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HOMOGENIZATION OF DIFFUSION-DEFORMATION IN DUAL-POROUS
MEDIUM WITH DISCONTINUITY INTERFACES∗

GEORGES GRISO† AND EDUARD ROHAN‡

Abstract. Models of homogenized fluid-saturated dual-porous media with weak, or strong discontinuity inter-
faces (resembling fissures) are derived using the periodic unfolding method. Stress discontinuities at the interfaces
are admitted, requesting further restrictions on the applied external forces. The limit models, obtained by a rig-
orous asymptotic analysis, reflect some non-local effects inherited from the microstructural interactions. In view
of obtaining the a priori estimates, standard approaches based on smooth extensions, well fitted for perforated or
high-contrast media, cannot be adopted for fissured domains. Therefore, a new approach is developed which enables
to control the norm of some “off-diagonal” terms which in the model equations are generated by the interfaces and
are not involved in the energy-related expressions.

Key words. porous media, dual porosity, periodic homogenization, high contrast media, discontinuity inter-
faces, diffusion-deformation.

AMS subject classifications. 35B27, 35Q74, 76S05, 74Q05, 74Q15

1 Introduction Modeling of porous solids penetrated by fluids is still a challenging issue
in continuum mechanics, due to important applications in geology and mining, in civil and envi-
ronmental engineering, or in tissue biomechanics and material engineering. Nowadays, also new
technologies related to the transport of liquids in porous deforming structures are inspired by
complex processes in biological tissues characterized by presence of coupled physical fields.

Here we focus on the mechanical aspects of a coupled fluid diffusion and solid deformation,
which could serve as a basis for further extension to “multiphysical problems”. Biot [6] formulated
the basic theory of deformation of a porous isotropic elastic solid subjected to a small strain and
saturated by a Newtonian fluid. Later on, this theory was extended to anisotropic elastic fluid-
saturated media where all the constituents can be compressible. The detailed description of the
poroelastic theory can be found, for example, in the book [14].

The model treated in this paper describes the diffusion and deformation coupled in time at
three different scales using the concept of the so-called dual porosity [3, 4]. In the context of
asymptotic analysis with respect to the scale of heterogeneities, the dual porosity is represented
by a scale-dependent permeability [3, 8]. The homogenization of diffusion in such a type of media
was discussed broadly in the literature, see e.g. [30, 15, 21], however without considering the
deformation. The coupled diffusion and deformation was treated by the asymptotic expansion
method of homogenization e.g. in [25, 26] and for the dual porosity distributed in the form of
inclusions accounted for by the authors in [16] ; therein the limit behaviour was analyzed using
the periodic unfolding method proposed in [10]. A similar problem with connected dual porosity
was reported in [29, 28] and [27] in the context of tissue modeling, where the macroscopic and
microscopic problems with the fading memory effects were described in detail. Another treatment
of flows in double-porous media is based on genuine treatment of interactions between the Darcy
flow in a porous material, representing the dual porosity, and the Stokes flow in channels, cf.
[23, 22].

In this paper we extend the model of [29] by including pressure discontinuity interfaces (resem-
bling fissures) in a periodic microstructure, where non-standard interface conditions are prescribed.
This option is important and interesting from two points of view: firstly, it is a model of non-
local interactions in the considered type of medium (see Remark 1 below), secondly it requires
a special non-standard procedure for obtaining uniform a priori estimates. Indeed, standard ap-
proaches based on smooth extensions, well applicable for perforated [9, 2], or high-contrast media

∗The research was supported by the project MSM 4977751301 of the Ministry of Education and Sports of the
Czech Republic and by the Czech Scientific Foundation project GACR 106/09/0740.
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(cf. [1, 8, 31]) cannot be used in our situation where the discontinuity interfaces induce similar
effects to those obtained in fissured domains. That is why we develop a new approach enabling to
control the norm of some terms representing the fluid-structure interactions at the interfaces. The
major difficulty here is related to the fact that these terms are “off-diagonal” and are not involved
in the energy-related expressions. Both these aspects make the problem attractive, since one can
think that our approach can be adapted to other applications characterized by the same kind of
transmission conditions.

The model we study here is motivated by its possible applications in bone tissue biomechanics,
namely to describe the influence of the mechanical loading at the macroscopic scale on the fluid
redistribution in the hierarchically porous structure with fractured interfaces , see [20]. The
cortical bone is constituted by osteons, see Fig. 2.3 (left), cylindrical units (diameter of ≈ 100µm)
containing conducting channels (the Haversian channels) and the tissue matrix which is perforated
by very thin channels (diameter of ≈ 0.1 − 1µm) forming the canalicular system of pores. This
hierarchical structure is repeated almost periodically. Moreover, each osteon unit is bounded by
a cement surface with a reduced permeability supposed to give rise to pressure discontinuities.

The paper is organized as follows. In Section 2 we introduce the Biot-type model of the
heterogeneous medium. Because of possible pressure discontinuities, in Section 2.2 we propose
a generalized mass conservation equation in the neighborhood of the discontinuity interface Γ.
We explain why this treatment is consistent with the interface transmission conditions admitting
discontinuities of the total stress and preserving the symmetry of the system constituted by the
equilibrium of forces and by the mass conservation. In Section 2.3 we introduce a microstructure
decomposition, followed in Section 2.5 by a brief recall of the periodic unfolding method.

In Section 2.6 we distinguish two cases of the discontinuity interfaces. They are characterized
by a scale-dependent permeability κε ≈ ε, where ε is the standard scale parameter, and by the
“interface Biot coefficients” αΓ,ε. We treat two cases of the “discontinuity effect”, depending on
hypotheses on the magnitude of the interface Biot coefficients. In Section 3 we treat the “weakly
discontinuous case”, αΓ,ε

ij ≈ ε. Under standard model-independent hypotheses on the loading
volume forces, a priori estimates (uniform in ε) are obtained in the classical way.

Section 4 is devoted to the “strongly discontinuous case”, αΓ,ε
ij ≈ 1. Now, obtaining ε-uniform

a priori estimates is a more delicate task. Moreover, a nonvanishing solution can be obtained
only for special forms of the volume forces, one of them is represented in the form of interface
distributions on the discontinuity interfaces. The convergence result yields vanishing macroscopic
displacement field.

For both the cases, keeping the same scheme of development, in Sections 3 and 4, we follow
in detail the whole homogenization procedure including a priori estimates, convergence results
and description of the scale-decoupled problems for the homogenized media. As the problem is
evolutionary, i.e. time-dependent, the scale-decoupling step is more complicated than for sta-
tionary problems. Therefore, we present the homogenized models merely in the form involving
the Laplace-transformed time variables; the application of the inverse Laplace transformation is
omitted here, since it would make the paper excessively long. This step can be found in [29], cf.
[28], where an analogical model is treated.

Notation We shall use the indicial notation for tensors like σij and employ the Einstein sum-
mation convention for repeated indices. Also boldface italics (like u = (ui)i) refers to vectorial
variables. By ∂yi we abbreviate ∂

∂yi
, alternatively we use ∇y = (∂yi )i to deal with the gradient vec-

tors; by default, by ∇ (or ∂i) we mean the gradient (or its component) with respect to x. Lebesgue
and Sobolev spaces are refered by using standard notation (e.g. L2(Ω), H1(Ω) = W 1,2(Ω)), for
vector-valued spaces we use the boldface letters like L2(Ω), H1(Ω). The space of functions with
compact support is denoted C∞0 (Ω). The symbol λ is the variable of Laplace-transformed func-
tions which are denoted by ∗, like A∗ or ∗v. Other notation is introduced subsequently in the text.
Throughout the paper we adopt much of general notations employed in [10].

2 Problem formulation We shall define the set of equations and variables which describe
the diffusion and deformation processes in a porous medium. We rely on the Biot model [7, 14]
representing the solid-fluid interactions at a “mesoscopic scale” (rather than “microscopic” one)
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where the pure solid and pure fluid parts cannot be separated. Thus, the heterogeneities of the
medium are given in terms of spatial variations of the material coefficients of the Biot model. In
what follows by the microscopic scale we mean the scale where these coefficient variations are
distinguishable.

2.1 Porous continuum The Biot theory of the fluid saturated elastic medium is valid for
the linearized material behavior. The stress is decomposed into the effective part σeff

ij , and the
part generated by the pressure of the interstitial fluid, p. Thus the total stress σij is given by

σij = σeff
ij − αijp, σeff

ij = Dijkleij(u), eij(u) =
1
2

(∂jui + ∂iuj), (2.1)

where αij is the Biot tensor, Dijkl is the tensor of elastic coefficients and u = (ui) is the displace-
ment vector field associated to the porous solid skeleton. The relative motion of the fluid with
respect to the skeleton is described by the filtration (or discharge) velocity w = (wi), proportional
to the pressure gradient by virtue of the Darcy law, wi = −Kij∂jp, where Kij is the permeability
tensor. In our model of heterogeneous materials, we consider the system of double porosities,
see e.g. [3, 21]. Recently in [16] we considered the incompressible Biot medium with the dual
porosity distributed in the form of inclusions. Here we treat the compressible Biot model, where
both the primary and the dual porosities form connected domains, cf. [29, 28], whereby some
semi-permeable interfaces are embedded in the dual porosity. We remark that homogenization
of the parallel flows, cf. [30], in defermable double-porous medium with two primary mutually
disconnected porosities was reported in [27].

We do not take into account any inertia effect in the medium, thus the momentum equation
reduces to the balance of forces. According to the Biot theory, the local mass conservation relates
the skeleton compression, αijeij(u), the fluid discharge, divw and the fluid accumulation due to
compressibility of both the skeleton and the fluid, as represented by term ṗ/µ, where 1/µ is the
Biot bulk compressibility modulus. The model involves force equilibrium and mass conservation
equations,

∂jσij(u , p) = fi, αijeij(u) + divw +
1
µ
ṗ = 0, (2.2)

where f = (fi) is the field of volume forces. Substituting (2.1) into (2.2)1 and using the Darcy
law to express w in (2.2)2, we obtain the reduced system involving just two fields

−∂jDijklekl(u) + ∂j(αijp) = fi

αijeij(u̇)− ∂iKij∂jp+
1
µ
ṗ = 0 .

(2.3)

We consider an anisotropic material with the following standard symmetries: Dijkl = Dklij =
Djikl, αij = αji and Kij = Kji.

2.2 Generalized formulation for surface discontinuities We shall treat a problem
characterized by pressure discontinuities on the interfaces. In this section we consider the discon-
tinuities distributed on surface Γ ⊂ Ω, where Ω ⊂ R3 is the open bounded domain, occupied by
the porous medium.

With regards to the differentiability of material parameters, of the pressure and of displace-
ment fields, the system of equations (2.2) is valid in Ω \ Γ where the medium is continuous. On
interface Γ we impose the following conditions

[u ]Γ = 0 ,
[Dijklekl(u)nj ]Γ = 0 ,
niKij∂jp = −wini = κ[p]Γ,

(2.4)

where [a]Γ denotes the jump of a quantity a across Γ and n = (ni) is the unit normal to Γ such that
[a]Γ = lims→0+(a(x+ sn)− a(x− sn)). The parameter κ ≥ 0 controls the interface permeability,
i.e. the filtration velocity w .
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Fig. 2.1. Hierarchical structure of the porous medium with the discontinuity interface – two zooms illustrated.
An example of sub-microscopic arrangement (the 2nd zoom) of the porous interface Γ (the grey/blue belt). The
pistons, being driven by external forces, may keep the pressure discontinuity |p+ − p−| > 0, whereas the effective
stress (related to the solid phase) is continuous.

There are two extreme cases, κ → +∞ and κ → 0. The first one yields the perfect pressure
bonding and thereby also the bulk stress continuity, [njσij ]Γ = 0 due to (2.4)2 and (2.1)1, i.e.
there is no interface effect. In the second case (κ → 0), the interface is completely impermeable,
i.e. niKij∂jp = 0 in the sense of traces on both sides of Γ.

Remark 1. Stress discontinuity and a generalized continuum. We postulated the conti-
nuity of the effective stress, [σeff

ij ]nj = 0 on Γ. This certainly holds at a porous interface when no
fluid is present (thereby p ≡ 0). If the pores are saturated by the fluid, condition (2.4)2 admits
pressure discontinuities, i.e. [αijp]nj 6= 0, so that the overall (bulk) stress (2.1)1 has a jump on Γ.
This does not conforms physically to standard continua. However, we have in mind a generalized
continuum with non-local effects: at the microscopic scale the local disbalance is equilibrated (at
a larger scale) by means of coupled external forces. The following examples explains relevancy of
our ansatz.

• Suppose that the (connected) interface Γ embeds a thin stiff self-supporting structure Σ
which can exert local pressure disbalances. Thus the whole medium Ω is decomposed into
this structure Σ and the “remainder” Ω\Σ. Assuming that Σ has a zero surface measure,
we can decouple the two parts of the medium and represent Σ by means of external force
fields distributed on Γ.

• Another example is illustrated in Figure 2.1: the pores penetrating the interface are
equipped with valves driven by external forces. One may think of the electromagnetic
field, but a device based on “micro-cables” (micro-Bowdens) interconnecting couples of
distant valves could be constructed.

The above discussion reveals that our generalized continuum can be loaded only by external
forces satisfying certain constraints related to the scale of the microstructure. We shall pursue two
general cases of heterogeneities in coefficients αij , as specified in Section 2.6, which for vanishing
scale parameter leads to different limit models and to different additional constraints relating the
acting force and the microstructure scale.

�
We need to develop a special form of the mass conservation which takes into account a possible

pressure discontinuity on the interfaces Γ. In order to obtain a consistent weak formulation of
the diffusion-deformation problem, the pressure discontinuities must be well-approximated in the
formulation of the mass conservation. Therefore, we consider an integral formulation of this
physical law, where the sources and the fluxes are weighted by discontinuous functions.

