
HAL Id: hal-01449413
https://hal.science/hal-01449413v1

Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unfolding Method for Diffusion Process in a Rarefied
Binary Structure

Georges Griso, Louiza Merzougui

To cite this version:
Georges Griso, Louiza Merzougui. Unfolding Method for Diffusion Process in a Rarefied Binary
Structure. Applicable Analysis, 2017. �hal-01449413�

https://hal.science/hal-01449413v1
https://hal.archives-ouvertes.fr


Unfolding Method for Diffusion Process in a
Rarefied Binary Structure.

Georges Grisoa, Louiza Merzouguib

a Laboratoire J.-L. Lions–CNRS, Boı̂te courrier 187, Université Pierre et Marie Curie,
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Abstract

The aim of this paper is to study the homogenization of a diffusion process which
takes place in a binary structure made by an ambient connected phase surrounding the
suspensions (very small particles of diameter of order εδ) distributed in an ε-periodic
network. Using the periodic unfolding method introduced in [4], in the critical case,
when ε and δ go to 0 we determine the asymptotic behavior of the solution of an evolution
problem.
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1 Introduction

This article is devoted to describing the asymptotic behavior of an evolution problem
which governs the diffusion process of a rarefied binary structure. The problem is given
by (4.1) with assumptions (4.2)-(4.3) and (5.7). In this problem, the first constant aε,δ repre-
sents the mass density of the suspensions while the second one bε,δ is their diffusivity. The
parameter δ is the size order of the suspensions in the reference cell Y and ε is the periodicity
length. The critical case lim(ε,δ)→(0,0) δ

N−2/ε2 ∈ (0,+∞) is considered.
This problem was first treated in a paper of Bentalha and al. (see [6]) in 2006 . In this ar-
ticle, the authors investigate the case of a diffusivity bε,δ going to infinity, the suspensions
being spheres. They use the control zone method. One year later, Gruais (see [7]) study the
stationary problem making the assumption lim(ε,δ)→(0,0) bε,δ = lim(ε,δ)→(0,0) δ

Naε,δ = 1. She
use a multiple scale method. The same year, using again the control zone method Gruais and
Poliševski find the limit problem in the case lim(ε,δ)→(0,0) bε,δ < +∞ (see [8]) .
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In the present paper, we revisit the evolution problem (4.1) with the periodic unfolding
method introduced in [4], but we focus our attention in the most interesting case: namely
the critical case with lim(ε,δ)→(0,0) bε,δ ∈ (0,+∞) and lim(ε,δ)→(0,0) δ

Naε,δ ∈ (0,+∞) (see
assumptions (5.7)).

The periodic unfolding method is a general tool to study periodic homogenization. Nowa-
days, this method is used in a lot of new papers since it is a simple way to replace the two-scale
convergence by a convergence in a fixed domain: via Tε in Ω × Y (where Y is the reference
periodic cell) or via Tε,δ in Ω× RN .

The paper is organized as follows. Section 2 contains the main notations regarding the
structure. In Section 3, we recall the definitions of some unfolding operators (Tε, Tε,δ and
Mε) and we also recall the main results concerning Tε,δ (Lemmas 3.1 and 3.2).
In Section 4, we present the evolution problem in its variational formulation (4.4). Then, the
total energy estimate (4.5) allows to introduce the assumptions on the data (4.6)-(4.7)-(5.8).
In Section 5, transforming the solution of the evolution problem with the operator Tε,δ leads
to the assumptions on the two small parameters ε and δ and on aε,δ, bε,δ (see (5.7)).
Theorem (6.1) in Section 6 gives the unfolded limit problem. Here, it is worth to note that for
the first time the limit evolution problem in its variational form is first posed in Ω× RN .

In the last section, using the Laplace transform we give the homogenized limit problem
(Theorem 7.2). The limit equation differs from the initial one (4.1) regarding the convolution
term, this new term accounting for the memory effects is here in fact a ”strange term” (see
[2]).

2 Notations

Let Ω and B be two bounded domains in RN with Lipschitz boundary.
Denote

• Y = (−1/2, 1/2)N the reference cell,

• ΩT = (0, T )× Ω,

• Yδ = Y \ δB,

• Ξε =
{
ξ ∈ ZZN|ε(ξ + Y) ⊂ Ω

}
,

• Ω̂ε = interior
{⋃

ξ∈Ξε
ε(ξ + Y )

}
, Λε = Ω \ Ω̂ε,

• Bε,δ = Ω ∩
⋃
ξ∈Ξε

ε(ξ + δB),

• Ω∗ε,δ = Ω \Bε,δ,

• 1Ω∗ε,δ
is the characteristic function of the set Ω∗ε,δ.
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Figure 1. Integer and fractional part of z.

For a.e z ∈ RN , one has
z = [z] + {z}

where [z] ∈ ZZN is the integer part of z while {z} ∈ Y denotes the fractional part of z.

Ωԑ

ʌԑ

Figure 2. The sets Ω, Ω̂ε and Λε.

3 Some recalls on the unfolding operators Tε,Mε and Tε,δ
• For φ measurable function on Ω, the unfolding operator Tε is defined by

Tε(φ)(x, y) =

{
φ(ε
[x
ε

]
+ εy) (x, y) ∈ Ω̂ε × Y,

0 (x, y) ∈ Λε × Y.
(3.1)

The properties of Tε are given in [4].

3



• The local average operatorMε : L1(Ω) −→ L1(Ω) is defined as follows:

∀φ ∈ L1(Ω), Mε(φ)(x) =

∫
Y

Tε(φ)(x, y)dy, for a.e. x ∈ Ω.

For any sequence {φε}ε such that φε ⇀ φ weakly in L2(Ω), we have

Mε(φε) ⇀ φ weakly in L2(Ω). (3.2)

• For φ measurable function on Ω, the unfolding operator Tε,δ is defined by

Tε,δ(φ)(x, z) =

{
Tε(φ)(x, δz) if (x, z) ∈ Ω̂ε ×

1

δ
Y,

0 otherwise.
(3.3)

Ω𝜀, 𝛿
*

Y

𝐵

𝛿𝐵

Figure 3. The sets Ω∗ε,δ and B.

Below, we recall the main properties of the operator Tε,δ (see Theorem 2.11 of [5]).

