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Asymptotic analysis for domains separated by a thin layer made of periodic
vertical beams

Georges Griso, Anastasia Migunova, Julia Orlik

Abstract

We consider a thin heterogeneous layer consisting of thin beams (of radius r) and study the limit
behaviour of this problem as the period ε, the thickness δ and the radius r of the beams tend to zero. The
decomposition of the displacement field into beams developed in [10] is used, which allows to obtain a priori
estimates. Two types of unfolding operators are introduced to deal with different parts of the decomposition.
In conclusion, we obtain the limit problem together with transmission conditions across the interface.

KEY WORDS: linear elasticity, junctions, decomposition of beam displacements, interface, homogenization.
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1 Introduction

In this paper a system of elasticity equations in domains separated by a thin heterogeneous layer is consid-
ered. The layer is composed of periodically distributed vertical beams, whose diameter and height tend to zero
together with the period of the structure. The structure is fixed on the bottom. We consider the case of the
isotropic linearized elasticity system.

Elasticity problems involving thin layers with periodic heterogeneous structure appear in many technical
applications, where special constraints on the stiffness or compliance of a textile are required, depending on
the type of application. For example, drainages, spacer fabrics in car–seats and protective wear, working for
the outer–plane compression, should provide a certain stiffness and strength against an external mechanical
loading. Thin layers were considered in a number of papers (see e.g. [6, 7, 9, 12]). In particular, [7] deals
with a layer composed of a material with holes, whose size is scaled with an additional small parameter; [9, 12]
consider the case of the layer whose elastic coefficients are of the same order as its thickness. The thin beams
and their junction with 3D structures were studied in [1, 2, 3, 10, 11]: [10] deals with the decomposition for
a single beam; in [11] the structure made of curved beams is considered. [2, 3] study the limit behavior of
structures composed of rods in a junction with a plate.

We consider 3 small parameters: the thickness δ of the layer (and the height of the beams at the same time),
the radius r of the rods and the period of the layer ε (see Fig. 1(a)). The first problem with this structure
arises when we obtain estimates on displacements. To overcome this difficulty we used a decomposition of the
thin beams in the mean displacement and the rotation of the cross–section which was introduced in [10]. After
deriving estimates for the components of the decomposition we obtain bounds for the minimizing sequence
which depend on ε, r, δ. The result leads to studying three critical cases with different ratios between small
parameters. Two of them are considered in the present paper and lead to the same kind of limit problem.
The third one corresponds no longer to thin beams but to small inclusions and is therefore not studied in the
present paper.

The main result of the work is the limit problem (5.7), which replaces the structural layer by a kind of

the linearized contact conditions. There F̃mα is the volume force, applied to the structural layer, Em are the
Young’s moduli of the beams, [u±α ]|Σ are the macroscopic interface jumps in the displacement, and the convo-
lution kernel Kα is the fundamental solution of the beam problem (5.9).
In order to obtain the limit problem, the periodic unfolding method, applied to the components of the decompo-
sition, is used. Basic theory on the unfolding method can be found in [8]. The idea of the method is to replace
integrals of functions over domains depending on small parameters (e.g., oscillating, like in the periodic case,
or thin domains) by the integrals over several finite domains. This is done by a successive substitution, leading
to the increasing of the problem’s dimension, and a change of variables. In the present study we introduce two
additional types of the unfolding operators in order to deal with the mean displacement and rotation which
depend only on component x3 and the warping which depends on all (x1, x2, x3). In the limit we derive a 3D
elasticity problem for two domains separated by an interface with the inhomogeneous Robin–type condition on
it. The coefficients in this jump condition are obtained from the solution of auxiliary 1D beam problems.

The paper is organized as follows. In Section 2 the geometry and the weak and strong formulations of the
problem are introduced. Section 3 presents the decomposition of a single beam and the a priori estimates. In
Section 4, the periodic unfolding operators are introduced and their properties are defined. Section 5 deals
with taking the limit and obtaining the variational formulation for the limit problem. Section 6 contains an
additional information and a numerical illustration.
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2 Problem statement

2.1 Geometry

In the Euclidean space R2 let ω be a connected domain with a Lipschitz boundary and let L > 0 be a fixed
real number. Define the reference domains:

Ω− =ω × (−L, 0),

Ω+ =ω × (0, L),

Σ =ω × {0}.

Moreover, Ω (see Figure 1b) is defined by

Ω = Ω+ ∪ Ω− ∪ Σ = ω × (−L,L). (2.1)

For the domains corresponding to structure with a layer of thickness δ we introduce the following notations:

Ω+
δ =ω × (δ, L),

Σ+
δ =ω × {δ}.

In order to describe the configuration of the layer, for any (d, r) ∈ (0,+∞)2 we define the rod Br,d by

Br,d = Dr × (0, d),

where Dr = D(O, r) is the disc of center O and radius r.

The set of rods is
Ωir,ε,δ =

⋃
i∈Ξ̂ε×{0}

{
x ∈ R3 | x ∈ iε+Br,δ

}
, (2.2)

where

Ξ̂ε =
{
ξ ∈ Z2 | ε(ξ + Y ) ⊂ ω

}
, Y =

(
−1

2
;

1

2

)2

. (2.3)

Almost any z ∈ R2 can be decomposed in the way z = [z]Y + {z}Y , where [z]Y ∈ Z2, and {z}Y ∈ Y .
Moreover, we set:

ω̂ε = interior
⋃
i∈Ξ̂ε

ε
(
i + Y

)
, (2.4)

Λε = ω \ ω̂ε. (2.5)

The physical reference configuration (see Figure 1a) is defined by Ωr,ε,δ:

Ωr,ε,δ = interior
(

Ω− ∪ Ωir,ε,δ ∪ Ω+
δ

)
. (2.6)

The structure is fixed on a part Γ with the non–zero measure of the boundary ∂Ω− \ Σ.

We make the following assumptions:

r <
ε

2
,

r

δ
≤ C. (2.7)

Here, the first assumption (2.7) is a beam separation in the reference configuration for the beams whereas with

the second one, we want to eliminate the case
δ

r
→ 0 which requires the use of tools for plates (see [10]).

2.2 Strong formulation

Choose an isotropic material with Lamé constants λm, µm for the beams and another isotropic material
with Lamé constants λb, µb for Ω− and Ω+

δ . Then we have the following values for the Poisson’s coefficient of
the material and Young’s modulus:

νm =
λm

2(λm + µm)
, νb =

λb

2(λb + µb)
,

Em =
µm(3λm + 2µm)

λm + µm
, Eb =

µb(3λb + 2µb)

λb + µb
.
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Figure 1: The reference configuration

The linearized strain tensor or symmetric deformation field is defined by

e(u) =
∇u+∇Tu

2
.

The Cauchy stress tensor in Ωr,ε,δ is linked to e(ur,ε,δ) through the standard Hooke’s law:

σr,ε,δ =

{
λb(Tr e(ur,ε,δ))I + 2µbe(ur,ε,δ) in Ω− ∪ Ω+

δ ,
λm(Tr e(ur,ε,δ))I + 2µme(ur,ε,δ) in Ωir,ε,δ.

We consider the standard linear equations of elasticity in Ωr,ε,δ. The unknown displacement ur,ε,δ : Ωr,ε,δ →
R3 satisfies the following problem:  ∇ · σr,ε,δ = −fr,ε,δ in Ωr,ε,δ,

ur,ε,δ = 0 on Γ,
σr,ε,δ · ν = 0 on ∂Ωr,ε,δ \ Γ.

(2.8)

2.3 Weak formulation

If V denotes the space
V =

{
v ∈ H1(Ωr,ε,δ;R3) | v = 0 on Γ

}
,

the variational formulation of (2.8) is
Find ur,ε,δ ∈ V,∫

Ωr,ε,δ

σr,ε,δ : e(ϕ)dx =

∫
Ωr,ε,δ

fr,ε,δ · ϕdx, ∀ϕ ∈ V.
(2.9)

Throughout the paper and for any v ∈ V we denote by

σ(v) = λ(Tr e(v))I + 2µe(v) =

{
λm(Tr e(v))I + 2µme(v) in Ω− ∪ Ω+

δ ,

λb(Tr e(v))I + 2µbe(v) in Ωir,ε,δ

and

E(v) =

∫
Ωr,ε,δ

σ(v) : e(v) dx

the total elastic energy of the displacement v. Indeed choosing v = ur,ε,δ in (2.9) leads to the usual energy
relation

E(ur,ε,δ) =

∫
Ωr,ε,δ

fr,ε,δ · ur,ε,δ dx. (2.10)
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We equip the space V with the following norm:

‖u‖V = ‖e(u)‖L2(Ωr,ε,δ).

In the next step we derive the Korn estimates for each sub-domain. Since Ω− touches the Dirichlet boundary,
the 3D–Korn inequality for this sub-domain is the following:

‖u‖H1(Ω−) ≤ C‖e(u)‖L2(Ω−). (2.11)

3 Decomposition of displacements in the periodic layer with beams

3.1 Displacement of a single beam. Preliminary estimates

To obtain a priori estimates on ur,ε,δ and e(ur,ε,δ)S we will need Korn’s inequalities for this type of domain.
However, for a multi–structured domains, it is not convenient to estimate the constant in a Korn’s type inequal-
ity, because components of the displacement field may be of different orders of magnitude. To overcome this
difficulty, we will use a decomposition for the displacements of the beams. A displacement of the beam Br,d is
decomposed as the sum of three fields: the first one stands for the displacement of the center line, the second
one stands for the rotations of the cross sections and the last one is the warping, which takes into account the
deformations of the cross sections.

We recall the definition of the elementary displacement from [10].

Definition 3.1. The elementary displacement Ue, associated with u ∈ L1(Br,d,R3), is given by

Ue(x1, x2, x3) = U(x3) +R(x3) ∧ (x1e1 + x2e2), for a.e. x = (x1, x2, x3) ∈ Br,d, (3.1)

where 

U =
1

πr2

∫
Dr

u(x1, x2, ·)dx1dx2,

R3 =
1

(I1 + I2)r4

∫
Dr

(x1u2(x1, x2, ·)− x2u1(x1, x2, ·)) dx1dx2,

Rα =
(−1)3−α

I3−αr4

∫
Dr

x3−αu3(x1, x2, ·) dx1dx2, Iα =

∫
D1

x2
αdx1dx2 =

π

4
.

(3.2)

We write
ū = u− Ue. (3.3)

The displacement ū is the warping. Note that∫
Dr

ū(x1, x2, ·)dx1dx2 = 0,∫
Dr

(x1ū2(x1, x2, ·)− x2ū1(x1, x2, ·)) dx1dx2 = 0,∫
Dr

x1ū3(x1, x2, ·) dx1dx2 =

∫
Dr

x2ū3(x1, x2, ·) dx1dx2 = 0.

(3.4)

The following theorem is proved in [10].

Theorem 3.1. Let u be in H1(Br,d;R3) and let u = Ue + ū be the decomposition of u given by (3.1)–(3.3).
There exists a constant C independent of r such that the following estimates hold:

‖ū‖L2(Br,d) ≤ Cr‖e(u)‖L2(Br,d), ‖∇ū‖L2(Br,d) ≤ C‖e(u)‖L2(Br,d),∥∥∥∥ dRdx3

∥∥∥∥
L2(0,d)

≤ C

r2
‖e(u)‖L2(Br,d),∥∥∥∥ dUdx3

−R ∧ e3

∥∥∥∥
L2(0,d)

≤ C

r
‖e(u)‖L2(Br,d).