2.2.1 Preliminaries Let Γ be a Lipschitz surface in R3 and ω ⊂ R3 be an open bounded
“control domain” such that Γω = Γ ∩ ω is nonempty and divides ω in two subdomains, ω =
ω+ ∪ ω− ∪ Γω. Set

Γ+ = {x′ = x+ tn(x) | x ∈ Γ, t→ 0+},
Γ+ = {x′ = x+ tn(x) | x ∈ Γ, t→ 0+}.
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Now, introduce a test function q ∈ L2(ω) by using the characteristic functions of ω±,

q(x) = q+χω+(x) + q−χω−(x) where χω±(x) =
{

1 for x ∈ ω±
0 for x ∈ R3 \ ω±,

, (2.5)

where q+ and q− are real constants. Due to this construction, we can introduce the generalized
derivative (gradient) of q: for any ϕ ∈ C∞0 (ω)∫

ω

∇ϕ q =
∑

k=+,−

∫
ωk

∇(qkϕ) =
∫

Γ+
q+ϕn+ dS +

∫
Γ−

q−ϕn− dS

= −
∫

Γω

ϕ[q]Γn = −
∫
ω

ϕδΓ[q]Γn ,

and
∫
ω

ϕδΓ =
∫

Γω

ϕdS ,

(2.6)

where δΓ is the Dirac distribution of Γ and n is the unit normal of Γ, such that n+ = −n = −n−.
Thus, the generalized gradient of q is

∇q = δΓ[q]Γ n on Γ in the sense of distributions. (2.7)

2.2.2 Local mass conservation for discontinuous pressure fields Let J̇ be the time
rate of the fluid volume drained from an infinitesimal volume of the porous medium; later on we
identify J̇ = divw . The mass conservation for the compressible porous medium can be written in
the form ∫

ω

q

(
1
µ
ṗ+ J̇

)
+
∫
∂ω

q αij u̇i nj dS = 0 .

If all integrands (except q) are continuous and αij are constant in ω, the standard differential form
can be obtained, i.e. ṗ/µ + J̇ + αijeij(u̇) = 0, when taking q+ = q−. We consider in the sequel
more general situations, allowing for discontinuous pressures. Moreover, the Biot coefficients on Γω
may be discontinuous in the case of piecewise constant coefficients: αij(x) = αkij in ωk, (k = +,−),
although we shall refrain from such an option later on.

By the Green formula we get formally

0 =
∫
ω

q (
1
µ
ṗ+ J̇ ) +

∫
ω

q αij∂j u̇i +
∫
ω

u̇i ∂j(q αij)

=
∫
ω

q

(
1
µ
ṗ+ J̇ + αijeij(u̇)

)
+
∫
ω

u̇i ∂j(q αij) ,

where the last integral can be rewritten using (2.7) to get

0 =
∫
ω

q

(
1
µ
ṗ+ J̇ + αijeij(u̇)

)
+
∫
ω

u̇i njδΓ[q αij ]Γ

=
∑

k=+,−

∫
ωk

qk
(

1
µ
ṗ+ J̇ + αijeij(u̇)

)
+
∫

Γω

u̇i[qαij ]Γnj dS .
(2.8)

Further, recalling the definitions of Γ+ and Γ−, from(2.8) we derive the following form of the
generalized mass conservation which is dual to the pressure discontinuities at Γ:

1
µ
ṗ+ J̇ + αijeij(u̇) + u̇i nj (δΓ+αij |Γ+ − δΓ−αij |Γ−) = 0 . (2.9)

Assuming αij |Γ+ = αij |Γ− = αΓ
ij , (2.9) can be rewritten as

1
µ
ṗ+ J̇ + αijeij(u̇) + u̇inj α

Γ
ij (δΓ+ − δΓ−) = 0 . (2.10)
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2.2.3 Weak formulation of mass conservation for discontinuous pressure fields
Recalling that Ω is the domain occupied by our heterogeneous material, for any q given by (2.5),
equation (2.9) yields ∫

Ω

q

(
1
µ
ṗ+ J̇ + αijeij(u̇)

)
+
∫

Ω

u̇inj [qαij ]Γ δΓ = 0 , (2.11)

where the last integral can be rewritten in terms of a surface integral by virtue of (2.6)2.
We can now develop the term involving local source/sink of fluid, J̇ = divw . Recalling the

impermeability of the outer surface, i.e. n · w = 0 on ∂Ω, for any q defined by (2.5) with ∇q
defined by (2.7), it follows that∫

Ω

qJ̇ =
∫

Ω

q∇ ·w = −
∫

Ω\Γ
w · ∇q −

∫
Ω

w · n [q]Γ δΓ

= −
∫

Ω\Γ
w · ∇q −

∫
Γ

w · n [q]Γ dS =
∫

Ω\Γ
Kij∂jp ∂iq +

∫
Γ

κ [p]Γ [q]Γ dS ,

(2.12)

where we used the Darcy law and condition (2.4)3 in order to replace w . Thus, from (2.11)-(2.12)
it follows that the mass conservation can be written in the form∫

Ω

q

(
1
µ
ṗ+ αijeij(u̇)

)
+
∫

Ω\Γ
Kij∂jp ∂iq

+
∫

Γ

κ [p]Γ [q]Γ dS +
∫

Γ

[qαij ]Γ u̇inj dS = 0 ∀q .
(2.13)

2.2.4 Balance of forces with pressure discontinuities A consequence of the continuity
of the effective stress σeff

ij = Dijklekl(u) and of the discontinuity of the pressure as defined in (2.17),
the overall stress σij = σeff

ij − αijp is discontinuous, see Remark 1 below. Therefore, the standard
differential form (2.2)1 of the balance of forces holds in Ω\Γ. Taking a continuous test displacement
field v ∈ H1

0(Ω), we can integrate by parts in Ω \ Γ to get

−
∫

Ω\Γ
vi∂jσij =

∫
Ω

f · v ,∫
Ω\Γ

σijeij(v) +
∫

Γ

vi [σij ]Γ nj dS =
∫

Ω

f · v ,∫
Ω\Γ

(Dijklekl(u)− αijp) eij(v)−
∫

Γ

vi [αijp]Γ nj dS =
∫

Ω

f · v ,

(2.14)

where the volume integral over Ω \ Γ can be replaced by an integral over Ω, since all integrands
are “sufficiently smooth” in Ω.

Fig. 2.2. An example of a periodic microstructure generated by a representative cell Y . A two-dimensional
section of a 3D structure is displayed. Both the matrix part Ym and the channels Yc generate the connected
domains Ωε

m and Ωε
m. The discontinuity interface Γε

m is illustrated by thick lines, it may also form a connected
hypersurface in Ω.
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2.3 A periodic microstructure with two compartments The heterogeneous porous
medium consists of two distinct parts with different magnitudes of the respective hydraulic per-
meabilities. We consider an open bounded domain Ω ⊂ R3, which is decomposed into two parts
Ωm (matrix) and Ωc (channels), so that

Ω = Ωm ∪ Ωc ∪ Γmc, with Ωm ∩ Ωc = ∅ .

The microstructure is generated by periodic unit cubes Y =]0, 1[3; this choice of the cell Y is
made for the sake of simplicity (one can consider general parallelotops as periodicity cells via some
technicalities). Let Yc and Ym be connected, disjoint subdomains of Y with Lipschitz boundaries,
so that ∂Yc has common measurable sets with all faces of Y and

Ym = Y \ Yc, ∂mYc = ∂cYm = Yc ∩ Ym,
∂cYc = Yc ∩ ∂Y, ∂mYm = Ym ∩ ∂Y,
Y = Ym ∪ Yc ∪ ∂mYc, with Ym ∩ Yc = ∅,
∂Y = ∂cYc ∪ ∂mYm , ∂Yc = ∂cYc ∪ ∂mYc .

Denote by ε > 0 the scale parameter defining the size of microstructures. The channel Yc is
such that εYc generates a connected ε−periodic domain Ωεc; let us introduce

(Rn)c = Interior
( ⋃
ζ∈Z3

(ζ + Yc)
)
,

then the open set Ωεc is defined by

Ωεc = ε(Rn)c ∩ Ω .

The “matrix” Ωεm is then obtained by removing the “channel network” from the whole domain:
Ωεm = Ω\Ωc

ε
. We assume that Ωεm is connected.

Further, we introduce the interface ΓYm embedded in the matrix part, ΓYm ⊂ Ym. As discussed
in Section 2.2, pressure discontinuities may be expected on ΓYm. An example of the surface location
is illustrated in Figure 2.3. Due to the interface ΓYm, the matrix compartment generated by εYm
is periodically subdivided into the subdomains Ωεm◦,k, k ∈ Jεm, separated by the interface Γεm so
that

Γεm = Ωεm \
⋃
k∈Jε

m

Ωεm◦,k , Ωεm◦,k ∩ Ωεm◦,l = ∅ for k 6= l , Ωεm = Interior
( ⋃
k∈Jε

m

Ωm◦,k
ε)
.

(2.15)

Note that the diameter of each Ωεm◦,k is proportional to ε. Obviously, if Ω ⊂ R3, then |Γεm| ≈ ε2.
In order to define an extension operator (from the channels to the matrix, or briefly an “off-

channels” extension), we introduce the domain containing the “entire” periods εY :

Ω̂ε = interior
⋃
ζ∈Ξε

Y εζ , Y εζ = ε(Y + ζ)

where Ξε = {ζ ∈ Z3 | ε(Y + ζ) ⊂ Ω} .
(2.16)

2.4 Weak formulation of the problem Having developed a suitable weak forms of both
the balance of forces and mass conservation laws, respectively (2.13) and (2.14), we are ready
to define the diffusion-deformation problem with interface pressure discontinuities in the periodic
heterogeneous structure. We consider the following boundary and initial conditions:

uε(t, ·) = u0(t, ·) on ∂Ω, for t ∈]0, T [ ,
niK

ε
ij∂jp

ε(t, ·) = 0 on ∂Ω, for t ∈]0, T [ ,

uε(0, ·) = 0 in Ω,
pε(0, ·) = 0 in Ω.
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Obviously, we assume the consistency constraint u0(0, x) = 0 for x ∈ ∂Ω. Moreover, in Section 4,
we impose the homogeneous Dirichlet condition u0 ≡ 0.

Since the pressure field can be discontinuous on Γε, we need the following space of discontin-
uous functions:

H1(Ωεm \ Γεm) = {q ∈ L2(Ωεm) : ∇q ∈ L2(Ωεm \ Γεm)} ,
H1(Ω \ Γεm) = {q ∈ L2(Ω) : ∇q ∈ L2(Ω \ Γεm)} .

(2.17)

As in [16], we integrate (2.13) in time and introduce the integrated pressure

P ε(t, x) =
∫ t

0

pε(t, x) dt . (2.18)

Clearly, P ε(0) = 0.
Our aim is to study the asymptotic behavior as ε → 0, of the following problem: Find

uε ∈ H1(0, T ; H1
0(Ω)) + u0 and P ε ∈ H1

0 (0, T ;H1(Ω \ Γεm)) such that for a.e. t ∈]0, T [

∫
Ω

Dε
ijklekl(u

ε)eij(v)−
∫
Ω

dP ε

d t
αεijeij(v)−

∫
Γε

m

αΓ,ε
ij vin

ε
j

[
dP ε

d t

]
Γε

m

dS

=
∫

Ω

f · v , ∀v ∈ H1
0(Ω),∫

Ω

q αεijeij(u
ε) +

∫
Γε

m

αΓ,ε
ij u

ε
in
ε
j [q]Γε

m
dS +

∫
Ω\Γε

m

Kε
ij∂jP

ε ∂jq +
∫

Ω

1
µε

dP ε

d t
q

+
∫

Γε
m

κε [P ε]Γε
m

[q]Γε
m
dS = 0, ∀q ∈ H1(Ω \ Γεm).

(2.19)

The material coefficients Dε
ijkl, α

ε
ij , α

Γ,ε
ij , Kε

ij and κε are oscillating and ε-periodic, as specified
in Section 2.6. We claim that there exists a unique solution of (2.19). For the proof, we refer to
[16], Section 3, where a similar model was treated.

2.5 The periodic unfolding method In this paper we apply the unfolding method of
homogenization, cf. [10, 11], to derive the homogenized model. For the reader’s convenience
we recall the notion of the periodic unfolding method and of the periodic unfolding operator, in
particular. We shall use the convergence results in the unfolded domain Ω×Y which can be found
in [10].

For all z ∈ R3, let [z] be the unique integer such that z− [z] ∈ Y . We may write z = [z] + {z}
for all z ∈ R3, so that for all ε > 0, we get the unique decomposition

x = ε
([x
ε

]
+
{x
ε

})
∀x ∈ R3 .

Based on this decomposition, the periodic unfolding operator Tε : L2(Ω; R) → L2(Ω × Y ; R) is
defined as follows: for any function v ∈ L1(Ω; R), extended to L1(R3; R) by zero outside Ω, i.e.
v = 0 in R3 \ Ω,

Tε(v)(x, y) =

{
v
(
ε
[x
ε

]
+ εy

)
, x ∈ Ω̂ε, y ∈ Y ,

0 otherwise .

The following integration formula holds:∫
Ω̂ε

v dx =
1
|Y |

∫
Ω×Y

Tε(v) dy dx ∀v ∈ L1(Ω) .

Analogously, when integrating on a surface Γ̂ε generated by a surface ΓY ⊂ Y (see (2.15)), the
formula reads ∫

Γ̂ε

v dS =
1

ε|Y |

∫
Ω×ΓY

Tε(v) dSy dx, ∀v ∈ L1(Ω).
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These formulae will be used in the sequel to evaluate integrals over Ω, which typically is approved
upon satisfying so-called unfolding criterion for integrals. For more details and convergence results,
we refer the reader to [10], for error estimates see [17, 18, 19].

In what follows we use the following abbreviations (for any Ya ⊂ Y )

1
|Y |

∫
Ya

= ∼
∫
Ya

, and also
1
|Y |

∫
Ω×Ya

= ∼
∫

Ω×Ya

.

2.6 Oscillating material coefficients The porous medium distributed in Ω is featured by
material heterogeneities characterized at the length scale ε, thereby the coefficients in equations
(2.3) are highly oscillating. We treat strongly heterogeneous permeability coefficients, where the
heterogeneity is related to the domain decomposition into the “matrix” part and the “channel”
part.

