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Abstract— In this paper, we propose to compare different meth-
ods for tumor segmentation in positron emission tomography
(PET) images. We first propose to tackle this problem under
the umbrella of shape optimization and 3D deformable models.
Indeed, 2D active contours have been widely investigated in the
literature but these techniques do not take advantage of 3D
informations. On the one hand, we use the well-known model of
Chan and Vese. On the other hand we use a criterion based on
parametric probabilities which allows us to test the assumption
of Poisson distribution of the intensity in such images. Both will
be compared to their 2D equivalent and to an improved random-
walker algorithm. For this comparison, we use a set of simulated,
phantom and real sequences with a known ground-truth and
compute the corresponding Dice Coefficients. We also give some
examples of 2D and 3D segmentation results.

Keywords— Biomedical imaging, Active contours, Deformable
models, level sets, PET imaging, Random walk, Poisson law,
segmentation.

I. INTRODUCTION

The current work is devoted to the segmentation of tumors
regions in Positron Emission Tomography (PET) images.
Indeed such medical images are powerful for cancer tumors
visualization by detecting photons from a radiotracer localized
in abnormals cells. However the conception of automatic
segmentation methods in these images is difficult due to
different factors and notably a high level of noise, a low
contrast and unclear boundaries. The patient breathing can
lead to motion artifacts and noise and there is also a large
variability in shape or even in texture for the tumors to be
segmented. A wide variety of image segmentation techniques
have been proposed up to now and a large review of these
numerous methods used to segment PET images is available
in [1].

In this paper, due to the shape variability of tumors, we
rather decide to give a new insight on region-based deformable
models (active contours or surfaces) for the segmentation of
tumors in PET images. Active contours have been introduced
by Kass, Witkin and Terzopoulos [2] and later by Caselles
et al [3] and were originally boundary methods. Due to the

low contrast and unclear boundaries of PET images, we focus
on region-based models where region functionals are used
in addition to boundary functionals. Such powerful methods
have appeared later. Introduced by [4] and [5], they have been
further developed in [6], [7], [8]. In [9], [10], [11], [12], [13],
the authors propose to take advantage of the minimization
of statistical functionals that involve parametric pdfs of the
exponential family in order to better modelize the distribution
of the intensity in the regions to segment. In PET images, the
distribution can be assimilated to a Poisson law because it is
based on the detection of Photons in the tumoral zone. In order
to verify this assumption, we propose to compute the evolution
equation of a deformable model that will minimize the anti-
log-likelihood function of a Poisson distribution. We compare
it to the classical Chan and Vese method [7] which appears to
be usually very robust for segmentation. We also propose to
take benefit of a 3D segmentation model based on the level set
method [14]. We compare the 3D segmentation to the result
obtained using 2D segmentations of each slice. Moreover, we
also compare these methods to two random-walker models,
the classical one from [15] and the Locally Adaptive Random
Walk (LARW) from [16]. The comparison of all these methods
is performed on the basis of a strong database that includes
simulated images, real phantom acquisitions and clinical data.
The ground truth delineations provided with this database
allow us to compute the Dice Coefficient as well as sensitivity
and specificity parameters in order to objectively compare the
different assumptions, implementations or methods.

This paper is organized as follows: we briefly remind
the principle of region-based deformable models and we
explain both Chan and Vese and Poisson model in Section 2.
The random-walker model used as a comparison with active
contours is presented in Section 3. Experimental results are
discussed in Section 4. We finally conclude and give some
perspectives.



II. ACTIVE CONTOURS

Let U be a class of domains (open, regular bounded sets, i.e.
C?) of R (n = 2 or 3), and €2; an element of I/ of boundary
09);. The image domain is denoted by ;. A region-based
segmentation problem aims at finding a partition of {2; in 2
regions {Q;,, Qoyt } that minimizes the following criterion:

E(Qwu Qout; F) = Jr(an) + Jr(Qout) + OéJreg(F)7 (1)

where J,.(£2;) describes the homogeneity of the region €;
and will be further developed in sections A and B according
to the underlying distribution model. The term I' denotes the
common interface between the two regions. The energy term
Jreg 18 a regularization term, balanced with a positive real
parameter ¢, which is chosen as J,., = fF da where da
represents an area element. In 2D, this term corresponds to the
minimization of the curve length and in 3D to the minimization
of the surface area. This term will help us to provide a smooth
curve or surface to delineate the tumor.

