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We consider a thin heterogeneous layer consisting of thin beams (of radius r) and study the limit behaviour of this problem as the period ε, the thickness δ and the radius r of the beams tend to zero. The decomposition of the displacement field into beams developed in [10] is used, which allows to obtain a priori estimates. Two types of unfolding operators are introduced to deal with different parts of the decomposition. In conclusion, we obtain the limit problem together with transmission conditions across the interface.

Introduction

In this paper a system of elasticity equations in domains separated by a thin heterogeneous layer is considered. The layer is composed of periodically distributed vertical beams, whose diameter and height tend to zero together with the period of the structure. The structure is fixed on the bottom. We consider the case of the isotropic linearized elasticity system.

Elasticity problems involving thin layers with periodic heterogeneous structure appear in many technical applications, where special constraints on the stiffness or compliance of a textile are required, depending on the type of application. For example, drainages, spacer fabrics in car-seats and protective wear, working for the outer-plane compression, should provide a certain stiffness and strength against an external mechanical loading. Thin layers were considered in a number of papers (see e.g. [START_REF] Ciarlet | Mathematical elasticity[END_REF][START_REF] Cioranescu | Onofrei The periodic unfolding method for perforated domains and Neumann sieve models[END_REF][START_REF] Geymonat | Lenci Mathematical analysis of a bonded joint with a soft thin adhesive[END_REF][START_REF] Neuss-Radu | Effective transmission conditions for reaction-diffusion processes in domains separated by an interface[END_REF]). In particular, [START_REF] Cioranescu | Onofrei The periodic unfolding method for perforated domains and Neumann sieve models[END_REF] deals with a layer composed of a material with holes, whose size is scaled with an additional small parameter; [START_REF] Geymonat | Lenci Mathematical analysis of a bonded joint with a soft thin adhesive[END_REF][START_REF] Neuss-Radu | Effective transmission conditions for reaction-diffusion processes in domains separated by an interface[END_REF] consider the case of the layer whose elastic coefficients are of the same order as its thickness. The thin beams and their junction with 3D structures were studied in [START_REF] Antman | Theory of rods[END_REF][START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part I[END_REF][START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part II[END_REF][START_REF] Griso | Decompositions of displacements of thin structures[END_REF][START_REF] Griso | Asymptotic behavior of curved rods by the unfolding method[END_REF]: [START_REF] Griso | Decompositions of displacements of thin structures[END_REF] deals with the decomposition for a single beam; in [START_REF] Griso | Asymptotic behavior of curved rods by the unfolding method[END_REF] the structure made of curved beams is considered. [START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part I[END_REF][START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part II[END_REF] study the limit behavior of structures composed of rods in a junction with a plate.

We consider 3 small parameters: the thickness δ of the layer (and the height of the beams at the same time), the radius r of the rods and the period of the layer ε (see Fig. 1(a)). The first problem with this structure arises when we obtain estimates on displacements. To overcome this difficulty we used a decomposition of the thin beams in the mean displacement and the rotation of the cross-section which was introduced in [START_REF] Griso | Decompositions of displacements of thin structures[END_REF]. After deriving estimates for the components of the decomposition we obtain bounds for the minimizing sequence which depend on ε, r, δ. The result leads to studying three critical cases with different ratios between small parameters. Two of them are considered in the present paper and lead to the same kind of limit problem. The third one corresponds no longer to thin beams but to small inclusions and is therefore not studied in the present paper.

The main result of the work is the limit problem (5.7), which replaces the structural layer by a kind of the linearized contact conditions. There F m α is the volume force, applied to the structural layer, E m are the Young's moduli of the beams, [u ± α ] |Σ are the macroscopic interface jumps in the displacement, and the convolution kernel K α is the fundamental solution of the beam problem (5.9). In order to obtain the limit problem, the periodic unfolding method, applied to the components of the decomposition, is used. Basic theory on the unfolding method can be found in [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF]. The idea of the method is to replace integrals of functions over domains depending on small parameters (e.g., oscillating, like in the periodic case, or thin domains) by the integrals over several finite domains. This is done by a successive substitution, leading to the increasing of the problem's dimension, and a change of variables. In the present study we introduce two additional types of the unfolding operators in order to deal with the mean displacement and rotation which depend only on component x 3 and the warping which depends on all (x 1 , x 2 , x 3 ). In the limit we derive a 3D elasticity problem for two domains separated by an interface with the inhomogeneous Robin-type condition on it. The coefficients in this jump condition are obtained from the solution of auxiliary 1D beam problems.

