N

N

Reduction of dimension as a consequence of
norm-resolvent convergence and applications
David Krejcirik, Nicolas Raymond, Julien Royer, Petr Siegl

» To cite this version:

David Krejcirik, Nicolas Raymond, Julien Royer, Petr Siegl. Reduction of dimension as a conse-
quence of norm-resolvent convergence and applications. Mathematika, 2018, 64 (2), pp.406-429.
10.1112/S0025579318000013 . hal-01449405

HAL Id: hal-01449405
https://hal.science/hal-01449405
Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01449405
https://hal.archives-ouvertes.fr

REDUCTION OF DIMENSION AS A CONSEQUENCE OF
NORM-RESOLVENT CONVERGENCE AND APPLICATIONS

D. KREJCIRIK, N. RAYMOND, J. ROYER, AND P. SIEGL

ABSTRACT. This paper is devoted to dimensional reductions via the norm resolvent conver-
gence. We derive explicit bounds on the resolvent difference as well as spectral asymptotics.
The efficiency of our abstract tool is demonstrated by its application on seemingly differ-
ent PDE problems from various areas of mathematical physics; all are analysed in a unified
manner now, known results are recovered and new ones established.

1. INTRODUCTION

1.1. Motivation and context. In this paper we develop an abstract tool for dimensional
reductions via the norm resolvent convergence obtained from variational estimates. The results
are relevant in particular for PDE problems, typically Schrédinger-type operators depending on
an asymptotic parameter having various interpretations (semiclassical limit, shrinking limits,
large coupling limit, etc.). In applications, our resolvent estimates lead to accurate spectral
asymptotic results for eigenvalues lying in a suitable region of the complex plane. Moreover,
avoiding the traditional min-max approach, with its fundamental limitations to self-adjoint cases,
we obtain an effective operator, the spectrum of which determines the spectral asymptotics. The
flexibility of the latter is illustrated on a non-self-adjoint example in the second part of the paper.

The power of our approach is demonstrated by a unified treatment of diverse classical as well
as latest problems occurring in mathematical physics such as:

- semiclassical Born-Oppenheimer approximation,
- shrinking tubular neighborhoods of hypersurfaces subject to various boundary conditions,
- domains with very attractive Robin boundary conditions.

In spite of the variety of operators, asymptotic regimes, and techniques considered in the previous
literature, all these results are covered in our general abstract and not only asymptotic setting.
Our first result (Theorem 1.1) gives a norm resolvent convergence towards a tensorial operator
in a general self-adjoint setting. A remarkable feature is that only two quantities need to be
controlled: the size of a commutator of a “longitudinal operator” with spectral projection on
low lying “transverse modes” and the size of the “spectral gap” of a “transverse operator”,
see (1.5) and (1.2), respectively. Although the latter is also very natural it was hardly visible
in existing literature due to many seemingly different technical steps as well as various ways
how these quantities enter. As particular cases of the application of Theorem 1.1, we recover,
in a short manner, known results for quantum waveguides (see for instance [3], [11], [9] or [10])
and cast a new light on Born-Oppenheimer type results (see [12], [17], [7] or [16, Sec. 6.2]). To
keep the presentation short we deliberately do not strive for the weakest possible assumptions
in examples, although the abstract setting allows for many further generalizations and it clearly
indicates how to proceed.

In the second part of the paper, we prove, in the same spirit as previous results, the norm
convergence result for a non-self-adjoint Robin Laplacian, see Theorem 1.5. It will partially
generalize previous works in the self-adjoint (see [15], [8] and [14]) and in the non-self-adjoint
(see [2]) cases.

As a matter of fact, the crucial step in all the proofs of the paper is an abstract lemma (see
Lemma 1.7) of an independent interest. It provides a norm resolvent estimate from variational
estimates, which is particularly suitable for the analysis of operators defined via sesquilinear
forms.
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1
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1.2. Reduction of dimension in an abstract setting and self-adjoint applications. We
first describe the reduction of dimension for an operator of the form
L =5*S+T, T=®T,, (1.1)
seX
acting on the Hilbert space H = @ .5, Hs. The norm and inner product in H will be denoted
by | || and (-, -), respectively; the latter is assumed to be linear in the second argument.

Here ¥ is a measure space and T is a self-adjoint non-negative operator on a Hilbert space H
for all s € X. Precise definitions will be given in Section 2. A typical example is the Schrédinger
operator

H = (—ihds)* + (—ide)* + V (s, 1),
acting on L?(R, x R;). We consider a function s — =, such that

’yzirelif:'ys>0. (1.2)

Then we denote by Il, € L(H,) the spectral projection of Ty on [0,7s), and we set I} =
Idy, — II;. We denote by II the bounded operator on H such that for ® € ‘H and s € X we
have (I1®), = I1,®,. We similarly define II*+ € £(#). Our purpose is to compare some spectral
properties of the operator . with those of the simpler operator

Leir = HLTL (1.3)

This is an operator on I with domain ITH n Dom(.Z).
In fact, we will first compare £ with

£ =121 + -2t (1.4)

Then Z and £+ will be defined as the restrictions of Z to ITH and II-H, respectively, so
that

L= L ® LT

—~

We will give a sufficient condition for z € p(£) to be in p(£) and, in this case, an estimate for
the difference of the resolvents. Then, since IIH and II*H reduce 02/’: it is not difficult to check
that far from the spectrum of .Z the spectral properties of Z are the same as those of Leff, SO
we can state a similar statement with .2 replaced by Zer. In applications, we can for instance
prove that the first eigenvalues of £ are close to the eigenvalues of the simpler operator Z.