(3.5)

We set

Yε = εY, Wε = Yε × (−ε, 0), B′r,ε = Dr × (−ε, 0), W ′r,ε,δ = Wε ∪Dr × (−ε, δ).
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Lemma 3.1. Let u be in H1(W ′r,ε,δ,R3) and let u = Ue + ū be the decomposition of the restriction of u to
the rod B′r,ε given by (3.1)–(3.3). There exists a constant C independent of δ, ε and r such that the following
estimates hold:

|R(0)|2 ≤ C

r3
‖∇u‖2L2(Wε)

,

‖R‖2L2(0,δ) ≤ C
δ

r3
‖∇u‖2L2(Wε)

+ C
δ2

r4
‖e(u)‖2L2(Br,δ)

,∥∥∥∥dUαdx3

∥∥∥∥2

L2(0,δ)

≤ C δ

r3
‖∇u‖2L2(Wε)

+ C
δ2

r4
‖e(u)‖2L2(Br,δ)

,

‖U3 − U3(0)‖2L2(0,δ) ≤ C
δ2

r2
‖e(u)‖2L2(Br,δ)

,

‖Uα − Uα(0)‖2L2(0,δ) ≤ C
δ3

r3
‖∇u‖2L2(Wε)

+ C
δ4

r4
‖e(u)‖2L2(Br,δ)

,

‖u(·, ·, 0)− U(0)‖2L2(Yε)
≤ Cε‖∇u‖2L2(Wε)

+ C
ε2

r
‖e(u)‖2L2(Wε)

.

(3.6)

A proof of the lemma is given in Appendix A.

3.2 A priori Korn–type estimates

In this section all the constants do not depend on ε, δ and r. We denote by x′ = (x1, x2) a point in R2.

3.2.1 Decomposition of displacements in the layer with beams on the in-plane and outer-plane
components

We decompose the displacement u ∈ V in each beam εi + Br,δ, i ∈ Ξ̂ε × {0} as in the Definition 3.1. The

components of the elementary displacement are denoted Uξ, Rξ, where ξ =

[
x′

ε

]
Y

.

Now we define the fields Ũ , R̃ and ũ for a.e. x ∈ Br,δ, s ∈ ω by

Ũ(s1, s2, x3) =

Uξ(x3), if ξ =
[s
ε

]
Y
∈ Ξ̂ε

0, if ξ 6∈ Ξ̂ε

, R̃(s1, s2, x3) =

Rξ(x3), if ξ =
[s
ε

]
Y
∈ Ξ̂ε

0, if ξ 6∈ Ξ̂ε

,

ũ(s1, s2, x) =

 ūξ(x), if ξ =
[s
ε

]
Y
∈ Ξ̂ε

0, if ξ 6∈ Ξ̂ε

.

We have
Ũ , R̃ ∈ L2(ω,H1((0, δ),R3)), ũ ∈ L2(ω,H1(Br,δ,R3)).

Moreover,

‖Ũ‖2L2(ω×(0,δ)) = ε2
∑
ξ∈Ξ̂ε

‖Uξ‖2L2(0,δ), ‖R̃‖2L2(ω×(0,δ)) = ε2
∑
ξ∈Ξ̂ε

‖Rξ‖2L2(0,δ),

‖ũ‖2L2(ω×Br,δ) = ε2
∑
ξ∈Ξ̂ε

‖ūξ‖2L2(Br,δ)
.

As a consequence of Theorem 3.1 and Lemma 3.1 we get

Lemma 3.2. Let u be in V. The following estimates hold:∥∥∥ ∂R̃
∂x3

∥∥∥
L2(ω×(0,δ))

≤ C ε

r2
‖u‖V ,∥∥∥ ∂Ũ

∂x3
− R̃ ∧ e3

∥∥∥
L2(ω×(0,δ))

≤ C ε
r
‖u‖V ,

‖∇xũ‖L2(ω×Br,δ) ≤ Cε‖u‖V ,
‖ũ‖L2(ω×Br,δ) ≤ Cεr‖u‖V ,

‖R̃‖L2(ω×(0,δ)) ≤ C
εδ

r2
‖u‖V ,∥∥∥∂Ũα

∂x3

∥∥∥
L2(ω×(0,δ))

≤ C εδ
r2
‖u‖V .

(3.7)
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Moreover,

‖R̃(·, ·, 0)‖2L2(ω̂ε)
≤ C ε

2

r3
‖u‖2V ,

‖R̃(·, ·, δ)‖2L2(ω̂ε)
≤ C ε

2

r3
‖∇u‖2

L2(Ω+
δ )
,

‖Ũ3 − Ũ3(·, ·, 0)‖L2(ω×(0,δ)) ≤ C
δε

r
‖u‖V ,

‖Ũα − Ũα(·, ·, 0)‖L2(ω×(0,δ)) ≤ C
δ2ε

r2
‖u‖V , where α = 1, 2.

(3.8)

The proof of estimates (3.7)1 – (3.7)6 follows directly from (2.11), (3.5)3, (3.5)4 and (3.6)2–(3.6)3, and the
estimates (3.8) are the consequences of the estimates in Lemma 3.1 and (2.11).

3.2.2 Estimates on interface traces

Lemma 3.3. There exists a constant C independent of ε, δ, r such that for any u ∈ V

‖u(·, ·, 0)− Ũ(·, ·, 0)‖2L2(ω̂ε)
≤ C ε

2

r
‖u‖2V , (3.9)

‖u(·, ·, δ)− Ũ(·, ·, δ)‖2L2(ω̂ε)
≤ Cε‖∇u‖2

L2(Ω+
δ )

+ C
ε2

r
‖u‖2V . (3.10)

Moreover,

‖uα(·, ·, δ)− uα(·, ·, 0)‖2L2(ω̂ε)
≤ Cε‖∇u‖2

L2(Ω+
δ )

+ C
ε2δ3

r4
‖u‖2V , (3.11)

‖u3(·, ·, δ)− u3(·, ·, 0)‖2L2(ω̂ε)
≤ Cε‖∇u‖2

L2(Ω+
δ )

+ C
ε2δ

r2
‖u‖2V . (3.12)

A proof of the lemma is shifted to Appendix A.

3.2.3 Estimates on displacements in Ω+
δ

Lemma 3.4. There exists a constant C which does not depend on ε, r and δ, such that for any u ∈ V

‖uα‖H1(Ω+
δ ) ≤ C

εδ3/2

r2
‖u‖V + C‖u‖V , (3.13)

‖u3‖H1(Ω+
δ ) ≤ C

ε3/2δ3/2

r2
‖u‖V + C‖u‖V , (3.14)

where α = 1, 2.

A proof of the lemma is shifted to Appendix A.
As a consequence of Lemma 3.4 and estimate (3.11), the inequality (3.12) can be replaced by

‖uα(·, ·, δ)− uα(·, ·, 0)‖2L2(ω̂ε)
≤ C ε

2δ3

r4
‖u‖2V , (3.15)

‖u3(·, ·, δ)− u3(·, ·, 0)‖2L2(ω̂ε)
≤ C ε

3δ3

r4
‖u‖2V + C

ε2δ

r2
‖u‖2V . (3.16)

3.2.4 Estimates for the set of beams Ωir,ε,δ

Lemma 3.5. There exists a constant C which does not depend on ε, r and δ, such that for any u ∈ V

‖∇u‖L2(Ωir,ε,δ)
≤ C δ

r
‖u‖V ,

‖u3‖L2(Ωir,ε,δ)
≤ C rδ

1/2

ε
‖u‖V ,

‖uα‖L2(Ωir,ε,δ)
≤ C rδ

1/2

ε

(
1 +

εδ3/2

r2

)
‖u‖V ,

(3.17)

where α = 1, 2.

A proof can be found in Appendix A

6



3.3 The limit cases

In view of the estimates of Lemma 3.4 and in order to guarantee that the lower and upper parts of our
structure match, we must assume that

ε2δ3

r4
is uniformly bounded from above. (3.18)

From now on, the parameters r, δ and ε are linked in the following way

• r = κ0ε
η0 , η0 ≥ 1, κ0 > 0, if η0 = 1 then κ0 ∈ (0, 1/2) (limiting case: solid layer without holes),

• δ = κ1ε
η1 , κ1 > 0 and η1 ≥ η0, (in order to deal with the beams).

The assumption (3.18) above yields
2 + 3η1 − 4η0 ≥ 0.

Hence we distinguish three important cases:

• (i) r = κ0ε, κ0 ∈ (0, 1/2) and δ = κ1ε
2/3, κ1 > 0,

• (ii) r = κ0ε
η0 , η0 ∈ (1, 2), κ0 > 0 and δ = κ1ε

(4η0−2)/3, κ1 > 0,

• (iii) r = κ0ε
2, κ0 > 0 and δ = κ1ε

2, κ1 > 0.

For a sake of simplicity, we will use the following notations from now on:

• Ωε instead of Ωr,ε,δ,

• Ωiε instead of Ωir,ε,δ,

• Ω+
ε instead of Ω+

δ ,

• σε instead of σr,ε,δ,

• uε instead of ur,ε,δ,

• fε instead of fr,ε,δ.

With assumption (3.18) we can rewrite the estimates obtained above. For any u ∈ V we have

‖u‖L2(Ωiε)
≤ C rδ

1/2

ε
‖u‖V , (3.19)

‖u‖H1(Ω+
ε ) ≤ C‖u‖V . (3.20)

The constants do not depend on ε, r and δ.

3.4 Force assumptions and the final a priori estimate

We set
B1 = D1 × (0, 1).

To obtain estimates on uε we test (2.9) with ϕ = uε. We have

M1‖uε‖2V ≤ ‖fε‖L2(Ωε,R3)‖uε‖L2(Ωε,R3). (3.21)

We consider the following assumption on the applied forces:

fε(x) =


ε2

r2δ
Fm

(
ε

[
x′

ε

]
Y

,
ε

r

{
x′

ε

}
Y

,
x3

δ

)
for a.e. x ∈ Ωiε,

F (x) for a.e. x ∈ Ω− ∪ Ω+
ε ,

(3.22)

where Fm ∈ C0(ω,L2(B1,R3)), F ∈ L2(ω × (−L,L),R3). Then,

‖fε‖L2(Ωiε,R3) ≤
ε

rδ1/2
‖Fm‖L∞(ω,L2(B1,R3)).

Making use of the estimates (2.11), (3.19), (3.20) together with the inequality (3.21) yields

‖uε‖V ≤ C. (3.23)

The constant C does not depend of r, ε and δ.

From now on, we only consider cases (i) and (ii) introduced in Section 3.3.
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4 Periodic unfolding operators. Taking the limit

Definition 4.1. For a Lebesgue–measurable function ϕ on ω × (0, δ), the unfolding operator Tε is defined as
follows:

Tε(ϕ)(s1, s2, X3) =

{
ϕ(s1, s2, δX3), for a.e. (s1, s2, X3) ∈ ω̂ε × (0, 1),
0, for a.e. (s1, s2, X3) ∈ Λε × (0, 1).

Definition 4.2. For a Lebesgue–measurable function ϕ on ω × Br,δ, the unfolding operator T ′ε is defined as
follows:

T
′

ε (ϕ)(s1, s2, X1, X2, X3) =

{
ϕ(s1, s2, rX1, rX2, δX3), for a.e. (s1, s2, X1, X2, X3) ∈ ω̂ε ×B1,
0, for a.e. (s1, s2, X1, X2, X3) ∈ Λε ×B1.

The first two coordinates in the operators above deal with the macro–position of a point in a periodic layer,
whereas the others are responsible for the position in a unit cell.

The properties of these unfolding operators are proved in Lemma B.1 in Appendix B.

4.1 The limit fields. Cases (i) and (ii)

From now on, (uε)α will be denoted as uε,α; the same notation will be used for the fields with values in R2

or R3.

The compactness results are given in Appendix B, Lemma B.2.
Further we extend the function uε defined on the domain Ω+

ε by reflection to the domain ω × (δ, L + δ).
The new function is also denoted uε.