The paper is organized as follows. In Section 2 the geometry and the weak and strong formulations of the problem are introduced. Section 3 presents the decomposition of a single beam and the a priori estimates. In Section 4, the periodic unfolding operators are introduced and their properties are defined. Section 5 deals with taking the limit and obtaining the variational formulation for the limit problem. Section 6 contains an additional information and a numerical illustration.

2 Problem statement

Geometry

In the Euclidean space R 2 let ω be a connected domain with a Lipschitz boundary and let L > 0 be a fixed real number. Define the reference domains:

Ω -= ω × (-L, 0), Ω + = ω × (0, L), Σ = ω × {0}.
Moreover, Ω (see Figure 1b) is defined by

Ω = Ω + ∪ Ω -∪ Σ = ω × (-L, L). (2.1)
For the domains corresponding to structure with a layer of thickness δ we introduce the following notations:

Ω + δ = ω × (δ, L), Σ + δ = ω × {δ}.
In order to describe the configuration of the layer, for any (d, r) ∈ (0, +∞) 2 we define the rod B r,d by

B r,d = D r × (0, d),
where D r = D(O, r) is the disc of center O and radius r.

The set of rods is

Ω i r,ε,δ = i∈ Ξε×{0} x ∈ R 3 | x ∈ iε + B r,δ , (2.2) 
where 

Ξ ε = ξ ∈ Z 2 | ε(ξ + Y ) ⊂ ω , Y = - 1 2 ; 1 2 2 . (2.3) 
ω ε = interior i∈ Ξε ε i + Y , (2.4) 
Λ ε = ω \ ω ε . (2.5) 
The physical reference configuration (see Figure 1a) is defined by Ω r,ε,δ :

Ω r,ε,δ = interior Ω -∪ Ω i r,ε,δ ∪ Ω + δ . (2.6)
The structure is fixed on a part Γ with the non-zero measure of the boundary ∂Ω -\ Σ.

We make the following assumptions:

r < ε 2 , r δ ≤ C. (2.7)
Here, the first assumption (2.7) is a beam separation in the reference configuration for the beams whereas with the second one, we want to eliminate the case δ r → 0 which requires the use of tools for plates (see [START_REF] Griso | Decompositions of displacements of thin structures[END_REF]).

Strong formulation

Choose an isotropic material with Lamé constants λ m , µ m for the beams and another isotropic material with Lamé constants λ b , µ b for Ω -and Ω + δ . Then we have the following values for the Poisson's coefficient of the material and Young's modulus:

ν m = λ m 2(λ m + µ m ) , ν b = λ b 2(λ b + µ b ) , E m = µ m (3λ m + 2µ m ) λ m + µ m , E b = µ b (3λ b + 2µ b ) λ b + µ b . Ω + δ Ω - δ ε Σ B r,δ Σ + δ Ω i r,ε,δ 2r Γ (a)
The domain with the thin layer The linearized strain tensor or symmetric deformation field is defined by

Ω - Σ Γ Ω + (b) The limit problem
e(u) = ∇u + ∇ T u 2 .
The Cauchy stress tensor in Ω r,ε,δ is linked to e(u r,ε,δ ) through the standard Hooke's law:

σ r,ε,δ = λ b (Tr e(u r,ε,δ ))I + 2µ b e(u r,ε,δ ) in Ω -∪ Ω + δ , λ m (Tr e(u r,ε,δ ))I + 2µ m e(u r,ε,δ ) in Ω i r,ε,δ .
We consider the standard linear equations of elasticity in Ω r,ε,δ . The unknown displacement u r,ε,δ : Ω r,ε,δ → R 3 satisfies the following problem:

   ∇ • σ r,ε,δ = -f r,ε,δ in Ω r,ε,δ , u r,ε,δ = 0 on Γ, σ r,ε,δ • ν = 0 on ∂Ω r,ε,δ \ Γ.
(2.8)

Weak formulation

If V denotes the space

V = v ∈ H 1 (Ω r,ε,δ ; R 3 ) | v = 0 on Γ , the variational formulation of (2.8) is      Find u r,ε,δ ∈ V, Ω r,ε,δ σ r,ε,δ : e(ϕ)dx = Ω r,ε,δ f r,ε,δ • ϕ dx, ∀ϕ ∈ V.
(2.9) Throughout the paper and for any v ∈ V we denote by

σ(v) = λ(Tr e(v))I + 2µe(v) = λ m (Tr e(v))I + 2µ m e(v) in Ω -∪ Ω + δ , λ b (Tr e(v))I + 2µ b e(v) in Ω i r,ε,δ and E(v) = Ω r,ε,δ σ(v) : e(v) dx
the total elastic energy of the displacement v. Indeed choosing v = u r,ε,δ in (2.9) leads to the usual energy relation

E(u r,ε,δ ) = Ω r,ε,δ f r,ε,δ • u r,ε,δ dx. (2.10)
We equip the space V with the following norm:

u V = e(u) L 2 (Ω r,ε,δ ) .
In the next step we derive the Korn estimates for each sub-domain. Since Ω -touches the Dirichlet boundary, the 3D-Korn inequality for this sub-domain is the following:

u H 1 (Ω -) ≤ C e(u) L 2 (Ω -) .
(2.11)

3 Decomposition of displacements in the periodic layer with beams

Displacement of a single beam. Preliminary estimates

To obtain a priori estimates on u r,ε,δ and e(u r,ε,δ ) S we will need Korn's inequalities for this type of domain. However, for a multi-structured domains, it is not convenient to estimate the constant in a Korn's type inequality, because components of the displacement field may be of different orders of magnitude. To overcome this difficulty, we will use a decomposition for the displacements of the beams. A displacement of the beam B r,d is decomposed as the sum of three fields: the first one stands for the displacement of the center line, the second one stands for the rotations of the cross sections and the last one is the warping, which takes into account the deformations of the cross sections.

We recall the definition of the elementary displacement from [START_REF] Griso | Decompositions of displacements of thin structures[END_REF].

Definition 3.1. The elementary displacement U e , associated with u ∈ L 1 (B r,d , R 3 ), is given by

U e (x 1 , x 2 , x 3 ) = U(x 3 ) + R(x 3 ) ∧ (x 1 e 1 + x 2 e 2 ), for a.e. x = (x 1 , x 2 , x 3 ) ∈ B r,d , (3.1) 
where

                 U = 1 πr 2 Dr u(x 1 , x 2 , •)dx 1 dx 2 , R 3 = 1 (I 1 + I 2 )r 4 Dr (x 1 u 2 (x 1 , x 2 , •) -x 2 u 1 (x 1 , x 2 , •)) dx 1 dx 2 , R α = (-1) 3-α I 3-α r 4 Dr x 3-α u 3 (x 1 , x 2 , •) dx 1 dx 2 , I α = D1 x 2 α dx 1 dx 2 = π 4 . (3.2) 
We write ū = u -U e .

(3.

3)

The displacement ū is the warping. Note that

Dr ū(x 1 , x 2 , •)dx 1 dx 2 = 0, Dr (x 1 ū2 (x 1 , x 2 , •) -x 2 ū1 (x 1 , x 2 , •)) dx 1 dx 2 = 0, Dr x 1 ū3 (x 1 , x 2 , •) dx 1 dx 2 = Dr x 2 ū3 (x 1 , x 2 , •) dx 1 dx 2 = 0. (3.4)
The following theorem is proved in [START_REF] Griso | Decompositions of displacements of thin structures[END_REF].

Theorem 3.1. Let u be in H 1 (B r,d ; R 3 ) and let u = U e + ū be the decomposition of u given by (3.

1)-(3.3).