We assume that Dom(S) is invariant under II, that [S,II] extends to a bounded operator
on H, and we set

a = W (1.5)

Val
For z € C, we also define
3 5 6a 3a a 9
m(z) = —=a*v+ —=(1+a)|z| + — (2 + —) |z|*,
V2 V2 V2 V2

3a

m(z) = ﬁ(1+a)+% (2+%) 2],

3a a

we =205 (24 75)

Theorem 1.1. Let z € p(.L). If
1—m()(Z — 27 —n2(2) > 0,

(1.6)

then z € p(&) and

(£ —2)" = (Z-2)7Y
<mENZL = 2)HIEZ = )7 + @)L = 2) 7 + mDIZL = 2)7Y +na(2).
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In particular, .

(m3(2) + DI(ZL — 2) 1] + m(z)

L= m()I(Z = 2)71 = na()
In order to compare the resolvent of .Z to the resolvent of Z, this theorem is completed by

the following easy estimate:

I(£ -2~ <

Proposition 1.2. We have Sp(.,?) = Sp( L) U Sp(LY) and, for z € p(‘,i/’”\) such that z ¢

[, +0),
1

dist(z, [y, +90))
In this estimate, it is implicit that (Lus — 2) "' is composed on the left by the inclusion IIH — H.

|z

(& —2)"" = (Lewr — Z)flﬂH <

Remark 1.3. These results cover a wide range of situations. In Section 3, we will discuss three
paradigmatic applications. The space ¥ will be R or a submanifold of RY, d > 2. The set H, is
fixed, but the Hilbert structure thereon may depend on s. In our examples (T)sex is related to
an analytic family of self-adjoint operators which are not necessarily non-negative. Nevertheless,
under suitable assumptions, we can reduce ourselves to the non-negative case. Indeed, in our
applications, for all s € ¥, T is bounded from below, independently of s € X. Moreover, the
bottom of the spectrum of T will be an isolated simple eigenvalue p1(s). Then, we notice that
infsex; p1(s) is well-defined and that Ts — infsex; p1(s) is non-negative. We denote by ui(s) a
corresponding eigenfunction. We can assume that |ui(s)|,, = 1 for all s € ¥ and that u; is
a smooth function of s. Il is the projection on ui(s) and I can be identified with L?(X)
via the map ¢ — (s — ¢(s)ui(s)). In particular Ze can be seen as an operator on L?(Y),
which is what is meant by the “reduction of dimension”. Finally, v, is defined as the bottom
t2(s) — infgex p1(s) of the remaining part of the spectrum and

v = inf ps(s) — inf p(s) < inf Sp((Z — in£ p1(s)h). (1.7)
S S sE
We recall that we assume the spectral gap condition v > 0, see (1.2).

1.3. The Robin Laplacian in a shrinking layer as a non-self-adjoint application. We
now consider a reduction of dimension result in a non-self-adjoint setting, namely the Robin
Laplacian in a shrinking layer. Let d = 2. Here, ¥ is an orientable smooth (compact or non-
compact) hypersurface in R without boundary. The orientation can be specified by a globally
defined unit normal vector field n : ¥ — S%~!. Moreover ¥ is endowed with the Riemannian
structure inherited from the Euclidean structure defined on R%. We assume that ¥ admits a
tubular neighborhood, i.e. for £ > 0 small enough the map

O : (s,t) — s+ etn(s) (1.8)
is injective on ¥ x [—1,1] and defines a diffeomorphism from X x (—1, 1) to its image. We set
Q=Y x(-1,1) and Q.=0.(9). (1.9)

Then (). has the geometrical meaning of a non-self-intersecting layer delimited by the hypersur-
faces
Yie=0.(2x{£1}).

Moreover ¥4 . can be identified with > via the diffeomorphisms

)y - Yie
Ore: { s +— sten(s).

Let a : ¥ — C be a smooth bounded function. We set a1 . = a0 @;18 : X4, — C and we
consider on L?(€).) the closed operator &, , (or simply . if no risk of confusion) defined as
the usual Laplace operator on 2. subject to the Robin boundary condition

0
¢ +ar.u=0, onXy.. (1.10)
on - -

Remark 1.4. Note that a very special choice of Robin boundary conditions is considered in
this section. Indeed, the boundary-coupling functions considered on X . and X_ . are the same
except for a switch of sign, see (4.1). More specifically, at .(s) = a(s) for every s € ¥ and n is an
outward normal to {2, on one of the connected parts X+ . of the boundary 0€2., while it is inward
pointing on the other boundary. This special choice is motivated by Parity-Time-symmetric
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waveguides [1, 2] as well as by a self-adjoint analogue considered in [14]. It is straightforward
to extend the present procedure to the general situation of two different boundary-coupling
functions on ¥4 . and X_ ., but then the effective operator will be e-dependent (in analogy with
the Dirichlet boundary conditions, see Proposition 3.4) or a renormalization would be needed
(cf. [11]).

Our purpose is to prove that, at the limit when e goes to 0, the operator &, converges in a
norm-resolvent sense to a Schrédinger operator

Lot = —Ax + Vet
on X. Here —Ay; is the Laplace-Beltrami operator on ¥, and the potential Ve depends both on

the geometry of ¥ and on the boundary condition. More precisely we have
Vet = |af* — 2aRe(a) — (kg + - + Kg_1). (1.11)

Note that the sum of the principal curvatures is proportional to the mean curvature of X. Notice
also that Hes defines an (unbounded) operator on the Hilbert space L?(X). In particular &,
and Her do not act on the same space.