Proposition 4.1. There exist a subsequence of {ε}, still denoted by {ε}, and u± ∈ H1(Ω±,R3) with u− =

0 on Γ and R̃ ∈ L2(ω,H1
0 ((0, 1),R3)), Ũα ∈ L2(ω,H2(0, 1)), Ũ3, Ũ ′3 ∈ L2(ω,H1(0, 1)), ũ ∈ L2(ω ×

(0, 1), H1(D1,R3)) and Z ∈ L2(ω × (0, 1),R3) such that

uε ⇀ u− weakly in H1(Ω−), strongly in L2(Ω−), (4.1)

uε(·+ δe3) ⇀ u+ weakly in H1(Ω+), strongly in L2(Ω+), (4.2)

δTε(R̃ε) ⇀ R̃ weakly in L2(ω,H1(0, 1)), such that (4.3)

R̃(x′, 0) = R̃(x′, 1) = 0, for a.e. x′ ∈ ω, (4.4)

δ

r
(Tε(Ũε,3)− Ũε,3(·, ·, 0)) ⇀ Ũ

′

3 weakly in L2(ω,H1(0, 1)), (4.5)

Tε(Ũε,3) ⇀ Ũ3 weakly in L2(ω,H1(0, 1)), such that (4.6)

Ũ3(·, ·, ·) = Ũ3(·, ·, 0) = u−3 |Σ = Ũ3(·, ·, 1) = u+
3 |Σ, a.e. in ω × (0, 1), (4.7)

Tε(Ũε,α) ⇀ Ũα weakly in L2(ω,H1(0, 1)), for α = 1, 2, such that (4.8)

Ũα(·, ·, 0) = u−α |Σ, Ũα(·, ·, 1) = u+
α |Σ a.e. in ω, (4.9)

∂Ũα
∂X3

(·, ·, 0) =
∂Ũα
∂X3

(·, ·, 1) = 0 a.e. in ω, (4.10)

∂Ũ1

∂X3
= R̃2,

∂Ũ2

∂X3
= −R̃1 a.e. in ω × (0, 1), (4.11)

δ2

r2
T
′

ε (ũε) ⇀ ũ weakly in L2(ω × (0, 1), H1(D1)), (4.12)

δ

r
T
′

ε (ũε) ⇀ 0 weakly in L2(ω,H1(B1)), (4.13)

δ

r

(
∂Tε(Ũε)
∂X3

− δTε(R̃ε ∧ e3)

)
⇀ Z weakly in L2(ω × (0, 1)). (4.14)
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The proof of the proposition is shifted to Appendix, Sec. B.
As an immediate consequence of Proposition 4.1, we have the following lemma.

Lemma 4.1. There exist a symmetric matrix field X ∈ L2(ω ×B1,R9) and a field

ũ′ ∈ L2(ω × (0, 1), H1(D1,R3)), such that

δ2

r
T
′

ε

(
ẽ(uε)

)
⇀ X weakly in L2(ω ×B1,R9),

where X is defined by

Xij =
1

2

(
∂ũ′i
∂Xj

+
∂ũ′j
∂Xi

)
, i, j = 1, 2,

X13 = X31 =
1

2

(
∂ũ′3
∂X1

− ∂R̃3

∂X3
X2

)
,

X23 = X32 =
1

2

(
∂ũ′3
∂X2

+
∂R̃3

∂X3
X1

)
,

X33 =
∂Ũ ′3
∂X3

− ∂2Ũ2

∂X2
3

X2 −
∂2Ũ1

∂X2
3

X1.

(4.15)

Denote by Θ the weak limit of the unfolded stress tensor
δ2

r
T
′

ε (σε) in L2(ω ×B1,R9):

δ2

r
T
′

ε (σε) ⇀ Θ, weakly in L2(ω ×B1,R9).

Proceeding exactly as in Section 6.1 of [2] and Section 8.1 of [3], we first derive ũ′

ũ′1 = νm

(
−X1

∂Ũ ′3
∂X3

+
X2

1 −X2
2

2

∂2Ũ1

∂X2
3

+X1X2
∂2Ũ2

∂X2
3

)
,

ũ′2 = νm

(
−X2

∂Ũ ′3
∂X3

+X1X2
∂2Ũ1

∂X2
3

+
X2

2 −X2
1

2

∂2Ũ2

∂X2
3

)
.

Similarly, the same computations as in Section 6.1 of [2] lead to ũ′3 = 0.
As a consequence of Lemma 4.1 we obtain

Θ11 = Θ22 = Θ12 = 0,

Θ13 = −µmX2
∂R̃3

∂X3
, Θ23 = µmX1

∂R̃3

∂X3
,

Θ33 = Em
( ∂Ũ ′3
∂X3

−X1
∂2Ũ1

∂X2
3

−X2
∂2Ũ2

∂X2
3

)
.

(4.16)

5 The limit problem

5.1 The equations for the domain Ωi
ε

Proposition 5.1. (Ũ1, Ũ2) satisfy the variational formulation

πκ4
0

4κ3
1

Em
∫ 1

0

∂2Ũα
∂X2

3

(x′, X3)
d2ϕα
dX2

3

(X3) dX3 =

∫ 1

0

F̃mα (x′, X3)ϕα(X3) dX3,

∀ϕα ∈ H2
0 (0, 1), for a.e. x′ ∈ ω,

(5.1)

where

F̃mα (x′, X3) =

∫
D1

Fmα (x′, X)dX1 dX2 a.e. in ω × (0, 1) α = 1, 2.

Furthermore, R̃3 = 0, and there exists a ∈ L2(ω) such that

Ũ
′

3(x′, X3) = a(x′)X3 a.e. in ω × (0, 1).

The detailed proof of this Proposition and all main results can be found in Appendix C.
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5.2 The equations for the macroscopic domain

Denote

V =
{
v ∈ L2(Ω− ∪ Ω+;R3) | v|Ω− ∈ H1(Ω−;R3) and v|Ω− = 0 on Γ,

v|Ω+ ∈ H1(Ω+;R3) and v3|Ω+ = v3|Ω− on Σ
}

VT =
{

(v,V1,V2,V3,V4) ∈ V× [L2(Ω;H2(0, 1))]2 × [L2(Ω;H1(0, 1))]2 |

Vα(·, ·, 0) = v−α |Σ, Vα(·, ·, 1) = v+
α |Σ a.e. in ω,

V3(·, ·, 0) = V4(·, ·, 0) = V4(·, ·, 1) =
∂Vα
∂X3

(·, ·, 0) =
∂Vα
∂X3

(·, ·, 1) = 0 a.e. in ω, α ∈ {1, 2}
}

Let χ be in C∞c (R2) such that χ(y) = 1 in D1. D1 is the disc centered in O = (0, 0) with radius 1.

From now on we only consider the case (ii).

5.2.1 Determination of Ũ ′3
Let χ be in C∞c (R2) such that χ(y) = 1 in D1.

Lemma 5.1. Let φ be in W 1,∞(ω), and let φε,r be defined by

φε,r(x
′) = χ

(ε
r

{x′
ε

}
Y

)
φ
(
ε
[x′
ε

]
Y

)
+
[
1− χ

(ε
r

{x′
ε

}
Y

)]
φ(x′) for a.e. x′ ∈ ω.

If
r

ε
→ 0, then for every p ∈ [1,+∞) we have

φε,r −→ φ strongly in W 1,p(ω).

See in Appendix C for the proof.

Lemma 5.2. The function a introduced in Proposition 5.1 is equal to 0 and

Ũ
′

3(x′, X3) = 0 a.e. in ω × (0, 1).

This Lemma is proved in Appendix C as well.

As a consequence of the lemma above and Proposition 5.1, one gets

Θij = 0, (i, j) 6= (3, 3)

Θ33 = −Em
(
X1

∂2Ũ1

∂X2
3

+X2
∂2Ũ2

∂X2
3

)
.

(5.2)

5.2.2 Determination of u±α and u3

Theorem 5.1. The variational formulation of the limit problem for (2.9) is∫
Ω+∪Ω−

σ± : e(v) dx+
πκ4

0

4κ3
1

Em
∫
ω×(0,1)

2∑
α=1

∂2Ũα
∂X2

3

∂2ψα
∂X2

3

dx′ dX3

+
πκ4

0

4κ3
1

µm
∫
ω×(0,1)

∂R̃3

∂X3

∂ψ4

∂X3
dx′ dX3 +

πκ4
0

κ3
1

Em
∫
ω×(0,1)

∂Ũ ′3
∂X3

∂Φ3

∂X3
dx′ dX3

=

∫
Ω+∪Ω−

F v dx+

∫
ω×(0,1)

2∑
α=1

F̃mα ψαdx
′ dX3 +

∫
ω

F
m

3 v3dx
′,

∀(v, ψ1, ψ2, ψ3, ψ4) ∈ VT , ∀Φ3 ∈ L2(ω;H1
0 (0, 1)),

(5.3)

where

F
m

3 (x′) =

∫
B1

Fm3 (x′, X) dX, x′ ∈ ω.

We refer to Appendix C for the proof.

We also send the reader to Sec.C.2.3 of the Appendix, for the case (i).
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5.3 The strong formulation of the limit problem

The strong formulations are the same for both cases (i), (ii). We will use the following notation.

Notation 5.1. The convolution of functions K and F is

(K ∗ F̃mα )(x′, X3) =

∫ 1

0

K(X3, y3)F̃mα (x′, y3) dy3.

Define

σ± = λb(Tre(u±))I + 2µbe(u±) ∈ L2(Ω±;R9),

Kα(X3, y3) = D(X3 − y3)X2
3 (3− 2X3) + 6(1− 2X3)

(
(X3 − y3)H(X3 − y3) + (1− y3)2(y3 − 2y3X3 −X3)

)
,

where H(x) is the Heaviside function and D(x) the Dirac delta distribution at point x.

Let {ε} be a sequence of positive real numbers which tends to 0. Let (uε, σε) be the solution of (2.9) and

Ũε and R̃ε be the first two terms of the decompostion of uε on Ωiε. Let f satisfy assumptions (3.22). Then the
limit problems for cases (i), (ii) can be written as follows.

Bending problem in the beams: (Ũ1, Ũ2) ∈ L2(ω,H1(0, 1))2 is the unique solution of the problem

πκ4
0

4κ3
1

Em
∂4Ũα
∂X4

3

= F̃mα a.e. in ω × (0, 1),

∂Ũα
∂X3

(·, ·, 0) =
∂Ũα
∂X3

(·, ·, 1) = 0, a.e. in ω,

Ũα(·, ·, 0) = u−α|Σ, Ũα(·, ·, 1) = u+
α|Σ, a.e. in ω,

(5.4)

3D elasticity problem in Ω+∪Ω−: (u±, σ±) ∈ (H1(Ω+∪Ω−))3× (L2(Ω))3×3
S is the unique weak solution

of the problem

−
3∑
j=1

∂σ±ij
∂xj

= Fi in Ω±, i = 1, 2, 3, (5.5)

together with the boundary conditions {
σ+
i3 = 0 in ω × {L},
σ−i3 = 0 in ω × {−L},

(5.6)

and the transmission conditions
[σ±i3]|Σ = F

m

i on Σ,

[u±3 ]|Σ = 0 on Σ,

σ+
α3 = −3πκ4

0

κ3
1

Em[u±α ]|Σ +

∫ 1

0

Kα ∗ F̃mα dX3 on Σ, α = 1, 2.

(5.7)

5.4 The weak formulation of the limit problem

Lemma 5.3. The weak formulation of the limit problem can be rewritten as

∫
Ω+∪Ω−

σ± : e(v) dx+
3πκ4

0

κ3
1

Em
∫

Σ

2∑
α=1

[u±α ]|Σ[v±α ]|Σ ds =

=

∫
Ω+∪Ω−

F v dx+

∫
Σ

3∑
α=1

F
m

α v
−
α ds+

∫
Σ

2∑
α=1

[v±α ]|Σ

∫ 1

0

Kα ∗ F̃mα dX3 ds, ∀v ∈ V. (5.8)

Proof. Step 1. Decomposition of Ũα.
Denote

Vd =
{
η ∈ C3([0, 1]) | η(X3) = (b− a)X2

3 (3− 2X3) + a, (a, b) ∈ R2
}
.

Observe that a function X3 7−→ η(X3) = (b− a)X2
3 (3− 2X3) + a of Vd satisfies

η(0) = a, η(1) = b,
dη

dX3
(0) = 0,

dη

dX3
(1) = 0, and

d4η

dX4
3

= 0 in (0, 1).
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Hence for any function ψ ∈ H2
0 (0, 1) we have∫ 1

0

d2η

dX2
3

(t)
d2ψ

dX2
3

(t) dt = 0.

Let Ûα be in L2(ω;H2
0 (0, 1)) the solution of the following problem:

πκ4
0

4κ3
1

Em
∂4Ûα
∂X4

3

(x′, X3) = F̃mα (x′, X3) a.e. in ω × (0, 1),

∂Ûα
∂X3

(·, ·, 0) =
∂Ûα
∂X3

(·, ·, 1) = 0, a.e. in ω,

Ûα(·, ·, 0) = Ûα(·, ·, 1) = 0, a.e. in ω.

