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REDUCTION OF DIMENSION AS A CONSEQUENCE OF

NORM-RESOLVENT CONVERGENCE AND APPLICATIONS

D. KREJČIŘÍK, N. RAYMOND, J. ROYER, AND P. SIEGL

Abstract. This paper is devoted to dimensional reductions via the norm resolvent conver-
gence. We derive explicit bounds on the resolvent difference as well as spectral asymptotics.
The efficiency of our abstract tool is demonstrated by its application on seemingly differ-
ent PDE problems from various areas of mathematical physics; all are analysed in a unified
manner now, known results are recovered and new ones established.

1. Introduction

1.1. Motivation and context. In this paper we develop an abstract tool for dimensional
reductions via the norm resolvent convergence obtained from variational estimates. The results
are relevant in particular for PDE problems, typically Schrödinger-type operators depending on
an asymptotic parameter having various interpretations (semiclassical limit, shrinking limits,
large coupling limit, etc.). In applications, our resolvent estimates lead to accurate spectral
asymptotic results for eigenvalues lying in a suitable region of the complex plane. Moreover,
avoiding the traditional min-max approach, with its fundamental limitations to self-adjoint cases,
we obtain an effective operator, the spectrum of which determines the spectral asymptotics. The
flexibility of the latter is illustrated on a non-self-adjoint example in the second part of the paper.

The power of our approach is demonstrated by a unified treatment of diverse classical as well
as latest problems occurring in mathematical physics such as:

- semiclassical Born-Oppenheimer approximation,
- shrinking tubular neighborhoods of hypersurfaces subject to various boundary conditions,
- domains with very attractive Robin boundary conditions.

In spite of the variety of operators, asymptotic regimes, and techniques considered in the previous
literature, all these results are covered in our general abstract and not only asymptotic setting.
Our first result (Theorem 1.1) gives a norm resolvent convergence towards a tensorial operator
in a general self-adjoint setting. A remarkable feature is that only two quantities need to be
controlled: the size of a commutator of a “longitudinal operator” with spectral projection on
low lying “transverse modes” and the size of the “spectral gap” of a “transverse operator”,
see (1.5) and (1.2), respectively. Although the latter is also very natural it was hardly visible
in existing literature due to many seemingly different technical steps as well as various ways
how these quantities enter. As particular cases of the application of Theorem 1.1, we recover,
in a short manner, known results for quantum waveguides (see for instance [3], [11], [9] or [10])
and cast a new light on Born-Oppenheimer type results (see [12], [17], [7] or [16, Sec. 6.2]). To
keep the presentation short we deliberately do not strive for the weakest possible assumptions
in examples, although the abstract setting allows for many further generalizations and it clearly
indicates how to proceed.

In the second part of the paper, we prove, in the same spirit as previous results, the norm
convergence result for a non-self-adjoint Robin Laplacian, see Theorem 1.5. It will partially
generalize previous works in the self-adjoint (see [15], [8] and [14]) and in the non-self-adjoint
(see [2]) cases.

As a matter of fact, the crucial step in all the proofs of the paper is an abstract lemma (see
Lemma 1.7) of an independent interest. It provides a norm resolvent estimate from variational
estimates, which is particularly suitable for the analysis of operators defined via sesquilinear
forms.
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1.2. Reduction of dimension in an abstract setting and self-adjoint applications. We
first describe the reduction of dimension for an operator of the form

L “ S˚S ` T, T “
à
sPΣ

Ts, (1.1)

acting on the Hilbert space H “ À
sPΣHs. The norm and inner product in H will be denoted

by } ¨ } and x¨, ¨y, respectively; the latter is assumed to be linear in the second argument.
Here Σ is a measure space and Ts is a self-adjoint non-negative operator on a Hilbert space Hs

for all s P Σ. Precise definitions will be given in Section 2. A typical example is the Schrödinger
operator

H “ p´i~Bsq2 ` p´iBtq2 ` V ps, tq ,
acting on L2pRs ˆ Rtq. We consider a function s ÞÑ γs such that

γ “ inf
sPΣ

γs ą 0 . (1.2)

Then we denote by Πs P LpHsq the spectral projection of Ts on r0, γsq, and we set ΠK
s “

IdHs
´ Πs. We denote by Π the bounded operator on H such that for Φ P H and s P Σ we

have pΠΦqs “ ΠsΦs. We similarly define ΠK P LpHq. Our purpose is to compare some spectral
properties of the operator L with those of the simpler operator

Leff “ ΠLΠ. (1.3)

This is an operator on ΠH with domain ΠH X DompL q.
In fact, we will first compare L with

xL “ ΠLΠ ` ΠK
LΠK. (1.4)

Then Leff and L K will be defined as the restrictions of xL to ΠH and ΠKH, respectively, so
that

xL “ Leff ‘ L
K.

We will give a sufficient condition for z P ρp xL q to be in ρpL q and, in this case, an estimate for

the difference of the resolvents. Then, since ΠH and ΠKH reduce xL , it is not difficult to check

that far from the spectrum of L K the spectral properties of xL are the same as those of Leff , so

we can state a similar statement with xL replaced by Leff . In applications, we can for instance
prove that the first eigenvalues of L are close to the eigenvalues of the simpler operator Leff .

We assume that DompSq is invariant under Π, that rS,Πs extends to a bounded operator
on H, and we set

a “
}rS,Πs}LpHq?

γ
. (1.5)

For z P C, we also define

η1pzq “ 3?
2
a2γ ` 6a?

2
p1 ` aq|z| ` 3a

γ
?
2

ˆ
2 ` a?

2

˙
|z|2 ,

η2pzq “ 3a?
2

p1 ` aq ` 3a

γ
?
2

ˆ
2 ` a?

2

˙
|z| ,

η3pzq “ 3a?
2

ˆ
1 ` a?

2

˙
` 3a

γ
?
2

ˆ
2 ` a?

2

˙
|z| ,

η4pzq “ 3a

γ
?
2

ˆ
2 ` a?

2

˙
.

(1.6)

Theorem 1.1. Let z P ρp xL q. If

1 ´ η1pzq}p xL ´ zq´1} ´ η2pzq ą 0,

then z P ρpL q and

}pL ´ zq´1 ´ p xL ´ zq´1}
ď η1pzq}pL ´ zq´1}}p xL ´ zq´1} ` η2pzq}pL ´ zq´1} ` η3pzq}p xL ´ zq´1} ` η4pzq.
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In particular,

}pL ´ zq´1} ď pη3pzq ` 1q}p xL ´ zq´1} ` η4pzq
1 ´ η1pzq}p xL ´ zq´1} ´ η2pzq

.

In order to compare the resolvent of L to the resolvent of Leff , this theorem is completed by
the following easy estimate:

Proposition 1.2. We have Spp xL q “ SppLeffq Y SppL Kq and, for z P ρp xL q such that z R
rγ,`8q, ›››p xL ´ zq´1 ´ pLeff ´ zq´1Π

››› ď 1

distpz, rγ,`8qq .

