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Abstract

The aim of this paper is to study the homogenization of a diffusion process which
takes place in a binary structure made by an ambient connected phase surrounding the
suspensions (very small particles of diameter of order £4) distributed in an e-periodic
network. Using the periodic unfolding method introduced in [4], in the critical case,
when ¢ and ¢ go to 0 we determine the asymptotic behavior of the solution of an evolution
problem.
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Mathematics Subject Classification (2010): 35A01, 74Q10, 74Q15, 76M50.

1 Introduction

This article is devoted to describing the asymptotic behavior of an evolution problem

which governs the diffusion process of a rarefied binary structure. The problem is given
by with assumptions @#.2)-@.3) and (5.7). In this problem, the first constant a. s repre-
sents the mass density of the suspensions while the second one b, ; is their diffusivity. The
parameter ¢ is the size order of the suspensions in the reference cell Y and ¢ is the periodicity
length. The critical case lim(. 5 (0,0) 0" ~2/e? € (0, +00) is considered.
This problem was first treated in a paper of Bentalha and al. (see [6]) in 2006 . In this ar-
ticle, the authors investigate the case of a diffusivity b. s going to infinity, the suspensions
being spheres. They use the control zone method. One year later, Gruais (see [7]) study the
stationary problem making the assumption lim . 5)—(0,0) be,s = limc 5)-(0,0) oN a.s = 1. She
use a multiple scale method. The same year, using again the control zone method Gruais and
Polisevski find the limit problem in the case lim. 5y (0,0) bs,s < +00 (see [8]) .



In the present paper, we revisit the evolution problem (4.1)) with the periodic unfolding
method introduced in [4]], but we focus our attention in the most interesting case: namely
the critical case with lim. 50,0 bes € (0,400) and lim. 50,0y 6V acs € (0,+00) (see
assumptions (5.7))).

The periodic unfolding method is a general tool to study periodic homogenization. Nowa-
days, this method is used in a lot of new papers since it is a simple way to replace the two-scale
convergence by a convergence in a fixed domain: via 7: in 2 x Y (where Y is the reference
periodic cell) or via 7. 5 in Q2 x RY.

The paper is organized as follows. Section 2 contains the main notations regarding the
structure. In Section 3, we recall the definitions of some unfolding operators (7., 7: s and
M) and we also recall the main results concerning 7. 5 (Lemmas and .

In Section 4, we present the evolution problem in its variational formulation (¢.4). Then, the
total energy estimate (4.3) allows to introduce the assumptions on the data (4.6)-(4.7)-(5.8).
In Section 5, transforming the solution of the evolution problem with the operator 7; 5 leads
to the assumptions on the two small parameters € and § and on a. s, b. 5 (see (5.7)).

Theorem in Section 6 gives the unfolded limit problem. Here, it is worth to note that for
the first time the limit evolution problem in its variational form is first posed in 2 x RY.

In the last section, using the Laplace transform we give the homogenized limit problem
(Theorem|7.2). The limit equation differs from the initial one regarding the convolution
term, this new term accounting for the memory effects is here in fact a ”strange term” (see

[2]).

2 Notations

Let Q and B be two bounded domains in RY with Lipschitz boundary.
Denote

o YV =(-1/2,1/2)" the reference cell,
e 0T =(0,T) x Q,
o V=Y 0B,

o= = {5 e ZN|(6+Y) C Q}

e 0. = interior{ Ugez. e(€ + 7)}, Ac=Q \(A)_E,
® Bes = 0Nz e(€+0B),
o (N, = Q\ E

e 1o- is the characteristic function of the set 27 ;.
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Figure 1. Integer and fractional part of z.

For a.e z € RY, one has
z= [ +{z}
where [z] € Z is the integer part of z while {z} € Y denotes the fractional part of 2.

Figure 2. The sets (2, (AZE and A..

3 Some recalls on the unfolding operators 7., M. and 7. ;

e For ¢ measurable function on 2, the unfolding operator 7. is defined by

s oEZ] e @y efxy.
T(9)(z,y) {0 [ ] og) € A XY (3.1)

The properties of 7: are given in [4].



e The local average operator M. : L'(Q) — L'(Q) is defined as follows:

Vo e LNQ),  M.(6)(x) = /Y T(6) (2, y)dy, forae. x € Q.

For any sequence {¢. }. such that ¢. — ¢ weakly in L?(£2), we have
M(¢.) — ¢ weakly in L*(Q). (3.2)

e For ¢ measurable function on €2, the unfolding operator 7 ; is defined by

0 otherwise.

. ~ 1
Tos(6)(x, 2) = { To(9)(x,62) if (z,2) € Q. x SY’ (3.3)

Figure 3. The sets ()} ; and B.