Lemma 3.1. The operator Tε,δ is linear and continuous from Lp(Ω) into Lp(Ω × RN), p ∈
[1,+∞].
1. For any measurable functions ψ, φ one has Tε,δ(ψφ) = Tε,δ(ψ)Tε,δ(φ).
2. For any φ in L1(Ω)

δN
∫

Ω×RN
Tε,δ(φ)(x, z)dxdz =

∫
Ω×Y
Tε(φ)(x, y)dxdy =

∫
Ω̂ε

φdx,∣∣∣ ∫
Ω

φ(x) dx− δN
∫

Ω×RN
Tε,δ(φ)(x, z)dxdz

∣∣∣ ≤ ∫
Λε

|φ| dx.

3. For any φ ∈ L2(Ω)

‖Tε,δ(φ)‖2
L2(Ω×RN ) ≤

1

δN
‖φ‖2

L2(Ω), ‖Tε,δ(φ)‖2
L2(Ω×B) ≤

1

δN
‖φ‖2

L2(Bε,δ)
. (3.4)
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4. For any φ in H1(Ω)

Tε,δ(∇φ) =
1

εδ
∇z

(
Tε,δ(φ)

)
in Ω× 1

δ
Y (3.5)

and

‖∇z(Tε,δ(φ))‖2
L2(Ω×RN ) ≤

ε2

δN−2
‖∇φ‖2

L2(Ω),

‖∇z(Tε,δ(φ))‖2
L2(Ω×B) ≤

ε2

δN−2
‖∇φ‖2

L2(Bε,δ)
.

(3.6)

5. Denote 2∗
.
=

2N

N − 2
, N ≥ 3, the Sobolev exponent associated to 2. For any φ in H1(Ω)

‖Tε,δ(φ−Mε(φ))‖2
L2(Ω;L2∗ (RN )) ≤ C

ε2

δN−2
‖∇φ‖2

L2(Ω). (3.7)

Lemma 3.2. For any w ∈ C(Ω)

Tε,δ(w) −→ w strongly in L2(Ω;L2
loc(RN)). (3.8)

Proof. Let O be a bounded open subset of RN . There exists R > 0 suth that O ⊂ B(O,R)

where B(O,R) is the ball of radius R and center O. For δ small enoughO ⊂ B(0, R) ⊂ 1

δ
Y .

Hence ∫
Ω×O
|Tε,δ(w)(x, z)− w(x)|2dxdz

=

∫
Λε×O

|w(x)|2dxdz +

∫
Ω̂ε×O

∣∣∣w(ε[x
ε

]
+ εδz

)
− w(x)

∣∣∣2dxdz
≤ |O|

∫
Λε

|w(x)|2dx+ |Ω×O| sup
(x,z)∈Ω×O

∣∣∣w(ε[x
ε

]
+ εδz

)
− w(x)

∣∣∣2.
Let $ be the modulus of continuity of w∫

Ω×O
|Tε,δ(w)(x, z)− w(x)|2dxdz ≤ C

(
‖w‖2

L∞(Ω)|Λε|+$(ε+ εδR)2
)
.

Passing to the limit gives (3.8).

4 The evolution problem

We consider the evolution problem which governs the diffusion process in our binary
mixture 

Find uε,δ suth that

ρε,δ
duε,δ
dt
− divx

(
kε,δ∇xuε,δ

)
= fε,δ in ΩT ,

uε,δ = 0 on ∂Ω× (0, T ),

uε,δ(0) = u0
ε,δ on Ω× {0},

(4.1)
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where fε,δ ∈ L2(ΩT ) and

ρε,δ =

{
1 in Ω∗ε,δ,

aε,δ in Bε,δ,
kε,δ =

{
1 in Ω∗ε,δ,

bε,δ in Bε,δ.
(4.2)

Here aε,δ and bε,δ are strictly positive constants bounded from below independently of ε and
δ. Hence, there exists c0 > 0 such that for any (ε, δ)

Assumption A1.
aε,δ ≥ c0, bε,δ ≥ c0. (4.3)

The first constant aε,δ represents the density of mass of the suspensions while the second one
is the diffusivity of suspensions.

Lemma 4.1. Problem (4.1) has the following variational formulation:

Find uε,δ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), ρε,δuε,δ ∈ H1(0, T ;H−1(Ω)),

< ρε,δ
duε,δ
dt

(t), w >H−1(Ω),H1
0 (Ω) +

∫
Ω

kε,δ(x)∇xuε,δ(t, x)∇xw(x)dx

=

∫
Ω

fε,δ(t, x)w(x)dx for a.e. t ∈ (0, T ), ∀w ∈ H1
0 (Ω),

uε,δ(0) = u0
ε,δ.

(4.4)

Furthermore uε,δ satisfies

1

2

∫
Ω

ρε,δ(x)|uε,δ(t, x)|2dx+

∫ t

0

∫
Ω

kε,δ(x)|∇xuε,δ(s, x)|2dsdx

=

∫ t

0

∫
Ω

fε,δ(s, x)uε,δ(s, x)dsdx+
1

2

∫
Ω

ρε,δ(x)|u0
ε,δ(x)|2dx

for all t ∈ [0, T ]. (4.5)

Proof. The existence and uniqueness of the solution of Problem (4.4) is given by the Faedo-
Galerkin’s method (see e.g. [3] or [9]) which also gives the equality (4.5).

Assumption A2. We assume that there exists a constant C0, which does not depend on ε and
δ, such that1 ∫

Ω

ρε,δ|u0
ε,δ(x)|2dx+

∫
ΩT

1

ρε,δ
|fε,δ(t, x)|2dtdx ≤ C0. (4.6)

As a consequence of the above assumptions (4.3)1 and (4.6) the sequences {u0
ε,δ}, {fε,δ1Ω∗ε,δ

}
are bounded respectively in L2(Ω), L2(ΩT ).

Assumption A3. We assume that there exist u0 ∈ L2(Ω) and f ∈ L2(ΩT ) such that

u0
ε,δ ⇀ u0 weakly in L2(Ω),

fε,δ1Ω∗ε,δ
⇀ f weakly in L2(ΩT ).

(4.7)

1 We will see in Lemma 4.2 the reason of this assumption.
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Lemma 4.2. There exists a positive constant C independent of ε and δ such that∫
Ω

ρε,δ(x)|uε,δ(t, x)|2dx ≤ C, ∀t ∈ [0, T ],∫
ΩT
kε,δ(x)|∇xuε,δ(s, x)|2dsdx ≤ C.