We denote by II € L£(L*(2)) the projection on functions which do not depend on t: for
ue L2(Q) and (s,t) € Q we set

1t
(TTu)(s,t) = §J- u(s,0)do .
-1
Then we define II*+ = Id — II.

Theorem 1.5. Let K be a compact subset of p(HT). Then there exists ¢g > 0 and C = 0 such
that for z € K and € € (0,e9) we have z € p(H.) and

H(f@‘g - 2)71 - U;l(geff - 2)71HU8|‘L(L2(QE)) < Ce.
Here U, is a unitary transformation from L?(Q,dx) to L*(Q, we(x)dodt), where for some C > 1
we have

1
= <@ <C.

As for Theorem 1.1 it is implicit that the resolvent (Zur — z)_l is composed on the left by
the inclusion I1L?(€2.) — L?(Q.). Moreover the operator % on L?(X) has been identified with
an operator on I1L*(Q.).

Ve € (0,e0),Va € Q,

Remark 1.6. In the geometrically trivial situation ¥ = R?~! and special choice Re(a) = 0, a
version of Theorem 1.5 was previously established in [2]. At the same time, in the self-adjoint case
Im(a) = 0 and very special geometric setting d = 1 (3 being a curve), a version of Theorem 1.5
is due to [14]. In our general setting, it is interesting to see how the geometry enters the effective
dynamics, through the mean curvature of 3, see (1.11).

1.4. From variational estimates to norm resolvent convergence. All the results of this
paper are about estimates of the difference of resolvents of two operators. These estimates will
be deduced from the corresponding estimates of the associated quadratic forms by the following
general lemma:

Lemma 1.7. Let K be a Hilbert space. Let A and A be two closed densely defined operators on

KC. Assume that A is bijective and that there exist 1,12, 13,n4 = 0 such that 1—n Hﬁflﬂ —12 >0
and

V¢ € Dom(A), Vip € Dom(A*),
KA, ¥y — (& A*)| < |l ] + mal @I A% + ns Al ] + nal Ag]|A* ] .

Then A is injective with closed range. If moreover A* is injective, then A is bijective and we
have the estimates .
(n3 + DA™ + 4

L—m A7 —n2

A7) < (1.12)

and
A7 = A <A AT el AT A+
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Since the proof is rather elementary, let us provide it already now.
Proof. Let ¢ € Dom(A) and consider ¢ = (A~1)*¢ € Dom(A*). We have
18] = (A, (A7) *)| = [, A*) — (Ag, )]
< O IA7 + 612 + (nal A7+ me) A6
SO
912 < (m A4+ m2) I + ((n + DIAT] + ) lo]|40).
Then if ny A=Y + 72 < 1, we get
(3 + DAY + 14
L—m| A= =2
In particular, A is injective with closed range. If A* is injective, the range of A is dense and

thus A is bijective. In particular, with (1.13), we obtain (1.12).

~

Finally for f,ge K, ¢ = A7 f and ¢ = (A71)*g we have
(AT = A7) f.g) = (b, A*) — (Ad, ),

and the conclusion follows by easy manipulations. O

l¢ll < | A9l - (1.13)

1.5. Organizaﬁi\on of the paper. In Section 2, we prove Theorem 1.1. We first define the
operators ., £ and Ze, and then we show how Lemma 1.7 can be applied. In Section 3, we
discuss some applications of Theorem 1.1 to the semiclassical Born-Oppenheimer approximation,
the Dirichlet Laplacian on a shrinking tubular neighborhood of an hypersurface and the Robin
Laplacian in the large coupling limit. Section 4 is devoted to the proof of Theorem 1.5 about
the non-self-adjoint Robin Laplacian on a shrinking layer.

2. ABSTRACT REDUCTION OF DIMENSION

In this section we describe more precisely the setting introduced in Section 1.2 and we prove
Theorem 1.1. The applications will be given in the following section.

2.1. Definition of the effective operator. Let (X, 0) be a measure space. For each s € ¥ we
consider a separable complex Hilbert space Hs. Then, on Hs we consider a closed symmetric non-
negative sesquilinear form ¢, with dense domain Dom(gs). We denote by T the corresponding
self-adjoint and non-negative operator, as given by the Representation Theorem. As already said
in Section 1.2, we consider a function s € ¥ — ~; € R whose infimum is positive, see (1.2). Then
we denote by Iy € £(H,) the spectral projection of Ts on [0,7s), and we set I+ = Idy, — I.

We denote by H the subset of @, s, Hs which consists of all ® = (®,)sex such that the
functions s — @], and s — [II;®s];, are measurable on ¥ and

MW=LJ%%ﬁd®<+W-

It is endowed with the Hilbert structure given by this norm. We denote by II the bounded
operator on H such that for ® € H and s € ¥ we have (II®), = II;®,. We similarly define
I+ e L(H).

We say that & = (Py)sex € H belongs to Dom(Qr) if &, belongs to Dom(gs) for all s € X,
the functions s — ¢4(®5) and s — ¢s(I1;P;) are measurable on ¥ and

Qr(®) = J-z: qs(®4)do(s) < +o0.

We consider on H an operator S with dense domain Dom(S). We assume that Dom(S) is
invariant under II, that [S, II] extends to a bounded operator on H, and we define @ as in (1.5).
We assume that

Dom(®) = Dom(S) n Dom(Q7)

is dense in H, and for ® € Dom(Q) we set
Q(®) =[S + Qr(®). (2.1)

We assume that ) defines a closed form on H. The form @ is symmetric and non-negative and
the associated operator is the operator . introduced in (1.1).
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Then we define the operator g(see (1.4)) by its form. For this we need to verify that the
form domain is left invariant both by IT and IT+.

