)x∗t

(
St − d∗)

∣∣∣∣ ≤ 2(1− y0 + γ)‖f‖∞.

The assumption (2.41) ensures that ‖f‖∞ ≤
2γ

1− y0 + γ
and then we obtain∣∣∣∣(1− t)x∗t

(
St − d∗)

∣∣∣∣ ≤ 4γ

and therefore, for |t− y0| small enough,

(2.69) 1− (1− t)
x∗t

(
St − d∗

)
≥ 1− 4γ > 0.

Hence τt is well defined by (2.68) for |t− y0| small enough. Moreover, when
t→ y0, we have

(2.70) Rt → −(1− y0)g(y0)
St → x∗f(x∗)

Thus, there exists ẋ∗ ∈ R such that

(2.71) τt → ẋ∗ as t→ y0

and we deduce from (2.68) and (2.70) that ẋ∗ satisfies

(2.72) ẋ∗ =
1− d∗ − (1− y0)g(y0)

1 + (1− y0)(d∗/x∗ − f(x∗))
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Now, we turn to the differentiability of û and ŵ. We define

(2.73)
d1,t =

û− u
h

=
ut(ϕx∗t )− u

h
,

d2,t =
ŵ − w
h

=
wt(φt)− w

h
, with h = t− y0.

The function d1,t ∈ H2(0, x∗) satisfies
(2.74)

−∂x
(

1
ϕ′
x∗t

∂xd1,t

)
− ∂x

(
1
h

(
1
ϕ′
x∗t

− 1
)
∂xu

)
= 1

h

(
ϕ′x∗t

f(ϕx∗t )− f
)

in (0, x∗)

d1,t(0) = d1,t(x
∗) = 0

From (2.50), (2.71), we deduce that

(2.75)

∥∥∥∥∥1

h

(
1

ϕ′x∗t
− 1

)
+ ẋ∗

dϕ′s
ds |s=x∗

∥∥∥∥∥
L∞(0,x∗)

−→ 0 as t→ y0

(2.76)∥∥∥∥1

h

(
ϕ′x∗t f(ϕx∗t )− f

)
− ẋ∗ d

ds

(
ϕ′s f(ϕs)

)
|s=x∗

∥∥∥∥
L∞(0,x∗)

−→ 0 as t→ y0

As a result, we deduce from (2.74) that for |t− y0| small enough,

‖d1,t‖H2(0,x∗) ≤ C

where C > 0 does not depend on t. Thus, there exists a subsequence tn → y0

and u̇ ∈ H2(0, x∗) such that d1,tn ⇀ u̇ weakly in H2 and u̇ satisfies

(2.77) −∂xxu̇+ ẋ∗∂x

(
dϕ′s
ds |s=x∗

∂xu

)
= ẋ∗

d

ds
(ϕ′s f(ϕs))|s=x∗ in (0, x∗)

u̇(0) = u̇(x∗) = 0

Using the fact that u ∈ H3(0, x∗) and −∂xxxu = ∂xf in (0, x∗), we obtain
by straightforward calculations that

∂x

(
dϕ′s
ds |s=x∗

∂xu

)
− d

ds

(
ϕ′s f(ϕs)

)
|s=x∗

= ∂xx

(
(∂xu)

dϕs
ds |s=x∗

)
in (0, x∗)

Then (2.77) becomes

(2.78) −∂xxu̇ = −ẋ∗ ∂xx
(

(∂xu)
dϕs
ds |s=x∗

)
in (0, x∗)

u̇(0) = u̇(x∗) = 0

In addition it can be proved that the whole sequence d1,t is converging to
u̇∗.

The function d2,t ∈ H2(y0, 1) satisfies
(2.79)
−∂y

(
1
φ′t
∂yd2,t

)
− ∂y

(
1
h

(
1
φ′t
− 1
)
∂yw

)
= 1

h (φ′t g(φt)− g) in (y0, 1)

d2,t(1) = 0
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(2.80)
1

ϕ′x∗t
(x∗)

∂xd1,t(x
∗) +

1

h
(

1

ϕ′x∗t
(x∗)

− 1)∂xu(x∗)

=
1

φ′t(y0)
∂yd2,t(y0) +

1

h
(

1

φ′t(y0)
− 1)∂yw(y0)

Moreover, we have that

(2.81)
∥∥∥∥1

h

(
1

φ′t
− 1

)
+
dφ′t
dt |t=y0

∥∥∥∥
L∞(y0,1)

−→ 0 as t→ y0

(2.82)
∥∥∥∥1

h

(
φ′tg(φt)− g

)
− d

dt

(
φ′t g(φt)

)
|t=y0

∥∥∥∥
L∞(y0,1)