In order to minimize such a criterion, we propose to
classically perform a shape gradient descent by computing the
evolution equation of an active contour using shape derivation
tools. The interested reader may refer to [17] [18] [19] for
further details in shape derivation methods and active contours
based on shape gradients. Formally, from the computed shape
derivatives, we can deduce the evolution equation that will
drive the active contour towards a minimum of the criterion
in the following general form:

or'(p,7)
or
with v(z, ) the velocity of the active contour (in 2D)
or surface (in 3D) deduced from the shape derivatives. The
velocity is directed along the unit inward normal NV of 9. The
active contour evolves from an initial curve I'(7 = 0) = T
In the equation (2), we have = = I'(p, 7).

=v(z,Q)N(x) 2)

Let us now detail the two main criteria that we have
tested for PET segmentation and the corresponding evolution
equations.

A. THE CHAN-VESE MODEL

When looking for an homogeneous region, a classic and
robust model was proposed in [7] by Chan and Vese, originally
inspired by the Mumford-Shah functional [20]. This criterion
implies the use of the mean value of the intensity inside the
region €);, denoted by p;. We then search for the partition
of the image which minimizes the square error between the
intensity and the mean value of the region inside each region
by using the following region descriptor .J, in criterion (1):

Jr () = / (I(x) — pi(S%))%dx  with i=1inorout (3)
Q;
The shape derivative of this criterion can be found in [18]
[19] and leads to the following velocity term in equation (2):

v(xaQiT‘HQOut) = (I - lu‘ln)z - (I - .u‘OUi)Q + ak, (4)

where « is the curvature of I'. This model is implicitely based
on the assumption of a Gaussian model with a fixed variance
and a piece-wise constant image model.

B. THE POISSON MODEL

Besides the well-known model of Chan and Vese, we
propose to investigate a model based on a Poisson law. Indeed,
our assumption lies on the Poisson nature of photon-counting
in PET images as first investigated by [21] for segmentation.
We focus here on the minimization of the anti-log likelihood
classically used by [6], [22] and [11], [12]. In that case, the
region based term is the following :

1) = — / log p(1(x), \i)dz, 5)
Q;

with p the Poisson distribution of the intensity [ inside the
region €); indexed with the parameter \; (i = in or out), such
that:

T A ) =2 =

We can calculate the maximum likelihood estimate of the
parameter \; as follows:

- 1
Aipv = o] /fh I(x)dz. (6)

The log-likelihood is then:

~

log (p(](:c), )/\\’LMV) = I(x)log ()\iMV) - S\\il\{V — log(I(z)!),

which leads to the following region-based term:

T() = Raavlo] + [ log(I(@))da

T @)
—log ()\in) /Q I(z)dx.

We then propose to compute the shape derivative of the
previous region-based term which leads to the following
theorem:

Theorem 1: The shape derivative in the direction V' of the

functional (5), with p the pdf of Poisson distribution and )Tz MV
the parameter of this distribution estimated by the maximum
likelihood estimate, is

< JU(Q),V >= —/

o0

vi(%x,Q) < V,N > da

where v;(x,Q) = (—I(x) log(Ninrv) + Niary + log(I(m)!)).

The complete proof is given in Appendix. Note that a more
general proof for shape derivatives of statistical region-based
terms using pdfs of the exponential family can be found
in [12]. The proof for the Poisson law is here given for
completeness.

Using the fact that the two regions €2, and ,,: share the
same interface with opposite normals, we can get our velocity
term v(x, Qip, Qout) for equation (2) :

0(@, Qiny Qout) = — 1 10g(Kinyry) + Ainry ®)

+ I log()\outMV) - Aoutl\/”/ + ak.



C. IMPLEMENTATION OF THE ACTIVE CONTOUR

As far as the numerical implementation is concerned, we
use the level set method introduced in [14]. The key idea is to
introduce an auxiliary function U(x, 7) such that I'(7) is the
zero level set of U. The function U is often chosen to be the
signed distance function of I'(7). The evolution equation then
becomes:

oU (x,T)

or

This method is accurate and allows to automatically handle
the topological changes of the initial curve. It can be used in
2D and 3D. For the 3D implementation, « is chosen as the
mean curvature. The 3D implementation is interesting in the
case of PET sequences since it allows to introduce automat-
ically a global 3D regularization term. In the experimental
results, we show that the 3D segmentation allows a better
segmentation of tumors than the 2D segmentation applied to
each slice separately.