Lemma 2.1. For all ® € Dom(Q) we have 11 € Dom(Q) and II+® € Dom(Q).

Proof. Let ® = (Py)sex € Dom(Q). We have & € Dom(S), so by assumption we have II® €
Dom(S). By assumption again, the function s — ¢s(IL;®) = ¢s (I, I1,P;) is measurable and we
have

f ¢s(s @) do Sup%f |®, 5, do(s) < +oo.

This proves that II® belongs to Dom(Qr), and hence to Dom(Q). Then the same holds for
I+e = & — 11d. (]

With this lemma we can set, for &, ¥ € Dom(Q),
Q(®, V) = QII®, 1) + QII+®, I ) .
Lemma 2.2. For all ® € Dom(@) we have
QD) <2Q(2).

In partzcular the form Q is non-negative, closed, and it determmes uniquely a self-adjoint oper-
ator & on . Moreover we have [T, 02”] =0 on Dom(iﬂ)

Proof. We have
Q@) — Q(®) = Q(IP,TI*P) + QI @, 1I).
Since the form @ is non-negative we can apply the Cauchy-Schwarz inequality to write

Q2,1 ®) < \/Q(I2) QD) < Q@) + QI @) = 2 G(®).

We have the same estimate for Q(IT*®, II®), and the first conclusions follow. We just check the
last property about the commutator. Let ¥ € Dom(.¥). For all ¢ € Dom(.¥) we have

Q. T1) = Q(TTg, 1) = Q(I1g, ) = (T, L)y = (b, L ).
This proves that Iy € Dom(.,?) with ‘,2/”\1_[1/) = Hgﬂ) and the proof is complete. O

Then, from @ it is easy to define the forms corresponding to the operators Zus and £

Lemma 2.3. Let Qe be the restriction of Q to IIDom(Q) = Ran(II) n Dom(Q). Then Qef
is non-negative and closed. The associated operator Leg is self-adjoint, its domain is invariant
under II, and [II, %u] = 0 on Dom(ZLs). Moreover, we have (Dom(‘,@ N Ran(H),‘,{”\) =
(Dom(Zer), Letr)-

We have similar statements for the restriction Q) of Q to II*Dom(Q) = Ran(II*+) n Dom(Q)
and the corresponding operator L.

Proof. The closedness of Qe comes from the closedness of @ and the continuity of II. The other
properties are proved as for Lemma 2.2. We prove the last assertion. Let 1) € Dom(Zyr). By
definition of this domain we have II¢) = 1. For ¢ € Dom(Q), we have

Q(¢,¥) = QI 1) = Qer(TT, ) = Qe (11, ) = (116, Lewrt)) = (6, Ler)
This proves that ¢ € Dom(.,?) and L) = L. Thus Dom( %) © Dom(‘,i/”\) n Ran(IT) and

% = Ly on Dom(.Zr). The reverse inclusion Dom(.Z) n Ran(IT) < Dom(.Z) is easy, so the
proof is complete. 0

Finally we have proved that
Dom(,,?) = (Dom(a{”\) ~ Ran(Il)) ® (Dom(,,?) N Ran(HJ‘)) = Dom( %) ® Dom(Z4)
and for p e Dom(‘,{”\) we have
L =ZLllp + XLHL(,O.
From the spectral theorem, we deduce the following lemma.

Lemma 2.4. We have Sp(.,?) = Sp(Lesr) U Sp(LL) and, for z € p(.,?) such that z ¢ [y, +0),

H(g— 2)7h — (Lt — Z)_lﬂH < m )
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2.2. Comparison of the resolvents. This section is devoted to the proof of the following
theorem that implies Theorem 1.1 via Lemma 1.7.

Theorem 2.5. Let £ and £ be as above. Let z € C and m(z),m2(2),n3(2),na(z) as in (1.6).
Then for ® € Dom(.Z) and ¥ € Dom(.Z*) we have

QD,0) - Q(®,9)| <mi(2) [P [ W] + ma(2)| @] (£ - 2)¥]

+13(2)[[ (£ — 2)@[|¥] + na(2)(£ — 2)@|| (£ - 2)¥] .

Theorem 2.5 is a consequence of the following proposition after inserting z and using the
triangular inequality.

Proposition 2.6. For all ® € Dom(%) and U € Dom(.,?) we have

(@, )]

Qe
B (10 ) S G e (1) 5 (12

Proof. Let v = |[S,II]]. We have
Q(®,T) — Q(®, V) = Q(II+®, ITV) + Q(IId, [T ) .
For the first term we write
QI @, TIV) = (STI*®, STIV) = (STI*®, [S, H|TIV) + (SIT*+®, [ISTIV),

|Q(‘1> V) -

%|s

so that
QI @, V) = (ST @, [S, T|IIV) + ([S, [T+ ]IT+ &, [ISTIV) .
We deduce that

QUI* @, T1V)| < v| ST @ || W] + v|TT* [ | ST . (2.2)
Similarly, we get, by slightly breaking the symmetry,
QUI®, I W)| < v| STV | @ + v| T W S®| . (2.3)

We infer that
Q(®, V) — Q(®, V)| < v|[ ST @[ ¥] + I @ || STIT| + v|STIHE|[ @] + v|TI- [ |SP. (2.4)
Since Qr is non-negative we have
|s2]* < Q(®) < |2 2[|2]. (2.5)
Similarly,
|STIP|* < Q(¥) < [ £¥]|¥]. (2.6)
Then we estimate [[I+®| and |STI*®|. We have
(T, 2®) = Q(IT*®,®) = Q(IT*®) + QI &, 1),
and deduce
QUI®) < [ 2| ] + |QUT" @, IIP)| .
From (2.3), we get
QUI®) < [ L[ [IH @] + v| ST @[ | @] + v|TT- || SP].