The setting of the problem is based on (2.13) and (2.14) where the material parameters are
defined piecewise with respect to the domain decomposition introduced above. In general, for any
material parameter cε = cε(x) identified with Dε

ijkl, α
ε
ij or µε, we assume the following:

cε ∈ L∞(Ω) , Tε(cε(x))→ c̃(x, y) a.e. in Ω× Y, (2.20)

where c̃(x, y) is identified respectively, as D̃ijkl, α̃ij or µ̃. For the permeability coefficients Kε
ij ∈

L∞(Ω), instead of (2.20), we assume that

Tε
(
χεcK

ε
ij(x)

)
→ χc(y)Kc

ij(x, y) a.e. in Ω× Y,

1
ε2
Tε
(
χεmK

ε
ij(x)

)
→ χm(y)Km

ij (x, y) a.e. in Ω× Y,

where χεd(x) = χd

({x
ε

})
is the characteristic function of domain Ωεd, d = c, m. Thus we assume

that the permeability coefficients depend strongly on the scale parameter. In particular, due to
the ε2-scaling of the permeability in Ωεm, the matrix part presents a dual porosity. All the other
material coefficients in their unfolded form can also be refered to by superscripts c, m in the
domains Yc and Ym, respectively. Hence, by (2.20),

c̃(x, y) = χc(y)cc(x, y) + χm(y)cm(x, y) ,

so that Dd
ijkl, α

d
ij and µd have a meaning.

Further, we assume the existence of positive constants cD, CD, cK , CK , cµ, Cµ, independent of
ε and such that for a.e. x ∈ Ω,

cD|ξ|2 ≤ Dε
ijkl(x)ξklξij , |Dε

ijkl(x)| ≤ CD for any (symmetric) ξ ∈M2,

cµ ≤ 1/µε(x) ≤ Cµ ,
for a.e. x ∈ Ωεm, ∀ζ ∈ R2, |Kε

ij(x)| ≤ ε2CK , ε2cK |ζ|2 ≤ Kε
ij(x)ζiζj ,

for a.e. x ∈ Ωεc, ∀ζ ∈ R2, |Kε
ij(x)| ≤ CK , cK |ζ|2 ≤ Kε

ij(x)ζiζj .

(2.21)

Because of the pressure discontinuities on Γεm we need to specify the definitions of κε and αεij
on Γεm. To do so, we assume that (2.10) holds with αΓ,ε

ij as the interface Biot coefficients.
Below we shall employ the boundary unfolding opreator T bε () which is introduced as Tε()

operating on interface Γεm, i.e. for any v ∈ L1(Γεm; R), T bε (v(x)) = v
(
ε
[
x
ε

]
+ εy

)
whenever

x ∈ Γεm ∩ Ω̂ε, so that y ∈ ΓY , and T bε (v(x)) = 0 otherwise.
The interface permeability κε ∈ L∞(Γεm). We assume that

T bε (κε(x)) = εκ̃(x̄ε, y) , where cκ ≤ κ̃ ≤ Cκ , (2.22)

for some given cκ , Cκ > 0, where x̄ε = ε[x/ε] is the lattice restriction of x (using the unfolding
operation) and y ∈ ΓYm.
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Biot coefficients αεij ∈ L∞(Γεm) on the interface. As we shall see, the limit model depends
strongly on the uniform estimates of αεij with respect to ε. We consider the following two particular
situations:

weakly discontinuous data (WD) T bε
(
αΓ,ε
ij

)
= εα̃Γ

ij(x̄
ε, y) , (2.23)

strongly discontinuous data (SD) T bε
(
αΓ,ε
ij

)
= α̃Γ

ij(x̄
ε, y) , (2.24)

where x̄ε = ε[x/ε] and y ∈ ΓYm. In the first case T bε α
Γ,ε
ij → 0 a.e. in Ω× ΓYm. Anyway, in Ω \ Γεm

we suppose that Tε(αεij)→ α̃ij(x, y) a.e. in Ω× (Y \ ΓYm).

3 Homogenization of the model with WD data Throughout this section we assume
we are given standard “moderate” forces f ε, i.e., such that

‖f ε‖L2(0,T ;L2(Ω)) ≤ C . (3.1)

The plan of this section is as follows. In Section 3.1 we give a priori estimates which allow
us to pass to the limit in Section 3.2. The procedure of the scale-decoupling for the “Laplace-
transformed in time” limit equations is explained in Section 3.3.

3.1 A priori estimates Let us recall some basic inequalities that will be used also in the
case of strongly discontinuous data (2.24).

The Young inequality: ab ≤ a2

2ν
+
νb2

2
for all a, b, ν ∈ R, ν > 0 ,

The Korn inequality: ‖∇uε‖2L2(Ω) ≤ C1

∑
i,j

‖eij(uε)‖2L2(Ω).
(3.2)

Using appropriate test functions, we can eliminate in (2.19) the “mixed terms”, so that only
quadratic forms appear in the resulting identity,∫

Ω

Dε
ijklekl(u

ε)eij(uε)−
∫
Ω

dP ε

d t
αεijeij(u

ε)−
∫

Γε
m

αΓ,ε
ij u

ε
in
ε
j

[
dP ε

d t

]
Γε

m

dS =
∫

Ω

f · uε ,

∫
Ω

dP ε

d t
αεijeij(u

ε) +
∫

Γε
m

αΓ,ε
ij u

ε
in
ε
j

[
dP ε

d t

]
Γε

m

dS +
∫

Ω\Γε
m

Kε
ij∂jP

ε ∂j
dP ε

d t

+
∫
Ω

1
µε

dP ε

d t
dP ε

d t
+
∫

Γε
m

κε [P ε]Γε
m

[
dP ε

d t

]
Γε

m

dS = 0.

(3.3)

Upon summation we obtain∫
Ω

Dε
ijklekl(u

ε)eij(uε) +
1
2

d
d t

∫
Ω\Γε

m

Kε
ij∂jP

ε ∂jP
ε

+
∫

Ω

1
µε

∣∣∣∣dP εd t

∣∣∣∣2 +
1
2

d
d t

∫
Γε

m

κε [P ε]2Γε
m
dS =

∫
Ω

f · uε.
(3.4)

Then we integrate in time t ∈ [0, t̄], t̄ ≤ T , recalling P ε(0) = 0, see (2.18), and use the lower
boundedness of all the material coefficients, see (2.21) and (2.22); this yields

cD

∫ t̄

0

∫
Ω

∑
i,j

|eij(uε)|2 dt+ cµ

∫ t̄

0

∫
Ω

∣∣∣∣dP εd t

∣∣∣∣2 dt
+ cK

∫
Ωε

c

|∇P ε(t̄)|2 + cKε
2

∫
Ωε

m\Γε
m

|∇P ε(t̄)|2 + cκε

∫
Γε

m

[P ε(t̄)]2Γε
m
≤
∫ t̄

0

∫
Ω

f ε · uε dt .

(3.5)
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Due to the definition of the volume forces and using (3.1), we have∫ t̄

0

∫
Ω

f ε · uε dt ≤ 1
2ν
‖f ε‖2L2(0,T ;L2(Ω)) +

νC1

2
‖∇uε‖2L2(0,T ;L2(Ω)) , for a.a. t̄ ≤ T , (3.6)

where we used the Poincaré inequality and (3.2)1, ν > 0 being an arbitrary constant. Then, using
the Korn inequality (3.2)2 to deal with |eij(uε)|2, combining (3.6) with (3.5), and choosing ν
appropriately, the following estimates are obtained:

‖uε‖L2(0,T ;H1(Ω)) ≤ C, ‖∇P ε‖L∞(0,T ;L2(Ωε
c)) ≤ C,

‖∇P ε‖L∞(0,T ;L2(Ωε
m\Γε

m)) ≤
C

ε
,

∥∥∥dP ε

d t

∥∥∥
L2(0,T ;L2(Ω))

≤ C,

‖[P ε]Γε
m
‖L∞(0,T ;L2(Γε

m)) ≤
C√
ε
.

(3.7)

From (3.7)4 we deduce immediately that ‖P ε‖H1(0,T ;L2(Ω)) ≤ C, which follows due to P ε(0) = 0,
see (2.18).

3.2 Limit problems In this section we give the limit representation of the model (2.19)
with assumption (2.23). First, however, we obtain some results which are applicable in both the
strongly and weakly discontinuous cases. It is worth to emphasize that we do not use extension
operators which otherwise have been used commonly when dealing with problems in perforated
domains – instead we employ the convergence theorems developed recently in [12].

We shall need the space of discontinuous unfolded functions. Let ΓYm ⊂ Y be the representative
discontinuity interface, i.e. Γεm =

⋃
ζ∈Ξε εΓYm + εζ, see (2.16), and set

H#c0(Y,ΓYm) = {q ∈ H1
#(Y \ ΓYm)| q = 0 in Yc} . (3.8)

Below we rely on the following two Theorems which were introduced as Theorem 3.1 and
Theorem 3.12 in [12]. Here we adapted these results according to our situation with a changed
notation. We recall the decomposition (2.15) and the space H1(Ωεm \ Γεm).

Theorem 3.1. Let (wε)ε be a sequence belonging to H1(Ωεm \ Γεm) and satisfy

‖wε‖L2(Ωε
m) + ε‖∇wε‖L2(Ωε

m\Γε
m) ≤ C .

Then there exists some ŵ ∈ L2(Ω;H1
#(Ym \ ΓYm)), such that, up to a subsequence,

Tε(wε) ⇀ ŵ weakly in L2(Ω;H1(Ym)) ,

εTε(∇wε) ⇀ ∇yŵ weakly in L2(Ω× Ym \ ΓYm) .

Theorem 3.2. Suppose that wε ∈ H1(Ωεc) satisfies ‖wε‖H1(Ωε
c) ≤ C. Then there exists

w ∈ H1(Ω) and ŵ ∈ L2(Ω;H1
#(Yc)), such that, up to a subsequence,

Tε(wε) ⇀ ŵ weakly in L2(Ω;H1(Yc)) ,

Tε(∇wε) ⇀ ∇w +∇yŵ weakly in L2(Ω× Yc) .

Lemma 3.3. Due to estimates (3.7), the following limit fields exist:

u ∈ L2(0, T ; H1
0(Ω)), u1 ∈ L2(0, T ; H1

#(Y )),

P ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), P 1 ∈ L∞(0, T ;L2(Ω;H1
#(Yc))),

P̂m ∈ H1(0, T ;L2(Ω× Ym)) ∩ L∞(0, T ;L2(Ω;H#c0(Y,ΓYm))),

(3.9)

such that the following convergences hold, up to subsequences:

uε ⇀ u weakly in L2(0, T ; H1
0(Ω)),

Tε(uε) ⇀ u weakly in L2(0, T ; L2(Ω× Y )),

Tε(∇uε) ⇀ ∇xu +∇yu1 weakly in L2(0, T ; L2(Ω× Y )),

(3.10)
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and

Tε(P ε) ⇀ P weakly in H1(0, T ;L2(Ω× Yc)),
Tε(∇P ε) ⇀ ∇xP +∇yP 1 weakly ∗ in L∞(0, T ;L2(Ω× Yc)),

Tε(P ε) ⇀ P̂m weakly in H1(0, T ;L2(Ω× Ym)),

εTε(∇P ε) ⇀ ∇yP̂m weakly ∗ in L∞(0, T ;L2(Ω× Ym \ ΓYm))

Tε
(
[P ε]Γε

m

)
⇀
[
P̂m

]
ΓY

m

weakly ∗ in L∞(0, T ;L2(Ω;L2(ΓYm)).

(3.11)

Proof. The proof is the direct consequence of estimates (3.7) and Theorems 3.1 and 3.2,
whereby some standard convegence results from [10] are applied.

Yet we need to establish a relationship between the limit pressure in Ω × Yc and in Ω × Ym,
cf. [30].

Lemma 3.4. The limit fields P and P̂m satisfy the following condition:

P̂m(·, y) = P for a.a. y ∈ ∂Yc ∩ ∂Ym and a.e. in ]0, T [× Ω . (3.12)

Proof. Let us consider ϕ ∈ C∞0 (Ω) and ψ ∈ [H1
#(Y )]3. If ε is small enough, due to the

convergence result (3.11) we obtain the limit∫
Ω\Γε

m

ε∇P ε(x) · ϕ(x)ψ(x/ε) =
∫

Ω

∼
∫
Ym\ΓY

m

εTε(∇P ε)(x, y)Tε(ϕ)(x, y) ·ψ(y)

→
∫

Ω

∼
∫
Ym\ΓY

m

∇yP̂m · ϕψ .

(3.13)

Above the left hand side integral can be rewritten on integrationg by parts:

−
∫

Ω\Γε
m

εP ε(x) (∇ϕ(x) ·ψ(x, x/ε) + ϕ(x)∇ ·ψ(x/ε)) +
∫

Γε
m

[P ε(x)]Γε
m
εϕ(x)n(x/ε) ·ψ(x, x/ε) dSx

=−
∫

Ω

∼
∫
Y \ΓY

m

Tε(P ε) (Tε(ε∇xϕ) ·ψ + Tε(ϕ)∇y ·ψ) +
∫

Ω

1
ε
∼
∫

ΓY
m

Tε
(
[P ε]Γε

m

)
εTε(ϕ)n ·ψ dSy .

Then we can pass to the limit and integrate by parts again:

→−
∫

Ω

∼
∫
Yc

P (x)ϕ(x)∇y ·ψ(y)−
∫

Ω

∼
∫
Ym\ΓY

m

P̂m(x, y)ϕ(x)∇y ·ψ(y)

+
∫

Ω

∼
∫

ΓY
m

[
P̂m(x, y)

]
ΓY

m

ϕ(x)n(y) ·ψ(y) dSy

=
∫

Ω

ϕ ∼
∫
Ym\ΓY

m

∇yP̂m ·ψ +
∫

Ω

Pϕ ∼
∫
∂Yc

n ·ψ dSy +
∫

Ω

ϕ ∼
∫
∂Ym

P̂mn ·ψ dSy ,

(3.14)

where the last two boundary integrals vanish on ∂Y due to the Y-periodicity of the integrands,
so that the only nonvanishing parts are evaluated on ∂Ym ∩ ∂Yc. Condition (3.12) now follows by
comparing both the limit expressions at (3.13) and (3.14), since ψ and ϕ can be chosen arbitrarily.