In this estimate, it is implicit that pLeff ´zq´1 is composed on the left by the inclusion ΠH Ñ H.

Remark 1.3. These results cover a wide range of situations. In Section 3, we will discuss three
paradigmatic applications. The space Σ will be R or a submanifold of Rd, d ě 2. The set Hs is
fixed, but the Hilbert structure thereon may depend on s. In our examples pTsqsPΣ is related to
an analytic family of self-adjoint operators which are not necessarily non-negative. Nevertheless,
under suitable assumptions, we can reduce ourselves to the non-negative case. Indeed, in our
applications, for all s P Σ, Ts is bounded from below, independently of s P Σ. Moreover, the
bottom of the spectrum of Ts will be an isolated simple eigenvalue µ1psq. Then, we notice that
infsPΣ µ1psq is well-defined and that Ts ´ infsPΣ µ1psq is non-negative. We denote by u1psq a
corresponding eigenfunction. We can assume that }u1psq}

H
“ 1 for all s P Σ and that u1 is

a smooth function of s. Πs is the projection on u1psq and ΠH can be identified with L2pΣq
via the map ϕ ÞÑ ps ÞÑ ϕpsqu1psqq. In particular Leff can be seen as an operator on L2pΣq,
which is what is meant by the “reduction of dimension”. Finally, γs is defined as the bottom
µ2psq ´ infsPΣ µ1psq of the remaining part of the spectrum and

γ “ inf
s
µ2psq ´ inf

s
µ1psq ď inf SpppL ´ inf

sPΣ
µ1psqqKq . (1.7)

We recall that we assume the spectral gap condition γ ą 0, see (1.2).

1.3. The Robin Laplacian in a shrinking layer as a non-self-adjoint application. We
now consider a reduction of dimension result in a non-self-adjoint setting, namely the Robin
Laplacian in a shrinking layer. Let d ě 2. Here, Σ is an orientable smooth (compact or non-
compact) hypersurface in Rd without boundary. The orientation can be specified by a globally
defined unit normal vector field n : Σ Ñ Sd´1. Moreover Σ is endowed with the Riemannian
structure inherited from the Euclidean structure defined on R

d. We assume that Σ admits a
tubular neighborhood, i.e. for ε ą 0 small enough the map

Θε : ps, tq ÞÑ s` εtnpsq (1.8)

is injective on Σ ˆ r´1, 1s and defines a diffeomorphism from Σ ˆ p´1, 1q to its image. We set

Ω “ Σ ˆ p´1, 1q and Ωε “ ΘεpΩq . (1.9)

Then Ωε has the geometrical meaning of a non-self-intersecting layer delimited by the hypersur-
faces

Σ˘,ε “ ΘεpΣ ˆ t˘1uq .
Moreover Σ˘,ε can be identified with Σ via the diffeomorphisms

Θ˘,ε :

"
Σ Ñ Σ˘,ε

s ÞÑ s˘ εnpsq .
Let α : Σ Ñ C be a smooth bounded function. We set α˘,ε “ α ˝ Θ´1

˘,ε : Σ˘,ε Ñ C and we

consider on L2pΩεq the closed operator Pε,α (or simply Pε if no risk of confusion) defined as
the usual Laplace operator on Ωε subject to the Robin boundary condition

Bu
Bn ` α˘,εu “ 0, on Σ˘,ε . (1.10)

Remark 1.4. Note that a very special choice of Robin boundary conditions is considered in
this section. Indeed, the boundary-coupling functions considered on Σ`,ε and Σ´,ε are the same
except for a switch of sign, see (4.1). More specifically, α˘,εpsq “ αpsq for every s P Σ and n is an
outward normal to Ωε on one of the connected parts Σ˘,ε of the boundary BΩε, while it is inward
pointing on the other boundary. This special choice is motivated by Parity-Time-symmetric
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waveguides [1, 2] as well as by a self-adjoint analogue considered in [14]. It is straightforward
to extend the present procedure to the general situation of two different boundary-coupling
functions on Σ`,ε and Σ´,ε, but then the effective operator will be ε-dependent (in analogy with
the Dirichlet boundary conditions, see Proposition 3.4) or a renormalization would be needed
(cf. [11]).

Our purpose is to prove that, at the limit when ε goes to 0, the operator Pε converges in a
norm-resolvent sense to a Schrödinger operator

Leff “ ´∆Σ ` Veff ,

on Σ. Here ´∆Σ is the Laplace-Beltrami operator on Σ, and the potential Veff depends both on
the geometry of Σ and on the boundary condition. More precisely we have

Veff “ |α|2 ´ 2αRepαq ´ αpκ1 ` ¨ ¨ ¨ ` κd´1q. (1.11)

Note that the sum of the principal curvatures is proportional to the mean curvature of Σ. Notice
also that Heff defines an (unbounded) operator on the Hilbert space L2pΣq. In particular Pε

and Heff do not act on the same space.
We denote by Π P LpL2pΩqq the projection on functions which do not depend on t: for

u P L2pΩq and ps, tq P Ω we set

pΠuqps, tq “ 1

2

ż 1

´1

ups, θqdθ .

Then we define ΠK “ Id ´ Π.

Theorem 1.5. Let K be a compact subset of ρpHeffq. Then there exists ε0 ą 0 and C ě 0 such

that for z P K and ε P p0, ε0q we have z P ρpHεq and

}pPε ´ zq´1 ´ U´1
ε pLeff ´ zq´1ΠUε}LpL2pΩεqq ď Cε .

Here Uε is a unitary transformation from L2pΩε, dxq to L2pΩ, wεpxqdσdtq, where for some C ą 1
we have

@ε P p0, ε0q,@x P Ω,
1

C
ď |wεpxq| ď C .

As for Theorem 1.1 it is implicit that the resolvent pLeff ´ zq´1 is composed on the left by
the inclusion ΠL2pΩεq Ñ L2pΩεq. Moreover the operator Leff on L2pΣq has been identified with
an operator on ΠL2pΩεq.
Remark 1.6. In the geometrically trivial situation Σ “ Rd´1 and special choice Repαq “ 0, a
version of Theorem 1.5 was previously established in [2]. At the same time, in the self-adjoint case
Impαq “ 0 and very special geometric setting d “ 1 (Σ being a curve), a version of Theorem 1.5
is due to [14]. In our general setting, it is interesting to see how the geometry enters the effective
dynamics, through the mean curvature of Σ, see (1.11).