(4.8)

Moreover
‖uε,δ‖L∞(0,T ;L2(Ω)) + ‖uε,δ‖L2(0,T ;H1

0 (Ω)) ≤ C. (4.9)

Proof. According to the Cauchy-Schwarz inequality we have∫ t

0

∫
Ω

fε,δ uε,δ dsdx ≤
∫ t

0

∥∥∥ 1
√
ρε,δ

fε,δ

∥∥∥
L2(Ω)
‖√ρε,δ uε,δ‖L2(Ω)ds

≤ 1

2

∥∥∥ 1
√
ρε,δ

fε,δ

∥∥∥2

L2(ΩT )
+

1

2

∫ t

0

‖√ρε,δ uε,δ‖2
L2(Ω)ds.

(4.10)

The above inequality and (4.5) yield

‖√ρε,δuε,δ(t)‖2
L2(Ω) ≤ ‖

√
ρε,δu

0
ε,δ‖2

L2(Ω) +
∥∥∥ 1
√
ρε,δ

fε,δ

∥∥∥2

L2(ΩT )
+

∫ t

0

‖√ρε,δuε,δ(s)‖2
L2(Ω)ds.

Then, the Gronwall’s lemma and (4.6) give

‖√ρε,δuε,δ(t)‖2
L2(Ω) +

∫ t

0

‖√ρε,δuε,δ(s)‖2
L2(Ω)ds

≤ eT
(
‖√ρε,δu0

ε,δ‖2
L2(Ω) +

∥∥∥ 1
√
ρε,δ

fε,δ

∥∥∥2

L2(ΩT )

)
≤ C0e

T

(4.11)

which in turn leads to (4.8)1. Again with (4.6) and (4.10)-(4.11) we get (4.8)2. Then, the
assumptions (4.3) yield

min{1, c0}
∫

Ω

|uε,δ(t, x)|2dx ≤ C ∀t ∈ [0, T ],

min{1, c0}
∫

ΩT
|∇xuε,δ(s, x)|2dsdx ≤ C.

That gives (4.9).

As a consequence of the above lemma, one has

Corollary 4.3. There exist a subsequence of (ε, δ), still denoted (ε, δ), and u ∈ L∞(0, T ;L2(Ω))∩
L2(0, T ;H1

0 (Ω)) such that

uε,δ ⇀ u weakly * in L∞(0, T ;L2(Ω)),

uε,δ ⇀ u weakly in L2(0, T ;H1
0 (Ω)).

(4.12)
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5 Further estimates and convergences

Lemma 5.1. There exists a positive constant C independent of ε and δ, such that

‖Tε,δ(uε,δ −Mε(uε,δ))‖2
L2(ΩT ;L2∗ (RN ) ≤ C

ε2

δN−2
,

‖∇z(Tε,δ(uε,δ))‖2
L2(ΩT×RN ) ≤ C

ε2

δN−2

(5.1)

and

‖Tε,δ(uε,δ)‖2
L2(ΩT×B) ≤

C

δNaε,δ
, ‖∇z(Tε,δ(uε,δ))‖2

L2(ΩT×B) ≤ C
ε2

δN−2bε,δ
. (5.2)

Proof. From (3.4) and (4.8) we immediately deduce (5.1). From (3.4)2 we have

‖Tε,δ(uε,δ)‖2
L2(ΩT×B) ≤

1

δN
‖uε,δ‖2

L2(Bε,δ)
(5.3)

and from (4.8)1 ∫
Ω∗ε,δ

|uε,δ(t, x)|2dx+

∫
Bε,δ

aε,δ|uε,δ(t, x)|2dx ≤ C. (5.4)

Hence ∫
Bε,δ

|uε,δ(t, x)|2dx ≤ C

aε,δ
, (5.5)

We substitute (5.5) in (5.3) that gives (5.2)1. Then (3.6)2 yields

‖∇z(Tε,δ(uε,δ))‖2
L2(ΩT×B) ≤

ε2

δN−2
‖∇xuε,δ‖L2(BTε,δ)

. (5.6)

Estimate (4.8)2 leads to ∫
Bε,δ×(0,T )

|∇uε,δ(t, x)|2dtdx ≤ C

bε,δ
.

The above inequality and (5.6) give (5.2)2.

So, the above estimates (5.2) highlight several cases. We will focus our attention on the
most interesting one.

Assumption A4. We assume that

lim
(ε,δ)→(0,0)

δN−2

ε2
= γ0 ∈ (0,+∞), lim

(ε,δ)→(0,0)
δNaε,δ = a0 ∈ (0,+∞),

lim
(ε,δ)→(0,0)

bε,δ = b0 ∈ (0,+∞).
(5.7)

Now, as a consequence of AssumptionsA1,A2 and the estimate (3.4)2, the sequences {Tε,δ(u0
ε,δ)},

{δNTε,δ(fε,δ)} are bounded respectively in L2(Ω×B), L2(ΩT ×B).
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Assumption A5. We assume that there exist U0 ∈ L2(Ω×B) and F ∈ L2(ΩT ×B) such that

Tε,δ(u0
ε,δ) ⇀ U0 weakly in L2(Ω×B),

δNTε,δ(fε,δ) ⇀ F weakly in L2(ΩT ×B).
(5.8)

Lemma 5.2. There exist a subsequence of (ε, δ), still denoted (ε, δ), andU ∈ L2(ΩT ;H1
loc(RN))

with∇zU ∈ L2(ΩT × RN) such that

Tε,δ(uε,δ) ⇀ U weakly in L2(ΩT ;H1
loc(RN)),

∇zTε,δ(uε,δ)11/δY ⇀ ∇zU weakly in L2(ΩT × RN).
(5.9)

Furthermore, there also exists V ∈ L2(ΩT , L2∗(RN)) with∇zV ∈ L2(ΩT × RN) such that

Tε,δ(uε,δ −Mε(uε,δ))11/δY ⇀ V weakly in L2(ΩT ;L2∗(RN)),

∇zTε,δ(uε,δ)11/δY ⇀ ∇zV weakly in L2(ΩT × RN)
(5.10)

and we have U = V + u.