= U(X7 (21'77,7g2out)|vlj(x7 T)| (9)

III. THE RANDOM-WALKER MODEL

In this section, we first explain the classical random walk
algorithm [15] and then its extension for PET segmenta-
tion known as the LARW (Locally Adaptive Random Walk)
method [16].

A. CLASSICAL RANDOM WALK (RW)

In this model, an image is considered like a graph G =
(V, E). Each voxel is associated with a node of the graph
and edges link adjacent voxels. This method requires a small
number, called seeds, of labeled voxels as an initial step. The
key idea behind this method is to imagine a random walker
starting from each unlabeled voxels. This random-walker has
a certain probability to first arrive at a specific seed. The label
is then chosen as the same label as the seed with the maximum
probability of arrival of the random-walker. A common weight
used for edges is:

wi; = exp [—B(g: — 9;)°] , (10)

where both g; and g; are the image intensity values at points
i and j. The term [ denotes a free parameter depending on
the application.

We define the Laplacian matrix of the graph by

d; ifi=7,
Lij = ¢ —w;;  if v; et v; are adjacent nodes,
0 otherwise.

with d; = > w;; for each node.
This matrix can be rearranged with labeled and unlabeled

voxels as follows:
;_(Lu B
“\BT Ly )’

where M and U correspond to labeled and unlabeled pixels.
It has been shown in [15] that the solution of the random-walk
for a specific label minimizes the following energy:

1 1
D[m} = 51‘TL$ = 5 Z wi]‘(l’i — CCJ‘)Q,

e;jEE

which leads to the linear system:

LuX =-B"M. an

B. LOCALLY ADAPTIVE RANDOM WALK (LARW)

An improved version of the classical random-walker al-
gorithm was proposed in [16]. The proposed segmentation
method initializes automatically seeds in tumor voxels using
Fuzzy-C Means (FCM), and then delineates the tumor volume
using the improved RW. They made two major changes to
the algorithm described above. First, they changed the weight
of edges to take care of the spatial distance between voxels.
Equation (10) is then modified to:

—B(gi — 95)°
hij
where the h;; term is the spatial distance between voxels i
and j.
They also proposed to strengthen the grouping of voxels
having similar intensity by adding the likelihood of probability
to each class (tumor and non tumor). Supposing each class

k having a Gaussian distribution, their observation likelihood
function can be written as:

I oK) = L ex {
Prld; ke, Ok oe/2n p

where p and o are respectively the mean and the variance
of the class k. The matrix BT is then modified

B’ = p..BT

Wiy = exp [ (12)

- - Mk)? (13)

2
20}

which leads to the new linear system to solve

LyX =-B'M (14)

the complete algorithm is detailed in [16].

IV. EXPERIMENTAL RESULTS
A. DATA SET AND METHOD OF EVALUATION

In order to test the different algorithms, we use the training
data set provided by the MICCAI PETSEG Challenge [23].
Following recommendations by the TG2111 [24], this evalua-
tion dataset consists of a mixture of numerical simulations with
realistic uptake distributions and a variety of tumor shapes,
physical phantoms acquisitions, and real clinical images [25],
[26]. Simulated images consist of realistic tumors embedded
within numerical phantoms, with corresponding SIMSET [27]
or GATE [28], [29] simulated data to better account for the
physics of PET acquisition. Voxel-by-voxel ground-truth is
available from the simulations. The physical phantoms are
zeolites with different sizes and shapes incorporated in an
anthropomorphic phantom, with repeated acquisitions of the
same zeolites [30]. The surrogate of truth for these images is
the corresponding high resolution CT, thresholded as to obtain
the exact known volume of the zeolite. Clinical images are
lung [31], [32] and head and neck [33] tumors, with either
histopathology-based contours [31], [33] or a consensus of
several manual delineations by experts [32] obtained with
STAPLE [34] to serve as a surrogate of truth.



Image sequences are then divided into three parts.

1) Sequences 1 to 6 : simulated images (GATE and SIM-

SET).
2) Sequences 7 to 15 : real phantom acquisitions
3) Sequences 16 to 19 : patient clinical data

The different images resolutions are detailed in Table 1.