1.4. From variational estimates to norm resolvent convergence. All the results of this
paper are about estimates of the difference of resolvents of two operators. These estimates will
be deduced from the corresponding estimates of the associated quadratic forms by the following
general lemma:

Lemma 1.7. Let K be a Hilbert space. Let A and pA be two closed densely defined operators on

K. Assume that pA is bijective and that there exist η1, η2, η3, η4 ě 0 such that 1´η1} pA´1}´η2 ą 0
and

@φ P DompAq,@ψ P Domp pA˚q ,
|xAφ, ψy ´ xφ, pA˚ψy| ď η1}φ}}ψ} ` η2}φ}} pA˚ψ} ` η3}Aφ}}ψ} ` η4}Aφ}} pA˚ψ} .

Then A is injective with closed range. If moreover A˚ is injective, then A is bijective and we

have the estimates

}A´1} ď pη3 ` 1q}Â´1} ` η4

1 ´ η1} pA´1} ´ η2
(1.12)

and ›››A´1 ´ pA´1
››› ď η1}A´1}} pA´1} ` η2}A´1} ` η3} pA´1} ` η4.
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Since the proof is rather elementary, let us provide it already now.

Proof. Let φ P DompAq and consider ψ “ p pA´1q˚φ P Domp pA˚q. We have

|}φ}2 ´ xAφ, p pA´1q˚φy| “ |xφ, pA˚ψy ´ xAφ, ψy|

ď pη1} pA´1} ` η2q}φ}2 `
´
η3} pA´1} ` η4

¯
}Aφ}}φ} ,

so

}φ}2 ď
´
η1}Â´1} ` η2

¯
}φ}2 `

´
pη3 ` 1q}Â´1} ` η4

¯
}φ}}Aφ}.

Then if η1} pA´1} ` η2 ă 1 , we get

}φ} ď pη3 ` 1q}Â´1} ` η4

1 ´ η1} pA´1} ´ η2
}Aφ} . (1.13)

In particular, A is injective with closed range. If A˚ is injective, the range of A is dense and
thus A is bijective. In particular, with (1.13), we obtain (1.12).

Finally for f, g P K, φ “ A´1f and ψ “ p pA´1q˚g we have

x
`
A´1 ´ pA´1

˘
f, gy “ xφ, pA˚ψy ´ xAφ, ψy,

and the conclusion follows by easy manipulations. �

1.5. Organization of the paper. In Section 2, we prove Theorem 1.1. We first define the

operators L , xL and Leff , and then we show how Lemma 1.7 can be applied. In Section 3, we
discuss some applications of Theorem 1.1 to the semiclassical Born-Oppenheimer approximation,
the Dirichlet Laplacian on a shrinking tubular neighborhood of an hypersurface and the Robin
Laplacian in the large coupling limit. Section 4 is devoted to the proof of Theorem 1.5 about
the non-self-adjoint Robin Laplacian on a shrinking layer.

2. Abstract reduction of dimension

In this section we describe more precisely the setting introduced in Section 1.2 and we prove
Theorem 1.1. The applications will be given in the following section.

2.1. Definition of the effective operator. Let pΣ, σq be a measure space. For each s P Σ we
consider a separable complex Hilbert spaceHs. Then, onHs we consider a closed symmetric non-
negative sesquilinear form qs with dense domain Dompqsq. We denote by Ts the corresponding
self-adjoint and non-negative operator, as given by the Representation Theorem. As already said
in Section 1.2, we consider a function s P Σ ÞÑ γs P R whose infimum is positive, see (1.2). Then
we denote by Πs P LpHsq the spectral projection of Ts on r0, γsq, and we set ΠK

s “ IdHs
´ Πs.

We denote by H the subset of
À

sPΣ Hs which consists of all Φ “ pΦsqsPΣ such that the
functions s ÞÑ }Φs}

Hs
and s ÞÑ }ΠsΦs}

Hs
are measurable on Σ and

}Φ}2 “
ż

Σ

}Φs}2Hs
dσpsq ă `8 .

It is endowed with the Hilbert structure given by this norm. We denote by Π the bounded
operator on H such that for Φ P H and s P Σ we have pΠΦqs “ ΠsΦs. We similarly define
ΠK P LpHq.

We say that Φ “ pΦsqsPΣ P H belongs to DompQT q if Φs belongs to Dompqsq for all s P Σ,
the functions s ÞÑ qspΦsq and s ÞÑ qspΠsΦsq are measurable on Σ and

QT pΦq “
ż

Σ

qspΦsqdσpsq ă `8 .

We consider on H an operator S with dense domain DompSq. We assume that DompSq is
invariant under Π, that rS,Πs extends to a bounded operator on H, and we define a as in (1.5).
We assume that

DompQq “ DompSq X DompQT q
is dense in H, and for Φ P DompQq we set

QpΦq “ }SΦ}2 `QT pΦq . (2.1)

We assume that Q defines a closed form on H. The form Q is symmetric and non-negative and
the associated operator is the operator L introduced in (1.1).
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Then we define the operator xL (see (1.4)) by its form. For this we need to verify that the
form domain is left invariant both by Π and ΠK.

Lemma 2.1. For all Φ P DompQq we have ΠΦ P DompQq and ΠKΦ P DompQq.
Proof. Let Φ “ pΦsqsPΣ P DompQq. We have Φ P DompSq, so by assumption we have ΠΦ P
DompSq. By assumption again, the function s ÞÑ qspΠsΦsq “ qspΠsΠsΦsq is measurable and we
have ż

Σ

qspΠsΦsq dσpsq ď sup
sPΣ

γs

ż

Σ

}Φs}2
Hs

dσpsq ă `8.

This proves that ΠΦ belongs to DompQT q, and hence to DompQq. Then the same holds for
ΠKΦ “ Φ ´ ΠΦ. �

With this lemma we can set, for Φ,Ψ P DompQq,
pQpΦ,Ψq “ QpΠΦ,ΠΨq `QpΠKΦ,ΠKΨq .

Lemma 2.2. For all Φ P Domp pQq we have

QpΦq ď 2 pQpΦq .
In particular the form pQ is non-negative, closed, and it determines uniquely a self-adjoint oper-

ator xL on H. Moreover we have rΠ, xL s “ 0 on Domp xL q.
Proof. We have

QpΦq ´ pQpΦq “ QpΠΦ,ΠKΦq `QpΠKΦ,ΠΦq .
Since the form Q is non-negative we can apply the Cauchy-Schwarz inequality to write

QpΠΦ,ΠKΦq ď
a
QpΠΦq

a
QpΠKΦq ď 1

2

`
QpΠΦq `QpΠKΦq

˘
“ 1

2
pQpΦq .