Proof. From the estimates (5.1)-(5.2), there exist subsequences of (ε, δ) such that the conver-
gences (5.9) and (5.10) hold. Convergences (4.12)2 and (3.2) yield

Mε(uε,δ) ⇀ u weakly in L2(ΩT ),

thus Mε(uε,δ) ⇀ u weakly in L2(ΩT ;L2∗

loc(RN)).
(5.11)

Then, (5.9)1, (5.10)1 and (5.11) lead to V = U − u.

Set
H =

{
Φ ∈ H1

loc(RN) | ∇zΦ ∈ [L2(RN)]N
}

=
.
H1(RN)⊕ R(2),

L =
{

Φ ∈ L2(Ω;H) |Φ(·,∞) ∈ H1
0 (Ω)

}
.

(5.12)

For any Φ ∈ H, we know that there exists a constant denoted Φ(∞) such that

‖Φ− Φ(∞)‖L2∗ (RN ) ≤ C‖∇Φ‖L2(RN ). (5.13)

The constant C does not depend on Φ.

Observe that U ∈ L2(0, T ;L) and U(t, x,∞) = u(t, x) for a.e. (t, x) ∈ ΩT .

2 Recall that the space
.
H1(RN ) is the completion of D(RN ) for the norm ‖∇φ‖L2(RN ). The Sobolev

imbedding theorem implies that for N ≥ 3, it is a subspace of L2∗(RN ), where 2∗ is the Sobolev exponent
associated to 2. Therefore, all its elements admit 0 as limit at∞ of RN (in the weak sense of L2∗(RN )).

9



6 The unfolded limit problem

Denote

k0(z) =

{
1 if z ∈ RN \ B̄,
b0 if z ∈ B.

(6.1)

Theorem 6.1. Let uε,δ be the solution of the evolution Problem (4.5). For the whole sequence
(ε, δ) we have the convergences (4.12), (5.9) and (5.10).

The limit function U is the solution of the unfolded evolution problem

U ∈ L2(0, T ;L), U(·, ·,∞) ∈ H1(0, T ;H−1(Ω)),

U ∈ H1(0, T ;L2(Ω; (H1(B))′)),

<
dU

dt
(t, ·,∞),Φ(·,∞) >H−1(Ω),H1

0 (Ω) +a0 <
dU

dt
(t),Φ >L2(Ω;(H1(B))′),L2(Ω;H1(B))

+

∫
Ω

∇xU(t, ·,∞)∇xΦ(·,∞) dx+ γ0

∫
Ω×RN

k0∇zU(t)∇zΦ dxdz

=

∫
Ω

f(t)Φ(·,∞) dx+

∫
Ω×B

F (t)Φ dxdz, for a.e. t ∈ (0, T ), ∀Φ ∈ L,

U(0, x,∞) = u0(x), U(0, x, z) = U0(x, z) for a.e. (x, z) ∈ Ω×B.

(6.2)

Furthermore U satisfies

1

2

∫
Ω

|U(t, ·,∞)|2dx+
a0

2

∫
Ω×B
|U(t)|2dxdz

+

∫ t

0

∫
Ω

|∇xU(s, ·,∞)|2dsdx+ γ0

∫ t

0

∫
Ω×RN

k0|∇zU |2dsdxdz

=

∫ t

0

∫
Ω

f(s)U(s, ·,∞)dsdx+

∫ t

0

∫
Ω×B

F (t)U(t) dxdz

+
1

2

∫
Ω

|u0|2dx+
a0

2

∫
Ω×B
|U0|2dxdz.

for all t ∈ [0, T ]. (6.3)

Before proving the unfolded limit problem, we introduce and prove three lemmas. The
first one concerns a density result, the second one gives a convergence result for functions
vanishing in Bε,δ and the last one introduces a test function.

Since the open set B is bounded, there exists η0 > 0 such that

2η0B ⊂ Y .

Lemma 6.2. The set ⋃
η∈(0,η0]

{
ψ ∈ H1

per(Y ) |ψ|ηB = 0
}

is dense in H1
per(Y ).
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Proof. We prove the lemma in two steps. In the first one we choose an element in C∞per(Y )
and in the second one we investigate the general case.
Step 1. We fix a function χ in C∞(RN) satisfying

χ = 0 on B,

χ = 1 on RN \ 2B,

χ(x) ∈ [0, 1] for all x ∈ RN .

(6.4)

For η ∈ (0, η0], set
χη = χ

( ·
η

)
.

For any φ ∈ C∞per(Y ), denote φη = χηφ. Since χη = 1 on ∂Y , the function φη belongs to
H1
per(Y ). We have φη = φ on Y \ 2B and ∇φη = ∇φχη +∇χηφ. Hence

‖φη − φ‖2
L2(Y ) + ‖∇φη −∇φ‖2

L2(Y ) ≤
∫

2ηB

|φ|2dy + 2

∫
2ηB

|∇φ|2dy + 2

∫
2ηB

|∇χη|2|φ|2dy.

One has ∫
2ηB

|∇χη|2|φ|2dy ≤ CηN−2‖∇χ‖[L∞(RN )]N‖φ‖2
L∞(Y ).

Since φ belongs to C∞per(Y ) and the measure of ηB goes to zero, one obtains the strong con-
vergence of φη to φ in H1

per(Y ).

Step 2. Let ψ be in H1
per(Y ). The space C∞per(Y ) is dense in H1

per(Y ). Hence for any ε > 0

there exists ϕ ∈ C∞per(Y ) such that

‖ψ − ϕ‖H1(Y ) ≤ ε. (6.5)

We fix a function ϕ satisfying (6.5). From Step 1, there exists η1 > 0 such that

∀η ∈ (0, η1] ‖ϕ− ϕη‖H1(Y ) < ε. (6.6)

As a consequence of (6.5) and (6.6) we get

∀η ∈ (0, η1] ‖ψ − ϕη‖H1(Y ) ≤ 2ε.

The lemma is proved.

Lemma 6.3. Suppose p ∈ [1,+∞). For any w ∈ Lp(Ω)

w1Ω∗ε,δ
−→ w strongly in Lp(Ω). (6.7)

Proof. Step 1. We prove (6.7) for w ∈ L∞(Ω).
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Take w in L∞(Ω)∫
Ω

|(w1Ω∗ε,δ
− w)(x)|pdx =

∫
Bε,δ

|w(x)|pdx

≤ |Bε,δ|‖w‖pL∞(Ω) ≤ CδN‖w‖pL∞(Ω).

Passing to the limit gives (6.7) for any w ∈ L∞(Ω).