Below, we recall the main properties of the operator 7. 5 (see Theorem 2.11 of [3]).

Lemma 3.1. The operator T ; is linear and continuous from LF(Q) into LP(Q x RY), p €
[1, +00].

1. For any measurable functions 1, ¢ one has T: s(v¢) = Tc5(¢¥) Tz s(0).

2. For any ¢ in L'(Q)

5 / Tos(®) (@, 2)dzdz = | To(@)(@,y)dady = | éda,
QxRN

QOxY Q.

‘/Q(b(m) da:_(sN/QXRN T (0 (z, z)da:dZ‘ g/A 6| da.

3. For any ¢ € L*(Q)

1 1
I726(0) 172 (mny < 5_NH¢H%2(Q)> 172D 72(0xm) < 5_NH¢||%2(BE,5)- (3.4)



4. For any ¢ in H(Q)

1 1
T-5(Vo) = 5 V. (T-s(9)) in Qx 5 (3.5)

and
2

9
IVo(Tes(@))IZ2 @xrry < mllvcblliz(ma

', (3.6)

IV AT ()72 (k) < m”vﬁbHQmBm)-

2N
5. Denote 2* = N9 N > 3, the Sobolev exponent associated to 2. For any ¢ in Hl(Q)

2
g
1726(6 = Me(O) 200 vy < O35l VOl 2oy 37

Lemma 3.2. For any w € C(2)
T..s(w) — w strongly in L*(; L}, (RY)). (3.8)
Proof. Let O be a bounded open subset of RY. There exists R > 0 suth that O C B(O, R)

1
where B(O, R) is the ball of radius R and center O. For ¢ small enough O C B(0, R) C SY.

Hence

/Q Teslw)@,2) = wle)Pdads

— /AEXO lw(x)|*dedz + /ﬁgxo ’w(&t[J +652> — w(:z:)rdxdz

< |(’)|/A lw(z)]Pdz + | x O  sup ‘w(e [g] +65z> —w(z)

‘2
(z,2)eQx0O

Let w be the modulus of continuity of w

/on | Tes(w)(@, 2) = w(z)Pdedz < C(|[wlfe(q)|Ae| + @ (e +0R)?).

Passing to the limit gives (3.8). O

4 The evolution problem

We consider the evolution problem which governs the diffusion process in our binary
mixture

( Find ue 5 suth that
dus,§ . o . T
pE,(SW - dlvx (ka,dva:ua,é) - f8,5 m Q I (4.1)
Ues =0 on 092 x (0,T),
[ ue,5(0) = ul g on 2 x {0},



where f.5 € L*(Q7) and

1 in (22 5, 1 in (27 5,
Pe,s = . 7 ka,& = . ' (42)
Qg5 1N BE,67 b£,5 m Ba,(S'

Here a. 5 and b. ;5 are strictly positive constants bounded from below independently of ¢ and
J. Hence, there exists ¢y > 0 such that for any (¢, 0)

Assumption A;.
) Z Co, b€,5 Z Co- (43)

The first constant a. s represents the density of mass of the suspensions while the second one
is the diffusivity of suspensions.

Lemma 4.1. Problem ({.1) has the following variational formulation:

Find u. 5 € L2(0,T; Hy () N L0, T; L*(Q)), pesucs € H(0,T; H1()),

4.4)
/fg(;tx z)dr forae t € (0,T), Ywe Hy(R),

Furthermore u. 5 satisfies

1 t
—/p575(x)|u6’5(t,x)|2dx+/ /kavg(m)|vxu€75(s,x)|2dsdx
2 Jq 0o Jo

1

. forallt €10,T]. (4.5)
:/ /f&(g(s,x)u&(;(s,x)dsda:jL—/ps,g(a:)mg’é(x)ﬁda:
0 Jo 2 Jq

Proof. The existence and uniqueness of the solution of Problem (4.4) is given by the Faedo-
Galerkin’s method (see e.g. [3] or [9]]) which also gives the equality (4.5). [l

Assumption A;. We assume that there exists a constant Cy, which does not depend on ¢ and
4, such thatﬂ

[ peslis@lde+ [ —Cistta)deds < Co +6)
Q QT Pes
As a consequence of the above assumptions (4.3)); and the sequences {ug st {fes ].Q:ﬁ}
are bounded respectively in L?(2), L?(Q7).
Assumption Az. We assume that there exist u® € L?(2) and f € L*(Q7) such that
ug(s — weakly in L*(12),
fesla:, — [ weakly in L*(QF).
' We will see in Lemmathe reason of this assumption.