We have the same estimate for QpΠKΦ,ΠΦq, and the first conclusions follow. We just check the

last property about the commutator. Let ψ P Domp xL q. For all φ P Domp xL q we have

pQpφ,Πψq “ QpΠφ,Πψq “ pQpΠφ, ψq “ xΠφ, xL ψyH “ xφ,Π xL ψyH.
This proves that Πψ P Domp xL q with xLΠψ “ Π xL ψ and the proof is complete. �

Then, from pQ it is easy to define the forms corresponding to the operators Leff and L K:

Lemma 2.3. Let Qeff be the restriction of Q to ΠDompQq “ RanpΠq X DompQq. Then Qeff

is non-negative and closed. The associated operator Leff is self-adjoint, its domain is invariant

under Π, and rΠ,Leffs “ 0 on DompLeffq. Moreover, we have pDomp xL q X RanpΠq, xL q “
pDompLeffq,Leffq.

We have similar statements for the restriction QK of Q to ΠKDompQq “ RanpΠKq XDompQq
and the corresponding operator L K.

Proof. The closedness of Qeff comes from the closedness of Q and the continuity of Π. The other
properties are proved as for Lemma 2.2. We prove the last assertion. Let ψ P DompLeffq. By

definition of this domain we have Πψ “ ψ. For φ P Domp pQq, we have

pQpφ, ψq “ QpΠφ,Πψq “ QeffpΠφ,Πψq “ QeffpΠφ, ψq “ 〈Πφ,Leffψ〉 “ 〈φ,Leffψ〉 .

This proves that ψ P Domp xL q and Leffψ “ xLψ. Thus DompLeffq Ă Domp xL q X RanpΠq and
xL “ Leff on DompLeffq. The reverse inclusion Domp xL q X RanpΠq Ă DompLeffq is easy, so the
proof is complete. �

Finally we have proved that

Domp xL q “
`
Domp xL q X RanpΠq

˘
‘

`
Domp xL q X RanpΠKq

˘
“ DompLeffq ‘ DompL Kq

and for ϕ P Domp xL q we have
xL ϕ “ LeffΠϕ ` L

KΠKϕ.

From the spectral theorem, we deduce the following lemma.

Lemma 2.4. We have Spp xL q “ SppLeffq Y SppL Kq and, for z P ρp xL q such that z R rγ,`8q,
›››p xL ´ zq´1 ´ pLeff ´ zq´1Π

››› ď 1

distpz, rγ,`8qq .
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2.2. Comparison of the resolvents. This section is devoted to the proof of the following
theorem that implies Theorem 1.1 via Lemma 1.7.

Theorem 2.5. Let L and xL be as above. Let z P C and η1pzq, η2pzq, η3pzq, η4pzq as in (1.6).

Then for Φ P DompL q and Ψ P Domp xL ˚q we have
ˇ̌
ˇQpΦ,Ψq ´ pQpΦ,Ψq

ˇ̌
ˇ ď η1pzq }Φ} }Ψ} ` η2pzq}Φ}}p xL ´ z̄qΨ}

` η3pzq}pL ´ zqΦ}}Ψ} ` η4pzq}pL ´ zqΦ}}p xL ´ z̄qΨ} .
Theorem 2.5 is a consequence of the following proposition after inserting z and using the

triangular inequality.

Proposition 2.6. For all Φ P DompL q and Ψ P Domp xL q we have

1

γ
|QpΦ,Ψq ´ pQpΦ,Ψq|

ď 3a?
2

ˆ
}Φ} ` }LΦ}

γ

˙ } xLΨ}
γ

` 3a?
2

ˆ
a}Φ} `

ˆ
1 ` a?

2

˙ }LΦ}
γ

˙ ˜
}Ψ} ` } xLΨ}

γ

¸
.

Proof. Let ν “ }rS,Πs}. We have

QpΦ,Ψq ´ pQpΦ,Ψq “ QpΠKΦ,ΠΨq `QpΠΦ,ΠKΨq .
For the first term we write

QpΠKΦ,ΠΨq “ xSΠKΦ, SΠΨy “ xSΠKΦ, rS,ΠsΠΨy ` xSΠKΦ,ΠSΠΨy ,
so that

QpΠKΦ,ΠΨq “ xSΠKΦ, rS,ΠsΠΨy ` xrS,ΠKsΠKΦ,ΠSΠΨy .
We deduce that

|QpΠKΦ,ΠΨq| ď ν}SΠKΦ}}Ψ} ` ν}ΠKΦ}}SΠΨ} . (2.2)

Similarly, we get, by slightly breaking the symmetry,

|QpΠΦ,ΠKΨq| ď ν}SΠKΨ}}Φ} ` ν}ΠKΨ}}SΦ} . (2.3)

We infer that

|QpΦ,Ψq ´ pQpΦ,Ψq| ď ν}SΠKΦ}}Ψ} ` ν}ΠKΦ}}SΠΨ} ` ν}SΠKΨ}}Φ} ` ν}ΠKΨ}}SΦ} . (2.4)

Since QT is non-negative we have

}SΦ}2 ď QpΦq ď }LΦ}}Φ}. (2.5)

Similarly,

}SΠΨ}2 ď pQpΨq ď } xLΨ}}Ψ} . (2.6)

Then we estimate }ΠKΦ} and }SΠKΦ}. We have

xΠKΦ,LΦy “ QpΠKΦ,Φq “ QpΠKΦq `QpΠKΦ,ΠΦq ,
and deduce

QpΠKΦq ď }LΦ}}ΠKΦ} ` |QpΠKΦ,ΠΦq| .
From (2.3), we get

QpΠKΦq ď }LΦ}}ΠKΦ} ` ν}SΠKΦ}}Φ} ` ν}ΠKΦ}}SΦ} .
Moreover, we have

QpΠKΦq ě }SΠKΦ}2 ` γ}ΠKΦ}2 .
We infer that

}SΠKΦ}2 ` γ}ΠKΦ}2

ď γ

4
}ΠKΦ}2 ` 1

γ
}LΦ}2 ` 1

2
}SΠKΦ}2 ` ν2

2
}Φ}2 ` γ

4
}ΠKΦ}2 ` ν2

γ
}SΦ}2 .

Using (2.5) we deduce that

1

2

`
}SΠKΦ}2 ` γ}ΠKΦ}2

˘
ď 1

γ
}LΦ}2 ` ν2

2
}Φ}2 ` ν2

2

ˆ}LΦ}2
γ2

` }Φ}2
˙
,
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and thus
}SΠKΦ}2

γ
` }ΠKΦ}2 ď p2 ` a2q}LΦ}2

γ2
` 2a2}Φ}2 . (2.7)

Let us now consider }ΠKΨ} and }SΠKΨ}. We have easily that

}SΠKΨ}2 ` γ}ΠKΨ}2 ď QpΠKΨq “ pQpΨ,ΠKΨq ď } xLΨ}}ΠKΨ} ,

and thus

}SΠKΨ}2
γ

` }ΠKΨ}2 ď } xLΨ}2
γ2

. (2.8)

It remains to combine (2.4), (2.5), (2.6), (2.7), (2.8), and use elementary manipulations. �

3. Examples of applications

In this section we discuss three applications of Theorem 1.1 and we recall that we are in the
context of Remark 1.3.