Moreover, we have
QI ®) > [SIIH@|* + oI 2|*.
We infer that

| S @[? + ~ 11+
Yimtai2 « Lioaiz « Lianta « Va2« Limlal . Vo el
< Tl + 2|2 4 STl + el + Jmte) + L sw)P.
v v
Using (2.5) we deduce that

2 2 (1208
3 st af? +inep) < 2zop + 2o+ 2 (204 o).
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and thus

|STT @2 |- @]
+

T+ @)% < (2+a2)T + 24| ®)?. (2.7)

Let us now consider |II*W¥| and |STI*¥|. We have easily that

|STEH W + 4T )2 < QI W) = Q(¥, I 0) < | 2| [T v,

and thus
ST w2 20?2
H H + HHL\I]H2 < H - H ) (28)
Y Y
It remains to combine (2.4), (2.5), (2.6), (2.7), (2.8), and use elementary manipulations. O

3. EXAMPLES OF APPLICATIONS

In this section we discuss three applications of Theorem 1.1 and we recall that we are in the
context of Remark 1.3.

3.1. Semiclassical Born-Oppenheimer approximation. In this first example we set (X, 0) =
(R,ds). We consider a Hilbert space Hr and set H = L?(R,Hr). Then, for h > 0, we consider
on H the operator Sy, = hD,, where Dy = —ids. We also consider an operator 1" on H such that
for ® = (Dy)ser € H we have (TP®)s = TsD,, where (Ty) is a family of operators on Hp which
depends analytically on s. Thus the operator £ = %}, takes the form

L =h?D?+T.

This kind of operators appears in [12, 13] where their spectral and dynamical behaviors are
analyzed. As an example of operator T, the reader can have the Schrodinger operator —A; +
V(s,t) in mind, where the electric potential V' is assumed to be real-valued. Here the operator
norm of the commutator [hDs,II] is controlled by the supremum of |dsu1(s)|x. Assuming
that [|Osui(s)|s is bounded, we have a = a(h) = O(h) (see (1.5)). Let us also assume, for
our convenience, that ;7 has a unique minimum, non-degenerate and not attained at infinity.
Without loss of generality we can assume that this minimum is 0 and is attained at 0. Thus,
here ~y just satisfies v = infseg pa(s) > 0.
For k € N* we set
Ai(h) = sup inf (L, ). (3.1)
FcDom(%,) #EF
codim(F)=k—1 l#l=1
By the min-max principle, the first values of A (h) are given by the non-decreasing sequence of
isolated eigenvalues of %, (counted with multiplicities) below the essential spectrum. If there
is a finite number of such eigenvalues, the rest of the sequence is given by the minimum of the
essential spectrum. We similarly define the sequence (Aefr r(h)) corresponding to the operator
L eff- Note that &, o can be identified with the operator

W2 D? + pa(s) + 12 0sun(s)]3,. -

As a consequence of the harmonic approximation (see for instance [4, Chapter 7] or [16, Section
4.3.1]), we get the following asymptotics.

Proposition 3.1. Let k € N*. We have

Aeff,ii(h) = (2k — 1) %(O)h—i—o(h), h—0.

From our abstract analysis, we deduce the following result.
Proposition 3.2. Let ¢y, Cy > 0. There exist hg > 0 and C > 0 such that for h € (0,hg) and
z € Z, = {z € [-Coh, Coh] : dist(z,Sp(Lh.efr)) = coh}

we have z € p(%,) and
[(Zh —2)7" = (Lher —2) | < C
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Proof. Let h > 0 and z € Z,. If h is small enough we have Coh < 7 50 2 € p(ZLheff) N p(LiL) =
(). Moreover, by the Spectral Theorem,

—~

H(«iﬂh - Z)_IH < (Lot — 2) 7 + H(iﬂhL —2)7 < ! :

Coh, Y — Coh
With the notation (1.6) we have

liminf sup (1= () |(Zh = 2) 7' = nen(2)) > 0.
h—0 z€Zp,

From Theorems 1.1 and Proposition 1.2, we deduce that z € p(.%,),
12 —2)" < h7t,

and the estimate on the difference of the resolvents. Here and occasionally in the sequel, we
adopt the notation x < y if there is a positive constant C' (independent of x and y) such that
x < Cy. O

From this norm resolvent convergence result, we recover a result of [13, Section 4.2].
Proposition 3.3. Let k€ N*. Then
Me(R) = Aefr x(R) + O(R?),  h — 0.
Proof. Let € > 0 be such that A k4+1(h) — Aefr k. (h) > 2¢h for all h. We set z, = Aefr ik (h) + €h.

The resolvent (L, eff — zh)_1 has k negative eigenvalues
1 1
— <. —
Aeft, i (R) — 21, Aeif,1(h) — zp

all smaller than —a/h for some o > 0, and the rest of the spectrum is positive. By Proposition 3.2
the resolvent (£, — z,) ! is well defined for h small enough and there exists C' > 0 such that

(L = 20) ™" = (Lherr —20) 7| < C.