“4.7)




Lemma 4.2. There exists a positive constant C' independent of € and § such that

/p£,5<x)|ua,6(t>$)|2d$ <C, vtelo,T),
Q

(4.8)
/ kes(2)|Vaue5(s, x)|?dsdx < C.
[oXA
Moreover
[te s\l oo 0/ p2(0) + [uesll 20,0513 )y < C- (4.9)
Proof. According to the Cauchy-Schwarz inequality we have
t
/ / fesUe s dsdr < /P Ues|| L2y ds
0 Jo L2(2)
1 Lot (4.10)
2
<z 2T 5/0 ||\/Pe,6 ue,éHLQ(Q)dS
The above inequality and (.3)) yield
t
| /rte (D220 < Iy/Argulsll32(e) + H—fea . / | /Peguea(s) |72y ds
0

Then, the Gronwall’s lemma and (4.6)) give

It e / /et 5(5) 2 s

A.11)
SGT(H Pe,sU fs6

) < Cypet

L2(QT)

5,6HL2 @ T H
N

which in turn leads to @.8);. Again with @.6) and @.10)-@.11) we get (@.8)2. Then, the
assumptions (4.3) yield

min{l,co}/ st )2de <C Ve [0,T],
Q
min{l,co}/ Ve s(s, 2)|*dsdr < C.

QT

That gives (4.9). O

As a consequence of the above lemma, one has

Corollary 4.3. There exist a subsequence of (¢, ), still denoted (¢, §), andu € L>(0,T; L*(Q))N
L*(0,T; H)(QY)) such that

u.s —u  weakly *in L=(0,T; L*(Q)),

4.12
u.s —u  weakly in L*(0,T; Hy(9)). (+12)



5 Further estimates and convergences

Lemma 5.1. There exists a positive constant C' independent of € and 9, such that

2

5
| 72,5 (te,s — Ms(us,é))“i?(QT;LQ*(RN) < Cm’
2 (5.1)
IV=(Tes(ues)) 2207 xrmy < C55ms
and
2 c 2 e?
1726 (e ) 720wy < Vo V(T s(ues)) 7207 m) < C(SN_—%E(S- (5.2)
Proof. From (3.4) and (4.8) we immediately deduce (5.I)). From (3.4), we have
2 1 2
1Tz6(ues)z2@rxm) < Gxlluesllzas., o) (5.3)
and from (4.8),
| hesttaPae+ [ asfunstto)Pis < 5.4
Qs B. s
Hence
2 C
|ue,s(t, @) de < (5.5)
Bs’g a’€,§
We substitute (5.9) in (5.3) that gives (5.2);. Then (3.6), yields
2
£
IVA(Tz 5 (e s)) 12207y < m”vxua,énmmgé)- (5.6)
Estimate (4.8)), leads to
C
/ |V, s(t, 7)|*dtde < —.
B..sx(0,T) b. s
The above inequality and (5.6) give (5.2)).. O

So, the above estimates (5.2)) highlight several cases. We will focus our attention on the
most interesting one.

Assumption A,. We assume that

N—-2

lim 5— =7 € (0, +00), lim Va5 = ag € (0, +00),

(£,6)—(0,0) € (£,6)—(0,0) (5.7)
li b.s = by € (0 .

oo s = b0 € (0, Fe0)

Now, as a consequence of Assumptions A;, A, and the estimate (3.4)),, the sequences {7z 5(u 5)},
{6V T. 5(f.5)} are bounded respectively in L2(2 x B), L*(Q" x B).



Assumption A;. We assume that there exist U € L*(Q2 x B) and F' € L*(Q" x B) such that

Tos(uls) = Uy weakly in L*(2 x B),

5.8
SNT.s(f-5) = F weakly in L*(Q7 x B). 68
Lemma 5.2. There exist a subsequence of (¢,0), still denoted (¢, ), and U € L*(QT; H. (RY))
with V.U € L2(QF x RY) such that
ﬁ,§<u€,5> —~U Weakly in L2<QT7 Hlloc(RN))v (5 9)

V,ﬂ;s(us,a)h/gy -~ V,U weakly in L2(QT X RN).
Furthermore, there also exists V € L*(QT, L? (RN)) with V.,V € L*(QT x RY) such that

Tes(tes — Mo(uz5))lij5y =V weakly in LZ(QT; L* (RN)),

5.10
VZ7;75(UE,5>11/5Y -~ V.,V weakly in LQ(QT X RN) ( )
and we have U =V + .

Proof. From the estimates (5.1))-(5.2)), there exist subsequences of (¢, ) such that the conver-
gences (5.9) and (5.10) hold. Convergences (#.12)), and (3.2) yield

M. (uz5) —=u  weakly in L*(Q7),

. 5.11
thus M. (uz5) = u weakly in L*(Q7; L7 (RY)). G-I
Then, (5.9)1, (5.10); and (5.11)) lead to V = U — w. O
Set .
H={®c H. (R)|V.0c [L*RV)V} = H'RY) o RP, 5.12)
L={®eL*(%H)|P(,00) € Hy(Q)}.
For any & € H, we know that there exists a constant denoted ®(co) such that
[® — @(00)| 2= gy < CI V| L2(my. (5.13)

The constant C' does not depend on ®.
Observe that U € L?(0,T;L) and U(t, z,00) = u(t, x) for ae. (t,z) € Q7.