We may now introduce the bubble function by setting P̂ = P̂m−P whereby P̂ ∈ H1(0, T ;L2(Ω×
Ym)) ∩ L∞(0, T ;L2(Ω;H#c0(Y,ΓYm))) as the consequence of Lemma 3.4. Thus, since P̂ (x, ·) = 0
on the channel-matrix interface ∂Ym∩∂Yc, P̂ can be extended continuously by zero to all Ω. Then
convergences (3.11) yield

Tε(P ε) ⇀ P + P̂ weakly in H1(0, T ;L2(Ω× Y )),

εTε(∇P ε) ⇀ ∇yP̂ weakly ∗ in L∞(0, T ;L2(Ω× Ym \ ΓYm)),

Tε
(
[P ε]Γε

m

)
⇀
[
P̂
]

ΓY
m

weakly ∗ in L∞(0, T ;L2(Ω;L2(ΓYm)).

(3.15)
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The limit fields satisfy the limit homogenized problem.
Theorem 3.5. Let (uε, P ε) be solution of problem (2.19) where αε on Γεm is given by (2.23).

Then, the limit fields (3.9) with convergences (3.10)-(3.11) are such that (u, P ) and (u1, P 1, P̂ )
satisfy the coupled unfolded problem (in the sense of time distributions):

∼
∫

Ω×Y
D̃ijkl[exkl(u) + eykl(u

1)] [exij(v
0) + eyij(ṽ

1)]

− ∼
∫

Ω×Y
α̃ij [exij(v

0) + eyij(ṽ
1)]

(
dP
d t

+ χm
d P̂
d t

)

−
∫

Ω

v0
i ∼
∫

ΓY
m

njα̃
Γ
ij

[
d
d t
P̂

]
ΓY

m

dSy =
∫

Ω

f · v0,

(3.16)

and

∼
∫

Ω×Yc

Kc
ij(∂

x
j P + ∂yj P

1) (∂xj q
0 + ∂yj q̃

1)+ ∼
∫

Ω×Ym

Km
ij ∂jP̂ ∂iq̂

0

+
∫

Ω

∼
∫

ΓY
m

njα̃
Γ
ijui

[
q̂0
]
ΓY

m
dSy+ ∼

∫
Ω×Y

α̃ij [exij(u) + eyij(u
1)] [q0 + χmq̂

0]

+
∫

Ω

∼
∫

ΓY
m

κ̃
[
P̂
]

ΓY
m

[
q̂0
]
ΓY

m
dSy+ ∼

∫
Ω×Yc

1
µc

dP
d t

q0

+ ∼
∫

Ω×Ym

1
µm

(
dP
d t

+
d P̂
d t

)
(q0 + q̂0) = 0 ,

(3.17)

for all v0 ∈ V0 = H1
0(Ω), q0 ∈ H1(Ω), ṽ1 ∈ L2(Ω; H1

#(Y )), q̃1 ∈ L2(Ω;H1
#(Y )) and q̂0 ∈

L2(Ω;H#c0(Y,ΓYm)).

Remark 2. The “two-scale” problem (3.16)-(3.17) retains the symmetry of (2.19). The existence
and uniqueness of weak solutions defined in Ω × Y can be proved using similar technique, as for
the original problem (2.19), see [16], Section 3, however, extended for the two-scale functions and
appropriate spaces employed in (3.16)-(3.17).

�
Proof. of Theorem 3.5. We shall derive limit expressions for all unfolded integrals involved in

(2.19). For this we need to introduce suitable test functions vε and qε. Due to (3.10)-(3.11), the
following test displacements are considered:

vε(x) = v(x) + εv1({x/ε}Y )θ(x) , v ∈ H1
0(Ω), v1 ∈ H1

#(Y )/R, θ ∈ C∞0 (Ω).

Further, we introduce the pressure test functions qε of the following form

qε(x) = q0(x) + εq1(y)ϑ(x) + q̂(y)ϑ̂(x) , where q̂ = 0 in Yc, (3.18)

Passing to the limit in the interface integrals from (2.19), we get∫
Γε

m

njα
ε
ijv

ε
i [

d
d t
P̂ ε]Γε

m
dS

=
∫
Ω

1
ε|Y |

(
vi

∫
ΓY

m

njεα̃
Γ
ij

[
d
d t
T bε
(
P̂ ε
)]

ΓY
m

dSy + ε2θ

∫
ΓY

m

njα̃
Γ
ijv

1
i

[
d
d t
T bε
(
P̂ ε
)]

ΓY
m

dSy

)

→
∫

Ω

vi ∼
∫

ΓY
m

njα̃
Γ
ij

[
d
d t
P̂

]
ΓY

m

dSy ,

(3.19)
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and ∫
Γε

m

njα
ε
iju

ε
i [q̂(x/ε)]Γε

m
ϑ̂ dS =

∫
Ω

1
|Y |

∫
ΓY

m

njα̃
Γ
ijT bε (uεi ) [q̂]ΓY

m
T bε
(
ϑ̂
)
dSy

→
∫

Ω

ϑ̂ui ∼
∫

ΓY
m

njα̃
Γ
ij [q̂]ΓY

m
dSy .

(3.20)

For the other integrals in (2.19), we have the following limits (recalling that αεij is not proportional
to ε in Ω \ Γεm):∫

Ω

Dε
ijklekl(u

ε)eij(vε)→
∫

Ω

∼
∫
Y

D̃ijkl(exkl(u) + eykl(u
1)) (exij(v) + eyij(v

1)θ),∫
Ω

αεijeij(v
ε)

d
d t
P ε →

∫
Ω

∼
∫
Y

α̃ij(exij(v) + eyij(v
1)θ)

d
d t

(
P (x) + χmP̂

)
,∫

Ω

f ε · vε →
∫

Ω

f · v ,

(3.21)

where f ε ⇀ f weakly in L2(0, T ; L2(Ω)), and∫
Ω

Kε
ij∂jP

ε∂iq
ε →

∫
Ω

∼
∫
Yc

Kc
ij(∂

x
j P + ∂yj P

1) (∂xj q
0 + ϑ∂yj q

1) +
∫

Ω

ϑ̂ ∼
∫
Ym

Km
ij ∂jP̂ ∂iq̂,∫

Ω

αεijeij(u
ε)qε →

∫
Ω

∼
∫
Y

α̃ij(exij(u) + eyij(u
1))(q0 + χmq̂ϑ̂),∫

Ω

κε[P ε]Γε
m

[qε]Γε
m
→
∫

Ω

∼
∫

ΓY
m

κ̃
[
P̂
]

ΓY
m

[q̂]ΓY
m
dSy.

(3.22)

The limit expressions in (3.20)-(3.22) are valid (by density arguments) for any test functions of
the form

vε(x) = v0(x) + εṽ1(x, y) , v ∈ H1
0(Ω), ṽ ∈ L2(Ω; H1

#(Y )) ,

qε = q0(x) + εq̃1(x, y) + χm(y)q̂0(x, y),

q0 ∈ H1(Ω), q̃1 ∈ L2(Ω;H1
#(Y )), q̂0 ∈ L2(Ω;H#c0(Y,ΓYm)).

(3.23)

So, instead of v1θ, we can take ṽ1 ∈ L2(Ω; H1
#(Y )); instead of q1ϑ, q̃1 ∈ L2(Ω;H1

#(Y )) and
instead of ϑ̂q̂ we take q̂0 ∈ L2(Ω;H#c0(Y,ΓYm)). It is now possible to write down the limit form of
(2.19). The two-scale problem is obtained from (3.19)-(3.22), making use of the generalized test
functions (3.23), and taking q1 = 0 in (3.22).

3.3 Scale decoupling and the homogenized constitutive laws In (3.16) and (3.17) we
can take suitable combinations of vanishing and non-vanishing parts of the test functions defined
in (3.23), so that the “local” and the “global” problems can be identified.

The local problem describes the diffusion-deformation driven by ex(u), u and P . For all
v1 ∈ H1

#(Y ) and q̂ ∈ H#c0(Y,ΓYm), one has

∼
∫
Y

D̃ijkl[exkl(u) + eykl(u
1)] eyij(v

1)− ∼
∫
Y

α̃ije
y
ij(v

1)
dP
d t
− ∼
∫
Ym

αmij e
y
ij(v

1)
d P̂
d t

= 0 ,

∼
∫
Ym

αmij [exij(u) + eyij(u
1)] q̂ + ui ∼

∫
ΓY

m

njα̃
Γ
ij [q̂]ΓY

m
dSy+ ∼

∫
Ym

Km
ij ∂

y
j P̂ ∂

y
i q̂

+ ∼
∫

ΓY
m

κ̃
[
P̂
]

ΓY
m

[q̂]ΓY
m
dSy+ ∼

∫
Ym

1
µm

(
dP
d t

+
d P̂
d t

)
q̂ = 0 .

(3.24)
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The global problem is the diffusion-deformation problem described in terms of ex(u) and P ,
involving the local perturbations P̂ ,u1, P 1. For all v0 ∈ V0 = H1

0(Ω) and q0 ∈ H1(Ω),

∼
∫

Ω×Y
D̃ijkl[exkl(u) + eykl(u

1)] exij(v
0)− ∼

∫
Ω×Y

α̃ije
x
ij(v

0)

(
dP
d t

+ χm
d P̂
d t

)

−
∫

Ω

v0
i ∼
∫

ΓY
m

njα̃
Γ
ij

[
d
d t
P̂

]
ΓY

m

dSy =
∫

Ω

f · v0 ,∫
Ω

Cij∂xj P ∂xi q0+ ∼
∫

Ω×Y
α̃ij [exij(u) + eyij(u

1)] q0+ ∼
∫

Ω×Yc

1
µc

dP
d t

q0

+ ∼
∫

Ω×Ym

1
µm

(
dP
d t

+
d P̂ 0

d t

)
q0 = 0.

(3.25)

Homogenized permeability. By selecting q0 ≡ 0 and q̂ ≡ 0, due to (3.22) the limit equation
(3.17) reduces to

∼
∫
Yc

Kc
ij(∂

x
j P + ∂yj P

1) ∂yj q̃
1 = 0 , ∀q̃1 ∈ L2(Ω;H1

#(Y )) a.e. in Ω. (3.26)

Due to the linearity, we can define corrector basis functions ηk such that P 1(t, x, y) = ηk(y)∂xkP (t, x).
Therefore, (3.26) is equivalent to the following problem (set in channels Yc):

Find ηk ∈ H1
#(Y )/R (k = 1, 2, 3) such that

∼
∫
Yc

Kc
ij∂

y
j (ηk + yk) ∂yi ψ = 0 ∀ψ ∈ H1

#(Y ) .
(3.27)

It is now easy to replace in (3.17) the only integral involving P 1 using the homogenized permeability
Cij defined as follows:∫

Ω

Cij∂xj P∂xi q0 :=∼
∫

Ω×Yc

Kc
ij [∂xj P + ∂yj P

1] ∂xi q
0 =∼
∫
Yc

Kc
il∂

y
l (ηj + yj) ∂xj P ∂

x
i q

0 .

We can identify Cij as follows:

Cij =∼
∫
Yc

Kc
il∂

y
l (ηj + yj) =∼

∫
Yc

Kc
kl∂

y
l (ηj + yj) ∂

y
kyi =∼

∫
Yc

Kc
kl∂

y
l (ηj + yj) ∂

y
k(ηi + yi). (3.28)

The last symmetric expression is a simple consequence of identity (3.27) evaluated for ψ = ηi,
where other indices have been changed appropriately.

Let us point out that the effective medium permeability Cij (relevant to the macroscopic scale)
depends exclusively on the geometry and permeability of the primary porosity in the channels
represented by Yc.

3.3.1 Auxiliary local problems and corrector basis functions Throughout this sec-
tion and in Section 4.3 bellow, we use the following notation:

aY (u , v) =∼
∫
Y

D̃ijkle
y
kl(u) eyij(v), bY (ϕ, v) =∼

∫
Y

ϕ α̃ije
y
ij(v) ,

bYm (ϕ, v) =∼
∫
Ym

ϕαmij e
y
ij(v) ,

ĉYm,Γm (ϕ, ψ) =∼
∫
Ym\ΓY

m

Km
ij ∂

y
j ϕ∂

y
i ψ+ ∼

∫
ΓY

m

κ̃[ϕ]ΓY
m

[ψ]ΓY
m
dSy ,

dYm (ϕ, ψ) =∼
∫
Ym

1
µm

ϕψ, γΓ,k(ϕ) =∼
∫

ΓY
m

njα̃
Γ
kj [ϕ]ΓY

m
dSy .

(3.29)
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In order to decouple the microscopic and macroscopic evolutionary problems, we can apply the
usual method of the scale separation based on the Laplace transformation v(t)→ L{v}(λ), where
λ is the variable in the Laplace domain. For brevity we denote all functions depending on λ as
follows: L{v}(λ) = ∗v. In the transformed space we define a suitable multiplicative decomposition
to arrive at autonomous local problems arising from (3.24) allowing to compute the local corrector
functions and, consequently to compute also the homogenized coefficients. We use zero initial
conditions, namely u(0, ·) = 0, whereas P (0, ·) ≡ 0 by definition. By the Laplace transformation,
the local problem becomes

aY
(
∗u
1, v

)
− bYm

(
λ ∗̂P , v

)
= −aY

(
Πij , v

)
eij( ∗u) + λbY (1, v) ∗P ,

bYm

(
∗u
1, φ

)
+ ĉYm,Γm

(
∗̂P
0, φ

)
+ λdYm

(
∗̂P , φ

)
= −bYm

(φ, Π)
∗

eij( ∗u)− dYm
(1, φ)λ∗P − γΓ,k(φ)

∗
uk.