Using Green’s function we can write Ûα in the following way:

Ûα(x′, X3) =
4κ3

1

πEmκ4
0

∫ 1

0

ξα(X3, y3)F̃mα (x′, y3) dy3,

where ξα is the solution of the equation

d4ξα
dX4

3

= D(X3 − y3), y3 ∈ (0, 1),

dξα
dX3

(0) =
dξα
dX3

(1) = 0,

ξα(0) = ξα(1) = 0.

(5.9)

Solving the equation above we obtain

ξα(X3, y3) =
1

6
(X3 − y3)3H(X3 − y3)− 1

6
(1− y3)2(2y3 + 1)X3

3 +
1

2
(1− y3)2y3X

2
3 .

The function Ũα is uniquely decomposed as a function belonging to L2(ω;Vd) and a function
in L2(ω;H2

0 (0, 1)):

Ũα(x′, X3) = (1−X3)2(2X3 + 1)u−α|Σ(x′)−X2
3 (3− 2X3)u+

α|Σ(x′) + Ûα(x′, X3)

= Uα(x′, X3) + Ûα(x′, X3) for a.e. (x′, X3) ∈ ω × (0, 1).
(5.10)

Step 2. Taking into account the decomposition (5.10) and using as a test function ψα = [v±α ]|ΣX
2
3 (3 −

2X3) + v−α|Σ in (5.3) we obtain

∫
Ω+∪Ω−

σ± : e(v) dx+
3πκ4

0

2κ3
1

Em
∫
ω

2∑
α=1

∫ 1

0

(∂2U1

∂X2
3

[v±1 ]|Σ +
∂2U2

∂X2
3

[v±2 ]|Σ

)
(1− 2X3) dX3 dx

′ =

=

∫
Ω+∪Ω−

F v dx+

∫
ω

2∑
α=1

[v±α ]|Σ

∫ 1

0

(
F̃mα X

2
3 (3− 2X3)− 3πκ4

0

2κ3
1

Em
∂2Ûα
∂X2

3

(1− 2X3)
)
dX3 dx

′+

+

∫
ω

3∑
α=1

F
m

α v
−
α dx

′. (5.11)

Making use of the solutions for Uα and Ûα we can write∫
Ω+∪Ω−

σ± : e(v) dx+
3πκ4

0

κ3
1

Em
∫
ω

2∑
α=1

[u±α ]|Σ[v±α ]|Σ dx
′ =

∫
Ω+∪Ω−

F v dx+

+

∫
ω

2∑
α=1

[v±α ]|Σ

∫ 1

0

(
F̃mα X

2
3 (3− 2X3)− 6(1− 2X3)

∫ 1

0

d2ξα
dX2

3

(X3, y3)F̃mα (x′, y3)dy3

)
dX3 dx

′+

+

∫
ω

3∑
α=1

F
m

α v
−
α dx

′. (5.12)

Using the notation for the convolution and the expression for
d2ξα
dX2

3

we get the result.
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From the variational formulation (5.8) the final strong formulation is obtained.

Remark 5.1. The limit model can have an in–plane discontinuity at the interface. This is the limit behavior
resulting from the deformation of the beams in the thin layer, whose bending leads to localized shearing at the
interface but which are basically inextensible in the transverse direction.
We note that starting with a linear elasticity for the blocks and the layer in-between, we end up with a kind of
a linearized contact problem for two elastic blocks in the limit. A suitable choice of the load in the right–hand
side should keep the tangential sliding small, such that the context of the linearity and small deformations is
not violated.

6 Additional remarks

6.1 Other possible configurations

In this section we outline other possible configurations.

Remark 6.1. The case
r = κ1ε

2, δ = κ2ε
2, κ1, κ2 > 0,

can also be considered, but should be studied separately. The structure obtained in this context will no longer
correspond to the set of the thin beams but to some kind of a perforated domain.

Remark 6.2. For the case
ε2δ3

r4
→ 0, we obtain from the estimates (3.15), (3.16) that

lim
r,ε,δ→0

‖u(·, ·, δ)− u(·, ·, 0)‖L2(ω̂ε) = 0.

Therefore,
u+
|Σ = u−|Σ,

where u± ∈ H1(Ω+∪Ω−,Γ) is the limit of the function uε. Hence we obtain two limit problems on the domains
Ω+, Ω− with Dirichlet boundary conditions, and the layer has no influence on the limit problem.

6.2 Numerical illustration

In this section solutions ur,ε,δ of the equation (2.8) are compared with the solution u of (5.5)–(5.7) for the
2D case. The solutions ur,ε,δ are computed numerically for different r, ε, δ with the commercial finite element
software COMSOL Multiphysics. Triangular elements were used for the computations. The relation between
the parameters is chosen in a following way

r = ε3/2, δ = ε4/3.

This corresponds to the Case (ii) with η0 = 1.5, κ0 = κ1 = 1. A comparison between the sequence of the
solutions uε and u is done for jumps in displacement and stress. Components of the jumps are computed for
different ε, and it is shown that the following norms tend to 0 as ε tends to 0:

‖[uε,1]− [u1]‖L2(Σ), ‖[uε,2]‖L2(Σ), ‖σ+
ε,12 − σ

+
12‖L2(Σ), ‖σ+

ε,22 − σ
+
22‖L2(Σ).

The stiffness coefficients and the applied force are chosen as follows

E = 2 · 1011, ν = 0.3, fε = (103, 103).

Fig. 2 (a) provides the solution of the equation (5.5)–(5.7) in macroscopic blocks, and jumps in the equivalent
von Mises stresses across the interface can be observed. Fig. 2 (b) shows the local ε–solution in the layer for
ε = 0.004.

A comparison of the results for different values of ε are gathered in the Table 1 in terms of the closing error
between the simulated result and the limit problem. Simulations for smaller ε are already computationally
expensive and require additional computational capacities. For example, for ε = 0.0008 it was not possible to
perform computations due to lack of memory on the system used.

Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft (Grants No. OR
190/4–2 and OR 190/6–1).
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(a) Stresses σ+
eq , σ

−
eq in the regions Ω+ ∪ Ω− (b) Stresses σε,eq in the layer Ωi

ε

Figure 2: Simulation results

ε ‖[uε,1]− [u1]‖ ‖[uε,2]‖ ‖σ+
ε,12 − σ

+
12‖ ‖σ+

ε,22 − σ
+
22‖

0.1 2.9 · 10−5 3 · 10−5 1.05 1.1
0.02 2.5 · 10−5 1.6 · 10−5 0.59 0.6
0.004 7.6 · 10−6 7.7 · 10−6 0.3 0.1

Table 1: Norms of the residual

A Appendix: Proofs of result of Sec. 3

Proof of Lemma 3.1. Applying the 2D–Poincaré-Wirtinger’s inequality we obtain the following estimate:

‖u− U‖L2(B′r,ε)
≤ Cr‖∇u‖L2(B′r,ε)

, (A.1)

where the constant does not depend on r and ε.

Step 1. Estimate of R(0).

Recalling the definition of R from (3.2) and using

∫
Dr

x1dx1dx2 =

∫
Dr

x2dx1dx2 = 0, we can write

∀x3 ∈ [−ε, 0], R1(x3) =
1

I2r4

∫
Dr

x2

(
u3(x)− U3(x3)

)
dx1dx2.

By Cauchy’s inequality

∀x3 ∈ [−ε, 0], |R1(x3)|2 ≤ 1

I2
2r

8

∫
Dr

x2dx1dx2 ×
∫
Dr

(u3(x)− U3(x3))2dx1dx2

≤ C

r4

∫
Dr

(u3(x)− U3(x3))2dx1dx2.

Integrating with respect to x3 gives∫ 0

−ε
|R1(x3)|2dx3 ≤

C

r4

∫
Br,ε

(u(x)− U(x3))2dx.

Using (A.1), we can write

‖R1‖L2(−ε,0) ≤
C

r
‖∇u‖L2(B′r,ε)

. (A.2)

The derivative of R1 is equal to

dR1

dx3
(x3) =

1

I2r4

∫
Dr

x2
∂u3(x)

∂x3
dx1dx2
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for a.e. x3 ∈ (−ε, 0). Then proceeding as above, we obtain for a.e. x3 ∈ (−ε, 0)∣∣∣∣dR1

dx3
(x3)

∣∣∣∣2 ≤ C

r4

∫
Dr

∣∣∣∣∂u3(x)

∂x3

∣∣∣∣2 dx1dx2.

Hence ∥∥∥∥dR1

dx3

∥∥∥∥
L2(−ε,0)

≤ C

r2

∥∥∥∥∂u3

∂x3

∥∥∥∥
L2(B′r,ε)

≤ C

r2
‖∇u‖L2(B′r,ε)

. (A.3)

We recall following classical estimates for φ ∈ H1(−a, 0), where a > 0

|φ(0)|2 ≤ 2

a
‖φ‖2L2(−a,0) +

a

2
‖φ′‖2L2(−a,0),

‖φ‖2L2(−a,0) ≤ 2a|φ(0)|2 + a2‖φ′‖2L2(−a,0).
(A.4)

Due to (A.2)-(A.3), (A.4)1 with a = r and ε > r, R1(0) satisfies

|R1(0)|2 ≤ C

r3
‖∇u‖2L2(B′r,ε)

.

The estimates for R2(0), R3(0) are obtained in the same way. Hence we get (3.6)1.

Step 2. Estimate of ‖R‖L2(0,δ).

Poincaré’s inequality yields

‖R −R(0)‖L2(0,δ) ≤ δ
∥∥∥∥ dRdx3

∥∥∥∥
L2(0,δ)

.

From (3.5)3, (A.4)2 and (3.6)1 we get

‖R‖2L2(0,δ) ≤ 2δ|R(0)|2 + δ2

∥∥∥∥ dRdx3

∥∥∥∥2

L2(0,δ)

≤ C δ

r3
‖∇u‖2L2(B′r,ε)

+ C
δ2

r4
‖e(u)‖2L2(Br,δ)

. (A.5)

Hence (3.6)2 is proved.

Step 3. Estimate of U − U(0).

Applying the inequality (3.5)4 from Theorem 3.1 the following estimates on U hold:∥∥∥∥dU3

dx3

∥∥∥∥
L2(0,δ)

≤ C

r
‖e(u)‖L2(Br,δ),∥∥∥∥dUαdx3

∥∥∥∥
L2(0,δ)

≤ ‖R‖L2(0,δ) +
C

r
‖e(u)‖L2(Br,δ).

(A.6)

Combining (A.6)2 with (A.5) gives∥∥∥∥dUαdx3

∥∥∥∥2

L2(0,δ)

≤ C δ

r3
‖∇u‖2L2(B′r,ε)

+ C
δ2

r4
‖e(u)‖2L2(Br,δ)

+
C

r2
‖e(u)‖2L2(Br,δ)

.

Taking into account assumption (2.7)2, we obtain (3.6)3. Then by (3.6)3, (A.6)1 and Poincaré’s inequality
formulas (3.6)4, (3.6)5 follow.

Step 4. We prove the estimate (3.6)6.

By Korn’s inequality, there exists a rigid displacement r

r(x) = a + b ∧
(
x+

ε

2
e3

)
,

a =
1

ε3

∫
Wε

u(x) dx,

b =
6

ε5

∫
Wε

(
x+

ε

2
e3

)
∧ u(x) dx,

such that

‖u− r‖L2(Wε) ≤ Cε‖e(u)‖L2(Wε),

‖∇(u− r)‖L2(Wε) ≤ C‖e(u)‖L2(Wε).
(A.7)
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Besides, by Poincaré-Wirtinger inequality we have

‖u− a‖L2(Wε) ≤ Cε‖∇u‖L2(Wε). (A.8)

Using the following Sobolev embedding theorem

W s,p ⊂W t,q, for s, p, t, q : s ∈ R, s > t, p ∈ N and
1

q
=

1

p
− s− t

n

we get
H1/2 ⊂ L4 or ‖ϕ‖L4(Y ) ≤ C‖ϕ‖H1/2(Y ), ∀ϕ ∈ H1/2(Y ).