−→ 0 as t→ y0

Proceeding as for the proof of the continuity of c2,t (see (2.61)–(2.64)), we
deduce from (2.79) that there exists ẇ ∈ H2(y0, 1) such that d2,t ⇀ ẇ weakly
in H2 as t→ y0 and ẇ satisfies

(2.83) −∂yyẇ + ∂y

(
dφ′t
dt |t=y0

∂yw

)
=

d

dt
(φ′t g(φt))|t=y0

in (y0, 1)

ẇ(1) = 0

Using the fact that w ∈ H3(y0, 1) and −∂yyyw = ∂yg in (y0, 1), we obtain
by straightforward calculations that

∂y

(
dφ′t
dt |t=y0

∂yw

)
− d

dt

(
φ′t g(φt)

)
|t=y0

= ∂yy

(
(∂yw)

dφt
dt |t=y0

)
in (y0, 1)

Then (2.83) becomes

(2.84) −∂yyẇ = −∂yy
(

(∂yw)
dφt
dt |t=y0

)
in (y0, 1)

ẇ(1) = 0

Finally, (2.80) leads to

(2.85) ∂xu̇(x∗)− ẋ∗ d
ds

(
ϕ′s(x

∗)
)
|s=x∗

∂xu(x∗)

= ∂yẇ(y0)− d

dt

(
φ′t(y0)

)
|t=y0

∂yw(y0)

The proof of Proposition 2.3 is then complete. �

Remark 2.4. Due to the compactness of the embedding of H2(0, x∗) ×
H2(y0, 1) into C1([0, x∗])×C1([y0, 1]), Proposition 2.3 ensures that the map
t 7→ (ut ◦ ϕx∗t , wt ◦ φt) ∈ C

1([0, x∗]) × C1([y0, 1]) is (strongly) differentiable
at t = y0.

Now, we are in position to compute the shape derivative of the solution of
(2.1)-(2.4). We first extend the solution (ut, wt) of (2.40) to the whole real
line : ut ∈ H1

0 (0, x∗) is extended by 0 outside the interval (0, x∗), so that
we consider ut ∈ H1(R). In the same way, wt ∈ H1(y0, 1) is extended to 0
outside (y0, 1) so that we consider wt ∈ L2(R).
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Proposition 2.5. Under the hypothesis of Proposition 2.3, the map
t 7→ (ut, wt) ∈ L2(R) × L2(R) is differentiable at t = y0. The shape deriva-
tives (u′, w′) ∈ H2(0, x∗)×H2(y0, 1) are given by

(2.86)
u′ = u̇− ẋ∗ (∂xu)

dϕs
ds |s=x∗

in (0, x∗)

w′ = ẇ − (∂yw)
dφt
dt |t=y0

in (y0, 1)

and satisfy

(2.87)
∂xxu

′ = 0 in (0, x∗)

u′(0) = 0

(2.88) u′(x∗) = −ẋ∗ ∂xu(x∗)

(2.89)
∂yyw

′ = 0 in (y0, 1)

w′(1) = 0

w′(y0) = ẋ∗ − 1− ∂yw(y0)(2.90)
∂yw

′(y0)− g(y0) = ∂xu
′(x∗)− ẋ∗f(x∗)(2.91)

Proof. The proof is a direct consequence of the derivability of û and ŵ
stated in Proposition (2.3) (see also [10, Proposition 2.32] and [8, Lemme
5.3.3]. We start from the relations

(2.92)
ut = (ut ◦ ϕx∗t ) ◦ ϕ

−1
x∗t

= û ◦ ϕ−1
x∗t

wt = (wt ◦ φt) ◦ φ−1
t = ŵ ◦ φ−1

t .

The derivability of ut and wt with respect to t at t = y0 is a direct conse-
quence of the derivability of t 7→ (û, ŵ, x∗t ) established in Proposition 2.3.
We denote by (u′, w′) the derivative of t 7→ (ut, wt) at t = y0. Differentiating
(2.92) with t, we obtain at t = y0:

u′ = u̇− ẋ∗ (∂xu)
dϕs
ds |s=x∗

∈ H1(0, x∗)

w′ = ẇ − (∂yw)
dφt
dt |t=y0

∈ H1(y0, 1)

According to Proposition 2.3, we have that (u′, w′) ∈ H2(0, x∗) ×H2(y0, 1)
and from (2.45),we deduce that (2.87), (2.88), (2.89) hold. Relation (2.46)
yields (2.91). Finally, differentiating the relation x∗t = t + wt(t) in (2.40)
leads to (2.90). �

We define the energy functional J associated to the solution (ut, wt, x
∗
t )

of (2.40) by

(2.93) J(t) =

∫ x∗t

0
|∂xut|2 dx+ η

∫ 1

t
|∂ywt|2 dy.