By the min-max principle applied to these two resolvents, we obtain that for all j € {1,... k}
the j-th eigenvalue of (%, — z5)! is at distance not greater than C from 1/(Aeff k415 — 2n),
and the rest of the spectrum is greater than —C'. In particular, for j = 1,

1 1

— <C.
Ae(h) —zn et (h) — 21
This gives
[Ak(h) = Xefr.(R)| < Ceh |Ak(h) — Aer i (h) + €hl,
and the conclusion follows for A small enough. (|

3.2. Shrinking neighborhoods of hypersurfaces. In this paragraph we consider a subman-
ifold ¥ of R, d > 2, as in Section 1.3. We choose € > 0 and define O, 2 and €. as in (1.8) and
(1.9). For p € H} (), we set

Dir(1) = f Vel*de,

and we denote by —AgDzi: the associated operator. Then we use the diffeomorphism O, to see
—Ag: as an operator on L?(2). We set, for ¢ € H}(Q, dodt),

Q2"(¢) = gl (¥ o).

We need a more explicit expression of QP in terms of the variables (s,¢) on Q. For (s,t) €
we have on T Q2 ~ T, x n(s)R

d(sﬁt)GE = (ldr.» + etdsn) ® Eldn(s)]R .

Hence
do. (5,07 " = (ldr,x + etdsn) " @& ' d,y (o) -
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We recall that the Weingarten map —dsn is a self-adjoint operator on 75% (endowed with
the metric inherited from the Euclidean structure on R?). For ¢ € H'(Q,dodt), z € Q. and
(s,t) = O71(x) we get

V(o0 (@)|7, 0. = [(de©7 1) V(s 1)1 7, 0.
1
= |(tdrx + etdsn) " Voo (s, )75 + 5 108(s, )|’

The eigenvalues of the Weingarten map are the principal curvatures k1, ..., kq—1. In particular
for (s,t) € 2 we have

|d(s,4)Oc| = ew:, where w.(s,t) H (1 —etrj(s (3.2)

The Riemannian structure on 2 is given by the pullback by ©. of the Euclidean structure defined
on Q.. More explicitly, for (s,t) € Q the inner product on T, (2 is given by

VX, Y e T(s,t) (Q), gE(X, Y) = <d(s,t)®a(X); d(sﬁt)GE(Y)>Rd .
Then the measure corresponding to the metric g. is given by ew.dodt. Thus, if we set
Ge(s,t) = (Idr,x + etdsn) 2, (3.3)

we finally obtain

Q%) - |

Qe

(s + etden) V(O )b + 5 | Jars(07 )P
Qe

1
= EJ- (Ge(3,t)V ), Vshypyw.dodt + = J- |0 P ewedodt .
Q Q

The transverse operator Ts(¢) is the Dirichlet realization on L?((—1,1),ew.dt) of the differ-
ential operator —e 2w 10,w.0;. We denote by pi(s,¢) its first eigenvalue and we set u(e) =
infser p11(s,€). We have, by perturbation theory, as ¢ — 0,

2 7.(.2

p(s,9) = 155 + V() + 0(), (o) = 15 +O(1),

where

1 d=1 1 /4=t 2

Vi(s) = D) Z Kkj(s)* + 1 (2 Iij(S)) .
j=1

We denote by .#P" the operator associated to the form QP and by .Z D"F the corresponding
effective operator as defined in the general context of Section 1.2. It is nothing but the operator
associated with the form H'(X) 3 ¢ — QP"(pu,.) where us . is the positive L2-normalized
groundstate of the transverse operator (and actually depending on the principal curvatures
analytically). From perturbation theory, we can easily check that the commutator between the
projection on us . and S is bounded (and of order ¢).

Proposition 3.4. Let ¢y, Cy > 0. There exist g > 0 and C > 0 such that for all € € (0,20) and
2€ Zeycoe ={2€R |z —p(e)] < Cp, dist(z,Sp(LP%)) = co}

£,

we have

ir ir -1
(2P = o) = (B - =) < ce
We recover a result of [10] (when there is no magnetic field).

Proof. We are in the context of Remark 1.3. The form Q. — u(e) is non-negative. We denote by
Z. the corresponding non-negative self-adjoint operator and define .Z; as in Lemma 2.2. Given
e>0and z € Z;, ¢, we write ¢ for z— p(e). Thus, with the notation of the abstract setting we

have 7. ~ €72, a. = O(e?), ¢ = O(1) and hence 11 - (¢) = O(e), n2.c(¢) = O(e?), n3.-(¢) = O(e)
and 7. (¢) = O(g?). Moreover, by the spectral theorem, we have

@ -07]-om
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Thus, there exists 9 > 0 such that for € € (0,£¢), z € Z¢y.cp.c and ¢ = z — pu(e) the operator
Z. — ( is bijective and

[(Z-07"| =0,
(Z-0" = (Z-97"| =0e.

The conclusion easily follows. O

Given € > 0 we define the sequence (AP (€))genx and (A% (e))kens corresponding to the
operators P and & D'}F as in (3.1). By using analytic perturbation theory with respect to the
parameters (Eﬁj)lg]‘gd—l to treat the commutator, we have, for all k € N*|

2
Wii(e) = 15 + A +0(), =0,

where A} is the k-th eigenvalue of —Ag + V (s).
We recover a result in the spirit of 3, 10].