Moreover, by definition of the H1/2 norm for W = Y × (−1, 0), we have

‖ϕ‖H1/2(Y ) ≤ C
(
‖ϕ‖L2(W ) + ‖∇ϕ‖L2(W )

)
, ∀ϕ ∈ H1(W ).

Therefore,
‖ϕ‖L4(Y ) ≤ C

(
‖ϕ‖L2(W ) + ‖∇ϕ‖L2(W )

)
, ∀ϕ ∈ H1(W ).

With the change of variables

yε = εy, for (y1, y2) ∈ Y, (y1, y2, y3) ∈W,

and defining

ϕε(yε) = ϕ
(yε
ε

)
,

we obtain
1√
ε
‖ϕε‖L4(Yε) ≤ C

(
1

ε3/2
‖ϕε‖L2(Wε) +

1√
ε
‖∇ϕε‖L2(Wε)

)
, ∀ϕε ∈ H1(Wε)

or

‖ϕ‖L4(Yε) ≤ C
(

1

ε
‖ϕ‖L2(Wε) + ‖∇ϕ‖L2(Wε)

)
, ∀ϕ ∈ H1(Wε).

Therefore, (A.7) and the inequality above lead to

‖u− r‖L4(Yε) ≤ C‖e(u)‖L2(Wε). (A.9)

From the identity
1

πr2

∫
Dr

(u(x′, 0)− r(x′, 0))dx′ = U(0)− a− b ∧ ε
2
e3,

the estimate (A.9) and Hölder’s inequality we get∣∣∣U(0)− a− b ∧ ε
2
e3

∣∣∣ ≤ 1

πr2

(∫
Dr

14/3dx′
)3/4(∫

Dr

|u(x′, 0)− r(x′, 0)|4dx′
)1/4

≤ C

r1/2
‖e(u)‖L2(Wε). (A.10)

From Cauchy–Schwarz’s inequality and taking into account (A.8), we derive

|b| ≤ C

ε5

(∫
Wε

∣∣∣x+
ε

2
e3

∣∣∣2 dx)1/2(∫
Wε

|u(x)− a|2dx
)1/2

≤ C

ε5
· ε · ε3/2‖u− a‖L2(Wε) ≤

C

ε5/2
ε‖∇u‖L2(Wε) ≤

C

ε3/2
‖∇u‖L2(Wε). (A.11)

Using (A.10) and (A.11), we obtain

|U(0)− a| ≤
∣∣∣U(0)− a− b ∧ ε

2
e3

∣∣∣+
∣∣∣b ∧ ε

2
e3

∣∣∣ ≤ C

r1/2
‖e(u)‖L2(Wε) +

C

ε1/2
‖∇u‖L2(Wε). (A.12)

The estimates (A.4) and (A.8) yield

‖u(·, ·, 0)− a‖2L2(Yε)
≤ Cε‖∇u‖2L2(Wε)

. (A.13)

Combining (A.12) and (A.13) gives

‖u(·, ·, 0)− U(0)‖2L2(Yε)
≤ C(‖u(·, ·, 0)− a‖2L2(Yε)

+ ‖U(0)− a‖2L2(Yε)
)

≤ Cε‖∇u‖2L2(Wε)
+ C

ε2

r
‖e(u)‖2L2(Wε)

+ Cε‖∇u‖2L2(Wε)

≤ Cε‖∇u‖2L2(Wε)
+ C

ε2

r
‖e(u)‖2L2(Wε)

.

Hence we get (3.6)6.
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Proof of Lemma 3.3. Using (3.6)6 and then summing over all of the periodicity cells gives

‖u(·, ·, 0)− Ũ(·, ·, 0)‖2L2(ω̂ε)
≤ Cε‖∇u‖2L2(Ω−) + C

ε2

r
‖u‖2V . (A.14)

In the same way, the following estimate is derived:

‖u(·, ·, δ)− Ũ(·, ·, δ)‖2L2(ω̂ε)
≤ Cε‖∇u‖2

L2(Ω+
δ )

+ C
ε2

r
‖u‖2V .

Applying (3.7)2 we can write

‖Ũ3(·, ·, δ)− Ũ3(·, ·, 0)‖2L2(ω̂ε)
≤ δ

∥∥∥∥∥∂Ũ3

∂x3

∥∥∥∥∥
2

L2(ω̂ε×(0,δ))

≤ C ε
2δ

r2
‖u‖2V . (A.15)

From (3.7)6 we have

‖Ũα(·, ·, δ)− Ũα(·, ·, 0)‖2L2(ω̂ε)
≤ C ε

2δ2

r3
‖u‖2V + C

ε2δ3

r4
‖u‖2V ≤ C

ε2δ3

r4
‖u‖2V . (A.16)

Using (A.16) and the estimates above we obtain (3.11), (3.12).

Proof of Lemma 3.4. From Korn’s inequality and the trace theorem we derive

‖u‖L2(Σ) ≤ C‖u‖H1(Ω−) ≤ C1‖e(u)‖L2(Ω−),

‖u‖H1(Ω+
δ ) ≤ C

(
‖e(u)‖L2(Ω+

δ ) + ‖u‖L2(Σ+
δ )

)
.

(A.17)

We know that there exists a rigid displacement r

∀x ∈ R3, r(x) = a + b ∧ (x− δe3), a, b ∈ R3,

such that
‖u− r‖L2(Σ+

δ ) ≤ C‖u− r‖H1(Ω+
δ ) ≤ C‖e(u)‖L2(Ω+

δ ), (A.18)

where the constant does not depend on δ (since |Σ+
δ | is independent of δ and Ω+

δ ⊂ Ω+ and |Ω+ \Ω+
δ | = |ω|δ).

Then, we get
‖(u− r)(·, ·, δ)‖L2(ω̂ε) ≤ ‖u− r‖L2(Σ+

δ ) ≤ C‖e(u)‖L2(Ω+
δ ). (A.19)

Using
‖u(·, ·, 0)‖L2(ω̂ε) ≤ ‖u‖L2(Σ), (A.20)

from (3.11) and (3.12) we obtain

‖uα(·, ·, δ)‖L2(ω̂ε) ≤ Cε
1/2‖∇u‖L2(Ω+

δ ) + C
εδ3/2

r2
‖u‖V + C‖u‖V ,

‖u3(·, ·, δ)‖L2(ω̂ε) ≤ Cε
1/2‖∇u‖L2(Ω+

δ ) + C
ε3/2δ1/2

r
‖u‖V + C‖u‖V .

(A.21)

Combining this with (A.19) gives

‖rα(·, ·, δ)‖L2(ω̂ε) ≤ Cε
1/2‖∇u‖L2(Ω+

δ ) + C
εδ3/2

r2
‖u‖V + C‖u‖V ,

‖r3(·, ·, δ)‖L2(ω̂ε) ≤ Cε
1/2‖∇u‖L2(Ω+

δ ) + C
εδ1/2

r
‖u‖V + C‖u‖V .

(A.22)

Therefore,

|a1|+ |a2|+ |b3| ≤ Cε1/2‖∇u‖L2(Ω+
δ ) + C

εδ3/2

r2
‖u‖V + C‖u‖V ,

|a3|+ |b1|+ |b2| ≤ Cε1/2‖∇u‖L2(Ω+
δ ) + C

εδ1/2

r
‖u‖V + C‖u‖V .

These estimates together with (A.18) allow us to obtain estimates on u1, u2, u3. This yields

‖uα‖H1(Ω+
δ ) ≤ Cε

1/2‖∇u‖L2(Ω+
δ ) + C

εδ3/2

r2
‖u‖V + C‖u‖V ,

‖u3‖H1(Ω+
δ ) ≤ Cε

1/2‖∇u‖L2(Ω+
δ ) + C

εδ1/2

r
‖u‖V + C‖u‖V .

(A.23)
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Therefore,

‖∇u‖L2(Ω+
δ ) ≤ Cε

1/2‖∇u‖L2(Ω+
δ ) + C

εδ3/2

r2
‖u‖V + C‖u‖V .

For ε small enough the following holds true:

‖∇u‖L2(Ω+
δ ) ≤ C

εδ3/2

r2
‖u‖V + C‖u‖V .

Inserting this in (A.23) we derive (3.13)-(3.14).

Proof of Lemma 3.5. From the estimates in Theorem 3.1, (3.6)2 and (3.6)3 and after summation over all the
beams, we get (making use of the assumption (2.7)2)

‖∇u‖2L2(Ωir,ε,δ)
≤ C

(
δ

r
‖∇u‖2L2(Ω−) +

δ2

r2
‖e(u)‖2L2(Ωir,ε,δ)

)
≤ C δ

2

r2
‖u‖2V . (A.24)

From (A.14) and (A.17)1, it follows that∑
ξ∈Ξε

ε2|Uξ(0)|2 = ‖Ũ(·, ·, 0)‖2L2(ω̂ε)
≤ C ε

2

r
‖u‖2V + C‖u‖2V ,

∑
ξ∈Ξε

|Uξ(0)|2 ≤ C
(

1

r
+

1

ε2

)
‖u‖2V .

Using (3.5)4, (3.6)3, (A.4), we obtain∑
ξ∈Ξε

‖Uξ,3‖2L2(0,δ) ≤ C
(
δ

ε2
+
δ2

r2

)
‖u‖2V ,

∑
ξ∈Ξε

‖Uξ,α‖2L2(0,δ) ≤ C
(
δ

ε2
+
δ4

r4

)
‖u‖2V .

(A.25)

Additionally, ∑
ξ∈Ξε

‖ūξ‖2L2(Br,δ)
≤ Cr2‖e(u)‖2L2(Ωir,ε,δ)

≤ Cr2‖u‖2V . (A.26)

Then (3.6)2, (A.25) and (A.26) give∑
ξ∈Ξε

‖uξ,α‖2L2(Br,δ)
≤ C

(
r2δ

ε2
+
δ4

r2
+ δ2 + r2

)
‖u‖2V ≤ C

r2δ

ε2

(
1 +

ε2δ3

r4

)
‖u‖2V ,

∑
ξ∈Ξε

‖uξ,3‖2L2(Br,δ)
≤ C

(
r2δ

ε2
+ δ2 + r2

)
‖u‖2V ≤ C

r2δ

ε2

(
1 +

ε2δ

r2

)
‖u‖2V .

From the last inequalities, we derive (3.17)2 and (3.17)3.

B Properties of the periodic unfolding operators. Estimates for the
compactness.

Lemma B.1. (Properties of the operators Tε, T
′

ε )

1. ∀v, w ∈ L2(ω × (0, δ))
Tε(vw) = Tε(v)Tε(w),

∀v, w ∈ L2(ω ×Br,δ)
T
′

ε (vw) = T
′

ε (v)T
′

ε (w).

2. ∀u ∈ L1(ω × (0, δ))

δ

∫
ω×(0,1)

Tε(u) ds1 ds2 dX3 =

∫
ω̂ε×(0,δ)

u ds1 ds2 dx3,

∀u ∈ L1(ω ×Br,δ)

r2δ

∫
ω×B1

T
′

ε (u) ds1 ds2 dX1 dX2 dX3 =

∫
ω̂ε×Br,δ

u ds1 ds2 dx1 dx2 dx3.
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3. ∀u ∈ L2(ω × (0, δ))

‖Tε(u)‖L2(ω×(0,1)) ≤
1√
δ
‖u‖L2(ω×(0,δ)),

∀u ∈ L2(ω ×Br,δ)
‖T
′

ε (u)‖L2(ω×B1) ≤
1

r
√
δ
‖u‖L2(ω×Br,δ).

4. Let u be in L2(ω,H1(0, δ)). Then we have

δTε(∇x3
u) = ∇X3

Tε(u).

Let u be in L2(ω,H1(Br,δ)). Then we have

rT
′

ε (∇xαu) = ∇XαT
′

ε (u), δT
′

ε (∇x3u) = ∇X3T
′

ε (u), where α = 1, 2.

Proof. Properties 1–3 are obtained similarly to the proof of Lemma 5.1 of [2].
Property 4 is the direct consequence of the chain rule:

∂(T ′ε (u))

∂Xα
= rT

′

ε

(
∂u

∂xα

)
, α = 1, 2,

∂(Tε(u))

∂X3
= δTε

(
∂u

∂x3

)
,

∂(T ′ε (u))

∂X3
= δT

′

ε

(
∂u

∂x3

)
.