Table 1. Resolutions of the different sequences of the PETSEG data set

Sequence Name Dimensions
1 Simu_2_TEP_4 27x35x23
2 Simu_2_TEP_1 15x15x15
3 Simu_2_TEP_2 17x18x15
4 Simu_2_TEP_3 17x23x18
5 Simu_1_PET2 32x26x34
6 Simu_I_PET1 32x26x34
7 phantom_1_PET2 22x17x17
8 phantom_1 _PET3 22x17x17
9 phantom_1_PET1 22x17x17
10 phantom_2_PET3 13x14x12
11 phantom_2_PET1 13x14x12
12 phantom_2_PET2 13x14x12
13 phantom_3_PET3 21x21x13
14 phantom_3_PET2 21x21x13
15 phantom_3_PET1 21x21x13
16 clinical 3_PET 28x23x28
17 clinical 2 4mm_PET 13x14x14
18 clinical 2 2mm_PET 25x25x23
19 clinical_1_PET 19x18x15

The different segmentation results from the above algo-
rithms were compared to the provided ground-truth using
the Dice Similarity Coefficient which measures the extent of
spatial overlap between two binary sequences X and Y and
is expressed as follows:

_2lXNY]

XT+1Y]

where | X| stands for the area of X.

We also use the sensitivity and the specificity coefficients.
Sensitivity, also called the true positive rate (TPR), is the
proportion of the tumor correctly identified by the algorithm:
Number of true positives

Size of the tumor

DC 15)

(16)

Sensitivity =
Specificity, also called the true negative rate (TNR), is the
proportion of non-tumor correctly identified as such:

Number of true negatives
Size of the non-tumor

a7

Specificity =

B. 2D AND 3D COMPARISON

For this experiment, we perform 2D and 3D segmentations
using the level set approach detailed in section II with both
the Chan-Vese and the Poisson models. Then, we compute the
Dice Similarity Coefficient for each slice of each sequence
which allows us to compare 2D and 3D segmentations for a
same model. In Fig. 1, we trace the obtained DC values for
each segmented slice of the first sequence using the Chan-Vese
model. The tumor is located between the slices 5 to 20 which
corresponds to the numbers 1 to 16 in the Fig.1 .
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Fig. 1. 2D and 3D segmentation comparison on a simulated image sequence
(sequence 1). The graph represents the values of the DC coefficient computed
for each 2D slice (from 1 to 16) between the expert contour and the resulting
contour of the 2D segmentation method (in blue) and the 3D one (in red).

Experimental results, not reported here for space reasons,
are very similar for other sequences and Poisson model. It
clearly appears that considering the whole 3D information
improves segmentation results especially at the beginning and
the end of the 3D sequences when tumors tend to be less
visible and very small.

e

(a)

L
w

e
d (e

Fig. 2. a. PET image, b. Ground-Truth, c. Initial contour, d. Final
contour in red for 2D Chan-Vese segmentation (smoothing coefficient
a = 1), e. 2D segmentation comparison with ground-truth (false
positive in red and false negative in green), f. 3D segmentation
comparison with ground-truth (smoothing coefficient o« = 1, false
positive in red and false negative in green).

®

In the example given in Fig.2, we can see that the 2D
segmentation shows a lot of false positives. Indeed, it takes
into account the lower left of the image which is of similar
intensity, but not part of the tumor. The effect is clearly less
visible in 3D.

C. METHODS COMPARISON

For this second experiment, we propose to compare the
different methods presented in this paper. We limit ourselves
with 3D segmentation since we have seen in the previous



section that 3D segmentation outperforms 2D segmentation
in all cases. For the random-walker method, we make two
versions of the algorithm. The first one is the classical random-
walker algorithm [15] described briefly in section IIl. The
second one is the Locally Adaptive Random-Walk version
from [16] with minor changes (auto-initialization of seed’s
background like the one’s from the tumor and unsystematic
median-filtering).

First of all, in Fig.3 and Fig. 4, we give two examples of
the different segmentation results and corresponding contours
obtained on two extracted slices (one from the simulated set
and one from the clinical set). For each method, we compare
the mask to the ground truth (expert segmentation) and we
show in red the false positive points and in green the false
negative points. We can observe that both methods are able
to segment accurately the tumor from the simulated set (Fig.
3). In the case of more complicated clinical data with non
homogeneous tumors (see Fig. 4), the different automatic
methods are less accurate. In this case the Poisson model leads
to less false negative but more false positive than the Chan
and Vese methods. For such images, a pre-processing such as
denoising or contrast enhancement could be valuable.