There exists a constant C independent of r such that the following estimates hold:

ū L 2 (B r,d ) ≤ Cr e(u) L 2 (B r,d ) , ∇ū L 2 (B r,d ) ≤ C e(u) L 2 (B r,d ) , dR dx 3 L 2 (0,d) ≤ C r 2 e(u) L 2 (B r,d ) , dU dx 3 -R ∧ e 3 ≤ C r e(u) L 2 (B r,d ) . (3.5) 
We set

Y ε = εY, W ε = Y ε × (-ε, 0), B r,ε = D r × (-ε, 0), W r,ε,δ = W ε ∪ D r × (-ε, δ).
Lemma 3.1. Let u be in H 1 (W r,ε,δ , R 3 ) and let u = U e + ū be the decomposition of the restriction of u to the rod B r,ε given by (3.1)-(3.3). There exists a constant C independent of δ, ε and r such that the following estimates hold:

|R(0)| 2 ≤ C r 3 ∇u 2 L 2 (Wε) , R 2 L 2 (0,δ) ≤ C δ r 3 ∇u 2 L 2 (Wε) + C δ 2 r 4 e(u) 2 L 2 (B r,δ ) , dU α dx 3 2 L 2 (0,δ) ≤ C δ r 3 ∇u 2 L 2 (Wε) + C δ 2 r 4 e(u) 2 L 2 (B r,δ ) , U 3 -U 3 (0) 2 L 2 (0,δ) ≤ C δ 2 r 2 e(u) 2 L 2 (B r,δ ) , U α -U α (0) 2 L 2 (0,δ) ≤ C δ 3 r 3 ∇u 2 L 2 (Wε) + C δ 4 r 4 e(u) 2 L 2 (B r,δ ) , u(•, •, 0) -U(0) 2 L 2 (Yε) ≤ Cε ∇u 2 L 2 (Wε) + C ε 2 r e(u) 2 L 2 (Wε) . (3.6) 
A proof of the lemma is given in Appendix A.

A priori Korn-type estimates

In this section all the constants do not depend on ε, δ and r. We denote by x = (x 1 , x 2 ) a point in R 2 .

Decomposition of displacements in the layer with beams on the in-plane and outer-plane components

We decompose the displacement u ∈ V in each beam εi + B r,δ , i ∈ Ξ ε × {0} as in the Definition 3.1. The components of the elementary displacement are denoted U ξ , R ξ , where ξ = x ε Y . Now we define the fields U, R and u for a.e. x ∈ B r,δ , s ∈ ω by

U(s 1 , s 2 , x 3 ) =    U ξ (x 3 ), if ξ = s ε Y ∈ Ξ ε 0, if ξ ∈ Ξ ε , R(s 1 , s 2 , x 3 ) =    R ξ (x 3 ), if ξ = s ε Y ∈ Ξ ε 0, if ξ ∈ Ξ ε , u(s 1 , s 2 , x) =    ūξ (x), if ξ = s ε Y ∈ Ξ ε 0, if ξ ∈ Ξ ε . We have U, R ∈ L 2 (ω, H 1 ((0, δ), R 3 )), u ∈ L 2 (ω, H 1 (B r,δ , R 3 )).
Moreover,

U 2 L 2 (ω×(0,δ)) = ε 2 ξ∈ Ξε U ξ 2 L 2 (0,δ) , R 2 L 2 (ω×(0,δ)) = ε 2 ξ∈ Ξε R ξ 2 L 2 (0,δ) , u 2 L 2 (ω×B r,δ ) = ε 2 ξ∈ Ξε ūξ 2 L 2 (B r,δ ) .
As a consequence of Theorem 3.1 and Lemma 3.1 we get Lemma 3.2. Let u be in V. The following estimates hold:

∂ R ∂x 3 L 2 (ω×(0,δ)) ≤ C ε r 2 u V , ∂ U ∂x 3 -R ∧ e 3 L 2 (ω×(0,δ)) ≤ C ε r u V , ∇ x u L 2 (ω×B r,δ ) ≤ Cε u V , u L 2 (ω×B r,δ ) ≤ Cεr u V , R L 2 (ω×(0,δ)) ≤ C εδ r 2 u V , ∂ U α ∂x 3 L 2 (ω×(0,δ)) ≤ C εδ r 2 u V . (3.7) Moreover, R(•, •, 0) 2 L 2 ( ωε) ≤ C ε 2 r 3 u 2 V , R(•, •, δ) 2 L 2 ( ωε) ≤ C ε 2 r 3 ∇u 2 L 2 (Ω + δ ) , U 3 -U 3 (•, •, 0) L 2 (ω×(0,δ)) ≤ C δε r u V , U α -U α (•, •, 0) L 2 (ω×(0,δ)) ≤ C δ 2 ε r 2 u V , where α = 1, 2.
(3.8)

The proof of estimates (3. 