Due to the linearity, we define the multiplicative decomposition by introducing the corrector
functions in the L-transformed time domain, in the form

∗
u 1(λ, x, y) = λ ∗ω

rs(λ, y) exrs( ∗u )(λ, x) + λ ∗ω
P (λ, y)∗P (λ, x) + λ ∗ω

k(λ, y)
∗
uk(λ, x) ,

∗̂P
0(λ, x, y) = λ ∗π

rs(λ, y) exrs( ∗u )(λ, x) + λ ∗π
P (λ, y)∗P (λ, x) + λ ∗π

k(λ, y)
∗
uk(λ, x) .

The functions ∗ω
rs, ∗ω

P , ∗ω
k and ∗π

rs, ∗π
P , ∗π

k satisfy the following local auxiliary problems.
Strain corrector problem: Find ( ∗ω

rs, ∗π
rs) ∈ H1

#(Y )×H#c0(Y,ΓYm) such that
aY
(
∗ω
rs, v

)
− λbYm

(
∗π
rs, v

)
= − 1

λ
aY (Πrs, v) , ∀v ∈ H1

#(Y ) ,

bYm

(
ψ, ∗ω

rs
)

+ ĉYm,Γm

(
∗π
rs, ψ

)
+ λdYm

(
∗π
rs, ψ

)
= − 1

λ
bYm

(Πrs, ψ) ,

∀ψ ∈ H#c0(Y,ΓYm),

(3.30)

where Πrs = (Πrs
i ) = (ysδir).

Pressure corrector problem: Find ( ∗ω
rs, ∗π

rs) ∈ H1
#(Y )×H#c0(Y,ΓYm) such that

aY
(
∗ω
P , v

)
− λbYm

(
∗π
P , v

)
= bY (1, v) ∀v ∈ H1

#(Y ) ,

bYm

(
ψ, ∗ω

P
)

+ ĉYm,Γm

(
∗π
P , ψ

)
+ λdYm

(
∗π
P , ψ

)
= −dYm

(1, ψ)

∀ψ ∈ H#c0(Y,ΓYm).

(3.31)

Displacement corrector problem: Find ( ∗ω
k, ∗π

k) ∈ H1
#(Y )×H#c0(Y,ΓYm) such that

aY
(
∗ω
k, v

)
− λbYm

(
∗π
k, v

)
= 0 ∀v ∈ H1

#(Y ),

bYm

(
ψ, ∗ω

k
)

+ ĉYm,Γm

(
∗π
k, ψ

)
+ λdYm

(
∗π
k, ψ

)
= − 1

λ
γΓ,k(ψ),

∀ψ ∈ H#c0(Y,ΓYm).

(3.32)

3.3.2 Homogenized coefficients and the macroscopic problem We now study the
main homogenization result for weakly discontinuous data, namely (2.23). Application of the
Laplace transformation to (3.25) yields

∼
∫

Ω×Y
exij(v

0) D̃ijkl[e
y
kl(Π

rs) + λeykl( ∗ω
rs)] exrs( ∗u)

+ ∼
∫

Ω×Y
exij(v

0) D̃ijkle
y
kl( ∗ω

P )λ∗P+ ∼
∫

Ω×Y
exij(v

0) D̃ijkle
y
kl( ∗ω

n)λ
∗
un

− ∼
∫

Ω×Y
exij(v

0)α̃ijλ
(
∗P + χmλ ∗π

rsexrs( ∗u) + χmλ ∗π
P
∗P + χmλ ∗π

n

∗
un

)
−
∫
Ω

v0
i ∼
∫

ΓY
m

njα̃
Γ
ijλ

2

([
∗π
rs
]
ΓY

m
exrs( ∗u) +

[
∗π
P
]
ΓY

m
∗P +

[
∗π
n
]
ΓY

m ∗
un

)
dSy =

∫
Ω
∗
f · v0,

(3.33)
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and

∼
∫

Ω×Y
q0α̃kl

(
[eykl(Π

rs) + λeykl( ∗ω
rs)] exrs( ∗u) + λeykl( ∗ω

P )∗P + λeykl( ∗ω
n)
∗
un

)
+
∫
Ω

Cij∂j ∗P∂iq
0+ ∼

∫
Ω×Y

q0

µ
λ∗P+ ∼

∫
Ω×Ym

q0

µm

(
λ2
∗π
ijexij( ∗u) + λ2

∗π
P
∗P + λ2

∗π
k

∗
uk

)
= 0.

(3.34)

In these equations we can identify the homogenized coefficients, as explained bellow.
Homogenized viscoelasticity. This tensor is obtained by collecting in (3.34) all the terms which

contain λexij( ∗u),

A∗ijkl(λ) = λ
[
aY

(
1
λ

Πkl + ∗ω
kl,

1
λ

Πij

)
− bYm

(
∗π
kl, Πij

) ]
= λ

[
aY

(
1
λ

Πkl + ∗ω
kl,

1
λ

Πij + ∗ω
ij

)
+λĉYm,Γm

(
∗π
kl, ∗π

ij
)
+λ2dYm

(
∗π
kl, ∗π

ij
) ]
,

where the symmetric expression is a consequence of (3.30).
The homogenized Biot modulus. This tensor is obtained by collecting in (3.33) all the terms
containing λ∗P ,

M∗(λ) =∼
∫
Y

1
µ

+ λ ∼
∫
Ym

1
µm ∗π

P+ ∼
∫
Y

α̃ije
y
ij( ∗ω

P ) =∼
∫
Y

1
µ

+ λdYm

(
∗π
P , 1

)
+ bYm

(
1, ∗ω

P
)
. (3.35)

The homogenized Biot coefficients. They can be obtained independently from both equations
(3.33)-(3.34). On collecting in (3.33) all the terms involving λ∗P , one obtains

α∗ij(λ) =∼
∫
Y

α̃ij − aY
(
∗ω
P , Πij

)
− λbYm

(
∗π
P , Πij

)
. (3.36)

By collecting in (3.34) all the terms involving λexij( ∗u)), one gets

β∗ij(λ) =
1
λ
∼
∫
Y

α̃ij + bY
(
1, ∗ω

ij
)

+ λdYm

(
∗π
ij , 1

)
. (3.37)

It is easily seen that the following result holds true:
Lemma 3.6. The homogenized Biot coefficients defined in (3.36) and (3.37) satisfy

α∗ij(λ) = λβ∗ij(λ) . (3.38)

Proof. Relation (3.38) can be obtained using the microscopic local problems, (3.30) and (3.31),
where we use special forms of test functions. First (3.30)2 yields

1
λ
bYm

(
∗π
P , Πij

)
= −bYm

(
∗π
P , ∗ω

ij
)
− λdYm

(
∗π
ij , ∗π

P
)
− ĉYm,Γm

(
∗π
ij , ∗π

P
)
.

Then the first and the last terms can be expressed using (3.31)1 and (3.31)2, respectively, so that

1
λ
bYm

(
∗π
P , Πij

)
=

1
λ
bY
(
1, ∗ω

ij
)
− 1
λ
aY
(
∗ω
P , ∗ω

ij
)
− λdYm

(
∗π
ij , ∗π

P
)

+ bYm

(
∗π
ij , ∗ω

P
)

+ dYm

(
1 + λ ∗π

P , ∗π
ij
)

=
1
λ
bY
(
1, ∗ω

ij
)
− 1
λ
aY
(
∗ω
P , ∗ω

ij
)

+ bYm

(
∗π
ij , ∗ω

P
)

+ dYm

(
1, ∗π

ij
)
.

(3.39)

Now (3.30)1 yields

1
λ
aY
(
∗ω
P , Πij

)
= −aY

(
∗ω
ij , ∗ω

P
)

+ λbYm

(
∗π
P , ∗ω

P
)
, (3.40)
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so that on substituting (3.39) and (3.40) in (3.36),

α∗ij(λ) = λaY
(
∗ω
ij , ∗ω

P
)
− λ2bYm

(
∗π
P , ∗ω

P
)

+ λbY
(
1, ∗ω

ij
)
− λaY

(
∗ω
P , ∗ω

ij
)

+ λ2bYm

(
∗π
ij , ∗ω

P
)

+ λ2dYm

(
1, ∗π

ij
)

+ ∼
∫
Y

α̃ij

= λbY
(
1, ∗ω

ij
)

+ λ2dYm

(
1, ∗π

ij
)

+ ∼
∫
Y

α̃ij = λβ∗ij(λ) .

Coefficients due to the interface terms on “micro” and “macro”. We introduce coefficients
gIII∗kij , gII∗ij , gI∗k and hIII∗kij , hI∗k to express the following integrals appearing in (3.33), (3.34):∫

Ω

vi ∼
∫

ΓY
m

njα̃
Γ
ijλ

2
[
∗π
rs
]
ΓY

m
exrs( ∗u) =

∫
Ω

vig
III∗
irs (λ)λexrs( ∗u),∫

Ω

vi ∼
∫

ΓY
m

njα̃
Γ
ijλ

2
[
∗π
n
]
ΓY

m ∗
un =

∫
Ω

vig
II∗
in (λ)λ

∗
un,∫

Ω

vi ∼
∫

ΓY
m

njα̃
Γ
ijλ

2
[
∗π
P
]
ΓY

m
∗P =

∫
Ω

vig
I∗
i (λ)λ∗P ,

∼
∫

Ω×Y
exij(v) D̃ijkle

y
kl( ∗ω

k)λ
∗
uk− ∼

∫
Ω×Ym

exij(v)αmijλ
2
∗π
k

∗
uk =

∫
Ω

exij(v)hIII∗kij (λ)λ
∗
uk

and

∼
∫

Ω×Y
qα̃ijλe

y
ij( ∗ω

k)
∗
uk+ ∼

∫
Ω×Ym

q

µm
λ2
∗π
k

∗
uk =

∫
Ω

qhI∗k (λ)λuk,

where

gIII∗kij (λ) = λγΓ,k( ∗π
ij), gII∗kj (λ) = λγΓ,k( ∗π

j), gI∗k (λ) = λγΓ,k( ∗π
P ),

hIII∗kij (λ) = aY
(
∗ω
k, Πij

)
− λbYm

(
∗π
k, Πij

)
,

hI∗k (λ) = bY
(
1, ∗ω

k
)

+ λdYm

(
∗π
k, 1

)
.

(3.41)

For the well-posedness of the macroscopic problem, its symmetry is important. It is a conse-
quence of the symmetries of the coefficients (3.41) stated bellow.

Lemma 3.7. The following relationships hold:

gII∗kj = gII∗jk , gI∗k = λhI∗k , hIII∗kij = −gIII∗kij , gIII∗kij = gIII∗kji . (3.42)

Proof. The first symmetry follows easily from (3.32) which leads to

γΓ,k( ∗π
j) = dYm

(
λ ∗π

k, λ ∗π
j
)

+ λĉYm,Γm

(
∗π
k, ∗π

j
)

+ aY
(
∗ω
k, ∗ω

j
)

= γΓ,j( ∗π
k).

To show the second symmetry, we use (3.31) and rewrite both the terms involved in definition
(3.41)5; the first one combined with (3.32)2 and (3.32)1, yields

bY
(
1, ∗ω

k
)

= aY
(
∗ω
k, ∗ω

P
)
− λbYm

(
∗π
P , ∗ω

k
)

= λbYm

(
∗π
k, ∗ω

P
)

+ γΓ,k( ∗π
P ) + λĉYm,Γm

(
∗π
k, ∗π

P
)

+ λ2dYm

(
∗π
k, ∗π

P
)
.

Then, combining the second term in (3.41)5 with (3.31)2, gives

λdYm

(
∗π
k, 1

)
= −λ2dYm

(
∗π
P , ∗π

k
)
− λĉYm,Γm

(
∗π
P , ∗π

k
)
− λbYm

(
∗π
k, ∗ω

P
)
,

so that

hI∗k (λ) = bY
(
1, ∗ω

k
)

+ λdYm

(
∗π
k, 1

)
=

1
λ
γΓ,k(λ ∗π

P ) =
1
λ
gI∗k (λ) .
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For the third relationship in (3.42), using (3.30) and due to (3.32), we have

hIII∗kij = aY
(
∗ω
k, Πij

)
− λbYm

(
∗π
k, Πij

)
= λ2ĉYm,Γm

(
∗π
ij , ∗π

k
)

+ λ3dYm

(
∗π
ij , ∗π

k
)

+ λ2bYm

(
∗π
k, ∗ω

ij
)

− λaY
(
∗ω
k, ∗ω

ij
)

+ λ2bYm

(
∗π
ij , ∗ω

k
)

= −λγΓ,k( ∗π
ij) = −gIII∗kij .

Obviously gIII∗kij = gIII∗kji , due to the symmetry πij = πji.
The main result of this section is the macroscopic problem, obtained from (3.33)-(3.34) by

replacing the integrals over Y , Ym and ΓYm by expressions involving the associated homogenized
coefficients (the symmetries (3.38) and (3.42) playing an essential role).

The macroscopic homogeneized problem. Given λ ∈ R+, find ∗u in H1
0(Ω)+

∗
u0 and ∗P in H1(Ω)

such that

∫
Ω

A∗ijkl(λ)exkl(λ ∗u) exij(v)−
∫

Ω

β∗ij(λ)exij(v)λ2
∗P −

∫
Ω

gI∗k (λ)λ∗Pvk −
∫

Ω

gII∗ik (λ)λ
∗
uk vi

−
∫

Ω

vkg
III∗
kji e

x
ij(λ ∗u)−

∫
Ω

exij(v)gIII∗kji λ ∗uk =
∫

Ω
∗
f · v ,∫

Ω

Cij∂j ∗P∂iq +
∫

Ω

β∗ij(λ)exij(λ ∗u)q +
∫

Ω

M∗(λ)λ∗Pq +
∫

Ω

λ−1gI∗k (λ)
∗
ukq = 0,

(3.43)

for all v ∈ H1
0(Ω) and q ∈ H1(Ω).

Proposition 3.8. There exists λ0 > 0 such that for every λ ∈ Λ0 ≡]0, λ0],
(i) M∗(λ) > 0,
(ii) problem (3.43) is coercive.