(d) (e)

Fig. 3. a. PET image from the simulated set with the different
contours (in yellow the ground truth, in blue the 3D Chan and Vese
segmentation, in red the 3D Poisson segmentation and in green the
LARW segmentation). We also display the masks of the ground
truth in b., of the Chan and Vese segmentation in c., of the Poisson
segmentation in d. and of the LARW segmentation in e. For the
different methods, the false positives are shown in red and the false
negative in green.

Let us now consider the computation of the DC (Dice
Coefficient) between the different methods and the ground
truth for all the sequences of the training data-set (Table 2).

Considering these results it appears that the assumption of

(b) (c)

d) (e

Fig. 4. a. PET image from the clinical set with the different
contours (in yellow the ground truth, in blue the 3D Chan and Vese
segmentation, in red the 3D Poisson segmentation and in green the
LARW segmentation). We also display the masks of the ground
truth in b., of the Chan and Vese segmentation in c., of the Poisson
segmentation in d. and of the LARW segmentation in e. For the
different methods, the false positives are shown in red and the false
negative in green.

Poisson distribution in PET images is relatively true especially
for simulated images (sequences 1 to 6). In the case of real
phantom acquisitions (sequences 7 to 15), the method is less
robust than the Chan and Vese method. Indeed the piece-wise
constant model assumed by the Chan-Vese method seems more
robust in this case due to the fact that the phantom has a
constant intensity. As far as clinical data are concerned, the
Chan-Vese model and Poisson model seem quite equivalent.
The Chan and Vese method is less accurate in some cases
(sequences 16 and 18) due to the low contrast and more
accurate in sequences 17 and 19. In fact the real distribution
model of the intensity in these images is probably a mixture
between a Poisson law and a Gaussian model due to the
reconstruction process and also to the artifacts encountered in
acquisition methods (patient breathing, low resolution, camera
noise model). Globally, for all the different sequences, the
Chan and Vese method is more robust.

When computing the specificity and sensitivity coefficients
(see Table 3), we can observe that the Poisson method of-
fers very good sensitivity coefficients but lowest specificity
values. On the contrary, the LARW method shows very good
specificity values with lower sensitivity values. The Chan and
Vese method offers a good compromise between sensitivity
and specificity coefficients.

The 3D Chan-Vese and LARW methods are the most robust
algorithms and can perform great segmentation in many kind



Table 2. Comparison of Dice coefficients of the different methods.

Sequence | Chan-Vese 3D | Poisson 3D RW LARW
1 0.9040 0.8489 0.7783 | 0.8679
2 0.9448 0.9441 0.9061 | 0.8764
3 0.8674 0.8766 0.7813 | 0.8121
4 0.8974 0.9764 0.8357 | 0.8017
5 0.8789 0.8970 0.7491 | 0.8702
6 0.9012 0.8924 0.7283 | 0.8747
7 0.8221 0.7791 0.8070 | 0.7747
8 0.8082 0.7824 0.8030 | 0.7445
9 0.8025 0.7864 0.8057 | 0.7461
10 0.7600 0.5112 0.8105 | 0.7972
11 0.7614 0.4908 0.7122 | 0.8133
12 0.7415 0.5229 0.7513 | 0.7778
13 0.8235 0.5100 0.8192 | 0.8435
14 0.7958 0.4946 0.8029 | 0.8584
15 0.8014 0.5122 0.8346 | 0.8509
16 0.8492 0.8792 0.8516 | 0.8469
17 0.7630 0.7323 0.7301 | 0.6742
18 0.7629 0.7688 0.6907 | 0.7171
19 0.6444 0.5714 0.5570 | 0.6743

Mean 0.8158 0.7251 0.7766 | 0.8014

Table 3. Comparison of Sensitivity (TPR) and Specificity (TNR) parameters.

Chan-Vese 3D Poisson 3D LARW

Sequence TPR TNR TPR TNR TPR TNR
1 0.8431 | 0.9927 | 0.9770 | 0.8929 | 0.7967 | 0.9870