2 Recall that the space i L(R™) is the completion of D(RY) for the norm ||[V||z2g~). The Sobolev

imbedding theorem implies that for N > 3, it is a subspace of L (RY), where 2* is the Sobolev exponent
associated to 2. Therefore, all its elements admit 0 as limit at co of R™ (in the weak sense of L>" (R)).



6 The unfolded limit problem

Denote

1 ifzeRY\ B,
ko(2) = 6.1
(2) {bo if 2 € B. ©.1)

Theorem 6.1. Let u. 5 be the solution of the evolution Problem (4.5)). For the whole sequence
(€,d) we have the convergences (A.12)), (5.9) and (5.10).

The limit function U is the solution of the unfolded evolution problem

U e L*0,T;L), U(-,-,00) € H'(0,T; H()),
U e H'(0,T; L*(; (H'(B)))),
< d—U(
dt
+/VIU(t,-,oo) V. P(-, 00) dac—{—’yo/ ko V. U(t)V.,® dxdz
QxRN

dU
t,,00), ®(+,00) >p-1(0),my) Ta0 < —- (), ® > 120 )y L2011 ()

(6.2)

/ f(&)®(-, 00) dx +/ F(t)®dxdz, forae. te (0,T), VP elL,
QOxB
U(0,2,00) = u’(z), U(0,z,2) =U%=x,2) forae. (x,2)€Q x B.

Furthermore U satisfies

1
5 / U(t, -, 00)|dz + % U (t)|dzdz
Q QOxB

t t
—I—/ /|VxU(s,-,oo)|2dsdx+70// ko|V.U|*dsdxdz
0o Ja QxRN
t
:/ /f(s)U s,+, 00 dsdx—i-// t) dxdz
0o Ja OxB

1
+ —/ [u°|?dx 4+ 2o \U°2dzdz.
2 Ja 2 OxB

forallt € [0,T]. (6.3)

Before proving the unfolded limit problem, we introduce and prove three lemmas. The
first one concerns a density result, the second one gives a convergence result for functions
vanishing in B, 5 and the last one introduces a test function.

Since the open set B is bounded, there exists 79 > 0 such that

Lemma 6.2. The set

U {vem.olv,, =0}

1€ (0,10]
is dense in H!, (V).

per

10



Proof. We prove the lemma in two steps. In the first one we choose an element in CJg, (Y)
and in the second one we investigate the general case.

Step 1. We fix a function x in C*(R") satisfying
x =0 on B,

x=1 on RV\ 2B, (6.4)
x(x) €[0,1] forall » € RY.

W)
! Ui
For any ¢ € ngr(Y), denote ¢, = x,¢. Since x,, = 1 on 9Y, the function ¢, belongs to
H! (V). We have ¢, = g on Y \ 2B and V¢, = Vo, + Vx, 6. Hence

per

For n € (0, no], set

16y — Ol2s0ry + 969 — Vo |agy < / 6Pdy + 2 / Vol2dy + 2 / V6 2dy.
2nB 2nB 2nB

One has
/2 i IV xal?loPdy < Cn™ 2V x| oo vy (|l oo (v -
n

Since ¢ belongs to C=°.(Y) and the measure of 7B goes to zero, one obtains the strong con-

per

vergence of ¢, to ¢ in H),,.(Y).
Step 2. Let ¢ be in H! (Y). The space C=°.(Y) is dense in H! (Y'). Hence for any ¢ > 0

per per per

there exists ¢ € C2° (V') such that

per

1Y —@llmy) < e (6.5)

We fix a function ¢ satisfying (6.5]). From Step 1, there exists 77; > 0 such that

Ve (0m]  lle—enllmy) <e (6.6)
As a consequence of (6.5) and (6.6) we get

Ve 0m] Y —enllay) <2
The lemma is proved. [
Lemma 6.3. Suppose p € [1,4+00). For any w € LP()

wle:, — w strongly in LP(S). (6.7)

Proof. Step 1. We prove forw € L>(Q).

11



Take w in L>(

o)
[lwte;, ~w@pde = [ @l
Q - Bs,zi
< Besllolf oy < C 0l

Passing to the limit gives (6.7) for any w € L>°(92).
Step 2. We prove forw € LP(Q).