From Proposition 2.5, we deduce the following differentiability result for the
function J .
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Proposition 2.6. Under the hypothesis of Proposition 2.3, the functional
t 7→ J(t) is differentiable at t = y0 and its derivative at t = y0 is given by

(2.94) J ′(y0) =
(
∂yw(y0)

)2
(1 + ∂yw(y0)− η)

+ ∂yw
′(y0)

(
(y0 − 1)

(
∂yw(y0)

)2 − 2ηw(y0)
)

with

(2.95) ∂yw
′(y0) =

x∗g(y0)−
(
1 + ∂yw(y0)

)(
∂yw(y0) + x∗f(x∗)

)
(x∗ + y0 − 1)

.

Proof. From (2.1) and (2.2), we deduce that

J(t) =

∫ x∗t

0
fut dx+ η

∫ 1

t
gwt dy − ηwt(t)∂ywt(t).(2.96)

According to the differentiability result established in Proposition 2.5 (see
also Remark 2.4), we deduce that J is differentiable at t = y0 and differen-
tiating (2.96) at t = y0 leads to

(2.97) J ′(y0) =

∫ x∗

0
fu′ dx+ ẋ∗ [fu]x

∗

0︸ ︷︷ ︸
=0

+η

∫ 1

y0

gw′ dy − ηg(y0)w(y0)

− η d
dt

(
wt(t)∂ywt(t)

)
|t=y0

.

Moreover, we have

d

dt

(
wt(t)∂ywt(t)

)
|t=y0

=
d

dt

(
wt(t)

)
|t=y0

∂yw(y0) + w(y0)
d

dt

(
∂ywt(t)

)
|t=y0

=
(
w′(y0) + ∂yw(y0)

)
∂yw(y0)

+w(y0)
(
∂yw

′(y0) + ∂yyw(y0)
)

= w′(y0)∂yw(y0) + w(y0)∂yw
′(y0)

+ (∂yw(y0))2 − w(y0)g(y0)(2.98)

Combining (2.97) and (2.98), we obtain

(2.99) J ′(y0) =

∫ x∗

0
fu′ dx+ η

∫ 1

y0

gw′ dy − η
(
∂yw(y0)

)2
− η
(
w′(y0)∂yw(y0) + w(y0)∂yw

′(y0)
)
.



22 J.-F. SCHEID AND J. SOKOLOWSKI

Moreover, using the regularity of u and u′ with (2.88), we get∫ x∗

0
fu′ dx = −

∫ x∗

0
(∂xxu)u′ dx

=

∫ x∗

0
∂xu ∂xu

′ dx− u′(x∗)∂xu(x∗)

=

∫ x∗

0
∂xu ∂xu

′ dx+ ẋ∗
(
∂xu(x∗)

)2
= −

∫ x∗

0
u ∂xxu

′︸ ︷︷ ︸
=0

dx+
[
u︸︷︷︸
=0

∂xu
′]x∗

0
+ ẋ∗

(
∂xu(x∗)

)2
Then, we have

(2.100)
∫ x∗

0
fu′ dx = ẋ∗

(
∂xu(x∗)

)2
.

Similarly, we obtain∫ 1

y0

gw′ dy = −
∫ 1

y0

(∂yyw)w′ dy

=

∫ 1

y0

∂yw ∂yw
′ dy + w′(y0)∂yw(y0)

= −
∫ 1

y0

w ∂yyw
′︸ ︷︷ ︸

=0

dy +
[
w∂yw

′]1
y0

+ w′(y0)∂yw(y0)

Then, we have

(2.101)
∫ 1

y0

gw′ dy = −w(y0)∂yw
′(y0) + w′(y0)∂yw(y0).

Relations (2.100), (2.101) with (2.4) in (2.99) lead to

(2.102) J ′(y0) = (ẋ∗ − η)
(
∂yw(y0)

)2 − 2ηw(y0)∂yw
′(y0)

From (2.90), we have ẋ∗ = 1 +w′(y0) +∂yw(y0) and then we can express the
derivative J ′(y0) as follows

(2.103) J ′(y0) =
(
1 + w′(y0) + ∂yw(y0)− η

) (
∂yw(y0)

)2−2ηw(y0)∂yw
′(y0)

Now, we derive a relation between w′(y0) and ∂yw′(y0). For y ∈ [y0, 1], we
introduce the function ψ(y) = y − 1 which satisfies ∂yψ ≡ 1 in [y0, 1] and
ψ(1) = 0. Then, we write

w′(y0) = −
∫ 1

y0

∂yw
′(y)∂yψ(y) dy

=

∫ 1

y0

∂yyw
′(y)︸ ︷︷ ︸

=0

∂yψ(y) dy −
[
∂yw

′(y)ψ(y)
]1
y0

= ∂yw
′(y0)ψ(y0)
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and thus we get

(2.104) w′(y0) = (y0 − 1)∂yw
′(y0).

Combining (2.103) with (2.104), we obtain the desired formula (2.94).