3.1. Semiclassical Born-Oppenheimer approximation. In this first example we set pΣ, σq “
pR, dsq. We consider a Hilbert space HT and set H “ L2pR,HT q. Then, for h ą 0, we consider
on H the operator Sh “ hDs, where Ds “ ´iBs. We also consider an operator T on H such that
for Φ “ pΦsqsPR P H we have pTΦqs “ TsΦs, where pTsq is a family of operators on HT which
depends analytically on s. Thus the operator L “ Lh takes the form

Lh “ h2D2
s ` T .

This kind of operators appears in [12, 13] where their spectral and dynamical behaviors are
analyzed. As an example of operator T , the reader can have the Schrödinger operator ´∆t `
V ps, tq in mind, where the electric potential V is assumed to be real-valued. Here the operator
norm of the commutator rhDs,Πs is controlled by the supremum of }Bsu1psq}H. Assuming
that }Bsu1psq}H is bounded, we have a “ aphq “ Ophq (see (1.5)). Let us also assume, for
our convenience, that µ1 has a unique minimum, non-degenerate and not attained at infinity.
Without loss of generality we can assume that this minimum is 0 and is attained at 0. Thus,
here γ just satisfies γ “ infsPR µ2psq ą 0.

For k P N˚ we set

λkphq “ sup
FĂDompLhq

codimpF q“k´1

inf
ϕPF

}ϕ}“1

〈Lhϕ, ϕ〉 . (3.1)

By the min-max principle, the first values of λkphq are given by the non-decreasing sequence of
isolated eigenvalues of Lh (counted with multiplicities) below the essential spectrum. If there
is a finite number of such eigenvalues, the rest of the sequence is given by the minimum of the
essential spectrum. We similarly define the sequence pλeff ,kphqq corresponding to the operator
Lh,eff . Note that Lh,eff can be identified with the operator

h2D2
s ` µ1psq ` h2}Bsu1psq}2HT

.

As a consequence of the harmonic approximation (see for instance [4, Chapter 7] or [16, Section
4.3.1]), we get the following asymptotics.

Proposition 3.1. Let k P N˚. We have

λeff,kphq “ p2k ´ 1q
c
µ2p0q
2

h ` ophq , h Ñ 0 .

From our abstract analysis, we deduce the following result.

Proposition 3.2. Let c0, C0 ą 0. There exist h0 ą 0 and C ą 0 such that for h P p0, h0q and

z P Zh “ tz P r´C0h,C0hs : distpz, SppLh,effqq ě c0hu

we have z P ρpLhq and

}pLh ´ zq´1 ´ pLh,eff ´ zq´1} ď C .
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Proof. Let h ą 0 and z P Zh. If h is small enough we have C0h ă γ so z P ρpLh,effq X ρpL K
h q “

ρp xLhq. Moreover, by the Spectral Theorem,
›››p xLh ´ zq´1

››› ď
››pLh,eff ´ zq´1

›› `
››pL K

h ´ zq´1
›› ď 1

c0h
` 1

γ ´ C0h
.

With the notation (1.6) we have

lim inf
hÑ0

sup
zPZh

´
1 ´ η1,hpzq}p xLh ´ zq´1} ´ η2,hpzq

¯
ą 0.

From Theorems 1.1 and Proposition 1.2, we deduce that z P ρpLhq,

}pLh ´ zq´1} À h´1 ,

and the estimate on the difference of the resolvents. Here and occasionally in the sequel, we
adopt the notation x À y if there is a positive constant C (independent of x and y) such that
x ď Cy. �

From this norm resolvent convergence result, we recover a result of [13, Section 4.2].

Proposition 3.3. Let k P N˚. Then

λkphq “ λeff,kphq ` Oph2q, h Ñ 0.

Proof. Let ε ą 0 be such that λeff,k`1phq ´ λeff,kphq ą 2εh for all h. We set zh “ λeff,kphq ` εh.
The resolvent pLh,eff ´ zhq´1 has k negative eigenvalues

1

λeff,kphq ´ zh
ď . . . ď 1

λeff,1phq ´ zh
,

all smaller than ´α{h for some α ą 0, and the rest of the spectrum is positive. By Proposition 3.2
the resolvent pLh ´ zhq´1 is well defined for h small enough and there exists C ą 0 such that

››pLh ´ zhq´1 ´ pLh,eff ´ zhq´1
›› ď C.

By the min-max principle applied to these two resolvents, we obtain that for all j P t1, . . . , ku
the j-th eigenvalue of pLh ´ zhq´1 is at distance not greater than C from 1{pλeff,k`1´j ´ zhq,
and the rest of the spectrum is greater than ´C. In particular, for j “ 1,

ˇ̌
ˇ̌ 1

λkphq ´ zh
´ 1

λeff,kphq ´ zh

ˇ̌
ˇ̌ ď C.

This gives

|λkphq ´ λeff,kphq| ď Cεh |λkphq ´ λeff,kphq ` εh| ,
and the conclusion follows for h small enough. �

3.2. Shrinking neighborhoods of hypersurfaces. In this paragraph we consider a subman-
ifold Σ of Rd, d ě 2, as in Section 1.3. We choose ε ą 0 and define Θε, Ω and Ωε as in (1.8) and
(1.9). For ϕ P H1

0 pΩεq, we set

QDir

Ωε
pϕq “

ż

Ωε

|∇ϕ|2dx,

and we denote by ´∆Dir

Ωε
the associated operator. Then we use the diffeomorphism Θε to see

´∆Dir

Ωε
as an operator on L2pΩq. We set, for ψ P H1

0 pΩ, dσdtq,

QDir

ε pψq “ QDir

Ωε
pψ ˝ Θ´1

ε q .

We need a more explicit expression of QDir
ε in terms of the variables ps, tq on Ω. For ps, tq P Ω

we have on Tps,tqΩ » TsΣ ˆ npsqR

dps,tqΘε “ pIdTsΣ ` εtdsnq b εIdnpsqR .

Hence

dΘεps,tqΘ
´1
ε “ pIdTsΣ ` εtdsnq´1 b ε´1IdnpsqR .
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We recall that the Weingarten map ´dsn is a self-adjoint operator on TsΣ (endowed with
the metric inherited from the Euclidean structure on Rd). For ψ P H1pΩ, dσdtq, x P Ωε and
ps, tq “ Θ´1

ε pxq we get

}∇pψ ˝ Θ´1
ε qpxq}2TxΩε

“ }pdxΘ´1
ε q˚∇ψps, tq}2TxΩε

“ }pIdTsΣ ` εtdsnq´1∇sψps, tq}2TsΣ
` 1

ε2
|Btψps, tq|2 .