Let w be in LP(2). Since C(12) is dense in LP(2), p € [1,00), for any £, > 0 there exists

W e C(Q2) suth that
|lw —W{|r) < 1. (6.8)

We fix W satisfying (6.8). Then
Hng;a — W) < [Besl|Wllpe@) < C5N|HWHL°°(Q)'
Hence, there exists §; > 0 such that
Vo € (0,0, ||WIQ;5 —Wlr) < e
So

[wles, — wllee) < [lwler, — Wilar [[reo) + [Wla: , = Wile) + [[W — wl|zr()

S ”ngg,é — WHLP(Q) + 2HW - 'LUHLp(Q) S 361.
As a result, the strong convergence is proved. ]
Lemma 6.4. Let ) be in H N C>®(RY) such that the support of V 4 is bounded. Set

lrx . ~
Ve () :¢<5{g}> if ©e %» 69)
Ves(x) = ¥(00) if v€A.
The function . 5 belongs to C>(Q) and
Vs — Y(00) strongly in L*(Q). (6.10)

Proof. There exists R > 0 such that the support of V4 is included in the ball B(O; R). For
0 small enough B(O;0R) C Y. We perform a change of variables and we use the fact that
1 — 1)(00) belongs to H} (B(O; R)). That gives

o ettt == [ o(G{E) —ve
= )" /B(OR) |4(2) — (00)|*dz
< Cle0) B2 /

B(O;R

2

dx

IV.(z)[Pdz.
)

12



The constant does not depend on ¢ and §. Summing over =, yields

/Q [Ves(@) = vl(o0)*de = 3 /€§+ay [e5(2) — ¥(00)Pdr < COM|| V]| 72z

SCF
Hence, we get the strong convergence (6.10). O

Proof of Theorem[6.1} First observe that Problem (6.2)) has a unique solution U belonging to
L?(0,T;L). Itis a consequence of the Faedo-Galerkin’s method which also gives the equality

(6.3). This will imply the convergence of the full sequences in (4.12)), and (3.10). It is

therefore enough to obtain the limit Problem for a subsequence, which we do below.

The aim of the three first steps is to obtain the variational formulation (6.20) of the
limit problem. Then, in the last step we prove that U(-,-,00) € H'(0,T; H'(Q)) and
U e HY0,T; L*(; (H(B))'))-

Step 1. Let (¢, w) be in C1([0,T]) x D(Q) such that ¢(T) = 0. Taking ¢(¢)w(z) as test
function in (4.4)) and then integrating by parts lead to

— / Ue s ¢ w dtdr — / A 5 Ue 5 ¢ w dtdx
(O,T)XQ;(S (0,T)x B¢ 5

+ / ¢ V. s Vw dtdz + / be 56 Ve s Vo dtda (6.11)
(0,7) XQ:’(; (0,T)x B¢ 5

= Jes@w dtdr + / pes Ul s 9(0)w dz.
Qr 0

Due to the convergences (@.12)) and we obtain
Or

/ Ue,s ¢ w dtdr = / Ue.§ ¢ wlge. s dtde — u @ wdtdz,
(0.7)x 4 Qr

/ OV ue sV,w dtdr = OV U sV wlos. sdtde — oV uVw dtdx.
(0.7 4 Qr Qr

Now, unfolding the integral over (0,7") X B; s and using Lemma [3.2] and convergences (5.9)
yield

/ e stie s &' w dtdr = / Na. 5T s(ues) ¢ Tos(w) dtdrdz
(0,T)xBe s (0,T)xQxB
— aoU ¢' w dtdxdz,
(0,T)xQxB
5N72
/ bes¢ Vu. s Vw dtdr = / €0—5—b.50 V. Tz 5(ues) Te 5(Vw) dtdzdz — 0.
(0,T)xBe 5 OTxB €

13



The convergences (3.8)), (5.8)), (4.7) and (6.7), lead to
/ pa(gug,(g »(0)w dx :/ u275 #(0) w lgec 5 dr + / 5Na5757;5(u275) #(0) Tz 5(w) dzdz
0 Q 0

xB

. /Q W0 $(0)w dz + /Q U o(0)wdads

fesowdtde = | fes5dwlgesdtdr + / (5N7;5(f575)¢> Te5(w) dtdzdz
Qr Q

Qr TxB

— fowdtde + / Fowdtdrdz.
or QT xB

Finally, summarizing the above limits give
— ao/ U(t,z,2)¢' (t)w(x)dtdedz
QT'xB

—/ u(t, z)¢' (t)w(z)dtdr + o(t)Vu(t, 2)Vw(z)dtdedy
T > (6.12)
= . f(t, x)p(t)w(x)dtdx + /QT BF(t,a:,z)<b(t)w(x)dtdq;dz

+ ¢(0) /Q (uo(x)—i—ao /B U (z, z)dz)w(a:)da:.