From Lemmas 3.2 and B.1 we obtain the following result.

Lemma B.2. There exists a constant C, independent of ε, δ and r, such that

‖Tε(Ũε)‖L2(ω,H1(0,1)) ≤ C, (B.1)

‖Tε(Ũε,3)− Ũε,3(·, ·, 0)‖L2(ω,H1(0,1)) ≤ C
r

δ
, (B.2)

‖Tε(R̃ε)‖L2(ω,H1(0,1)) ≤
C

δ
, (B.3)∥∥∥∂Tε(Ũε)

∂X3
− δTε(R̃ε) ∧ e3

∥∥∥
L2(ω×(0,1))

≤ C r
δ
, (B.4)

‖T
′

ε (ũε)‖L2(ω×(0,1),H1(D1)) ≤ C
r2

δ2
, (B.5)∥∥∥∥∥∂T

′

ε (ũε)

∂X3

∥∥∥∥∥
L2(ω×B1)

≤ C r
δ
. (B.6)

Proof of Proposotion 4.1. The convergences in (4.1)–(4.3), (4.5), (4.6), (4.8), (4.12) and (4.14) follow from
estimate (3.23) and those in Lemma B.2.
The equalities in (4.4) are consequences of (3.8)1–(3.8)2. To obtain (4.11), take into account that from (4.14)
we have

∂Ũ
∂X3

− R̃ ∧ e3 =


∂Ũ1

∂X3
− R̃2

∂Ũ2

∂X3
+ R̃1

∂Ũ3

∂X3

 = 0.

Then (4.4) yields (4.10). Equalities in (4.7) are the consequences of
∂Ũ3

∂X3
= 0 and estimates (3.9), (3.10). Again

due to (3.9), (3.10), we obtain

Ũα(x′, 0) = u−α |Σ(x′), Ũα(x′, 1) = u+
α |Σ(x′), for a.e. x′ ∈ ω.

From Lemma B.2 we have ‖T
′

ε (ũε)‖L2(ω,H1(B1)) ≤ C
r

δ
. From this and (4.12) we deduce (4.13).
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The strain tensor of the displacement uε is

T
′

ε

(
ẽ(uε)

)
ij

= T
′

ε

(
ẽ(uε)

)
ij
, i, j = 1, 2,

T
′

ε

(
ẽ(uε)

)
13

=
1

2

((
1

δ

∂Tε(Ũε,1)

∂X3
− Tε(R̃ε,2)

)
− r

δ

∂Tε(R̃ε,3)

∂X3
X2

)
+ T

′

ε

(
ẽ(uε)

)
13
,

T
′

ε

(
ẽ(uε)

)
23

=
1

2

((
1

δ

∂Tε(Ũε,2)

∂X3
+ Tε(R̃ε,1)

)
+
r

δ

∂Tε(R̃ε,3)

∂X3
X1

)
+ T

′

ε

(
ẽ(uε)

)
23
,

T
′

ε

(
ẽ(uε)

)
33

=
1

δ

∂Tε(Ũε,3)

∂X3
+
r

δ

∂Tε(R̃ε,1)

∂X3
X2 −

r

δ

∂Tε(R̃ε,2)

∂X3
X1 + T

′

ε

(
ẽ(uε)

)
33
.

Define the field ũ′ ∈ L2(ω × (0, 1), H1(D1,R3)) by

ũ′α = ũα, ũ′3 = ũ3 +X1Z1 +X2Z2.

Then

∂ũ′3
∂X1

=
∂ũ3

∂X1
+ Z1,

∂ũ′3
∂X2

=
∂ũ3

∂X2
+ Z2.

C Appendix: Derivation of the limit problem

C.1 Equations for the domain Ωi
ε

Proof. (of Proposition 5.1)
Step 1. Obtain the limit equations in Ωiε.

We will use the following test function:

vε(x) =
r

δ
ψ(εξ)


δ

r
ϕ1

(x3

δ

)
− x2 − εξ2

r
ϕ4

(x3

δ

)
δ

r
ϕ2

(x3

δ

)
+
x1 − εξ1

r
ϕ4

(x3

δ

)
ϕ3

(x3

δ

)
− x1 − εξ1

r

dϕ1

dX3

(x3

δ

)
− x2 − εξ2

r

dϕ2

dX3

(x3

δ

)

 , ξ =

[
x′

ε

]
Y

,

where ψ ∈ C∞c (ω), ϕ3 and ϕ4 ∈ H1
0 (0, 1), ϕ1 and ϕ2 ∈ H2

0 (0, 1). Computation of the symmetric strain tensor
gives

e(vε) =
r

δ2
ψ(εξ)


0 0 −1

2

x2 − εξ2
r

dϕ4

dX3

. . . 0
1

2

x1 − εξ1
r

dϕ4

dX3

. . . . . .

(
dϕ3

dX3
− x1 − εξ1

r

d2ϕ1

dX2
3

− x2 − εξ2
r

d2ϕ2

dX2
3

)
 in εξ +B1.

Then

δ2

r
T
′

ε

(
ẽ(vε)

)
→ ψ(x′)


0 0 −1

2
X2

dϕ4

dX3

. . . 0
1

2
X1

dϕ4

dX3

. . . . . .
dϕ3

dX3
−X1

d2ϕ1

dX2
3

−X2
d2ϕ2

dX2
3

 = V (x′, X) strongly in L2(ω ×B1).

Moreover,

T
′

ε (ṽε)→ ψ(x′)

 ϕ1(X3)
ϕ2(X3)

0

 strongly in L2(ω ×B1).

Unfolding the integral over Ωiε, we obtain∫
Ωiε

σε : e(vε)dx =
∑
ξ∈Ξε

∫
εξ+Br,δ

σε : ẽ(vε)dx

= r2δ
∑
ξ∈Ξε

∫
B1

T
′

ε (σε) : T
′

ε

(
ẽ(vε)

)
dx′ dX1 dX2 dX3

=
r2δ

ε2

∫
ω×B1

T
′

ε (σε) : T
′

ε

(
ẽ(vε)

)
dx′ dX1 dX2 dX3.
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In the same way, integrating the forces we get∫
Ωiε

fε · vεdx =
r2δ

ε2

∫
ω×B1

T
′

ε (fε) · T
′

ε (ṽε)dx
′ dX1 dX2 dX3.

Taking the limit gives

κ4
0

κ3
1

∫
ω×B1

Θ : V dx′ dX =

2∑
α=1

∫
ω×B1

Fmα (x′, X)ψ(x′)ϕα(X)dx′ dX. (C.1)

We can localize the equation above. This gives

πκ4
0

4κ3
1

µm
∫
ω×(0,1)

∂R̃3

∂X3

dϕ4

dX3
ψ dx′ dX3 +

πκ4
0

4κ3
1

Em
∫
ω×(0,1)

(
4
∂Ũ ′3
∂X3

dϕ3

dX3
+
∂2Ũ1

∂X2
3

d2ϕ1

dX2
3

+
∂2Ũ2

∂X2
3

d2ϕ2

dX2
3

)
ψ dx′ dX3

=

∫
ω×(0,1)

(
F̃m1 ϕ1 + F̃m2 ϕ2

)
ψdx′ dX3. (C.2)

The density of the tensor product C∞c (ω) ⊗ H1
0 (0, 1) (resp. C∞c (ω) ⊗ H2

0 (0, 1)) in L2(ω;H1
0 (0, 1)) (resp.

L2(ω;H2
0 (0, 1))) implies

πκ4
0

4κ3
1

µm
∫
ω×(0,1)

∂R̃3

∂X3

∂Φ4

∂X3
dx′ dX3 +

πκ4
0

4κ3
1

Em
∫
ω×(0,1)

(
4
∂Ũ ′3
∂X3

∂Φ3

∂X3
+
∂2Ũ1

∂X2
3

∂2Φ1

∂X2
3

+
∂2Ũ2

∂X2
3

∂2Φ2

∂X2
3

)
dx′ dX3

=

∫
ω×(0,1)

(
F̃m1 Φ1 + F̃m2 Φ2

)
dx′ dX3 ∀Φ3, Φ4 ∈ L2(ω;H1

0 (0, 1)), ∀Φ1, Φ2 ∈ L2(ω;H2
0 (0, 1)).

(C.3)

Step 2. Obtain R̃3, Ũ ′3.
Since ϕ3 ∈ H1

0 (0, 1) is not in the right–hand side of equation (C.2), we obtain

Em
∫ 1

0

∂Ũ ′3
∂X3

dϕ3

dX3
dX3 = 0 ⇒ ∂2Ũ ′3

∂X2
3

= 0 a.e. in ω × (0, 1). (C.4)

Moreover, we have Ũ ′3(x′, 0) = 0 for a.e. x′ ∈ ω. Therefore, there exists a ∈ L2(ω) such that

Ũ ′3(x′, X3) = X3a(x′), for a.e. (x′, X3) ∈ ω × (0, 1).

Similarly, recalling ϕ4 ∈ H1
0 (0, 1) and taking ϕ1 = ϕ2 = ϕ3 = 0 in (C.2), leads to

µm
∫ 1

0

∂R̃3

∂X3

dϕ4

dX3
dX3 = 0 ⇒ ∂2R̃3

∂X2
3

= 0 a.e. in ω × (0, 1).

This together with the boundary conditions (4.4) from Proposition 4.1 gives R̃3 = 0.

The variational problem (5.1) and the boundary conditions (4.9)–(4.10) allow us to determine Uα (α = 1, 2)

in terms of the applied forces F̃mα and the traces u±α|Σ.

C.2 Equations for the macroscopic domain

C.2.1 Determination of Ũ ′3
Proof. (of Lemma 5.1) For the sake of simplicity we extend φ to a function belonging to W 1,∞(R2) which is
still denoted by φ. We take

Ξ̃ε =
{
ξ ∈ Z2 ; (εξ + εY ) ∩ ω 6= ∅

}
.

Observe that Ξε ⊂ Ξ̃ε. Consider the following estimate:

‖φε,r − φ‖L∞(ω) =
∥∥∥χ(ε

r

{ ·
ε

}
Y

)(
φ
(
ε
[ ·
ε

]
Y

)
− φ

)∥∥∥
L∞(ω)

≤ sup
ξ∈Ξ̃ε

∥∥∥χ( ·
r

)
(φ(εξ)− φ(εξ + ·))

∥∥∥
L∞(Yε)

= sup
ξ∈Ξ̃ε

∥∥∥χ(ε
r
·
)

(φ(εξ)− φ(εξ + ε·))
∥∥∥
L∞(Y )

≤ ε‖χ‖L∞(R2)‖∇φ‖L∞(R2).
(C.5)
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The partial derivative of φε,r − φ with respect to xα is

∂(φε,r − φ)

∂xα
(x′) =

1

r

∂χ

∂Xα

(ε
r

{x′
ε

}
Y

)(
φ
(
ε
[x′
ε

]
Y

)
− φ(x′)

)
− χ

(ε
r

{x′
ε

}
Y

) ∂φ
∂xα

(x′), for a.e. x′ ∈ ω,

∂(φε,r − φ)

∂xα
(εξ + εy′) =

1

r

∂χ

∂Xα

(ε
r
y′
)

(φ(εξ)− φ(εξ + εy′))− χ
(ε
r
y′
) ∂φ
∂xα

(εξ + εy′), ξ ∈ Ξ̃ε, for a.e. y′ ∈ Y.

Since χ has compact support in R2, there exists R > 0 such that supp(χ) ⊂ DR. Thus, the support of the

function y′ 7−→ χ
(ε
r
y′
)

is included in the disc DrR/ε. As a consequence we get for a.e. y′ ∈ DrR/ε

|φ(εξ)− φ(εξ + εy′)| ≤ rR‖∇φ‖L∞(R2).

Using the above estimate, the norms of the derivatives satisfy∥∥∥∥∂(φε,r − φ)

∂xα

∥∥∥∥p
Lp(εξ+εY )

= ε2

∥∥∥∥ ∂χ

∂Xα

(ε
r
·
)φ(εξ)− φ(εξ + ε·)

r
− χ

(ε
r
·
) ∂φ
∂xα

(εξ + ε·)
∥∥∥∥p
Lp(Y )

≤ Cr2‖∇χ‖pL∞(R2)‖∇φ‖
p
L∞(R2).