Proof. (i) Using appropriate test functions in (3.31), we obtain

bY
(
1, ∗ω

P
)
− λdYm

(
1, ∗π

P
)

= aY
(
∗ω
P , ∗ω

P
)

+ λĉYm,Γm

(
∗π
P , ∗π

P
)

+ λ2dYm

(
∗π
P , ∗π

P
)
≥ 0 .

Hence problem (3.31) is coercive, so that for any λ > 0 its solution is unique and bounded. Thus,
there exists λ0 > 0 such that

dYm (1, 1)− 2λ0|dYm

(
1, ∗π

P (λ0)
)
| > 0 .

This implies that M∗(λ) > 0 for λ ∈ Λ0. Indeed, (3.35)2 now yields

M∗(λ) =∼
∫
Yc

1
µc

+ dYm
(1, 1) + λdYm

(
1, ∗π

P
)

+ bY
(
1, ∗ω

P
)

=∼
∫
Yc

1
µc

+ dYm
(1, 1) + 2λdYm

(
1, ∗π

P
)

+ bY
(
1, ∗ω

P
)
− λdYm

(
1, ∗π

P
)
> 0.

(ii) Upon substituting in (3.43) v := ∗u − ∗
u0 and q := ∗P and summing the two identities,

the proof is based on the following symmetries, gII∗kl = gII∗lk , A∗ijkl = A∗klij and Cij = Cji, and on
positive definiteness of Cji, on the positivity of M∗(λ), as shown above, and positive definiteness
of

AA =
(
A∗ijkl −gIII∗sij

−gIII∗rkl −gII∗rs

)
.

To see it, we rewrite gII∗rs and gIII∗sij using the corrector problems, as follows:

gII∗kl = λaY
(
∗ω
k, ∗ω

l
)

+ λ2
[
ĉYm,Γm

(
∗π
k, ∗π

l
)

+ dYm

(
∗π
k, ∗π

l
) ]

,

gIII∗kij = λaY
(
λ−1Πij + ∗ω

ij , ∗ω
k
)

+ λ2
[
ĉYm,Γm

(
∗π
ij , ∗π

k
)

+ dYm

(
∗π
ij , ∗π

k
) ]

.
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Further, let us introduce W ( ∗u) := ( ∗ω
ij + λ−1Πij)eij( ∗u) + ∗ω

k
∗uk and Q( ∗u) := ∗π

ijeij( ∗u) + ∗π
k
∗uk.

Now we can see that the positive definiteness of AA results form the ellipticity of aY (·, ·), dYm
(·, ·)

and ĉYm,Γm
(·, ·). Indeed, there are m′,m > 0 such that for any ∗u and a.e. x ∈ Ω,

[e( ∗u),u ]TAA[e( ∗u),u ] = λaY (W , W ) + λ2
[
ĉYm,Γm (Q, Q) + dYm (Q, Q)

]
≥ m′(‖eyij(W )‖2L2(Y ) + ‖∇y(Q)‖2L2(Y ))

≥ m(|exij( ∗u)|2 + | ∗u |
2) .

To see the second inequality, due to the uniqueness of solutions to (3.30) and (3.32), for nonvan-
ishing exij( ∗u) or ∗u , W and Q cannot be identically zero.

Remark 3. The macroscopic problem (3.43) can rewritten in a form involving the standard
pressure. On multiplying (3.43)2 by λ and recalling (2.18) (i.e.

∗
p = λ∗P ), the macroscopic L-

transformed problem reads as follows: given λ ∈ C, find ∗u ∈ H1
0(Ω) and

∗
p ∈ H1(Ω) such that

∫
Ω

[λA∗ijkl(λ)]exkl( ∗u) exij(v)−
∫

Ω

α∗ij(λ)exij(v)
∗
p−

∫
Ω

gI∗k (λ)
∗
pvk −

∫
Ω

gII∗ik (λ)λ
∗
uk vi

−
∫

Ω

vkg
III∗
kji e

x
ij(λ ∗u)−

∫
Ω

exij(v)gIII∗kji λ ∗uk =
∫

Ω
∗
f · v ,∫

Ω

Cij∂j
∗
p∂iq +

∫
Ω

α∗ij(λ)exij(λ ∗u)q +
∫

Ω

M∗(λ)λ
∗
pq +

∫
Ω

gI∗k (λ)λ
∗
ukq = 0,

for all v ∈ H1
0(Ω) and q ∈ H1(Ω). �

4 Homogenization of the model with strongly discontinuous (SD) data In this
section we consider coefficients αεij defined according to (2.24). We show, see Remark 4, that
in this case the standard form of the volume forces treated in the weakly discontinuous case is
not relevant and leads to a vanishing solution. Correspondingly to the jump of the pressure and
thereby also in the total stress on Γεm, the local equilibrium can be preserved, if the forces are
scaled w.r.t. the heterogeneities. The following forms of the scale-dependent forces f ε = (fεi ) will
be considered:

◦ Case AF – progressively increasing magnitude of imposed forces as ε→ 0

‖f ε‖L2(0,T ;H1(Ω)) ≤
C

ε
, f ε(t, x) =

1
ε
f̄ (t, x), ‖f̄ ‖L2(0,T ;H1(Ω)) ≤ C. (4.1)

◦ Case BF – forces containing the Dirac distribution δΓε
m

(x) on Γεm and such that

f ε(t, x) = f̄ (t, x) + δΓε
m

(x)f̃ ε(t, x) , f̄ ∈ L2(0, T ; L2(Ω)),

Tε
(
f̃ ε
)
→ f̃ strongly in L2((0, T )× Ω; L2(ΓYm)),

f̃ ∈ L2((0, T )× Ω; L2(ΓYm)), ‖f̃ ‖L2((0,T )×Ω;L2(ΓY
m)) ≤ C ,∫

ΓY
m

f̃ (t, x, y) dSy = F̂ (t, x) , ‖F̂‖L2((0,T );H1(Ω)) ≤ C.

(4.2)

◦ Case CF – forces acting on Γεm with “zero average”, satisfying (4.2) and such that

F̂ (t, x) ≡ 0 for a.a. x ∈ Ω , t ∈]0, T [. (4.3)

◦ Case DF – progressively increasing gradients of imposed forces with ε→ 0

‖f ε‖L2(0,T ;H1(Ω)) ≤
C

ε
, ‖f ε‖L2(0,T ;L2(Ω)) ≤ C ,

Tε(f ε)→ f̃ strongly in L2((0, T )× Ω; L2(Y )).
(4.4)
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4.1 A priori estimates We now give a priori estimates for all the cases of external forces
(4.1)–(4.4). The strong discontinuity affects the “off-diagonal” interface integrals which, by making
use of the standard treatment (3.3)-(3.5), disappear from the principal inequality. The crucial role
is played by Proposition 4.1 which allows to involve the interface integral forms in the estimates.
The results obtained in this section are summarized in Proposition 4.2.

Proposition 4.1. Let (uε, P ε) be solution to (2.19), where αε is defined according to (2.24).
Then there exists a constant CQ̂ such that

‖Mε
Y (uε)‖H−1(Ω) ≤εCQ̂

(
‖∇uε‖L2(Ω) + ‖dP ε

d t
‖L2(Ω) + ε‖∇P ε‖L2(Ωε

m) +
√
ε‖[P ε]Γε

m
‖L2(Γε

m)

)
.

(4.5)

Proof. There exists Q̂ ∈W 1,∞(Y \ ΓYm) such that

Q̂(y) = 0 for y ∈ Y c, and ∼
∫

ΓY
m

α̃Γ
ijnj

[
Q̂
]

ΓY
m

= 1. (4.6)

Assertion (4.5) follows from (2.19)2 written for the test function qε(x) = Q̂({x/ε})θ(x) with
θ ∈ H1

0 (Ω). Using the decomposition Tε(uε) = (Tε(uε) −Mε
Y (uε)) +Mε

Y (uε) in the interface
integral (2.19)2, yields∣∣∣ ∫

Ω

Mε
Y (uεi )

θ

ε|Y |

∫
ΓY

m

njα̃
Γ
ij

[
Q̂
]

ΓY
m

dSy

∣∣∣
≤
∣∣∣ ∫

Ω

θ

ε|Y |

∫
ΓY

m

njα̃
Γ
ij(T bε (uεi )−Mε

Y (uεi ))
[
Q̂
]

ΓY
m

dSy

∣∣∣
+
∣∣∣ ∫

Ω

qε αεijeij(u
ε)
∣∣∣+
∣∣∣ ∫

Ω\Γε
m

Kε
ij∂jP

ε ∂jq
ε
∣∣∣

+
∣∣∣ ∫

Ω

1
µε

dP ε

d t
qε
∣∣∣+
∣∣∣ ∫

Γε
m

κε [P ε]Γε
m

[
qε
]

Γε
m

dS
∣∣∣.

(4.7)

We now estimate all the right-hand side integrals in this inequality. Due to the Poincaré–Wirtinger
inequality and since ∇y(Tε(uε)−Mε

Y (uε)) = ∇yTε(uε) = εTε(∇xuε),

‖T bε (uε)−Mε
Y (uε)‖L2(Ω;H1(Y )) ≤ εC‖∇uε‖L2(Ω). (4.8)

Then, by using the trace theorem to estimate
[
Q̂
]

ΓY
m

and (T bε (uε)−Mε
Y (uε)) on ΓYm, we obtain

∣∣∣ ∫
Ω

θ

ε|Y |

∫
ΓY

m

njα̃
Γ
ij(T bε (uεi )−Mε

Y (uεi ))
[
Q̂
]

ΓY
m

dSy

∣∣∣
≤ C‖∇uε‖L2(Ω)‖θ‖L2(Ω)‖Q̂‖W 1,∞(Ym).

(4.9)

Since

∇(θ(x)Q̂({x/ε})) = Q̂(y)∇xθ(x) + θ(x)ε−1∇yQ̂(y), for y =
{x
ε

}
where Q̂(y) = 0 outside Ωεm, as follows due to (4.6)1, we get∣∣∣ ∫

Ω\Γε
m

Kε
ij∂jP

ε ∂jq
ε
∣∣∣ ≤ εC‖∇P ε‖L2(Ωε

m)‖Q̂‖W 1,∞(Ym)‖θ‖H1
0 (Ω) , (4.10)

where we used the fact that Kε
ij ≈ ε2 in Ωεm. In order to estimate the last integral in (4.7), we

employ the standard inequality

ε‖θ‖2L2(Γε
m) ≤ C‖θ‖

2
L2(Ωε

m) + C ε2‖∇θ‖2L2(Ωε
m),
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thus, we get∫
Γε

m

ε([qε]Γε
m

)2dS =
∫

Γε
m

ε(θ(x)[Q̂(x/ε)]Γε
m

)2dS ≤ C‖Q̂‖2W 1,∞(Ym)

∫
Γε

m

ε|θ(x)|2

≤ C‖Q̂‖2W 1,∞(Ym)

(
‖θ‖2L2(Ωε

m) + ε2‖∇θ‖2L2(Ωε
m)

)
≤ C ′‖Q̂‖2W 1,∞(Ym)‖∇θ‖

2
L2(Ωε

m) .

Recalling (2.22), i.e. κε ≈ ε, this inequality yields the estimate∫
Γε

m

κε[P ε]Γε
m

[qε]Γε
m
dS ≤

√
εC ′

Q̂
‖[P ε]Γε

m
‖L2(Γε

m)‖∇θ‖L2(Ωε
m) , (4.11)

where C ′
Q̂

depends on ‖Q̂‖W 1,∞(Ym).

The estimates of the other integrals in the right-hand side of (4.7) are straightforward. Finally,
using (4.9),(4.10) and (4.11) we obtain∣∣∣ ∫

Ω

Mε
Y (uεi )

θ

ε|Y |

∫
ΓY

m

njα̃
Γ
ij

[
Q̂
]

ΓY
m

dSy

∣∣∣
≤ CQ̂‖θ‖H1

0 (Ω)

(
‖∇uε‖L2(Ω) + ‖dP ε

d t
‖L2(Ω) + ε‖∇P ε‖L2(Ωε

m) +
√
ε‖[P ε]Γε

m
‖L2(Γε

m)

)
,

(4.12)

from where we deduce boundedness of Mε
Y (uε) in the dual space H−1(Ω). Indeed, (4.6)3 used

in (4.7), hence in (4.12), yields assertion (4.5). Below we shall consider the load Cases AF to
BF defined in (4.1)-(4.4). In Cases AF and DF, we will make use of the following preliminary
estimate obtained for f ε is in L2(0, T ; H1(Ω)),∫

Ω

f ε · uε =
∫

Ω

f ε · Mε
Y (uε) +

∫
Ω

f ε · (uε −Mε
Y (uε))

≤ ‖f ε‖H1
0(Ω)‖Mε

Y (uε)‖H−1(Ω) + εC‖f ε‖L2(Ω)‖∇uε‖L2(Ω) ,

(4.13)

for a.e. t ∈]0, T [. We employed (4.8) to derive (4.13).

4.1.1 Case AF Due to Proposition 4.1, recalling (4.1), we substitute (4.5) into (4.13) and
integrate in time to get∫ T

0

∫
Ω

f ε · uε dt ≤ εC‖f ε‖L2(0,T ;H1(Ω))

(
‖∇uε‖L2(0,T ;L2(Ω)) +

∥∥∥dP ε

d t

∥∥∥
L2(0,T ;L2(Ω))

)
+ εC‖f ε‖L2(0,T ;H1(Ω))

(
ε‖∇P ε‖L2(0,T ;L2(Ωε

m)) +
√
ε‖[P ε]Γε

m
‖L2(0,T ;L2(Γε

m))

)
≤ C

2ν
ε2‖f ε‖2L2(0,T ;H1(Ω)) +

νC1

2

(
‖∇uε‖2L2(0,T ;L2(Ω)) +

∥∥∥dP ε

d t

∥∥∥2

L2(0,T ;L2(Ω))

)
+
νC1

2

(
ε2‖∇P ε‖2L2(0,T ;L2(Ωε

m)) + ε‖[P ε]Γε
m
‖2L2(0,T ;L2(Γε

m))

)
.