Step 2. We prove (6.7) for w ∈ Lp(Ω).
Let w be in Lp(Ω). Since C(Ω) is dense in Lp(Ω), p ∈ [1,∞), for any ε1 > 0 there exists
W ∈ C(Ω) suth that

‖w −W‖Lp(Ω) ≤ ε1. (6.8)

We fix W satisfying (6.8). Then

‖W1Ω∗ε,δ
−W‖Lp(Ω) ≤ |Bε,δ|‖W‖L∞(Ω) ≤ CδN |‖W‖L∞(Ω).

Hence, there exists δ1 > 0 such that

∀δ ∈ (0, δ1], ‖W1Ω∗ε,δ
−W‖Lp(Ω) ≤ ε1.

So

‖w1Ω∗ε,δ
− w‖Lp(Ω) ≤ ‖w1Ω∗ε,δ

−W1Ω∗ε,δ
‖Lp(Ω) + ‖W1Ω∗ε,δ

−W‖Lp(Ω) + ‖W − w‖Lp(Ω)

≤ ‖W1Ω∗ε,δ
−W‖Lp(Ω) + 2‖W − w‖Lp(Ω) ≤ 3ε1.

As a result, the strong convergence (6.7) is proved.

Lemma 6.4. Let ψ be in H ∩ C∞(RN) such that the support of∇zψ is bounded. Set

ψε,δ(x) = ψ
(1

δ

{x
ε

})
if x ∈ Ω̂ε,

ψε,δ(x) = ψ(∞) if x ∈ Λε.
(6.9)

The function ψε,δ belongs to C∞(Ω) and

ψε,δ −→ ψ(∞) strongly in L2(Ω). (6.10)

Proof. There exists R > 0 such that the support of ∇zψ is included in the ball B(O;R). For
δ small enough B(O; δR) ⊂ Y . We perform a change of variables and we use the fact that
ψ − ψ(∞) belongs to H1

0 (B(O;R)). That gives∫
εξ+εY

|ψε,δ(x)− ψ(∞)|2dx =

∫
εξ+εY

∣∣∣ψ(1

δ

{x
ε

})
− ψ(∞)

∣∣∣2dx
= (εδ)N

∫
B(O;R)

|ψ(z)− ψ(∞)|2dz

≤ C(εδ)NR2

∫
B(O;R)

|∇zψ(z)|2dz.
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The constant does not depend on ε and δ. Summing over Ξε yields∫
Ω

|ψε,δ(x)− ψ(∞)|2dx =
∑
ξ∈Ξε

∫
εξ+εY

|ψε,δ(x)− ψ(∞)|2dx ≤ CδN‖∇zψ‖2
L2(RN ).

Hence, we get the strong convergence (6.10).

Proof of Theorem 6.1. First observe that Problem (6.2) has a unique solution U belonging to
L2(0, T ;L). It is a consequence of the Faedo-Galerkin’s method which also gives the equality
(6.3). This will imply the convergence of the full sequences in (4.12), (5.9) and (5.10). It is
therefore enough to obtain the limit Problem (6.2) for a subsequence, which we do below.

The aim of the three first steps is to obtain the variational formulation (6.20) of the
limit problem. Then, in the last step we prove that U(·, ·,∞) ∈ H1(0, T ;H−1(Ω)) and
U ∈ H1(0, T ;L2(Ω; (H1(B))′)).

Step 1. Let (φ,w) be in C1([0, T ]) × D(Ω) such that φ(T ) = 0. Taking φ(t)w(x) as test
function in (4.4) and then integrating by parts lead to

−
∫

(0,T )×Ω∗ε,δ

uε,δ φ
′w dtdx−

∫
(0,T )×Bε,δ

aε,δ uε,δ φ
′w dtdx

+

∫
(0,T )×Ω∗ε,δ

φ∇uε,δ∇w dtdx+

∫
(0,T )×Bε,δ

bε,δφ∇uε,δ∇w dtdx

=

∫
ΩT
fε,δφw dtdx+

∫
Ω

ρε,δ u
0
ε,δ φ(0)w dx.

(6.11)

Due to the convergences (4.12) and (6.7) we obtain∫
(0,T )×Ω∗ε,δ

uε,δ φ
′w dtdx =

∫
ΩT
uε,δ φ

′w1Ω∗ε,δ dtdx −→
∫

ΩT
uφ′w dtdx,∫

(0,T )×Ω∗ε,δ

φ∇xuε,δ∇xw dtdx =

∫
ΩT
φ∇xuε,δ∇xw1Ω∗ε,δdtdx −→

∫
ΩT
φ∇xu∇w dtdx.

Now, unfolding the integral over (0, T ) × Bε,δ and using Lemma 3.2 and convergences (5.9)
yield∫

(0,T )×Bε,δ
aε,δuε,δ φ

′w dtdx =

∫
(0,T )×Ω×B

δNaε,δTε,δ(uε,δ)φ′ Tε,δ(w) dtdxdz

−→
∫

(0,T )×Ω×B
a0U φ

′w dtdxdz,∫
(0,T )×Bε,δ

bε,δφ∇uε,δ∇w dtdx =

∫
ΩT×B

εδ
δN−2

ε2
bε,δφ∇zTε,δ(uε,δ) Tε,δ(∇w) dtdxdz −→ 0.
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The convergences (3.8), (5.8), (4.7) and (6.7), lead to∫
Ω

ρε,δu
0
ε,δ φ(0)w dx =

∫
Ω

u0
ε,δ φ(0)w 1Ω∗ε,δ dx+

∫
Ω×B

δNaε,δTε,δ(u0
ε,δ)φ(0)Tε,δ(w) dxdz

−→
∫

Ω

u0 φ(0)w dx+

∫
Ω×B

a0U
0 φ(0)w dxdz,∫

ΩT
fε,δ φw dtdx =

∫
ΩT
fε,δ φw 1Ω∗ε,δ dtdx+

∫
ΩT×B

δNTε,δ(fε,δ)φ Tε,δ(w) dtdxdz

−→
∫

ΩT
f φw dtdx+

∫
ΩT×B

F φw dtdxdz.