The constant C does not depend on ε and r. Combining the above estimates for ξ ∈ Ξ̃ε, that gives

‖∇(φε,r − φ)‖Lp(ω) ≤ C
(r
ε

)2/p

‖∇χ‖L∞(R2)‖∇φ‖L∞(R2). (C.6)

The constant does not depend on r and ε. Hence, estimates (C.5) and (C.6) imply that φε strongly converges
toward φ in W 1,p(ω).

Proof. (of Lemma 5.2)
For any ψ3 ∈ C1(ω × [0, 1]) satisfying ψ3(x′, 0) = 0 for every x′ ∈ ω, we consider the following test function:

vε,α(x) = 0 for a.e. x ∈ Ωε, α = 1, 2,

vε(x) = 0 for a.e. x ∈ Ω−,

vε,3(x) =
r

δ

[
ψ3(x′, 1)

(
1− χ

(ε
r

{x′
ε

}
Y

))
+ ψ3

(
ε
[x′
ε

]
Y
, 1
)
χ
(ε
r

{x′
ε

}
Y

)]
, for a.e. x ∈ Ω+

ε ,

vε,3(x) =
r

δ
ψ3

(
ε
[x′
ε

]
Y
,
x3

δ

)
, for a.e. x ∈ Ωiε.

If
r

ε
is small enough, vε is an admissible test function. The symmetric strain tensor in Ωiε is given by

e(vε) =
r

δ2


0 0 0

. . . 0 0

. . . . . .
∂ψ3

∂X3

(
εξ,

x3

δ

)
 a.e. in εξ +Br,δ.

Then

δ2

r
T
′

ε

(
ẽ(vε)

)
→


0 0 0

. . . 0 0

. . . . . .
∂ψ3

∂X3
(x′, X3)

 = V (x′, X) strongly in L2(ω ×B1).

The elements of the symmetric strain tensor in Ω+
ε are written as follows:

e11(vε) = e22(vε) = e12(vε) = e33(vε) = 0,

eα3(vε) = e3α(vε) =
1

2

r

δ

∂ψ3

∂xα
(x′, 1)(1− χ(y)) +

1

2δ

∂χ

∂yα
(y)

(
ψ3(x′, 1)− ψ3

(
ε

[
x′

ε

]
Y

, 1

))
,

where y =
ε

r

{x′
ε

}
Y

.

Using Lemma 5.1 and taking into account
r

δ
→ 0, the following convergences hold:

vε(·+ δe3) −→ 0 strongly in H1(Ω+;R3),

e(vε) −→ 0 strongly in L2(Ω+;R9).
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Moreover,

T ′ε (vε) −→ 0 strongly in H1(ω ×B1;R3).

Using vε as a test function in (2.9) and passing to the limit in the unfolded formulation, gives∫
ω×(0,1)

∂Ũ ′3
∂X3

(x′, X3)
∂ψ3

∂X3
(x′, X3) dx′ dX =

∫
ω×(0,1)

a(x′)
∂ψ3

∂X3
(x′, X3) dx′ dX = 0.

Hence a = 0. Since the test functions are dense in

Vs =
{

Ψ ∈ L2(ω;H1(0, 1)) | Ψ(x′, 0) = 0 a.e. in ω
}

we obtain ∫
ω×(0,1)

∂Ũ ′3
∂X3

(x′, X3)
∂Ψ

∂X3
(x′, X3) dx′ dX = 0 ∀Ψ ∈ Vs. (C.7)

C.2.2 Determination of u±α and u3

Proof. (of Theorem 5.1)
For any v ∈ V such that v|Ω− ∈W 1,∞(Ω−,R3) and v|Ω+ ∈W 1,∞(Ω+,R3), we first define the displacement vε,r
in the following way:

vε,r(x) = v(x)
(

1− χ
(ε
r

{x′
ε

}
Y

))
+ v
(
ε
[x′
ε

]
Y
, x3

)
χ
(ε
r

{x′
ε

}
Y

)
, for a.e. x ∈ Ω− ∪ Ω+. (C.8)

Then let h denote the following function belonging to W 1,∞(−L,L):

h(x3) =


x3 + L

L
, x3 ∈ [−L, 0],

1, x3 ≥ 0.
(C.9)

Now consider the test displacement

v′ε(x) = v(x)
(
1− h(x3)

)
+ vε,r(x)h(x3), for a.e. x ∈ Ω−,

v′ε(x) = vε,r(x
′, x3 − δ), for a.e. x ∈ Ω+

ε ,

v′ε(x) =


ψ1

(
ε
[x′
ε

]
Y
,
x3

δ

)
ψ2

(
ε
[x′
ε

]
Y
,
x3

δ

)
v3

(
ε
[x′
ε

]
Y
, 0
)
− ε

δ

{x′
ε

}
Y
· ∂ψ
∂X3

(
ε
[x′
ε

]
Y
,
x3

δ

)

 for a.e. x ∈ Ωiε,

where ψα ∈ C1(ω; C3([0, 1])), α = 1, 2, satisfies

ψα(x′, 0) = vα|Ω−(x′, 0), ψα(x′, 1) = vα|Ω+(x′, 0) for every x′ ∈ ω.

If
r

ε
is small enough, v′ε is an admissible test displacement.

Due to Lemma 5.1, the following convergences hold:

v′ε(·+ δe3) −→ v strongly in H1(Ω+;R3),

v′ε −→ v strongly in H1(Ω−;R3),

e(v′ε) −→ e(v) strongly in L2(Ω+ ∪ Ω−;R9).

Computing the strain tensor in Ωiε gives

eij(v
′
ε) = 0 (i, j) 6= (3, 3),

e33(v′ε) = − r

δ2

(
X1

∂2ψ1

∂X2
3

(
ε
[x′
ε

]
Y
, X3

)
+X2

∂2ψ2

∂X2
3

(
ε
[x′
ε

]
Y
, X3

))
.
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Therefore,

T ′ε (v′ε) −→

 ψ1(x′, X3)
ψ2(x′, X3)
v3(x′, 0)

 strongly in L2(ω ×B1;R3),

δ2

r
T ′ε
(
e(v′ε)

33
)
−→ −

(
X1

∂2ψ1

∂X2
3

(x′, X3) +X2
∂2ψ2

∂X2
3

(x′, X3)

)
strongly in L2(ω ×B1).

Unfolding and taking the limit in (2.9) gives∫
Ω±

σ± : e(v) dx− κ4
0

κ3
1

∫
ω×B1

Θ :

(
X1

∂2ψ1

∂X2
3

+X2
∂2ψ2

∂X2
3

)
dx′ dX

=

∫
Ω±

F v dx+

∫
ω×B1

(Fm1 ψ1 + Fm2 ψ2 + F3v3) dx′ dX.

Since the space W 1,∞(Ω+;R3) is dense in H1(Ω+;R3), the space of these functions in W 1,∞(Ω−,R3) vanishing
on Γ is dense in H1(Ω−;R3) and since the space C1(ω; C3([0, 1])) is dense in L2(ω;H1(0, 1)), the equality above
holds for every v in V and every ψ1, ψ2 in L2(ω;H1(0, 1)) satisfying

ψα(x′, 0) = vα|Ω−(x′, 0), ψα(x′, 1) = vα|Ω+(x′, 0) for a.e. x′ ∈ ω.

Finally, integrating over D1 and making use of (C.3), (C.7) and (5.2) yields the result.

C.2.3 Case (i)

We introduce the classical unfolding operator.

Definition C.1. For a Lebesgue–measurable function ϕ on ω, the unfolding operator T ′′ε is defined as follows:

T ′′ε (ϕ)(s, y) =

{
ϕ
(
ε
[s
ε

]
Y

+ εy
)
, for a.e. (s, y) ∈ ω̂ε × Y,

0, for a.e. (s, y) ∈ Λε × Y.

Recall that (see [8]) the following lemma holds true.

Lemma C.1. Let φ be in W 1,∞(ω) and let φε be defined by

φε(x
′) = χ

({x′
ε

}
Y

)
φ
(
ε
[x′
ε

]
Y

)
+
[
1− χ

({x′
ε

}
Y

)]
φ(x′) for a.e. x′ ∈ ω.

Then we have
T ′′ε (φε) −→ φ strongly in L2(ω;H1(Y )),

T ′′ε (∇φε) −→ ∇φ strongly in L2(ω × Y ).

Theorem C.1. The variational formulation for the problem (2.9) in the case (i) is given by∫
Ω+∪Ω−

σ± : e(v) dx+
πκ4

0

4κ3
1

Em
∫
ω×(0,1)

2∑
α=1

∂2ψα
∂X2

3

∂2Ũα
∂X2

3

dx′dX3

+
πκ4

0

4κ3
1

µm
∫
ω×(0,1)

∂R̃3

∂X3

∂ψ4

∂X3
dx′ dX3 +

πκ4
0

κ3
1

Em
∫
ω×(0,1)

∂Ũ ′3
∂X3

∂Φ3

∂X3
dx′ dX3

=

∫
Ω+∪Ω−

F v dx+

∫
ω×(0,1)

2∑
α=1

F̃mα ψαdx
′ dX3 +

∫
ω

F
m

3 v3dx
′,

∀(v, ψ1, ψ2, ψ3, ψ4) ∈ VT , ∀Φ3 ∈ L2(ω;H1
0 (0, 1)).

(C.10)

Proof. Step 1. Take the limit in the weak formulation.
In addition to (4.1) and (4.2) we have

T ′′ε (uε) ⇀ u− weakly in L2(Ω−;H1(Y )), (C.11)

T ′′ε (∇uε) ⇀ ∇u− +∇yû− weakly in L2(Ω− × Y ), (C.12)

T ′′ε (uε)(·+ δe3, ··) ⇀ u+ weakly in L2(Ω+;H1(Y )), (C.13)

T ′′ε (∇uε)(·+ δe3, ··) ⇀ ∇u+ +∇yû+ weakly in L2(Ω+ × Y ), (C.14)

where û− belongs to L2(Ω−;H1
per(Y ;R3)) and û+ belongs to L2(Ω+;H1

per(Y ;R3)).
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Remark C.1. Here the third variable of uε is considered as a parameter, on which the unfolding operator T ′′ε
does not have any effect.

Step 2. Determination of U ′3.

To determine the function a introduced in Proposition 5.1, take ψ3 ∈ C1(ω × [0, 1]), satisfying ψ3(x′, 0) = 0
for every x′ ∈ ω, and consider the following test function:

vε,α(x) = 0 for a.e. x ∈ Ωε, α = 1, 2,

vε(x) = 0 for a.e. x ∈ Ω−,

vε,3(x) = ε1/3
[
ψ3(x′, 1)

(
1− χ

({x′
ε

}
Y

))
+ ψ3

(
ε
[x′
ε

]
Y
, 1
)
χ
({x′

ε

}
Y

)]
for a.e. x ∈ Ω+

ε ,

vε,3(x) = ε1/3ψ3

(
ε
[x′
ε

]
Y
,
x3

ε2/3

)
χ
({x′

ε

}
Y

)
for a.e. x ∈ Ωiε.

We obtain the following convergences:

vε(·+ δe3) −→ 0 strongly in H1(Ω+ ∪ Ω−;R3),

e(vε) −→ 0 strongly in L2(Ω+ ∪ Ω−;R9),

T ′ε (vε) −→ 0 strongly in H1(ω ×B1;R3).

Unfolding and taking the limit as in the Subsection C.2.1 we obtain that a = 0.