Estimates on interface traces

Lemma 3.3. There exists a constant C independent of ε, δ, r such that for any u ∈ V

u(•, •, 0) -U(•, •, 0) 2 L 2 ( ωε) ≤ C ε 2 r u 2 V , (3.9) 
u(•, •, δ) -U(•, •, δ) 2 L 2 ( ωε) ≤ Cε ∇u 2 L 2 (Ω + δ ) + C ε 2 r u 2 V . (3.10)
Moreover,

u α (•, •, δ) -u α (•, •, 0) 2 L 2 ( ωε) ≤ Cε ∇u 2 L 2 (Ω + δ ) + C ε 2 δ 3 r 4 u 2 V , (3.11) 
u 3 (•, •, δ) -u 3 (•, •, 0) 2 L 2 ( ωε) ≤ Cε ∇u 2 L 2 (Ω + δ ) + C ε 2 δ r 2 u 2 V . (3.12) 
A proof of the lemma is shifted to Appendix A.

Estimates on displacements in Ω +

δ Lemma 3.4. There exists a constant C which does not depend on ε, r and δ, such that for any u ∈ V

u α H 1 (Ω + δ ) ≤ C εδ 3/2 r 2 u V + C u V , (3.13) 
u 3 H 1 (Ω + δ ) ≤ C ε 3/2 δ 3/2 r 2 u V + C u V , (3.14) 
where α = 1, 2.

A proof of the lemma is shifted to Appendix A. As a consequence of Lemma 3.4 and estimate (3.11), the inequality (3.12) can be replaced by

u α (•, •, δ) -u α (•, •, 0) 2 L 2 ( ωε) ≤ C ε 2 δ 3 r 4 u 2 V , (3.15) 
u 3 (•, •, δ) -u 3 (•, •, 0) 2 L 2 ( ωε) ≤ C ε 3 δ 3 r 4 u 2 V + C ε 2 δ r 2 u 2 V . (3.16) 3.2.4
Estimates for the set of beams Ω i r,ε,δ Lemma 3.5. There exists a constant C which does not depend on ε, r and δ, such that for any u ∈ V

∇u L 2 (Ω i r,ε,δ ) ≤ C δ r u V , u 3 L 2 (Ω i r,ε,δ ) ≤ C rδ 1/2 ε u V , u α L 2 (Ω i r,ε,δ ) ≤ C rδ 1/2 ε 1 + εδ 3/2 r 2 u V , (3.17) 
where α = 1, 2.

A proof can be found in Appendix A

The limit cases

In view of the estimates of Lemma 3.4 and in order to guarantee that the lower and upper parts of our structure match, we must assume that ε 2 δ 3 r 4 is uniformly bounded from above.

(3.18)

From now on, the parameters r, δ and ε are linked in the following way

• r = κ 0 ε η0 , η 0 ≥ 1, κ 0 > 0, if η 0 = 1 then κ 0 ∈ (0, 1/2) (limiting case: solid layer without holes),

• δ = κ 1 ε η1 , κ 1 > 0 and η 1 ≥ η 0 , (in order to deal with the beams).

The assumption (3.18) above yields 2 + 3η 1 -4η 0 ≥ 0.