The eigenvalues of the Weingarten map are the principal curvatures κ1, . . . , κd´1. In particular
for ps, tq P Ω we have

|dps,tqΘε| “ εwε, where wεps, tq “
d´1ź

j“1

p1 ´ εtκjpsqq . (3.2)

The Riemannian structure on Ω is given by the pullback by Θε of the Euclidean structure defined
on Ωε. More explicitly, for ps, tq P Ω the inner product on Tps,tqΩ is given by

@X,Y P Tps,tqpΩq, gεpX,Y q “ xdps,tqΘεpXq, dps,tqΘεpY qyRd .

Then the measure corresponding to the metric gε is given by εwεdσdt. Thus, if we set

Gεps, tq “ pIdTsΣ ` εtdsnq´2, (3.3)

we finally obtain

QDir

ε pψq “
ż

Ωε

|pIdTsΣ ` εtdsnq´1∇sψpΘ´1
ε pxqq|2dx` 1

ε2

ż

Ωε

|BtψpΘ´1
ε pxqq|2dx

“ ε

ż

Ω

xGεps, tq∇sψ,∇sψyTΣwεdσdt ` 1

ε2

ż

Ω

|Btψ|2εwεdσdt .

The transverse operator Tspεq is the Dirichlet realization on L2pp´1, 1q, εwεdtq of the differ-
ential operator ´ε´2w´1

ε BtwεBt. We denote by µ1ps, εq its first eigenvalue and we set µpεq “
infsPR µ1ps, εq. We have, by perturbation theory, as ε Ñ 0,

µ1ps, εq “ π2

4ε2
` V psq ` Opεq , µpεq “ π2

4ε2
` Op1q,

where

V psq “ ´1

2

d´1ÿ

j“1

κjpsq2 ` 1

4

˜
d´1ÿ

j“1

κjpsq
¸2

.

We denote by L Dir
ε the operator associated to the form QDir

ε and by L Dir

ε,eff the corresponding
effective operator as defined in the general context of Section 1.2. It is nothing but the operator
associated with the form H1pΣq Q ϕ ÞÑ QDir

ε pϕus,εq where us,ε is the positive L2-normalized
groundstate of the transverse operator (and actually depending on the principal curvatures
analytically). From perturbation theory, we can easily check that the commutator between the
projection on us,ε and S is bounded (and of order ε).

Proposition 3.4. Let c0, C0 ą 0. There exist ε0 ą 0 and C ą 0 such that for all ε P p0, ε0q and

z P Zc0,C0,ε “ tz P R : |z ´ µpεq| ď C0 , distpz, SppL Dir

ε,effqq ě c0u
we have ›››

`
L

Dir

ε ´ z
˘´1 ´

`
L

Dir

ε,eff ´ z
˘´1

››› ď Cε .

We recover a result of [10] (when there is no magnetic field).

Proof. We are in the context of Remark 1.3. The form Qε ´µpεq is non-negative. We denote by

Lε the corresponding non-negative self-adjoint operator and define xLε as in Lemma 2.2. Given
ε ą 0 and z P Zc0,C0,ε we write ζ for z´µpεq. Thus, with the notation of the abstract setting we
have γε „ ε´2, aε “ Opε2q, ζ “ Op1q and hence η1,εpζq “ Opεq, η2,εpζq “ Opε2q, η3,εpζq “ Opεq
and η4,εpζq “ Opε2q. Moreover, by the spectral theorem, we have

›››
` xLε ´ ζ

˘´1
››› “ Op1q.
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Thus, there exists ε0 ą 0 such that for ε P p0, ε0q, z P Zc0,C0,ε and ζ “ z ´ µpεq the operator
Lε ´ ζ is bijective and ›››pLε ´ ζq´1

››› “ Op1q ,
›››pLε ´ ζq´1 ´

` xLε ´ ζ
˘´1

››› “ Opεq .
The conclusion easily follows. �

Given ε ą 0 we define the sequence pλDir

k pεqqkPN˚ and pλDir

k,eff pεqqkPN˚ corresponding to the

operators L Dir
ε and L Dir

ε,eff as in (3.1). By using analytic perturbation theory with respect to the

parameters pεκjq1ďjďd´1 to treat the commutator, we have, for all k P N˚,

λDir

k,eff pεq “ π2

4ε2
` λΣk ` Opεq , ε Ñ 0,

where λΣk is the k-th eigenvalue of ´∆s ` V psq.
We recover a result in the spirit of [3, 10].

Proposition 3.5. For all k ě 1 we have

λDir

k pεq “ π2

4ε2
` λΣk ` Opεq, ε Ñ 0

Proof. Let k ě 1. There exist c0, c̃0, C0, ε0 ą 0 such that for ε P p0, ε0q we have

λDir

k,eff pεq ` c̃0 P Zc0,C0,ε.

As in the proof of Proposition 3.3 we obtain from Proposition 3.4 and the min-max principle
ˇ̌
ˇ
`
λDir

k pεq ´ pλDir

k,eff pεq ` c̃0q
˘´1 ´

`
λDir

k,eff pεq ´ pλDir

k,eff pεq ` c̃0q
˘´1

ˇ̌
ˇ “ Opεq.

We deduce ˇ̌
λDir

k pεq ´ λDir

k,eff pεq
ˇ̌

“ Opεq
ˇ̌`
λDir

k pεq ´ pλDir

k,eff pεq ` c̃0q
˘ˇ̌
,

and the conclusion follows. �

3.3. Dirichlet-Robin shell with large coupling constant. In this section, we keep consid-
ering the hypersurface Σ of the last paragraph (here ε “ 1). Let us now consider the Dirichlet-
Robin Laplacian in an annulus. In other words, with w1 and G1 as defined by (3.2) and (3.3),
we consider on the weighted space L2pw1dsdtq the quadratic form

QDR

α pψq “
ż

Σˆp0,1q

`
xG1ps, tq∇sψ,∇sψyTΣ ` |Btψ|2

˘
w1ps, tqdsdt ´ α

ż

Σ

|ψps, 0q|2ds.

It is defined for ψ P DompQDR
α q where

DompQDR

α q “ tψ P H1pΣ ˆ p0, 1qq : ψps, 1q “ 0 , Btψps, 0q “ ´αψps, 0qu .
In these definitions α is real, and we are interested in the strong coupling limit α Ñ `8.