(4.14)

Then the estimates of (uε, P ε) can be obtained from (4.14) with the force defined in (4.1). For
this, we proceed formally as in the weakly discontinuous case, using the Korn inequality to deal
with |eij(uε)|2 and combining (4.14) with (3.5), with a ν chosen appropriately. This leads to
estimates (3.7).

In addition, due to (4.5), we obtain another important estimate, namely

‖Mε
Y (uε)‖L2(0,T ;H−1(Ω)) ≤εC . (4.15)
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4.1.2 Case BF In this case we cannot use directly (4.13). However, the following analogous
inequality can be obtained by virtue of definition (4.2),∫

Ω

f ε · uε =
∫

Ω

f̄ · uε +
∫

Γε
m

f̃ ε · uε

≤ ‖f̄ ‖L2(Ω)‖uε‖L2(Ω)

+
1
ε
‖F̂‖H1(Ω)‖Mε

Y (uε)‖H−1(Ω) +
1
ε
‖f̃ ‖L2(Ω×ΓY

m)‖Tε(uε)−Mε
Y (uε)‖L2(Ω×ΓY

m)

≤ Cf
(

1
ε
‖Mε

Y (uε)‖H−1(Ω) + ‖∇uε‖L2(Ω)

)
,

(4.16)

where we used the Poincaré and the Poincaré–Wirtinger inequalities, and (4.8).
We now proceed as in (4.14). By (4.5) one obtains∫ T

0

∫
Ω

f ε · uε dt ≤
√
TCf

(
‖∇uε‖L2(0,T ;L2(Ω)) +

∥∥∥dP ε

d t

∥∥∥
L2(0,T ;L2(Ω))

)
+
√
TCf

(
ε‖∇P ε‖L2(0,T ;L2(Ωε

m)) +
√
ε‖[P ε]Γε

m
‖L2(0,T ;L2(Γε

m))

)
≤
TC2

f

2ν
+
νC1

2

(
‖∇uε‖2L2(0,T ;L2(Ω)) + ‖dP ε

d t
‖2L2(0,T ;L2(Ω))

)
+
νC1

2

(
ε2‖∇P ε‖2L2(0,T ;L2(Ωε

m)) + ε‖[P ε]Γε
m
‖2L2(0,T ;L2(Γε

m))

)
.

Thus, we get estimates (3.7) and (4.15), as in the Case AF.

4.1.3 Case CF Since (4.3) holds, (4.16) becomes simply∫
Ω

f ε · uε ≤ ‖f̄ ‖L2(Ω)‖uε‖L2(Ω) +
1
ε
‖f̃ ‖L2(Ω×ΓY

m)‖uε −Mε
Y (uε)‖L2(Ω×ΓY

m)

≤ Cf‖∇uε‖L2(Ω) .

Hence, ∫ T

0

∫
Ω

f ε · uε dt ≤
TC2

f

2ν
+
νC1

2
‖∇uε‖2L2(0,T ;L2(Ω)) ,

which again yields estimates (3.7) and (4.15).

4.1.4 Case DF Invoking directly (4.13), (4.14) is satisfied and, consequently, estimates
(3.7) and (4.15) as well.

4.1.5 Main result on the a priori estimates Here we summarize the results obtained
for all the cases of volume forces considered above.

Proposition 4.2. Let (uε, P ε) be solution to (2.19), where αε is defined by (2.24). Then,
for all volume forces specified attaining one of the form (4.1)–(4.4), estimates (3.7) hold and

‖Mε
Y (uε)‖H−1(Ω) ≤ εC . (4.17)

Moreover, if ‖fε‖L2(0,T ;H1(Ω)) ≤ Cf (e.g. if in Case AF, in (3.1)2 fε = f̄), then in estimates (3.7)
the generic constant C is proportional to ε, i.e. Oε(C) = ε.

4.2 Convergence result and limit problems We shall obtain the limit representation
of model (2.19) for the strongly discontinuous case. For this we follow the procedure explained
in Section 3.2, namely we use the pressure extension P̃ ε and its consequences from the proof of
Lemma 3.3. We shall also need the space of discontinuous unfolded functions given in (3.8).

Lemma 4.3. Due to estimates (3.7), there exist the limit fields u1 ∈ L2(]0, T [×Ω; H1
#(Y )), ū ∈

L2(0, T ; H−1(Ω)), P ∈ L∞(0, T ;L2(Ω)), P 1 ∈ L∞(0, T ;L2(Ω;H1
#(Yc))), and P̂ ∈ L∞(0, T ;L2(Ω;H#c0(Y,ΓYm)))

such that
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(i) (3.9)3,4,5 is satisfied and convergences (3.11) of P ε hold,
(ii) (3.9)1,2 is satisfied and the displacement uε converges (in the sense of subsequences),
as follows:

uε ⇀ 0 weakly in L2(0, T ; H1
0(Ω)) ,

1
ε

(Tε(uε)−Mε
Y (uε)) ⇀ u1(t, x, y) weakly in L2(0, T ; L2(Ω× Y )),

Tε(∇uε) ⇀ ∇yu1(t, x, y) weakly in L2(0, T ; L2(Ω× Y )),
1
ε
Mε

Y (uε) ⇀ ū weakly in L2(0, T ; H−1(Ω)) ,

(4.18)

where −
∫
Y

u1(t, x, y) dy = 0.

Remark 4. When standard form of the loading forces is considered, all the limit fields considered
above vanish a priory ( consequence of the last assertion in Proposition 4.2). �

Proof. of Lemma 4.3. Due to estimates (3.7), convergences (3.11) hold also for the case of
strongly discontinuous data. Therefore, the point (i) of the lemma follows when using the same
arguments as those from the proof of Lemma 3.3. As a simple consequence of Proposition 4.2,
(4.17) yields (4.18)5. Moreover, since ‖uε(t, ·)‖L2(Ω) ≤ C, the macroscopic displacements must
vanish, i.e.

Mε
Y (uε) ⇀ 0 weakly in L2(0, T ; L2(Ω)) . (4.19)

The remainder of assertion (i) is the standard result of the periodic unfolding, cf. [10].
The main result of this section is summarized in Theorem 4.4 bellow, where all Cases AF–DF

are considered. To state it, we need to introduce the linear form G(x) : H1(Y ) → R defined for
a.e. x ∈ Ω, as follows:

Case AF: G(v)(x) = f̄ (x)· ∼
∫
Y

v(y) ,

Cases BF and CF: G(v)(x) =∼
∫

ΓY
m

f̃ (x, y) · v(y) dSy ,

Case DF: G(v) ≡ 0 .

Theorem 4.4. Let (uε, P ε) be solution of problem (2.19) where αΓ,ε on Γεm is given by (2.24).
Then there exist the limit fields defined in (3.9), such that convergences (3.10)-(3.11) hold and the
limit fields (ū, P ) and (u1, P̂ , P 1) satisfy for a.e. x ∈ Ω the following two identities (in the sense
of time distributions):

〈
v̄,
(
ḡi+ ∼

∫
ΓY

m

α̃Γ
ijnj

[
d
d t
P̂

]
ΓY

m

dSy

)〉
〈H−1(Ω),H1(Ω)〉

+ ∼
∫
Y

D̃ijkle
y
kl(u

1) eyij(ṽ
1)

− ∼
∫
Y

α̃ije
y
ij(ṽ

1)
dP
d t
− ∼
∫
Ym

αmij e
y
ij(ṽ

1)
d P̂
d t
− ∼
∫

ΓY
m

njα̃
Γ
ij ṽ

1
i

[
d
d t
P̂

]
ΓY

m

dSy = G(ṽ1) ,
(4.20)

for all ṽ1 ∈ L2(Ω; H1
#(Y )), v̄ ∈ H−1(Ω), and

∼
∫

Ω×Yc

Kc
ij(∂

x
j P + ∂yj P

1) (∂xj q
0 + ∂yj q̃

1)+ ∼
∫

Ω×Ym

Km
ij ∂

y
j P̂ ∂

y
i q̂

0+ ∼
∫

ΓY
m

κ̃
[
P̂
]

ΓY
m

[
q̂0
]
ΓY

m
dSy

+ ∼
∫

Ω×Y
(q0 + χmq̂

0)α̃ije
y
ij(u

1) +
∫

Ω

∼
∫

ΓY
m

njα̃
Γ
iju

1
i

[
q̂0
]
ΓY

m
dSy

+
〈
ū, ∼
∫

ΓY
m

α̃Γ
ijnj

[
q̂0
]
ΓY

m
dSy

〉
〈H−1(Ω),H1(Ω)〉

+ ∼
∫

Ω×Y

1
µ̃

(dP
d t

+ χm
d P̂
d t

)
(q0 + χmq̂

0) = 0 ,

(4.21)
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for all q0 ∈ H1(Ω), q̃1 ∈ L2(Ω;H1
#(y)) and q̂0 ∈ L2(Ω;H#c0(Y,ΓYm)). In (4.20), the force ḡ is

defined in Cases AF and BF, by f̄ and F̂ respectively, while in Cases CF and DF, ḡ ≡ 0.
Proof. We start by deriving the limits of all bilinear forms in the left-hand side of problem

(2.19). Then, for each particular case of loading forces (4.1)–(4.4), we examine the right-hand side
integral in (2.19)1.

Due to (4.18) and (4.19), for θ ∈ C∞0 (Ω), the following test displacements can be used in
(2.19)1:

vε(x) = εv̄(x) + εv1({x/ε}Y )θ(x), v̄ ∈ H1
0(Ω) , v1 ∈ H1

#(Y ),
∫
Y

v1 = 0. (4.22)

The pressure test functions qε are chosen according to (3.18).
First, we pass to the limit in the interface integrals to get∫
Γε

m

njα
ε
ijv

ε
i [

d
d t
P̂ ε]Γε

m
dS

=
∫

Ω

1
ε|Y |

(
εv̄i

∫
ΓY

m

njα̃
Γ
ij

[
d
d t
T bε
(
P̂ ε
)]

ΓY
m

dSy + εθ

∫
ΓY

m

njα̃
Γ
ijv

1
i

[
d
d t
T bε
(
P̂ ε
)]

ΓY
m

dSy

)

→
∫

Ω

v̄i ∼
∫

ΓY
m

njα̃
Γ
ij

[
d
d t
P̂

]
ΓY

m

dSy +
∫

Ω

θ ∼
∫

ΓY
m

njα̃
Γ
ijv

1
i

[
d
d t
P̂

]
ΓY

m

dSy .

(4.23)

and∫
Γε

m

njα
ε
iju

ε
i [q̂(x/ε)]Γε

m
ϑ̂ dS =

∫
Ω

ϑ̂Mε
Y (uεi )
ε|Y |

∫
ΓY

m

njα̃
Γ
ij [q̂]ΓY

m
dSy

+
∫

Ω

ϑ̂

|Y |

∫
ΓY

m

njα̃
Γ
ij

(T bε (uεi )−Mε
Y (uεi ))

ε
[q̂]ΓY

m
dSy

→
∫

Ω

ϑ̂

(
ūi ∼
∫

ΓY
m

njα̃
Γ
ij [q̂]ΓY

m
dSy+ ∼

∫
ΓY

m

njα̃
Γ
iju

1
i [q̂]ΓY

m
dSy

)
.

(4.24)

Due to Lemma 4.3, one has the following convergences:∫
Ω

Dε
ijklekl(u

ε)ekl(vε)→
∫

Ω

∼
∫
Y

D̃ijkle
y
kl(u

1)eykl(v
1)θ ,∫

Ω

αεijeij(v
ε)

d
d t
P ε →

∫
Ω

θ ∼
∫
Y

α̃ije
y
ij(v

1)
d
d t

(
P (x) + P̂

)
,

(4.25)

and also∫
Ω

Kε
ij∂jP

ε∂iq
ε →

∫
Ω

∼
∫
Yc

Kc
ij(∂

x
j P + ∂yj P

1) (∂xj q
0 + ϑ∂yj q

1) +
∫

Ω

ϑ̂ ∼
∫
Ym

Km
ij ∂jP̂ ∂iq̂ ,∫

Ω

αεijeij(u
ε)qε →

∫
Ω

q0 ∼
∫
Y

α̃ije
y
ij(u

1) +
∫

Ω

ϑ̂ ∼
∫
Ym

q̂αmij e
y
ij(u

1) ,∫
Ω

κε[P ε]Γε
m

[qε]Γε
m
→
∫

Ω

∼
∫

ΓY
m

κ̃
[
P̂
]

ΓY
m

[q̂]ΓY
m
dSy .

(4.26)

It remains to compute the limits in the external force integral.
* Case AF, see (4.1), ∫

Ω

f ε · vε →
∫

Ω

f̄ · v̄ +
∫

Ω

f̄ θ· ∼
∫
Y

v1 , (4.27)
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* Case BF, see (4.2), ∫
Ω

f ε · vε →
∫

Ω

v̄ · F̂ +
∫

Ω

θ ∼
∫

ΓY
m

f̃ · v1 , (4.28)

* Case CF, see (4.3), ∫
Ω

f ε · vε →
∫

Ω

θ ∼
∫

ΓY
m

f̃ · v1 , (4.29)

* Case DF, see (4.4), ∫
Ω

f ε · vε → 0 . (4.30)

The limit expressions (4.23)-(4.30) substituted in (2.19) now yield (4.20) and (4.21).

4.3 Scale decoupling and homogenized constitutive laws In this section we present
the final result on the strongly discontinuous case (2.24). The homogenized model describes a
complex Darcy flow with embedded microstructural effects of the diffusion-deformation.

4.3.1 Global and local problems We proceed as in the “weakly” discontinuous case.
Choosing different combinations of vanishing and non-vanishing test functions, we derive from
(4.20) and (4.21) the local and global problems.