Hence we distinguish three important cases:

• (i) r = κ 0 ε, κ 0 ∈ (0, 1/2) and δ = κ 1 ε 2/3 , κ 1 > 0, • (ii) r = κ 0 ε η0 , η 0 ∈ (1, 2), κ 0 > 0 and δ = κ 1 ε (4η0-2)/3 , κ 1 > 0, • (iii) r = κ 0 ε 2 , κ 0 > 0 and δ = κ 1 ε 2 , κ 1 > 0.
For a sake of simplicity, we will use the following notations from now on:

• Ω ε instead of Ω r,ε,δ , • Ω i ε instead of Ω i r,ε,δ , • Ω + ε instead of Ω + δ , • σ ε instead of σ r,ε,δ , • u ε instead of u r,ε,δ , • f ε instead of f r,ε,δ .
With assumption (3.18) we can rewrite the estimates obtained above. For any u ∈ V we have

u L 2 (Ω i ε ) ≤ C rδ 1/2 ε u V , (3.19 
)

u H 1 (Ω + ε ) ≤ C u V . (3.20)
The constants do not depend on ε, r and δ.

Force assumptions and the final a priori estimate

We set

B 1 = D 1 × (0, 1).
To obtain estimates on u ε we test (2.9) with ϕ = u ε . We have

M 1 u ε 2 V ≤ f ε L 2 (Ωε,R 3 ) u ε L 2 (Ωε,R 3 ) . (3.21)
We consider the following assumption on the applied forces:

f ε (x) =        ε 2 r 2 δ F m ε x ε Y , ε r x ε Y , x 3 δ for a.e. x ∈ Ω i ε , F (x) for a.e. x ∈ Ω -∪ Ω + ε , (3.22) 
where

F m ∈ C 0 (ω, L 2 (B 1 , R 3 )), F ∈ L 2 (ω × (-L, L), R 3 ). Then, f ε L 2 (Ω i ε ,R 3 ) ≤ ε rδ 1/2 F m L ∞ (ω,L 2 (B1,R 3 )) .
Making use of the estimates (2.11), (3.19), (3.20) together with the inequality (3.21) yields

u ε V ≤ C. (3.23)
The constant C does not depend of r, ε and δ.

From now on, we only consider cases (i) and (ii) introduced in Section 3.3.

4 Periodic unfolding operators. Taking the limit Definition 4.1. For a Lebesgue-measurable function ϕ on ω × (0, δ), the unfolding operator T ε is defined as follows:

T ε (ϕ)(s 1 , s 2 , X 3 ) = ϕ(s 1 , s 2 , δX 3 ), for a.e. (s 1 , s 2 , X 3 ) ∈ ω ε × (0, 1), 0, for a.e. (s 1 , s 2 , X 3 ) ∈ Λ ε × (0, 1).
Definition 4.2. For a Lebesgue-measurable function ϕ on ω × B r,δ , the unfolding operator T ε is defined as follows:

T ε (ϕ)(s 1 , s 2 , X 1 , X 2 , X 3 ) = ϕ(s 1 , s 2 , rX 1 , rX 2 , δX 3 ), for a.e. (s 1 , s 2 , X 1 , X 2 , X 3 ) ∈ ω ε × B 1 , 0, for a.e. (s 1 , s 2 , X 1 , X 2 , X 3 ) ∈ Λ ε × B 1 .
The first two coordinates in the operators above deal with the macro-position of a point in a periodic layer, whereas the others are responsible for the position in a unit cell.

The properties of these unfolding operators are proved in Lemma B.1 in Appendix B.

The limit fields. Cases (i) and (ii)

From now on, (u ε ) α will be denoted as u ε,α ; the same notation will be used for the fields with values in R 2 or R 3 .

The compactness results are given in Appendix B, Lemma B.2. Further we extend the function u ε defined on the domain Ω + ε by reflection to the domain ω × (δ, L + δ). The new function is also denoted u ε . Proposition 4.1. There exist a subsequence of {ε}, still denoted by {ε}, and