Proposition 3.5. For all k = 1 we have
)\5"(5)=4—22+)\E+(9() e—0
Proof. Let k = 1. There exist ¢, ¢y, Co, g > 0 such that for € € (0,20) we have
AP gff( )+ € € Zey,Cpe-

As in the proof of Proposition 3.3 we obtain from Proposition 3.4 and the min-max principle

ir r ~ -1 ir ir
(R"(0) = OR%r(2) + 7)) " = (AR (e) = WPl (2) +40) | = ©
We deduce
|)\DIr zl?'gff | = |()\D'r( ) — ()\Q,fo(f) + 50))| )
and the conclusion follows. O

3.3. Dirichlet-Robin shell with large coupling constant. In this section, we keep consid-
ering the hypersurface ¥ of the last paragraph (here ¢ = 1). Let us now consider the Dirichlet-
Robin Laplacian in an annulus. In other words, with w; and Gy as defined by (3.2) and (3.3),
we consider on the weighted space L?(w;dsdt) the quadratic form

QPR(y) = J ((G1(3,t)V b, Vi)rs + [0]?) wi (s, t)dsdt — Oéj [1h(s, 0)|*ds.
$x(0,1) >

It is defined for v € Dom(QPR) where
Dom(QRF) = {¥e H'(Z x (0,1)) : ¢(s,1) =0,  t)(s,0) = —atp(s,0)} .

In these definitions « is real, and we are interested in the strong coupling limit a@ — +c0.
1
This quadratic form is of the form (2.1) with S = G}V, and Ty = —wflatwlé’t acting
on H?((0,1)) and Dirichlet-Robin condition. The spectrum of T is well-understood in the

limit @« — 400, Actually, the family (75) depends analytically on the principal curvatures
(kj(s))1<j<d—1. We can deduce from the previous works [5, 6, 8] that, as & — 400,

p1(s, ) = —a® —akr(s) + O(1), pa(s,a) =c>0,

and
() = inf pi(s,a) = —a? — aFmax + o),

sex

with k = Z?;ll kj. Here, for simplicity, we assume that x has a unique maximum at s = 0
that is not degenerate and not attained at infinity. Moreover, we assume that the eigenvalues of
D? + 1Hesso(—k)(s, s) are simple. We let

Zco.coa ={2€R: |z — pla)] < oo, dist(z,Sp(ai/ﬂl)R)) = Cop}.

Proposition 3.6. There exist C, o9 > 0 such that, for all z € Z¢,,

Co,x

(PR 2) T (208

| <o,
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Proof. Here we have v = O(a?), v = O(a™!) and a = O(a~?). We use again Remark 1.3 and
we apply Theorem 1.1 with . = ZPR — (o) and z replaced by z — u(a). For z € 2.y cy.0r We
get

m = O(ail)v 2 = O(O‘72)7 N3 = O(O‘72) y T = O(aig) :

DR
Moreover, for a large enough, we have, for all z € Z., cy.a, 2 € p (Xayeff) and

|(Loee —2) < C.
Then Theorem 1.1 implies the wished estimate. (]
We recover, under our simplifying assumptions, a result appearing in [5, 15, 8.

Proposition 3.7. For all j > 1, we have, as o — +0,
Neir(@) = —a® +v(a) + O(1),
and
)\]DR(a) =—a?+ vi(a) + O(1),
where v;(a) is the j-th eigenvalue of D% — ak(s).

Proof. Let us first discuss the asymptotic behavior of the eigenvalues of the effective operator.
Let us recall that it is defined as explained in Section 1.2, and that it can be identified with
the operator associated with the form H'(X) 3 ¢ — QPR(pus ) where us, is the positive
L?mnormalized groundstate of the transverse operator T'(s). The asymptotic expansion of the
effective eigenvalues again follows from perturbation theory and a commutator estimate (see [8,
Section 3] where it is explained how we can estimate such a commutator).

Then, we proceed as in the previous section. Note that, by the harmonic approximation, for
all j > 1,

vj(@) = —Qkmax + a%ﬁj + O(a%) ,

where (7;)jen+ is the non-decreasing sequence of the eigenvalues of D? + +Hesso(—x)(s, s). In
particular, the asymptotic gap between consecutive eigenvalues is of order at. Then, there exist
¢o >0, Co > 0 and C > 0 such that, for o large, z = AP& () + C € Z, ¢y.a- We use Proposition
3.6 and we get, as in the other examples,

IAPR () — APR(a)| < Ca™ !

4. THE NON-SELF-ADJOINT ROBIN LAPLACIAN BETWEEN HYPERSURFACES

In this section we prove Theorem 1.5. The proof is split in two main steps. We first transform
the problem into an equivalent statement, where &2, is replaced by a unitarily equivalent operator
on ().

4.1. A change of variables. The operator . is associated to the (coercive) quadratic form
defined for ¢ € H'(Q.) by

QL) = QLalo) - | 9o ol

b

orldl? — f o elo?. (4.1)
+.e =

As in Section 3.2, we use the diffeomorphism ©. to see & as an operator on L?(Q): for
e HY(Q) we set

QZ(¥) = Q:(vo677).
We obtain

Q2w - |

(s + ctdun) V0O @) do + 5 [ ow(O: (@) Pda
Q. & Ja.

] andwe @)= [ asdue(en P
N i
1
- f (Ge(s,6) V00, Vth)retbedodt + - J |02 dodt
Q Q

¥ L o (202 —1do — L o ([[20.) -1 do,
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where, as in (3.2), @(s,t) = [[{_; (1 — etr;(s)). Notice that L2(Q,dodt) and L3(Q, cw.dodt)

(or their corresponding Sobolev spaces) are equal as sets, but ©. induces only a unitary trans-
formation from L?(Q, ew.dodt) to L?(Q,dx).