Finally, summarizing the above limits give

− a0

∫
ΩT×B

U(t, x, z)φ′(t)w(x)dtdxdz

−
∫

ΩT
u(t, x)φ′(t)w(x)dtdx+

∫
ΩT
φ(t)∇xu(t, x)∇w(x)dtdxdy

=

∫
ΩT
f(t, x)φ(t)w(x)dtdx+

∫
ΩT×B

F (t, x, z)φ(t)w(x)dtdxdz

+ φ(0)

∫
Ω

(
u0(x) + a0

∫
B

U0(x, z)dz
)
w(x)dx.

(6.12)

Step 2. Now, let (φ,w) be in C1([0, T ])×D(Ω) such that φ(T ) = 0 and let ψ ∈ H∩C∞(RN)
such that the support of ∇zψ is bounded. In (4.4) we take as test function φ(t)w(x)ψε,δ(x),
where ψε,δ is given by (6.9).

If δ is small enough the function ψε,δ is constant (and equal to ψ(∞)) on the boundary of
the cells εξ+εY (ξ ∈ Ξε). As a consequence, the function wψε,δ is an admissible test function
belonging to H1

0 (Ω). Hence

−
∫

ΩT
ρε,δ uε,δ φ

′wψε,δ dtdx+

∫
ΩT
kε,δ φ∇uε,δ∇(wψε,δ) dtdx

=

∫
ΩT
fε,δ(t, x)φ(t)w(x)ψε,δ(x)dtdx+

∫
Ω

ρε,δu
0
ε,δ(x)φ(0)w(x)ψε,δ(x)dx.

(6.13)

Since∇zψ has a compact support in RN , from the equality (3.5) and Lemma 3.2 we obtain

εδTε,δ(w∇ψε,δ) = Tε,δ(w)∇zψ −→ w∇zψ strongly in L2(Ω× RN). (6.14)

Now, due to the convergences (4.12)2, (5.9)1, (6.14) and (6.10) we can write∫
ΩT
ρε,δuε,δφ

′wψε,δdtdx

=

∫
ΩT
uε,δφ

′wψε,δ1Ω∗ε,δdtdx+

∫
ΩT×B
δNaε,δTε,δ(uε,δ)φ′Tε,δ(w)ψdtdxdz

−→
∫

ΩT
uφ′wψ(∞)dtdx+ a0

∫
ΩT×B

Uφ′wψdtdxdz.

(6.15)
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We have ∫
ΩT
kε,δφ∇xuε,δ∇(wψε,δ)dtdx

=

∫
ΩT
kε,δ φ∇xuε,δ∇wψε,δ dtdx+

∫
ΩT
kε,δ φ∇xuε,δ w∇ψε,δ dtdx.

Convergences (5.9)1 , (5.10)2 and (6.10) lead to∫
ΩT
kε,δ φ∇xuε,δ∇wψε,δ dtdx =

∫
ΩT

φ∇xuε,δ∇wψε,δ1Ω∗εδ
dtdx

+

∫
ΩT×B

bε,δφ
δN−2

ε2
∇zTε,δ(uε,δ)

(
εδTε,δ(∇w)

)
ψ dtdxdz

−→
∫

ΩT
φ ∇xu∇wψ(∞) dtdx+ 0.

(6.16)

Again from (5.9)1, (5.10)2 and now (6.14) we get∫
ΩT
kε,δ φuε,δ w∇ψε,δ dtdx

=

∫
ΩT×RN

φ Tε,δ(kε,δ)
δN−2

ε2
∇zTε,δ(uε,δ)Tε,δ(w)∇zψ dtdxdz

−→ γ0

(∫
ΩT×(RN\B̄)

φ∇zV w∇zψ dtdxdz + b0

∫
ΩT×B

φ∇zU w∇zψ dtdxdz
)
.

(6.17)

In the same way, using (4.7)2 and (5.8)2 give∫
ΩT
fε,δ φw ψε,δ dtdx −→

∫
ΩT
f φw ψ(∞) dtdx+

∫
ΩT×B

F φw ψ dtdxdz,∫
Ω

ρε,δu
0
ε,δ φ(0)wψε,δ dx −→

∫
Ω

u0 φ(0)wψ(∞) dx+

∫
Ω×B

a0U
0 φ(0)wψ dxdz.

(6.18)

Finally, from the convergences (6.15), (6.16), (6.17) and (6.18) one has

−
∫

ΩT
uφ′wψ(∞)dtdx− a0

∫
ΩT×B

U φ′wψ dtdxdz +

∫
ΩT
φ ∇u∇wψ(∞) dtdx

+ γ0

∫
ΩT×RN

k0 φ∇zU w∇zψ dtdxdz

=

∫
ΩT
f φw ψ(∞) dtdx+

∫
ΩT×B

F φw ψ dtdxdz

+

∫
Ω

u0 φ(0)wψ(∞) dx+ a0

∫
Ω×B

U0 φ(0)wψ dxdz.

(6.19)

Step 3. The space of functions belonging to H ∩ C∞(RN) and whose gradient support is
bounded is dense in H. Hence, equality (6.19) is satisfied for any ψ in H. Then, the density
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of the tensor product C1([0, T ])⊗D(Ω)⊗H in H1(0, T ;L) implies

−
∫

ΩT
U(t, ·,∞)

∂Φ

∂t
(t, ·,∞)dtdx− a0

∫
ΩT×B

U
∂Φ

∂t
dtdxdz

+

∫
ΩT
∇xU(·,∞)∇xΦ(t, ·,∞) dtdx+ γ0

∫
ΩT×RN

k0∇zU ∇zΦ dtdxdz

=

∫
ΩT
f Φ(t, ·,∞) dtdx+

∫
ΩT×B

F Φ dtdxdz

+

∫
Ω

u0 Φ(0, ·,∞) dx+ a0

∫
Ω×B

U0 Φ(0) dxdz

(6.20)

for any Φ ∈ H1(0, T ;L) such that Φ(T, ·, ·) = 0. Hence (6.2).

Step 4. Let Θ be in L satisfying

Θ(∞) = 1 and Θ(z) = 0 for a.e. z ∈ B.

For any Ψ ∈ H1
0 (0, T ;H1

0 (Ω)) we choose Φ = ΨΘ as test function in (6.20). That gives

−
∫

ΩT
U(t, ·,∞)

∂Ψ

∂t
dtdx+

∫
ΩT
∇xU(·,∞)∇xΨ dtdx

+ γ0

∫
ΩT×RN

k0∇zU Ψ∇zΘ dtdxdz =

∫
ΩT
f Ψ dtdx.