Step 2. Now, let (¢, w) be in C*([0,T]) x D() such that ¢(T) = 0 and let » € HNC>=(RY)
such that the support of V.1 is bounded. In (.4) we take as test function ¢(t)w(x)i. s(x),
where 1. 5 is given by (6.9).

If § is small enough the function ). s is constant (and equal to 1/(c0)) on the boundary of
the cells e§ +eY (£ € Z;). As a consequence, the function w1, 5 is an admissible test function
belonging to H}(2). Hence

_t/n p&5U&5¢{U)¢%ﬁCﬁd$<+t/n k&5¢‘7u&5VKUJ¢@ﬁ)dtd$
QT

or (6.13)
= [ st a)oOu@ps(wyitds + [ posils(@o(0)ua)iesod.
Since V.1 has a compact support in RY, from the equality (3.3]) and Lemma we obtain
0T s(wV Y. 5) = Tes(w)V 1) — wV 9 strongly in L?(Q2 x RY). (6.14)
Now, due to the convergences (4.12),, (5.9)1, (6.14) and (6.10) we can write
/ Pe,5Ue 6 Wi sdtdr
oTr
:/ Ue 5@ W s1qc sdtd + / N ae 5Tz 5(ue ) To s(w)pdtdadz (6.15)
Qr QT xB

— ud'wip(oo)dtdr + ag / U wipdtdrdz.
Qr QT xB
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We have
/ k875¢qu575V(ww5,5)dtdx
QT
::/f k&5¢ﬂvmu&5VhUd@ﬁcﬁd$-+l/n k&5q5VZﬂ%ﬁQU‘7¢&5dtdI.
QT QT

Convergences (5.9); , (5.10), and (6.10) lead to

/ ka(s ¢ qug,g Vw %,6 dtdr = ¢ Vzu&g Vw 1/J5751g2:5 dtdzx
Qr QT
5N—2
€

+ / besd V. T g(uc ) <557;5(Vw))wdtdxdz (6.16)
OT'xB

— ¢ V,uVwip(oo) dtde + 0.

QT

Again from (5.9),, (5.10), and now (6.14) we get

[ hestuesw Vi dids
QT

5N—2
= ¢ 7;6(]{75,6)6—2vz7;6(us,5)7;6(w) V. dtdvdz (6.17)

QT xRN

— 0 / ¢ V.V w V.4 dtdrdz + by / O V.U w V.0 didudz).
QT x (RN\B) Q

TxB

In the same way, using {.7)), and (5.8), give

/ fes Qw5 dtdr — f owip(oo) dtdx +/ Fowidtdedz,
o o AT xB (6.18)
/ Ps,aug,a 6(0) wipe s dr —> / u? é(0)w (o0) dx + / aoU° o(0)w Y dxdz.
Q Q Q

x B

Finally, from the convergences (6.13), (6.16)), (6.17) and (6.18) one has

- / ug'wip(oo)dtdr — ao/ U ¢ wpdtdrdz + / ¢ VuVwi)(oo) dtdz
Qr QT xB of

+ % / ko o V.U wV ) dtdxdz

wE (6.19)

= f¢w¢(00)dtd:v+/ Fowp dtdedz
Qr QT xB

+ [ oo de tan [ 060w dsd

xB

Step 3. The space of functions belonging to H N C*°(R") and whose gradient support is
bounded is dense in H. Hence, equality (6.19) is satisfied for any ) in H. Then, the density
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of the tensor product C*([0,7]) ® D(Q2) ® H in H*(0,T; L) implies

d d
—/ U(t,-,oo)a—(t,-,oo)dtdx—ao/ Ua—dtdxdz
o ot T

+ V.U(:,00) V. ®(t, -, 00) dtdx + o / koV.,U V., ® dtdxdz
or QT xRN (6.20)
fo(t, -, 00)dtdx + / F & dtdxdz
Qr OT'x B

+/u0®(0,~,oo)da:+ao/ U°®(0) dedz
Q QxB
forany ® € H'(0,T’; L) such that ®(T, -, -) = 0. Hence (6.2).
Step 4. Let O be in L satisfying

O(c0)=1 and ©O(z2) =0 forae.z € B.
For any U € H}(0,T; H}(2)) we choose ® = WO as test function in (6.20). That gives

ov
— [ U(t,-, oo)adtdx + V.U(:,00) VW dtdx
Q

’ or 6.21)
+%/ hNﬂWVﬁﬁMW:/TﬂMMu
Q Qr

T« RN

Hence
‘ t, —dtdx) < V.U (-, 00) [l 2(am Vo 2oy
+ OV Ul 2 0rxzem 1Y | 20n) | V2O 2@y + | f 2oy | W] 2 ).