2 0.9032 | 0.9990 | 0.9912 | 0.9878 | 0.7801 1
3 0.8607 | 0.9770 | 0.9694 | 0.9551 | 0.8036 | 0.9675
4 0.8139 1 0.9581 | 0.9992 | 0.6696 | 0.9998
5 0.8053 | 0.9965 | 0.9268 | 0.9823 | 0.8609 | 0.9851
6 0.8750 | 0.9915 | 0.9670 | 0.9746 | 0.8901 | 0.9816
7 0.7428 | 0.9930 | 0.9357 | 0.9494 | 0.6608 | 0.9951
8 0.7283 | 0.9920 | 0.9164 | 0.9538 | 0.6254 | 0.9941
9 0.7154 | 0.9927 | 0.9084 | 0.9564 | 0.6190 | 0.9956
10 0.95 0.9791 1 0.9273 | 0.7125 | 0.9971
11 0.9375 0.98 1 0.9211 | 0.7625 | 0.9957
12 0.95 0.9767 1 0.9306 0.7 0.9962
13 0.9739 | 0.9920 1 0.9607 | 0.8435 | 0.9968
14 0.9826 0.99 1 0.9582 | 0.8435 | 0.9975
15 0.9826 | 0.9904 0.9610 | 0.8435 0.972
16 0.7551 | 0.9949 | 0.9625 | 0.9490 | 0.8071 | 0.9778
17 0.7523 | 0.9799 | 0.8692 | 0.9537 | 0.5607 | 0.9906
18 0.7178 | 0.9765 | 0.8442 | 0.9495 | 0.6596 | 0.9741
19 0.7973 | 0.9466 | 0.8640 | 0.9085 | 0.7867 | 0.9569
Mean 0.9460 | 0.9863 | 0.9521 | 0.9511 | 0.7487 | 0.9874

of images. We can observe that Chan-Vese method tends to
sub-segment tumors and it is worth noting that Chan-Vese
segmentation is often a subset of Poisson segmentation. An
interesting fact for RW and LARW is the importance of the
initialization of seeds. The more the better is not necessary true
here. If we have more information on where the background
is exactly, and made no change in tumor’s seeds, it will
necessarily sub-segment the previous segmentation because
non-labeled voxels have more probability to reach background
then. In a general way, we have to choose correctly the amount
of seeds for background and tumor. Here, we choose them in
order to obtain the best results. More detailed experimental
results can be found in [16].

V. CONCLUSION AND PERSPECTIVES

In this paper, we propose to investigate the use of 2D and
3D deformable models for PET images segmentation. These

deformable models are currently based on the minimization
of statistical criteria and are implemented using the level set
method. In one of the tested criterion, we take into account the
Poisson distribution of PET images. Our results show a great
improvement of the segmentation from 2D to 3D and validate
the implication of Poisson law in PET images. However, the
Chan-Vese model (implicitely based on the assumption of
a Gaussian model) still remains the most robust algorithm
and gives comparable results to the LARW method [16]. Our
ongoing research is now directed towards two main challenges.
First of all, the use of an improved statistical model based on
a mixture of a Poisson and a Gaussian law could be valuable.
Secondly, an intelligent fusion of the different segmentation
results may also be investigated in order to improve the
segmentation results.
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APPENDIX
PROOF OF THEOREM 1

In the case of Poisson distribution, the region-based term
that we want to derive according to the domain 2 is the
following:

Jr(Q) = f/Qlogp(I(:r),)\)d:r
= XMV|Q\ +/Qlog(](x)!)da: —log (/)\\]MV) /Q I(x)dx

We have to compute the shape derivative of J,.(£2). For this
purpose, we remind here the following fundamental theorem
which establishes a relation between the shape derivative of
region-based terms of the form J,.(Q) = [, k(z, Q)dz:

Theorem 2: The shape derivative < J/.(Q2),V > of the
functional J,.(Q) = [, k(x, Q)dz in the direction V' is

< JN(Q),V >= / K (2,9, V)dx — k(z, Q) <V -N>da
Q o0

where k' is the shape derivative of k. The term N denotes

the unit inward normal to 9 and da its area element (in R2,

we have da = ds where s stands for the arc length).

Using this theorem and the equation of the Maximum Like-
lihood estimate for the Poisson parameter A given in (6), we
find:

<JNQ),V > = —/ log(I(z)!) <V - N >da
o0

+|Q|<XJWV7V>_/):IVIV/ <V-N>da

o0

<Amv,V > ~
- #/ I(z)dz + log ()\Mv)/
Amv Q a0

- /aﬂ (108 (p (1(2). Aarv) ) ) < V. N > da

-~ I
+ < XNuv,V>Q1- ———
| Anrv

I(z)da



ﬁre I=[,I(x)dx and < Ny, V >= *ﬁ Joan(I(x) —
)\Mv)<V'N>da.

Since (1

s

— 7) = 0, we can then conclude that :
12 Avv

< JU(Q),V >= /

log (p(l($)7}\\Mv)) <V -N >da
90

where p(I(x), Ayrv) is the Poisson pdf model.
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