(6.21)

Hence∣∣∣ ∫
ΩT
U(t, ·,∞)

∂Ψ

∂t
dtdx

∣∣∣ ≤ ‖∇xU(·,∞)‖L2(ΩT )‖∇xΨ‖L2(ΩT )

+ C‖∇zU‖L2(ΩT×RN )‖Ψ‖L2(ΩT )‖∇zΘ‖L2(RN ) + ‖f‖L2(ΩT )‖Ψ‖L2(ΩT ).

Since U belongs to L2(0, T ;L), we obtain∣∣∣ ∫
ΩT
U(t, ·,∞)

∂Ψ

∂t
dtdx

∣∣∣ ≤ C‖Ψ‖L2(0,T ;H1
0 (Ω)).

The constant depends on ‖U‖L2(0,T ;L), ‖∇zΘ‖L2(RN ) and ‖f‖L2(ΩT ). As a consequence of the
above inequality we get U(·, ·,∞) ∈ H1(0, T ;H−1(Ω)).

Now, let Φ be in H1
0 (0, T ;L2(Ω;H1(B))) we extend Φ as a function Φ belonging to

H1
0 (0, T ;L2(Ω;H1(RN))) satisfying

Φ(t, x, z) = Φ(t, x, z) for a.e. (t, x, z) ∈ ΩT ×B,
‖Φ‖H1

0 (0,T ;L2(Ω;H1(RN ))) ≤ C‖Φ‖H1
0 (0,T ;L2(Ω;H1(B))).

We choose Φ as test function in (6.20). That leads to

−a0

∫
ΩT×B

U
∂Φ

∂t
dtdxdz + γ0

∫
ΩT×RN

k0∇zU ∇zΦ dtdxdz =

∫
ΩT×B

F Φ dtdxdz.
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Hence
a0

∣∣∣ ∫
ΩT×B

U
∂Φ

∂t
dtdxdz

∣∣∣ ≤ C‖∇zU‖L2(ΩT×B)‖∇zΦ‖L2(ΩT×RN )

+ ‖F‖L2(ΩT×B)‖Φ‖L2(ΩT×RN ).

(6.22)

Again, using the fact that U belongs to L2(0, T ;L), we get∣∣∣ ∫
ΩT×B

U
∂Φ

∂t
dtdxdz

∣∣∣ ≤ C‖Φ‖L2(ΩT ;H1(B)).

The constant depends on ‖U‖L2(0,T ;L) and on ‖F‖L2(ΩT×B). As a consequence of the above
inequality we get U ∈ H1(0, T ;L2(Ω; (H1(B))′)).

7 The homogenized limit problem

From now on, we extend f and F by zero on [T,+∞[.

For any φ ∈ L2(0,+∞) and for any p ∈ R∗+, the Laplace transform (see e.g. [10], [11] or
[12]) is defined by

φ̂(p) =

∫ +∞

0

φ(t)e−ptdt.

Hence, the evolution Problem (6.2) becomes

p

∫
Ω

Û(p, x,∞)Φ(x,∞)dx+ a0p

∫
Ω×B

Û(p, x, z)Φ(x, z)dxdz

+

∫
Ω

∇xÛ(p, x,∞)∇xΦ(x,∞)dx+ γ0

∫
Ω×RN

k0(z)∇zÛ(p, x, z)∇zΦ(x, z)dxdz

=

∫
Ω

f̂(p, x)Φ(x,∞)dx+

∫
Ω×B

F̂ (p, x, z)Φ(x, z)dxdz

+

∫
Ω

u0(x)Φ(x,∞)dx+ a0

∫
Ω×B

U0(x, z)Φ(x, z)dxdz, ∀p > 0, ∀Φ ∈ L.

(7.1)

For any p > 0, the Lax-Milgram theorem gives the existence and uniqueness of Û(p) ∈ L.
The following estimates hold:

p‖Û(p, ·,∞)‖2
L2(Ω) + ‖∇xÛ(p, ·,∞)‖2

L2(Ω) + p‖Û(p)‖2
L2(Ω×B) + ‖∇zÛ(p)‖2

L2(Ω×RN )

≤C
p

(
‖f̂(p)‖2

L2(Ω) + ‖F̂ (p)‖2
L2(Ω×B) + ‖u0‖2

L2(Ω) + ‖U0‖2
L2(Ω×B)

)
, ∀p > 0.

The constant does not depend on p. We recall that

∀p > 0, ‖f̂(p)‖2
L2(Ω) ≤

1

p
‖f‖2

L2(ΩT ), ‖F̂ (p)‖2
L2(Ω×B) ≤

1

p
‖F‖2

L2(ΩT×B).
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Now, let us introduce the solutions θ̂0 and θ̂1 of the following cell problems:

θ̂0(p) ∈ L2(Ω;
.
H1(RN)),

a0p

∫
B

θ̂0(p, x)Φ dz + γ0

∫
RN
k0∇z θ̂0(p, x)∇zΦ dz

=

∫
B

F̂ (p, x)Φ dz + a0

∫
B

U0(x, z)Φdxdz,

for a.e. x ∈ Ω, ∀Φ ∈
.
H1(RN), ∀p > 0,

(7.2)

and
θ̂1(p) ∈ H, θ̂1(p,∞) = 1,

a0p

∫
B

θ̂1(p) Φ dz + γ0

∫
RN
k0∇z θ̂1(p)∇zΦ dz = 0,

∀Φ ∈
.
H1(RN), ∀p > 0.

(7.3)

Again, the Lax-Milgram theorem gives the existence of θ̂0, θ̂1 and

p‖θ̂0(p)‖2
L2(Ω×B) + ‖∇z θ̂0(p)‖2

L2(Ω×RN ) ≤
C

p

(
‖F̂ (p)‖2

L2(Ω×B) + ‖U0‖2
L2(Ω×B)

)
∀p > 0.

Now, in order to estimate θ̂1 we consider a function ϑ ∈ H ∩ C∞(RN) satisfying

ϑ(∞) = 1, ϑ = 0 in B, ∇zϑ has a compact support. (7.4)

The function θ̂2 = θ̂1 − ϑ is the solution of

θ̂2(p) ∈
.
H1(RN),

a0p

∫
B

θ̂2(p) Φ dz + γ0

∫
RN
k0∇z θ̂2(p)∇zΦ dz

=− γ0

∫
RN
k0∇zϑ∇zΦ dz = γ0

∫
RN
k0∆zϑΦ dz,

∀Φ ∈
.
H1(RN), ∀p > 0.