Finally, we turn to the expression of ∂yw′(y0) with respect to ∂yw(y0).
For x ∈ [0, 1], we introduce the function ψ(x) = x which satisfies ∂xψ ≡ 1 in
[0, 1] and ψ(0) = 0. Then, we write

u′(x∗) =

∫ x∗

0
∂xu

′(x)∂xψ(x) dx

= −
∫ x∗

0
∂xxu

′(x)︸ ︷︷ ︸
=0

∂xψ(x) dx+
[
∂xu

′(x)ψ(x)
]x∗
0

= ∂xu
′(x∗)ψ(x∗)

and thus we have

(2.105) u′(x∗) = x∗∂xu
′(x∗).

Combining (2.91) with (2.104),(2.105),(2.88) and(2.90), we obtain the de-
sired formula (2.95) for ∂yw′(y0). �

3. An explicit one-dimensional optimal solution

In this section, we study in details the particular case where the functions f
and g are two constants. These constants have to be chosen small enough for
ensuring the well-posedness of (2.1)–(2.4) (see Proposition 2.1). We choose
f ≡ 1 and g ≡ α ∈ R a constant. The solution of Problem (2.1)–(2.4) is
then given by

u(x) = −1

2
x(x− x∗), x ∈ (0, x∗)(3.1)

w(y) =
(
c0 −

α

2
(y − 1)

)
(y − 1), y ∈ (y0, 1)(3.2)

with

(3.3) c0 = −α(1− y0)(3 + y0) + 2y0

2(1 + y0)

(3.4) x∗ = 2 (α(y0 − 1)− c0) =
α(1− y0)2 + 2y0

1 + y0
.

The constant α must be chosen small enough. In order to make certain
that x∗ lies in the interval (0, 1), we shall see that we have to restrict the
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Figure 4. The admissible domain D (gray region) for the
1d case with f ≡ 1 and g ≡ α.

values of α and y0. Indeed, we have that

x∗ ∈ (0, 1) ⇔ α ∈ I0 = (
−2y0

(1− y0)2
,

1

1− y0
)

⇔ y0 ∈ Iα =

 (
α− 1 +

√
1− 2α

α
, 1) if α < 0

( max(0, 1− 1

α
), 1) if α ≥ 0

Then, we introduce the admissible domain D where the parameters (y0, α)
are allowed to lie for ensuring x∗ ∈ (0, 1):

(3.5) D = {(y0, α) ∈ (0, 1)× R, y0 ∈ Iα}.

The admissible domain D is drawn in Figure 4.

We recall that the energy functional J is given by

(3.6) J(y0) =

∫ x∗

0
|∂xu|2 dx+ η

∫ 1

y0

|∂yw|2 dy

with a parameter η > 0. Let α ∈ R be fixed. The shape optimization
problem consists in finding the reference point y0 that minimizes

(3.7) min
y0∈Iα

J(y0).

Using the explicit formula (3.1)–(3.4), we obtain

(3.8) J(y0) =
(

2− η

α

) (x∗)3

24
− η

3α
c0

3
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Figure 5. The energy functional y0 7→ J(y0)

where x∗ and c0 are given by (3.3) and (3.4). This formula provides a fully
explicit expression of the functional J with y0. The derivative J ′(y0) of the
functional with respect to y0 can be computed exactly as well as the optimal
value y∗0 that minimizes J . It can be checked that this direct calculation
coincides with the general formula (2.94),(2.95) given in Proposition 2.6. In
the sequel, we do not give this expression for J ′(y0), we only consider a
numerical example of an optimal solution.

Numerical example. We choose α = 0.4 and η = 0.442. The energy
functional J(y0) is depicted on Figure 5. The minimum of J(y0) is reached
at y∗0 ' 0.6868. The corresponding optimal point x∗ is equal to x∗ ' 0.8376.
The optimal solutions u and w are drawn on Figure 6. We point out that the
functional J has a nontrivial behaviour with respect to y0, in particular J is
a nonconvex function of y0. This indicates the difficulty and the pertinence
of the two-dimensional shape optimization problem (1.22),(1.23) introduced
at the beginning of this paper.

4. Conclusion

We introduced a shape optimization problem for a fluid-structure interac-
tion system coupling the Stokes equations with the linear elasticity equation.
We have shown that a shape optimization problem for a simplified model
in one spatial dimension is well-posed and we are able to fully characterize
the shape derivatives associated to this one-dimensional free-boundary prob-
lem. All the (variational) technical tools we have employed for the study of
the one-dimensional free-boundary problem have been made in the spirit to
tackle and solve the two-dimensional shape optimization problem presented
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Figure 6. The optimal solutions u and w.

in the introduction of this paper. We aim to extend our 1d technics to the
two dimensional problem for getting a rigorous statement of the 2d shape
derivatives.
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