Step 3. For any v ∈ V such that v|Ω− ∈W 1,∞(Ω−;R3) and v|Ω+ ∈W 1,∞(Ω+;R3), we define the displacement
vε in the following way:

vε(x) = v(x)
(

1− χ
({x′

ε

}
Y

))
+ v
(
ε
[x′
ε

]
Y
, x3

)
χ
({x′

ε

}
Y

)
, for a.e. x ∈ Ω− ∪ Ω+. (C.15)

Consider the following test displacement:

v′ε(x) = v(x)
(
1− h(x3)

)
+ vε(x)h(x3) + εΨ(−)(x′, x3)v̂

({
x′

ε

}
Y

)
, for a.e. x ∈ Ω−,

v′ε(x) = vε(x
′, x3 − δ) + εΨ(+)(x′, x3 − δ)v̂

({
x′

ε

}
Y

)
, for a.e. x ∈ Ω+

ε ,

v′ε(x) =


ψ1

(
ε
[x′
ε

]
Y
,
x3

δ

)
ψ2

(
ε
[x′
ε

]
Y
,
x3

δ

)
v3

(
ε
[x′
ε

]
Y
, 0
)
− ε

δ

{x′
ε

}
Y
· ∂ψ
∂X3

(
ε
[x′
ε

]
Y
,
x3

δ

)

 for a.e. x ∈ Ωiε,

where

• v̂ ∈ H1
per(Y ;R3),

• ψα ∈ C1(ω; C3([0, 1])), α = 1, 2, satisfies

ψα(x′, 0) = vα|Ω−(x′, 0), ψα(x′, 1) = vα|Ω+(x′, 0) for every x′ ∈ ω,

• Ψ(−) ∈W 1,∞(Ω−), Ψ(+) ∈W 1,∞(Ω+) satisfies

Ψ(±)(x′, 0) = 0, a.e. in ω, Ψ(−) = 0 on Γ,

• h(x3) is defined as in (C.9).

Using (5.2), we obtain the following convergences:

T ′′ε (v′ε(·, ··)) −→ v strongly in L2(Ω−;H1(Y )),

T ′′ε (∇v′ε(·, ··)) −→ ∇v + Ψ(−)∇y v̂ strongly in L2(Ω− × Y ),

T ′′ε (v′ε(·+ δe3, ··)) −→ v strongly in L2(Ω+;H1(Y )),

T ′′ε (∇v′ε(·+ δe3, ··)) −→ ∇v + Ψ(+)∇y v̂ strongly in L2(Ω+ × Y ).
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Moreover,

Tε(T ′′ε (v′ε)) −→


ψ1(x′, X3)

ψ2(x′, X3)

v3(x′, 0)

 strongly in L2(ω;H1(Y ×B1)),

δ2

r
Tε (T ′′ε (e33(v′ε))) −→ −X1

∂2ψ1

∂X2
3

(x′, X3)−X2
∂2ψ2

∂X2
3

(x′, X3) strongly in L2(ω × Y ×B1).

Unfolding and taking the limit, we obtain∫
Ω±×Y

(σ± + σ̂±) :
(
e(v) + Ψ(±)ey(v̂)

)
dxdy − κ4

0

κ3
1

∫
ω×B1

Θ :

(
X1

∂2ψ1

∂X2
3

+X2
∂2ψ2

∂X2
3

)
dx′ dX =

=

∫
Ω±

F v dx+

∫
ω×B1

(Fm1 ψ1 + Fm2 ψ2 + F3v3) dx′ dX. (C.16)

Since σ± and e(v) do not depend on y and due to the periodicity of the fields v̂ and û±, the equality above
reads∫

Ω±
σ± : e(v) dx+

∫
Ω±×Y

σ̂± : Ψ(±)ey(v̂) dxdy − κ4
0

κ3
1

∫
ω×B1

Θ :

(
X1

∂2ψ1

∂X2
3

+X2
∂2ψ2

∂X2
3

)
dx′ dX =

=

∫
Ω±

F v dx+

∫
ω×B1

(Fm1 ψ1 + Fm2 ψ2 + F3v3) dx′ dX.

Step 3. To determine σ̂ we first take v = 0. We then obtain∫
Ω±×Y

σ̂± : Ψ(±)ey(v̂) dxdy − κ4
0

κ3
1

∫
ω×B1

Θ :

(
X1

∂2ψ1

∂X2
3

+X2
∂2ψ2

∂X2
3

)
dx′ dX =

∫
ω×B1

(Fm1 ψ1 + Fm2 ψ2) dx′ dX.

Since the right–hand side does not contain v̂,∫
Ω±×Y

σ̂± : Ψ(±)ey(v̂) dxdy = 0,

which corresponds to the strong formulation

3∑
j=1

∂σ̂±ij
∂yj

= 0, in Ω± × Y,

3∑
j=1

σ̂±ij = 0, on ∂(Ω± × Y ),

for i = 1, 2, 3. Therefore, σ̂± = 0, and (C.16) is rewritten as∫
Ω±

σ± : e(v) dx− κ4
0

κ3
1

∫
ω×B1

Θ :

(
X1

∂2ψ1

∂X2
3

+X2
∂2ψ2

∂X2
3

)
dx′ dX =

=

∫
Ω±

F v dx+

∫
ω×B1

(Fm1 ψ1 + Fm2 ψ2 + F3v3) dx′ dX. (C.17)

Since the space W 1,∞(Ω+;R3) is dense in H1(Ω+;R3), since the space of functions in W 1,∞(Ω−,R3) vanishing
on Γ is dense in H1(Ω−;R3) and since the space C1(ω; C3([0, 1])) is dense in L2(ω;H1(0, 1)), the equality above
holds for every v in V and every ψ1, ψ2 in L2(ω;H1(0, 1)) satisfying

ψα(x′, 0) = vα|Ω−(x′, 0), ψα(x′, 1) = vα|Ω+(x′, 0) for a.e. x′ ∈ ω.

Finally, integrating over D1 and using (5.2), we obtain the result.

C.3 Convergences

Theorem C.2. Under the assumptions (3.22) on the applied forces, we first have (convergence of the stress
energy)

lim
ε→0
E(uε) =

∫
Ω+∪Ω−

σ± : e(u) dx+
πκ4

0

4κ3
1

Em
∫
ω×(0,1)

2∑
α=1

∣∣∣∂2Ũα
∂X2

3

∣∣∣2 dx′ dX3. (C.18)

The sequence (uε, σε) shows the following convergence behavior:
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• uε → u− strongly in H1(Ω−),

uε(·+ δe3)→ u+ strongly in H1(Ω+),

• σε → σ− strongly in L2(Ω−),

σε(·+ δe3)→ σ+ strongly in L2(Ω+),

• δ2

r
T ′ε (σε)→ Θ strongly in L2(ω ×B1), where

Θij =

 − E
m
(
X1

∂2Ũ1

∂X2
3

+X2
∂2Ũ2

∂X2
3

)
, (i, j) = (3, 3),

0, otherwise,

• δTε(R̃ε,α)→ R̃α, α = 1, 2 strongly in L2(ω;H1(0, 1)),

• Tε(Ũε,α)→ Ũα, α = 1, 2 strongly in L2(ω;H1(0, 1)),

Tε(Ũε,3)→ u±3 (·, 0) strongly in L2(ω;H1(0, 1)),

δ

r
Tε(Ũε,3 − Ũε,3(·, ·, 0))→ 0 strongly in L2(ω;H1(0, 1)).

Proof. Step 1. We prove (C.18).
We first recall a classical identity: if T is a symmetric 3× 3 matrix we have

λmTr(T )Tr(T ) +

3∑
i,j=1

2µmTijTij = EmT 2
33 +

Em

(1 + νm)(1− 2νm)
(T11 + T22 + 2νmT33)2

+
Em

2(1 + νm)
[(T11 − T22)2 + 4(T 2

12 + T 2
13 + T 2

23)].

(C.19)

Now, we consider the total elastic energy of the displacement uε, given by (2.10):

E(uε) =

∫
Ωε

σε : e(uε) dx =

∫
Ωε

fε · uε dx. (C.20)

The left–hand side of (C.20) is

E(uε) =

∫
Ωε

σε : e(uε) dx

=

∫
Ω−

σε : e(uε)dx+

∫
Ωiε

σε : e(uε)dx+

∫
Ω+
ε

σε : e(uε)dx

=

∫
Ω−

σε : e(uε)dx+
r2δ

ε2

∫
ω×B1

T ′ε (σε) : T ′ε
(
e(uε)

)
dx′dX +

∫
Ω+
ε

σε : e(uε)dx.

(C.21)

The second term of the right–hand side in the equation above is transformed using identity (C.19):∫
ω×B1

T ′ε (σε) : T ′ε
(
e(uε)

)
dx′dX

=

∫
ω×B1

(
Em e2

33(uε) +
Em

(1 + νm)(1− 2νm)

(
e11(uε) + e22(uε) + 2νme33(uε)

)2

+
Em

2(1 + νm)

[(
e11(uε)− e22(uε)

)2

+ 4
(

(e12(uε))
2 + (e13(uε))

2 + (e23(uε))
2
)])

dx′dX.

Then by standard weak lower semi–continuity, Lemma 4.1 and (4.16) give (we recall that R̃3 = 0)∫
Ω+∪Ω−

σ± : e(u) dx+
κ4

0

κ3
1

∫
ω×B1

Em e2
33(u) dx′dX ≤ lim inf

ε→0
E(uε). (C.22)

Besides, the convergences in Proposition 4.1 lead to

lim sup
ε→0

E(uε) = lim sup
ε→0

∫
Ωε

fε · uε dx = lim
ε→0

∫
Ωε

fε · uε dx

=

∫
Ω+∪Ω−

F · u dx+

∫
ω×(0,1)

2∑
α=1

F̃mα Ũαdx′ dX3 +

∫
ω

F
m

3 u3dx
′.
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Hence
lim sup
ε→0

E(uε) ≤ lim inf
ε→0

E(uε).

Therefore (we recall that Ũ ′3 = 0),

lim
ε→0
E(uε) =

∫
Ω+∪Ω−

σ± : e(u) dx+
πκ4

0

4κ3
1

Em
∫
ω×(0,1)

2∑
α=1

∣∣∣∂2Ũα
∂X2

3

∣∣∣2 dx′ dX3. (C.23)

Step 2. As an immediate consequence of the convergence (C.23) above, we have

σε → σ− strongly in L2(Ω−),

σε(·+ δe3)→ σ+ strongly in L2(Ω+),

δ2

r
T
′

ε (σε)→ Θ strongly in L2(ω ×B1).

(C.24)

Hence

e(uε)→ e(u−) strongly in L2(Ω−),

e(uε(·+ δe3))→ e(u+) strongly in L2(Ω+),

δ2

r
T
′

ε (ẽ(uε))→ X strongly in L2(ω ×B1).

(C.25)

From (C.25)1 and Korn’s inequality (2.11) in Ω−, we deduce that

uε → u− strongly in H1(Ω−).

The strong convergence above and the estimates (3.9)–(3.10) yield

uε(·, 0)1ω̂ε → u−|Σ = Ũ(·, 0) strongly in L2(Σ). (C.26)

From (C.25)3 and (4.15)4 we derive that

δ

r

∂Tε(Ũε,3)

∂X3
+ δ

∂Tε(R̃ε,1)

∂X3
X2 − δ

∂Tε(R̃ε,2)

∂X3
X1 +

δ2

r
T
′

ε ((ẽ(uε))33 →
∂R̃1

∂X3
X2 −

∂R̃2

∂X3
X1

strongly in L2(ω ×B1).

Hence, the equalities (3.4)1–(3.4)3 with the estimates (3.8)1 - (3.11) and the convergence in (C.26) lead to

δTε(R̃ε,α)→ R̃α, α = 1, 2 strongly in L2(ω;H1(0, 1)), (C.27)

δ

r
Tε(Ũε,3 − Ũε,3(·, ·, 0))→ 0 strongly in L2(ω;H1(0, 1)), (C.28)

Tε(Ũε,3)→ u−3|Σ = u+
3|Σ strongly in L2(ω,H1(0, 1)). (C.29)

The fourth estimate in Lemma B.2, the convergences in (C.26)–(C.27) and the equalities (4.11) imply that

Tε(Ũε,α)→ Ũα, α = 1, 2 strongly in L2(ω;H1(0, 1)). (C.30)

From the convergences in (C.29)–(C.30) and the estimates (3.11)–(3.12) we obtain

uε(·, δ)1ω̂ε → u+
|Σ = Ũ(·, 1) strongly in L2(Σ). (C.31)

Finally, due to the strong convergence above together with (C.25)2 and (A.17)2, we get uε(· + δe3) → u+

strongly in H1(Ω+).
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