Since U belongs to L*(0, T; L), we obtain

ov
‘ \/S;TU<t7 ° OO)EdtdiC S C”\IJHLQ(O,T;H(%(Q))'

The constant depends on ||U||z2(0,7;), || V2O || L2y and || f|| 2r). As a consequence of the
above inequality we get U(-, -, 00) € H'(0,T; H~1(Q)).

Now, let ® be in H}(0,T; L2(2; H(B))) we extend ® as a function ® belonging to
H(0,T; L*(Q; HY(RY))) satisfying

O(t,z,2) = ®(t,r,2) forae. (t,r,2) € Q' x B,
||6||H§(O,T;L2(Q;H1(RN))) < C||® g 0,121 (BY))-

We choose ® as test function in (6.20). That leads to

i) _
—aO/ U 8_ dtdxdz + 70/ koV. UV, ®dtdxdz = / F o dtdzdz.
QT xB ot QT xRN QTxB
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Hence

< OHV U||L2 QTXB HV (DHLZ QTXRN)

ao‘ / U — dtdxdz
QT x (6.22)

+ [[F | 2207 x5y || L2027 )
Again, using the fact that U belongs to L?(0, T’; L), we get
‘/ U—dtdl’dZ’ < CHCDHLQ(QT;Hl(B))'
Q

Tw B 8

The constant depends on ||U|| 20,71y and on || F'|| 27 ). As a consequence of the above
inequality we get U € H*(0,T; L*(Q; (H'(B))")). O

7 The homogenized limit problem

From now on, we extend f and F by zero on [T, 4+00].

For any ¢ € L?(0, +00) and for any p € R? , the Laplace transform (see e.g. [10], [11] or

[12]]) is defined by
“+00

o(p) = o(t)e Pidt.

0
Hence, the evolution Problem (6.2)) becomes

p/ I/j(pa$7 00)P(x, OO)d!L‘-i—aop/ ﬁ(p,x,z)@(x, z)dxdz
Q QOxB

+/Vz(7(p,x, o0V, P(x, oo)dx—l—%/ ko(z)Vzﬁ(p,x, )V, ®(z, z)dxdz
Q QxRN
~ (7.1)
:/f(p,x)q)(m,oo)dx—i—/ F(p,x,z)®(z, z)dxdz
Q QOxB

+/ u’(2)®(z, 00)dx + ao/ Uz, 2)®(z, 2)dvdz, Vp>0, V®eL.
0

QxB

For any p > 0, the Lax-Milgram theorem gives the existence and uniqueness of U (p) € L.
The following estimates hold:

P||U(pa'700)||2L2(Q)+ IV.U(p, -, )||L2 +p||U( )||2L2(Q><B) + ”VZU(p)H%Q(QX]RN)

C/ ~ ~
< (1@ ey + IF @y + [0y + 10 W) ¥ >0,

The constant does not depend on p. We recall that

~ ~ 1
¥p>0,  [fP)llixe) < ||f||L2 oy IF®)zxm < ];||F||%z(ngB)~
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Now, let us introduce the solutions 50 and 51 of the following cell problems:
p) L2(Q; F'(RY)),

O CI)dz—f_’)/O/ kOVzé\O(p)x)vzq)dZ
B RN

(7.2)
/ F(p,z)®dz + ao/ U°(z, 2)®dxdz,
B
forae. x € (, V@eﬁ[l(RN), Vp > 0,
and R R
el(p) € H? ‘91(]), OO) = 17
aop / 01 (p) ® dz + o / ko V.0, (p)V.® dz = 0, (7.3)
B RN

Vo € HY(RY), Vp> 0.
Again, the Lax-Milgram theorem gives the existence of @\0, (/9\1 and

. N .~
PO P72 0x ) + IV00(D) |72 0nm) < E(HF(Z))H%Q(QXB) + 0% 20xm) VP> 0.

Now, in order to estimate 6; we consider a function ¥ € H N C°°(RY) satisfying
Y(oo) =1, ¥ =0 inB, V,J hasacompact support. (7.4)
The function 52 = 51 — ¢ 18 the solution of
0a(p) € H'(RY),

aop/ 52(p)<1>dz+70/ kovz@(p)vz@ dz
" - (7.5)
== 70/ koV, 9V, . ®dz = 70/ koA ® dz,
RN RN
Vo € [Y(RY), Vp > 0.