(7.5)

Then, taking θ̂2(p) has test function in (7.5) leads to

p‖θ̂2(p)‖2
L2(B) + ‖∇z θ̂2(p)‖2

L2(RN ) ≤
C

p
‖∆zϑ‖2

L2(RN ), ∀p > 0.

We express Û(p) in terms of θ̂0(p), θ̂2(p), ϑ and û(p). To do that, observe that the Laplace
transform û(p) of u is in fact Û(p, ·,∞). Hence, we have

Û(p, x, z) =û(p, x)θ̂1(p, z) + θ̂0(p, x, z) = û(p, x)θ̂2(p, z) + θ̂0(p, x, z) + û(p, x)ϑ(z)

for a.e. (x, z) ∈ Ω× RN , ∀p > 0.
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Let ψ be in H1
0 (Ω), we choose ψ as test-function in (7.1). That gives

p

∫
Ω

û(p)ψ dx+ a0p

∫
Ω

(∫
B

θ̂2(p, z)dz
)
û(p)ψ dx

+a0p

∫
Ω

(∫
B

θ̂0(p, ·, z)dz
)
ψ dx+

∫
Ω

∇û(p)∇ψ dx

=

∫
Ω

(
f̂(p) + u0

)
ψ dx+

∫
Ω

(∫
B

F̂ (p, ·, z)dz
)
ψ dx

+a0

∫
Ω

(∫
B

U0(·, z)dz
)
ψ dx.

(7.6)

Now, applying the inverse Laplace transform (see [1], [10] and [11]) in Problems (7.2),
(7.3) and (7.6) give

θ0 ∈ H1(0, T ;L2(Ω; (H1(B))′)), θ0 ∈ L2(ΩT ;
.
H1(RN)),

a0 <
dθ0

dt
(t, x),Φ >(H1(B))′,H1(B) +γ0

∫
RN
k0∇zθ0(t, x)∇zΦ dz

=

∫
B

F (t, x)Φ dz, for a.e. (t, x) ∈ (0,+∞)× Ω,

θ0(0) = U0, ∀Φ ∈
.
H1(RN),

(7.7)

θ2 is the solution of the following evolution problem:

θ2 ∈ H1(0, T ; (H1(B))′), θ2 ∈ L2(0, T ;
.
H1(RN)),

a0 <
dθ2

dt
(t),Φ >(H1(B))′,H1(B) +γ0

∫
RN
k0∇zθ2(t)∇zΦ dz = 0,

θ2(0) =
γ0k0

a0

∆zϑ, for a.e. t ∈ (0,+∞), ∀Φ ∈
.
H1(RN).

(7.8)

Here again, the Faedo-Galerkin’s method gives the existence and uniqueness of the solutions
of the two above evolution equations. Proceeding as in Theorem 6.1 we show that θ0 ∈
H1(0, T ;L2(Ω; (H1(B))′)) and θ2 ∈ H1(0, T ; (H1(B))′).

Lemma 7.1. Set
Θ0 =

∫
B

θ0 dz, Θ2 =

∫
B

θ2 dz.

We have
Θ0 ∈ H1(0, T ;L2(Ω)), Θ2 ∈ H1(0, T ).

Moreover, the function Θ2 does not depend on the choice of the function ϑ.

Proof. Since θ0 ∈ L2(ΩT × B) we obtain Θ0 ∈ L2(ΩT ) (as a consequence of the Cauchy-
Schwarz inequality and the Fubini’s theorem). Choosing 1−ϑ as test function in (7.7) (observe
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that 1− ϑ ∈
.
H1(RN)) gives

a0
d

dt

(
< θ0(t, x), 1 >(H1(B))′,H1(B)

)
= a0 <

dθ0

dt
(t, x), 1 >(H1(B))′,H1(B)

=a0 <
dθ0

dt
(t, x), 1− ϑ >(H1(B))′,H1(B)

=γ0

∫
RN
k0∇zθ0(t, x)∇zϑ dz +

∫
B

F (t, x) dz.

(7.9)

Now, the fact that

• < θ0(t, x), 1 >(H1(B))′,H1(B)=

∫
B

θ0(t, x) dz for a.e. x ∈ Ω,

• ∇zθ0 ∈ [L2(ΩT × RN)]N ,

• ∇zϑ ∈ [C∞(RN)]N (with compact support)

• F ∈ L2(ΩT ×B)

and the above equalities (7.9) yield
dΘ0

dt
∈ L2(ΩT ). As a consequence Θ0 belongs to

H1(0, T ;L2(Ω)). Proceeding in the same way gives Θ2 ∈ H1(0, T ).

Denote Θ̂2 the Laplace transform of Θ2. One has

Θ̂2 =

∫
B

θ̂2 dz =

∫
B

(θ̂1 − ϑ) dz =

∫
B

θ̂1 dz.

It follows that Θ2 does not depend of the choice of ϑ.

We transform Problem (7.6) by the inverse Laplace transform, that gives

<
d

dt

(
u+ a0Θ2 ∗ u

)
, ψ >H−1(Ω),H1

0 (Ω) +

∫
Ω

∇u(t)∇ψ dx

= −a0 <
dΘ0

dt
(t), ψ >H−1(Ω),H1

0 (Ω) +

∫
Ω

f(t)ψ dx,+a0

∫
Ω

(∫
B

F (t) dz
)
ψ dx

u(0) = u0, Θ0(0) =

∫
B

U0dz, for a.e. t ∈ (0,+∞), ∀ψ ∈ H1
0 (Ω).

(7.10)

Finally, we obtain

Theorem 7.2. The limit field u is the solution of the following evolution problem:

u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−1(Ω)),

d

dt

(
u+ a0Θ2 ∗ u

)
−∆u = −a0

dΘ0

dt
+G in ΩT ,

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

(7.11)

where
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• Θ2 =

∫
B

θ2 dz belongs to H1(0, T ), the function θ2 being the solution of (7.8),

• G(t) = f(t) +

∫
B

F (t, ·, z) dz belongs to L2(ΩT ),

• Θ0 =

∫
B

θ0 dz belongs to H1(0, T ;L2(Ω)), the function θ0 being the solution of (7.7).
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