u ± ∈ H 1 (Ω ± , R 3 ) with u -= 0 on Γ and R ∈ L 2 (ω, H 1 0 ((0, 1), R 3 )), U α ∈ L 2 (ω, H 2 (0, 1)), U 3 , U 3 ∈ L 2 (ω, H 1 (0, 1)), u ∈ L 2 (ω × (0, 1), H 1 (D 1 , R 3 )) and Z ∈ L 2 (ω × (0, 1), R 3 ) such that u ε u -weakly in H 1 (Ω -), strongly in L 2 (Ω -), (4.1) 
u ε (• + δe 3 ) u + weakly in H 1 (Ω + ), strongly in L 2 (Ω + ), (4.2) 
δT ε ( R ε ) R weakly in L 2 (ω, H 1 (0, 1)), such that (4.3) R(x , 0) = R(x , 1) = 0, for a.e. x ∈ ω, (4.4) δ r (T ε ( U ε,3 ) -U ε,3 (•, •, 0)) U 3 weakly in L 2 (ω, H 1 (0, 1)), (4.5) 
T ε ( U ε,3 ) U 3 weakly in L 2 (ω, H 1 (0, 1)), such that (4.6) U 3 (•, •, •) = U 3 (•, •, 0) = u - 3 |Σ = U 3 (•, •, 1) = u + 3 |Σ , a.e. in ω × (0, 1), (4.7) 
T ε ( U ε,α ) U α weakly in L 2 (ω, H 1 (0, 1)), for α = 1, 2, such that (4.8) U α (•, •, 0) = u - α |Σ , U α (•, •, 1) = u + α |Σ a.e. in ω, (4.9) 
∂ U α ∂X 3 (•, •, 0) = ∂ U α ∂X 3 (•, •, 1) = 0 a.e. in ω, (4.10) 
∂ U 1 ∂X 3 = R 2 , ∂ U 2 ∂X 3 = -R 1 a.e. in ω × (0, 1), (4.11) δ 2 r 2 T ε ( u ε ) u weakly in L 2 (ω × (0, 1), H 1 (D 1 )), (4.12) δ r T ε ( u ε ) 0 weakly in L 2 (ω, H 1 (B 1 )), (4.13) δ r ∂T ε ( U ε ) ∂X 3 -δT ε ( R ε ∧ e 3 ) Z weakly in L 2 (ω × (0, 1)). (4.14)
The proof of the proposition is shifted to Appendix, Sec. B. As an immediate consequence of Proposition 4.1, we have the following lemma.

Lemma 4.1. There exist a symmetric matrix field

X ∈ L 2 (ω × B 1 , R 9 ) and a field u ∈ L 2 (ω × (0, 1), H 1 (D 1 , R 3 )), such that δ 2 r T ε e(u ε ) X weakly in L 2 (ω × B 1 , R 9 ),
where X is defined by

X ij = 1 2 ∂ u i ∂X j + ∂ u j ∂X i , i, j = 1, 2, X 13 = X 31 = 1 2 ∂ u 3 ∂X 1 - ∂ R 3 ∂X 3 X 2 , X 23 = X 32 = 1 2 ∂ u 3 ∂X 2 + ∂ R 3 ∂X 3 X 1 , X 33 = ∂ U 3 ∂X 3 - ∂ 2 U 2 ∂X 2 3 X 2 - ∂ 2 U 1 ∂X 2 3 X 1 .
(4.15) Denote by Θ the weak limit of the unfolded stress tensor

δ 2 r T ε (σ ε ) in L 2 (ω × B 1 , R 9 ): δ 2 r T ε (σ ε ) Θ, weakly in L 2 (ω × B 1 , R 9 ).
Proceeding exactly as in Section 6.1 of [START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part I[END_REF] and Section 8.1 of [START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part II[END_REF], we first derive u

u 1 = ν m -X 1 ∂ U 3 ∂X 3 + X 2 1 -X 2 2 2 ∂ 2 U 1 ∂X 2 3 + X 1 X 2 ∂ 2 U 2 ∂X 2 3 , u 2 = ν m -X 2 ∂ U 3 ∂X 3 + X 1 X 2 ∂ 2 U 1 ∂X 2 3 + X 2 2 -X 2 1 2 ∂ 2 U 2 ∂X 2 3 .
Similarly, the same computations as in Section 6.1 of [START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part I[END_REF] lead to u 3 = 0. As a consequence of Lemma 4.1 we obtain 