Then, taking 0, (p) has test function in (7.5)) leads to
. 2 0. 2 ¢ 2
PIO2P)z2z) + IV PNy < T8y, VP >0

We express U (p) in terms of b (p), 0 (p), ¥ and u(p). To do that, observe that the Laplace
transform u(p) of w is in fact U(p, -, 00). Hence, we have

f]\(p,x,z) :a(p7 x)é\l(pa Z) + é\0(p>$7 Z) = a(pa ‘T)é\Z(pa Z) + é\0(]773:7 Z) + a<p7 J])Q?(Z)
forae. (v,2) € QxRN V¥p>0.
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Let ¢ be in Hj (), we choose 1 as test-function in (7.1). That gives

p [y datao [ ([ B, e)ate i
+agp /Q ( /B o(p. 2z ) v do + /Q Vii(p) Ve da
:/Q(f(p)+u°)¢dx+/9(/Bﬁ(p,-,z)dz>¢dx
+a0/ﬂ(/BUO(-,z)dz>1/zd9:.

Now, applying the inverse Laplace transform (see [1]], [10] and [11]) in Problems ((7.2),
(7.3) and give

0o € HY(0,T; LA (H(B)))), 60 € L*(QT; [ (RY)),

(7.6)

db
ag < —0<t,$), P >(H1(B))’,H1(B) +Y /N kovzeo(t,x>vz@ dz

dt .

(7.7)
:/ F(t,z)®dz, forae. (t,z) € (0,400) X £,
B

00(0) = U°, Vo e H'(RY),
05 is the solution of the following evolution problem:

0, € HY(0,T; (H'(B))), 0, € L*(0,T; [I{(RY)),

db
_z(t), 0] >(H(B)),H!(B) +'70/ kovzeg(t)vzcb dz =0, (7.8)

dt RN
k .
05(0) = MAzﬁ, forae. t € (0,+00), V&< H'(RY).

Qo

ag <

Here again, the Faedo-Galerkin’s method gives the existence and uniqueness of the solutions
of the two above evolution equations. Proceeding as in Theorem we show that 6, &
HY0,T; L*(Q; (HY(B))")) and 6, € H*(0,T; (H'(B))").

@0:/90d2, @2:/92d2
B B

©o € HY(0,T; L*(Q)), O, € HY(0,T).

Moreover; the function ©4 does not depend on the choice of the function 1.

Lemma 7.1. Set

We have

Proof. Since 0y € L*(QF x B) we obtain ©y € L*(Q7) (as a consequence of the Cauchy-
Schwarz inequality and the Fubini’s theorem). Choosing 1— as test function in (7.7)) (observe
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that 1 — 4 € ﬁ[l(RN)) gives

d de
dt( < 90(t LE) 1 >(HY(B))',H!(B) > =ag < d—;(t,l’), 1 > (HY(B)),H'(B)

do
=ag < d—to(t,x), 1—-9 >(HY(B)) ,H'(B) (7.9)
:")/0/ k’ovzeo(t, .Z')Vz’lg dz + / F(t,l’) dz.
RN B
Now, the fact that
o < Oo(t,x),1 >y u(p= / Oo(t,z) dz fora.e. x € Q,
B
o V.0, € [LA(QF x RM)V,
o V.19 € [C®°(RM)]Y (with compact support)
o e L?(0F x B)
.- . d@() 2T
and the above equalities (7.9) yield e € L*(Q"). As a consequence O, belongs to

HY(0,T; L*(€)). Proceeding in the same way gives ©, € H'(0,T).
Denote (:)2 the Laplace transform of ©,. One has

B B B

It follows that ©- does not depend of the choice of ¥. O

We transform Problem by the inverse Laplace transform, that gives

d
< %(“ + 4O, * u),w S — +/ Vu(t) Ve da

doO,

= —a0 < 2 (0% >0, me0) +/f )b da, +a0/ﬂ(/BF(t)dz)¢dx (7.10)

u(0) = u”, ©y(0) = / U°dz, forae. t € (0,+00), V¢ € Hy(f).
B
Finally, we obtain

Theorem 7.2. The limit field u is the solution of the following evolution problem:

u € L*(0,T; Hy(Q)) N L>(0,T; L*(Q)) N H' (0, T; H'(Q)),

d B dOy . AT

o <u+a0@2*u> Au = —aoﬂ—i-G in )", (7.11)
u=0 on 02 x (0,7,

u(0) = u" in

where
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e O, = / 0, dz belongs to H(0,T), the function 0, being the solution of (7.8),
B
o G(t)= f(t) +/ F(t,-,z)dz belongs to L*(Q7),
B

e Oy = / 0o dz belongs to H'(0,T; L*(R2)), the function 0y being the solution of (T.7).
B
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