This quadratic form is of the form (2.1) with S “ G
1

2

1 ∇s and Ts “ ´w´1
1 Btw1Bt acting

on H2pp0, 1qq and Dirichlet-Robin condition. The spectrum of Ts is well-understood in the
limit α Ñ `8. Actually, the family pTsq depends analytically on the principal curvatures
pκjpsqq1ďjďd´1. We can deduce from the previous works [5, 6, 8] that, as α Ñ `8,

µ1ps, αq “ ´α2 ´ ακpsq ` Op1q , µ2ps, αq ě c ą 0 ,

and

µpαq “ inf
sPΣ

µ1ps, αq “ ´α2 ´ ακmax ` Op1q ,

with κ “
řd´1

j“1 κj . Here, for simplicity, we assume that κ has a unique maximum at s “ 0
that is not degenerate and not attained at infinity. Moreover, we assume that the eigenvalues of
D2

s ` 1
2
Hess0p´κqps, sq are simple. We let

ZC0,c0,α “ tz P R : |z ´ µpαq| ď c0α , distpz, Spp xL DR

α qq ě C0u .
Proposition 3.6. There exist C,α0 ą 0 such that, for all z P ZC0,c0,α›››

`
L

DR

α ´ z
˘´1 ´

`
L

DR

α,eff ´ z
˘´1

››› ď Cα´1 .
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Proof. Here we have γ “ Opα2q, ν “ Opα´1q and a “ Opα´2q. We use again Remark 1.3 and
we apply Theorem 1.1 with L “ L DR

α ´ µpαq and z replaced by z ´ µpαq. For z P Zc0,C0,α, we
get

η1 “ Opα´1q , η2 “ Opα´2q , η3 “ Opα´2q , η4 “ Opα´3q .
Moreover, for α large enough, we have, for all z P Zc0,C0,α, z P ρ

´
L

DR

α,eff

¯
and

}pL DR

α,eff ´ zq´1} ď C .

Then Theorem 1.1 implies the wished estimate. �

We recover, under our simplifying assumptions, a result appearing in [5, 15, 8].

Proposition 3.7. For all j ě 1, we have, as α Ñ `8,

λDR

j,effpαq “ ´α2 ` νjpαq ` Op1q ,
and

λDR

j pαq “ ´α2 ` νjpαq ` Op1q ,
where νjpαq is the j-th eigenvalue of D2

s ´ ακpsq.
Proof. Let us first discuss the asymptotic behavior of the eigenvalues of the effective operator.
Let us recall that it is defined as explained in Section 1.2, and that it can be identified with
the operator associated with the form H1pΣq Q ϕ ÞÑ QDR

α pϕus,αq where us,α is the positive
L2-normalized groundstate of the transverse operator T psq. The asymptotic expansion of the
effective eigenvalues again follows from perturbation theory and a commutator estimate (see [8,
Section 3] where it is explained how we can estimate such a commutator).

Then, we proceed as in the previous section. Note that, by the harmonic approximation, for
all j ě 1,

νjpαq “ ´ακmax ` α
1

2 ν̃j ` Opα 1

4 q ,
where pν̃jqjPN˚ is the non-decreasing sequence of the eigenvalues of D2

s ` 1
2
Hess0p´κqps, sq. In

particular, the asymptotic gap between consecutive eigenvalues is of order α
1

2 . Then, there exist
c0 ą 0, C0 ą 0 and C ą 0 such that, for α large, z “ λDR

j,eff pαq`C P Zc0,C0,α. We use Proposition
3.6 and we get, as in the other examples,

|λDR

j,effpαq ´ λDR

j pαq| ď Cα´1 .

�

4. The non-self-adjoint Robin Laplacian between hypersurfaces

In this section we prove Theorem 1.5. The proof is split in two main steps. We first transform
the problem into an equivalent statement, where Pε is replaced by a unitarily equivalent operator
on Ω.

4.1. A change of variables. The operator Pε is associated to the (coercive) quadratic form
defined for φ P H1pΩεq by

Q1
εpφq “ Q1

ε,αpφq “
ż

Ωε

|∇φ|2 `
ż

Σ`,ε

α`,ε|φ|2 ´
ż

Σ´,ε

α´,ε|φ|2 . (4.1)

As in Section 3.2, we use the diffeomorphism Θε to see Pε as an operator on L2pΩq: for
ψ P H1pΩq we set

Q2
εpψq “ Q1

εpψ ˝ Θ´1
ε q .

We obtain

Q2
εpψq “

ż

Ωε

|pIdTsΣ ` εtdsnq´1∇sψpΘ´1
ε pxqq|2 dx` 1

ε2

ż

Ωε

|BtψpΘ´1
ε pxqq|2dx

`
ż

Σ`

α`,ε|ψ ˝ pΘ`
ε q´1|2 ´

ż

Σ´

α´,ε|ψ ˝ pΘ`
ε q´1|2

“
ż

Ω

xGεps, tq∇sψ,∇sψyTΣεw̃εdσdt ` 1

ε

ż

Ω

|Btψ|2w̃εdσdt

`
ż

Σ

α p|ψ|2w̃εq|t“1dσ ´
ż

Σ

α p|ψ|2w̃εq|t“´1dσ,
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where, as in (3.2), w̃ps, tq “
śd´1

j“1p1 ´ εtκjpsqq. Notice that L2pΩ, dσdtq and L2pΩ, εw̃εdσdtq
(or their corresponding Sobolev spaces) are equal as sets, but Θε induces only a unitary trans-
formation from L2pΩ, εw̃εdσdtq to L2pΩε, dxq.

4.2. A change of function. In the next step we make a change of function to turn our problem
with Robin boundary conditions into an equivalent problem with Neumann boundary conditions.
For this we consider the unitary transform

Ũε :

"
L2pΩ, εw̃εdσdtq Ñ L2pΩ, e´2εtRepαqw̃εdσdtq,

u ÞÑ ?
εeαεtu.

We set

wε “ e´2εtRepαqw̃ε .

Then on H1pΩ, wεdσdtq we consider the transformed quadratic form given by

Qεpφq “ Q2
εpŨ´1φq

“
ż

Ω

xGεp∇s ´ εt∇sαqφ, p∇s ´ εt∇sαqφywεdσdt ` 1

ε2

ż

Ω

|Btφ|2wεdσdt

´ 1

ε

ż

Ω

`
αφBtφ̄` ᾱφ̄Btφ

˘
wεdσdt `

ż

Ω

|α|2|φ|2wεdσdt

` 1

ε

ż

Σ

α|φ|wεdσ ´ 1

ε

ż

Σ

α|φ|2wεdσ .

By integration by parts we have

´ 1

ε

ż

Ω

αφBtφ̄wεdσdt

“ ´1

ε

ż

Σ

α|φ|wεdσ ` 1

ε

ż

Σ

α|φ|2wεdσ `
ż

Ω

ˆ
´2αRepαq ` αBtw̃ε

εw̃ε

˙
|φ|2wεdσdt .

Finally,

Qεpφq “
ż

Ω

xGεp∇s ´ εt∇sαqφ, p∇s ´ εt∇sαqφywεdσdt ` 1

ε2

ż

Ω

|Btφ|2wεdσdt

` 2i

ε

ż

Ω

ImpαqBtφφ̄wεdσdt `
ż

Ω

Vε|φ|2wεdσdt ,

where

Vε “ |α|2 ´ 2αRepαq ` α
Btw̃ε

εw̃ε

.