1. The global problem: the limit fields P and (u1, P̂ ) satisfy, for all q ∈ H1(Ω),∫
Ω

Cij∂xj P ∂xi q0 +
∫

Ω

q0 ∼
∫
Y

α̃ije
y
ij(u

1) +
∫

Ω

q0 ∼
∫
Y

1
µ̃

(
d
d t
P + χm

d
d t
P̂

)
= 0, (4.31)

where Cij are defined as in (3.27) and (3.28). Equation (4.31) is obtained from (4.21) by
the following choice of the test functions: q0 6≡ 0, whereas q̃1 ≡ 0 and p̂0 ≡ 0. Since the
macroscopic part of the test displacement field vanishes, there is no global balance-of-forces
in the standard sense, see Remark 1.

2. The local problems: the limit fields (u1, P̂ ) and (ū(·, x), P (·, x)) satisfy for a.e. x ∈ Ω,

∼
∫
Y

D̃ijkle
y
kl(u

1) eyij(v
1)− ∼

∫
Y

α̃ije
y
ij(v

1)
dP
d t
− ∼
∫
Ym

αmij e
y
ij(v

1)
d P̂
d t

− ∼
∫

ΓY
m

njα̃
Γ
ijv

1
i

[
d
d t
P̂

]
ΓY

m

dSy = G(v1),

∼
∫
Ym

Km
ij ∂

y
j P̂ ∂

y
i q̂+ ∼

∫
ΓY

m

κ̃
[
P̂
]

ΓY
m

[q̂]ΓY
m
dSy+ ∼

∫
Ym

αmij e
y
ij(u

1) q̂

+ ∼
∫

ΓY
m

njα̃
Γ
iju

1
i [q̂]ΓY

m
dSy + ūi ∼

∫
ΓY

m

α̃Γ
ijnj [q̂]ΓY

m
dSy

+ ∼
∫
Ym

1
µm

(
dP
d t

+
d P̂
d t

)
q̂ = 0,

(4.32)

for all v1 ∈ H1
#(Y ) and q̂ ∈ H#c0(Y,ΓYm). The identities follow from (4.20) and (4.21)

with q0, q̃1, v̄ ≡ 0.
3. The force-equilibrium constraint is obtained from (4.20), with v̄ 6= 0 and ṽ1 ≡ 0

ḡi+ ∼
∫

ΓY
m

α̃Γ
ijnj

[
d
d t
P̂

]
ΓY

m

dSy = 0 , a.e. in Ω, (4.33)

where the force ḡ corresponds to the cases AF and BF, see Theorem 4.4.
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The global problem describes the diffusion flow with embedded effects of the fluid–structure
microscopic interaction. Let us point out that the form of (4.31) is independent of the particu-
lar definition of forces. The local problem involving the interface integrals, describes the coupled
diffusion-deformation processes relevant to the microscopic scale and involves the external forces
according to the specific definition of G(·). Equation (4.33) presents an interface pressure con-
straint ; according to (4.22), the macroscopic part of the test displacement field vanishes, so that
there is no global balance-of-forces in the standard sense, see Remark 1.

4.3.2 Laplace transformation and local correctors We consider here only the Case
BF, the other cases can be treated in a similar manner. Moreover, we shall consider a special form
of the force f̃ introduced in (4.2), in order to allow for the scale decoupling. Let us assume that
at the microscale represented by Y , the “reference” interface forces f̂i(y)1i are given at ΓYm (1i is
the unit vector in the i-th direction). We introduce the tensor Φkl(t, x) satisfying

f̃k(t, x, y) = Φkl(t, x)f̂l(y) , Φkl ∈ L2((0, T )× Ω) , f̂ ∈ L2(ΓYm) . (4.34)

With the notation introduced in (3.29), we set

b̂Ym,Γm
(ϕ, v) = bYm

(ϕ, v) + ∼
∫

ΓY
m

α̃Γ
ijnjvi[ϕ]ΓY

m
dSy,

gΓY
m

(ψ, φ) =∼
∫

ΓY
m

ψφdSy.

Now the local problem (4.32) can be written as follows (for a.e. x ∈ Ω):

aY
(
u1, v

)
− b̂Ym,Γm

(
d
d t
P̂ , v

)
= bY (1, v)

d
d t
P (t, x) + Φlk(t, x) gΓY

m
(f̂k, vl),

γΓm,i(ψ) ūi + b̂Ym,Γm

(
ψ, u1

)
+ ĉYm,Γm

(
P̂ , ψ

)
+ dYm

(
d
d t
P̂ , ψ

)
= −dYm

(1, ψ)
d
d t
P (t, x) ,

(4.35)

for all v ∈ H1
#(Y ) and ψ ∈ H#c0(Y,ΓYm). Moreover, the constraint (4.33) must be satisfied, i.e.

γΓm,i

(
d
d t
P̂

)
= −Φik(t, x)gΓY

m
(fk, 1). (4.36)

Once u and P are given, it is possible to solve problem (4.35)-(4.36) to obtain (ū ,u1, P̂ ). As a
consequence, we conclude that ū(t, ·) ∈ L2(Ω).

We proceed by decomposing the microscopic response using the multiplicative split into the
local auxiliary response (corrector basis functions) and the macroscopic response. For this, in
analogy with the treatment in Section 3.3, we apply the Laplace transformation to (4.35)-(4.36),
hence

aY
(
∗u
1, v

)
− b̂Ym,Γm

(
λ ∗̂P , v

)
= bY (1, v)λ∗P + λ

∗
ΦklgΓY

m
(f̂k, vl),

γΓm,i(ψ)
∗̄
ui + b̂Ym,Γm

(
ψ, ∗u

1
)

+ ĉYm,Γm

(
∗̂P , ψ

)
+ dYm

(
λ ∗̂P , ψ

)
= −dYm (1, ψ)λ∗P ,

γΓm,i(λ ∗̂P ) = −
∗

ΦikgΓY
m

(fk, 1).

(4.37)

Introducing the multiplicative decomposition, by the linearity of our problem we can define L-
transformed corrector functions ( ∗ω

P , ∗π
P ,

∗
ζP ) and ( ∗ω

kl, ∗π
kl,

∗
ζkl) such that

∗u
1 = λ ∗ω

P
∗P + λ ∗ω

kl

∗
Φkl,

∗̂P = λ ∗π
P
∗P + λ ∗π

kl

∗
Φkl,

∗̄u = λ
∗
ζP ∗P + λ

∗
ζkl

∗
Φkl.

(4.38)
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Substituting (4.38) in (4.37), one can formulate the following auxiliary problems where λ is the
parameter:

1. Find ( ∗ω
P , ∗π

P ,
∗
ζP ) ∈ H1

#(Y )×H#c0(Y,ΓYm)× R3 such that

aY
(
∗ω
P , v

)
− b̂Ym,Γm

(
λ ∗π

P , v
)

= bY (1, v) ,

γΓm,i(ψ)
∗
ζP + b̂Ym,Γm

(
ψ, ∗ω

P
)

+ ĉYm,Γm

(
∗π
P , ψ

)
+ dYm

(
λ ∗π

P , ψ
)

= −dYm
(1, ψ) ,

γΓm,i( ∗π
P ) = 0 , i = 1, 2, 3,

for all v ∈ H1
#(Y ) and ψ ∈ H#c0(Y,ΓYm).

2. Find ( ∗ω
kl, ∗π

kl,
∗
ζkl) ∈ H1

#(Y )×H#c0(Y,ΓYm)× R3 such that

aY
(
∗ω
kl, v

)
− b̂Ym,Γm

(
λ ∗π

kl, v
)

=
1
λ
gΓY

m
(f̂k, vl),

γΓm,i(ψ)
∗
ζkl + b̂Ym,Γm

(
ψ, ∗ω

kl
)

+ ĉYm,Γm

(
∗π
kl, ψ

)
+ dYm

(
λ ∗π

kl, ψ
)

= 0,

γΓm,i( ∗π
kl) =

1
λ
gΓY

m
(f̂k, δil) , i = 1, 2, 3,

(4.39)

for all v ∈ H1
#(Y ) and ψ ∈ H#c0(Y,ΓYm).

4.3.3 The macroscopic problem We now apply the L-transformation to the global prob-
lem (4.31). On substituting there the decomposed form of ∗u

1 and ∗̂P , we get∫
Ω

Cij∂j ∗P ∂iq +
∫

Ω

q ∼
∫
Y

α̃ijλ
(
eyij( ∗ω

P )∗P + eyij( ∗ω
kl)

∗
Φkl
)

+
∫

Ω

q ∼
∫
Y

1
µ̃
λ∗P +

∫
Ω

q ∼
∫
Ym

1
µm

λ2
(
∗π
P
∗P + ∗π

kl

∗
Φkl
)

= 0 .
(4.40)

It is now possible to collect all the terms involving ∗P and integrations in Y ; this leads to the
homogenized coefficient associated physically to the term 1/µε of the original model,

M∗(λ) =∼
∫
Y

1
µ̃

+ ∼
∫
Y

α̃ije
y
ij( ∗ω

P )+ ∼
∫
Ym

1
µm

λ ∗π
P . (4.41)

Proceeding analogously for
∗

Φkl leads to the following homogenized tensorial coefficient:

F∗kl(λ) =∼
∫
Y

α̃ije
y
ij( ∗ω

kl)+ ∼
∫
Ym

1
µm

λ ∗π
kl , (4.42)

which is associated with the applied forces distributed on ΓYm. On substituting now (4.41) and
(4.42) in (4.40), one obtains the homogenized macroscopic problem.

The homogenized macroscopic problem. Given
∗

Φkl ∈ L2(Ω),see (4.34), compute ∗P ∈ H
1(Ω)

such that ∫
Ω

Cij∂j ∗P ∂iq +
∫

Ω

qM∗(λ)λ∗P +
∫

Ω

qF∗kl(λ)λ
∗

Φkl = 0 , ∀q ∈ H1(Ω). (4.43)

Coercivness of (4.43) is conditioned by the positivity of M∗(λ); this is subject, as stated in
Proposition 3.8, to the inequality M∗(λ) > 0 for λ positive but small enough.

Remark 5. Note that corrector basis functions ωkl and πkl are not symmetric in kl (in contrast
with the strain-associated correctors in Section 3.3), since the right-hand side terms in (4.39) are
not symmetric with respect to kl, in general. Moreover, ωkl and πkl are related to the “stress-like”
quantity Φkl introduced in (4.34) which is not subject to any symmetry. �
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Fig. 5.1. An example of a device which can ensure the interface conditions (2.4). Left: illustration to equations
(6.1); Middle: mechanical realization of locally “external forces” F which drive the pistons; Right: example of a
structure for which (6.2) fail – the pistons must not be fitted “locally” to the solid skeleton.

5 Concluding remarks We developed a homogenized model of the Biot continuum for
a dual-porous, bi-phase heterogeneous medium which embeds discontinuity interfaces. Such a
model is motivated by its potential applications in biomechanical research of bone poroelastic
properties [20] inherited from the osteons which constitute the basic unit generating the bone
(almost periodic) structure.

Recently developed model [29, 16] is extended here for more complicated forms of the dual
porosity embedding interfaces. Discontinuities in pressure may appear due to transmission condi-
tions involving permeability and Biot coefficients

We studied two possible situations leading to different homogenization results.
In the “weakly discontinuous case” the homogenized macroscopic model (3.43) is non-degenerate,

has a standard structure including the stress equilibrium and the mass conservation equations. It
involves homogenized coefficients which arise from the discontinuity interfaces in the dual porosity
of the microstructure.

In the “strongly discontinuous case”, special forms of the volume forces lead to non-trivial
limit models. One of them is represented in the form of interface distributions on Γm, which has
clear mechanical interpretation. The homogenized macroscopic model reduces to a single equation
describing the fluid redistribution driven by the macroscopic stress representing the given surface-
distributed forces in the microstructure.

For both homogenized models, we derived the Laplace-transformed forms. The inverse trans-
formation in the time domain can be performed as it was done in detail in [29].

In both cases, the homogenized (inverse) Biot modulus,M∗(λ) is positive for λ small enough,
thus, restricting the well-posedness of the limit problem. This result is consistent with the standard
observation that the quasi-static problem is coercive only for small frequencies of loading, i.e. for
small λ.

The approach used in the asymptotic analysis for obtaining a priori estimates can be adapted
in other problems where for example, the heterogeneous medium is featured by fissures, cracks or
other kinds of discontinuities.

6 Appendix We shall explain a mechanical justification of the interface condition (2.4).
For this we consider the ultra-structure of the interface as depicted in Fig. 5.1 (a). The pistons
allow the pressure discontinuity p+ 6= p−, while a small leakage of fluid is possible (drilled pistons)
– this explains the “semipermeable” interface condition (2.4)3.

To explain the overall stress discontinuity, we write the balance of forces. Denoting by S the
reference surface on the interface Γ, by φ± = S±/S the effective porosities on the two sides and by
A± = S(1− φ±) the corresponding effective crossections of the solid phase, the balance of forces
in the normal direction with respect to the interface yields

in the fluid: F + p+S+ − p−S− = 0 ,

in the solid: σsolid
+ A+ − σsolid

− A− = 0 .
(6.1)

From there the discontinuity of the total stress is obvious: let us introduce

σeff
± := φ±σ

solid
± , and σ± := σeff

± − φ±p± , (6.2)
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then (6.1) yields

σeff
+ − σeff

− = 0 , and σ+ − σ− = φ−p− − φ+p+ = F/S . (6.3)

Hence [σ]Γ 6= 0 if [φp]Γ 6= 0, but the continuity of the effective stress is ensured, [σeff ]Γ = 0.
This simple example illustrates that conditions (2.4) are realistic. The “external” forces, here

referred to by F , can have different meanings:
• effects of other physical fields (e.g. electric field acting on the pistons),
• effects of separated self-supporting mechanical structure, as depicted in Fig. 5.1 (b), e.g.

a hydraulic system, or a similar system of bowdens connecting couples of pistons,
• inertia effects — in our study we consider a quasistatic events, however, for the dynam-

ical model the same interface conditions are relevant, where the inertia of the pistons is
associated with the force F , as long as the piston “vibrates near the inteface”.

The pistons cannot be bonded to the solid skeleton, like in Fig. 5.1 (b), which does not adhere
to the assumed long-distance interaction — in such a case the “standard” continuity of the total
stress would hold, i.e. [σ]Γ = 0, while [σeff ]Γ 6= 0, in general.
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