4.2. A change of function. In the next step we make a change of function to turn our problem
with Robin boundary conditions into an equivalent problem with Neumann boundary conditions.
For this we consider the unitary transform

~ {LQ(Q,su?adodt) - L2(Q, e %R _dodt),
UEZ act
U — VeeXty,

We set

we = 6725tRe(a),lDE

Then on H'(Q,w.dodt) we consider the transformed quadratic form given by

Q-(¢) = QXU '9)
J (Gc(Vs —etVsa)d, (Vs — etVa)pyw.dodt + % J |00 wedodt

- Lz (ozd)@tgb + ongatd))wgdadt + J | |2 wedodt

1 1
+ —J alplw.do — —J alolPw.do .
) SN

By integration by parts we have

— lf apospw.dodt
€Ja

1 1 Orw
= f—J alplw.do + —J alélPw.do +J <2aRe(a) + w) |p|?wedodt .
€Js €Js Q e
Finally,
1
J (Gc(Vs —etVsa)d, (Vs — etVa)pywdodt + = J |00 wedodt
Q
+ ? Im () s ppw.dodt +J V| o|2w.dodt,
Q
where
atﬁ)s

= |a* — 2aRe() + a

ew,
On H'(9, w.dodt) we can also consider the forms defined by

~ 1
Qu(0) = | V0P dodt + 5 | (0oPdodt + | Vaelofdoat
Q Q Q

and

Qeff (¢) = L |V o|2dodt + L Vet | 0|2 dodt.

We denote by Z., 02/{ and Z the operators corresponding to the forms Q., @8 and Qeff,
respectively.

4.3. About the new operator Z.. If U. denotes the composition of the unitary transform
associated with ©. and U., we write £ = U.Z.U-! and the estimate of Theorem 1.5 can be
rewritten as

(L —2)7 = (Lew — 2) M| (120 S €. (42)
As ., the operator Z. is m-accretive. We have the following accretivity estimate when & goes
to 0.

Lemma 4.1. Ifep > 0 is small enough there exist My = 0 and ¢ > 0 such that for € € (0,¢q),
M > My and ¢ € HY(Q) we have

Re(Q-(8)) + M[[2a(q) > %vam@+2mmwm+wm@)
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Proof. There exists C; > 0 such that for ¢ € (0,&0) and ¢ € H'(Q) we have

-C
Re(Q-(0)) 2 (1 — 1) (V. — 2tV,0)l + % o
- A+ G5, 41161 - oo,

For some Cy > 0 we also have

[(Vs —etVa)o|?* = (1 —€)[Vso|* — Cafl¢]*

and
1—Che 2 |Im(a)| ., (1 + Cye)
—— lowel® - = [ocell llsel
€ €
[ocel® el 2 [Im ()], (1 + Che) [l
=(1-C — =
( 1€) < g2 € 1-Ce
oeel® >
> (1- 015)? = Cae]”-
The conclusion follows if €9 > 0 was chosen small enough. O

A remarkable property of % is the following complex symmetry (cf. [1]).

Lemma 4.2. Let € > 0 and z € C. If z € C is an eigenvalue for Z. then Z is an eigenvalue for
¥, In particular the operator £, has no residual spectrum.

Proof. Since .Z; is unitarily equivalent to &, = . ,, it is sufficient to prove the result for &, ,.
Notice that Dom(Q! ,) = Dom(Q! ). Moreover for ¢,¢ € Dom(Q! ) we have Q! ;(p,9) =

g,

Lo (1, 9), so PF, = P.5. Now let ¢ € Dom(Z, ). For all ¢ € Dom(Q! ,) we have

;,E((ba E) = é,a(aaw) = <$a gza,oﬂ/]> = <¢a e@a,a¢>-

This proves that ¢ € Dom(Z. z) and Z. b = P, 4. Thus, if we denote by J the complex
conjugation, we get that . , is J-self-adjoint

Pog = TP ol

The conclusion follows. (]

4.4. Proof of Theorem 1.5. Theorem 1.5 will be a consequence of the following proposition.
Proposition 4.3. There exist €9,C > 0 such that for all € € (0,e9), ¢ € Dom(@) and
1 € Dom(%.),

Q%) — Qe(, ¥)| < Celpl| g [Y]|.2. -
Proof. We set

D:(p,%) = Q:=(2, %) — Qe ).
Using the Taylor formula, we get
1 2
m+ ool + |2 [ ute)opu.dodd
Q

D, 9] < ells 19 -

where 9], = H’L/JHiz(Q) + Hvstiz(Q). The most delicate term is the last one. We have

1 1
Qulttmn(@)e.v) - 5 [ @vvdodt] < ol ol + el
SO
1 _ 1 1
Qulttm(@)e.v) - 2 [I(arponpudodt] < ol ol + Zloello] + el

Since Q. (tIm(a)p, 1) = (tIm(a)p, Z-1)), we obtain

< el

1 _ 1
z flm(a)atwwwadodt Yl + Zlowello] + lellon] + elZellel -

We conclude with Lemma 4.1. O

Hl
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By Proposition 4.3, there exists C' > 0 such that for z € K, ¢ € Dom((H)*) and + €
Dom(H.) we have

Q" (0, 9) — 2(p,¥) = (Q:(0,¥) — 20, ) | < Cellolaen -yl 11—
Finally, we apply Lemma 2.4 and Lemma 1.7, and Theorem 1.5 follows.
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