On H1pΩ, wεdσdtq we can also consider the forms defined by

pQεpφq “
ż

Ω

|∇sφ|2dσdt ` 1

ε2

ż

Ω

|Btφ|2dσdt `
ż

Ω

Veff |φ|2dσdt

and

Qeffpφq “
ż

Ω

|∇sφ|2dσdt `
ż

Ω

Veff |φ|2dσdt.

We denote by Lε, xLε and Leff the operators corresponding to the forms Qε, pQε and Qeff ,
respectively.

4.3. About the new operator Lε. If Uε denotes the composition of the unitary transform
associated with Θε and Ũε, we write Lε “ UεPεU

´1
ε and the estimate of Theorem 1.5 can be

rewritten as

}pLε ´ zq´1 ´ pLeff ´ zq´1Π}LpL2pΩqq À ε . (4.2)

As Pε, the operator Lε is m-accretive. We have the following accretivity estimate when ε goes
to 0.

Lemma 4.1. If ε0 ą 0 is small enough there exist M0 ě 0 and c0 ą 0 such that for ε P p0, ε0q,
M ě M0 and φ P H1pΩq we have

Re
`
Qεpφq

˘
`M}φ}2L2pΩq ě c0

ˆ
}∇sφ}2L2pΩq ` 1

ε2
}Btφ}2L2pΩq ` }φ}2L2pΩq

˙
.
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Proof. There exists C1 ě 0 such that for ε P p0, ε0q and φ P H1pΩq we have

Re
`
Qεpφq

˘
ě p1 ´ C1εq}p∇s ´ εt∇sαqφ}2 ` 1 ´ C1ε

ε2
}Btφ}2

´ 2}Impαq}8p1 ` C1εq
ε

}Btφ}}φ} ´ C1}φ}2.

For some C2 ě 0 we also have

}p∇s ´ εt∇αqφ}2 ě p1 ´ εq}∇sφ}2 ´ C2}φ}2 .
and

1 ´ C1ε

ε2
}Btϕ}2 ´ 2 }Impαq}8 p1 ` C1εq

ε
}Btϕ} }ϕ}

“ p1 ´ C1εq
˜

}Btϕ}2
ε2

´ }Btϕ}
ε

2 }Impαq}8 p1 ` C1εq }ϕ}
1 ´ C1ε

¸

ě p1 ´ C1εq
}Btϕ}2
2ε2

´ C2 }ϕ}2 .

The conclusion follows if ε0 ą 0 was chosen small enough. �

A remarkable property of Lε is the following complex symmetry (cf. [1]).

Lemma 4.2. Let ε ą 0 and z P C. If z P C is an eigenvalue for Lε then z is an eigenvalue for

L ˚
ε . In particular the operator Lε has no residual spectrum.

Proof. Since Lε is unitarily equivalent to Pε “ Pε,α, it is sufficient to prove the result for Pε,α.
Notice that DompQ1

ε,αq “ DompQ1
ε,αq. Moreover for φ, ψ P DompQ1

ε,αq we have Q1
ε,αpφ, ψq “

Q1
ε,αpψ, φq, so P˚

ε,α “ Pε,α. Now let ψ P DompPε,αq. For all φ P DompQ1
ε,αq we have

Q1
ε,αpφ, ψq “ Q1

ε,αpφ, ψq “
〈

φ,Pε,αψ
〉

“
〈

φ,Pε,αψ
〉

.

This proves that ψ P DompPε,αq and Pε,αψ “ Pε,αψ. Thus, if we denote by J the complex
conjugation, we get that Pε,α is J-self-adjoint

Pε,α “ JPε,αJ.

The conclusion follows. �

4.4. Proof of Theorem 1.5. Theorem 1.5 will be a consequence of the following proposition.

Proposition 4.3. There exist ε0, C ą 0 such that for all ε P p0, ε0q, ϕ P Domp xL ˚
ε q and

ψ P DompLεq,
|Qεpϕ, ψq ´ pQεpϕ, ψq| ď Cε}ϕ} xL ˚

ε
}ψ}Lε

.

Proof. We set

Dεpϕ, ψq “ Qεpϕ, ψq ´ pQεpϕ, ψq .
Using the Taylor formula, we get

|Dεpϕ, ψq| À ε}ϕ}H1
s
}ψ}H1

s
` 1

ε
}Btϕ}}Btψ} `

ˇ̌
ˇ̌2
ε

ż

Ω

ImpαqBtψϕ̄wεdσdt

ˇ̌
ˇ̌ ,

where }ψ}2H1
s

“ }ψ}2L2pΩq ` }∇sψ}2L2pΩq. The most delicate term is the last one. We have
ˇ̌
ˇ̌QεptImpαqϕ, ψq ´ 1

ε2

ż
ImpαqBtptϕqBtψwεdσdt

ˇ̌
ˇ̌ À }ϕ}H1

s
}ψ}H1

s
` 1

ε
}ϕ}}Btψ},

so ˇ̌
ˇ̌QεptImpαqϕ, ψq ´ 1

ε2

ż
ImpαqϕBtψwεdσdt

ˇ̌
ˇ̌ À }ϕ}H1

s
}ψ}H1

s
` 1

ε2
}Btϕ}}Btψ} ` 1

ε
}ϕ}}Btψ} .

Since QεptImpαqϕ, ψq “ 〈tImpαqϕ,Lεψ〉, we obtain
ˇ̌
ˇ̌1
ε

ż
ImpαqBtψϕwεdσdt

ˇ̌
ˇ̌ À ε}ϕ}H1

s
}ψ}H1

s
` 1

ε
}Btϕ}}Btψ} ` }ϕ}}Btψ} ` ε}Lεψ}}ϕ} .

We conclude with Lemma 4.1. �
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By Proposition 4.3, there exists C ě 0 such that for z P K, ϕ P DomppHeff
ε q˚q and ψ P

DompHεq we have

|Qeff

ε pϕ, ψq ´ zxϕ, ψy ´ pQεpϕ, ψq ´ zxϕ, ψyq | ď Cε}ϕ}pHeff
ε ´zq˚ }ψ}Hε´z .

Finally, we apply Lemma 2.4 and Lemma 1.7, and Theorem 1.5 follows.
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[9] Krejčiř́ık, D., and Raymond, N. Magnetic effects in curved quantum waveguides. Ann. Henri Poincaré
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(N. Raymond) IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex, France

E-mail address: nicolas.raymond@univ-rennes1.fr

(J. Royer) Institut de mathématiques de Toulouse, Université Toulouse 3, 118 route de Narbonne,

F-31062 Toulouse cedex 9, France

E-mail address: julien.royer@math.univ-toulouse.fr

(P. Siegl) Mathematical Institute, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland

& On leave from Nuclear Physics Institute ASCR, 25068 Řež, Czech Republic
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