Θ 11 = Θ 22 = Θ 12 = 0, Θ 13 = -µ m X 2 ∂ R 3 ∂X 3 , Θ 23 = µ m X 1 ∂ R 3 ∂X 3 , Θ 33 = E m ∂ U 3 ∂X 3 -X 1 ∂ 2 U 1 ∂X 2 3 -X 2 ∂ 2 U 2 ∂X 2 3 . ( 4 
πκ 4 0 4κ 3 1 E m 1 0 ∂ 2 U α ∂X 2 3 (x , X 3 ) d 2 ϕ α dX 2 3 (X 3 ) dX 3 = 1 0 F m α (x , X 3 )ϕ α (X 3 ) dX 3 , ∀ϕ α ∈ H 2 0 (0, 1), for a.e. x ∈ ω, (5.1) 
where

F m α (x , X 3 ) = D1 F m α (x , X)dX 1 dX 2 a.e. in ω × (0, 1) α = 1, 2.
Furthermore, R 3 = 0, and there exists a ∈ L 2 (ω) such that

U 3 (x , X 3 ) = a(x )X 3 a.e. in ω × (0, 1).
The detailed proof of this Proposition and all main results can be found in Appendix C.

The equations for the macroscopic domain

Denote V = v ∈ L 2 (Ω -∪ Ω + ; R 3 ) | v |Ω -∈ H 1 (Ω -; R 3 ) and v |Ω -= 0 on Γ, v |Ω + ∈ H 1 (Ω + ; R 3 ) and v 3|Ω + = v 3|Ω -on Σ V T = (v, V 1 , V 2 , V 3 , V 4 ) ∈ V × [L 2 (Ω; H 2 (0, 1))] 2 × [L 2 (Ω; H 1 (0, 1))] 2 | V α (•, •, 0) = v - α |Σ , V α (•, •, 1) = v + α |Σ a.e. in ω, V 3 (•, •, 0) = V 4 (•, •, 0) = V 4 (•, •, 1) = ∂V α ∂X 3 (•, •, 0) = ∂V α ∂X 3 (•, •, 1) = 0 a.e. in ω, α ∈ {1, 2} Let χ be in C ∞ c (R 2 ) such that χ(y) = 1 in D 1 . D 1 is the disc centered in O = (0, 0) with radius 1.
From now on we only consider the case (ii).

Determination of U

3 Let χ be in C ∞ c (R 2 ) such that χ(y) = 1 in D 1 . Lemma 5.1. Let φ be in W 1,∞ (ω)
, and let φ ε,r be defined by

φ ε,r (x ) = χ ε r x ε Y φ ε x ε Y + 1 -χ ε r x ε Y φ(x ) for a.e. x ∈ ω. If r ε → 0, then for every p ∈ [1, +∞) we have φ ε,r -→ φ strongly in W 1,p (ω).
See in Appendix C for the proof.

Lemma 5.2. The function a introduced in Proposition 5.1 is equal to 0 and U 3 (x , X 3 ) = 0 a.e. in ω × (0, 1).

This Lemma is proved in Appendix C as well.

As a consequence of the lemma above and Proposition 5.1, one gets

Θ ij = 0, (i, j) = (3, 3) Θ 33 = -E m X 1 ∂ 2 U 1 ∂X 2 3 + X 2 ∂ 2 U 2 ∂X 2 3 .
(5.2) 5.2.2 Determination of u ± α and u 3 Theorem 5.1. The variational formulation of the limit problem for (2.9) is

Ω + ∪Ω - σ ± : e(v) dx + πκ 4 0 4κ 3 1 E m ω×(0,1) 2 α=1 ∂ 2 U α ∂X 2 3 ∂ 2 ψ α ∂X 2 3 dx dX 3 + πκ 4 0 4κ 3 1 µ m ω×(0,1) ∂ R 3 ∂X 3 ∂ψ 4 ∂X 3 dx dX 3 + πκ 4 0 κ 3 1 E m ω×(0,1) ∂ U 3 ∂X 3 ∂Φ 3 ∂X 3 dx dX 3 = Ω + ∪Ω - F v dx + ω×(0,1) 2 α=1 F m α ψ α dx dX 3 + ω F m 3 v 3 dx , ∀(v, ψ 1 , ψ 2 , ψ 3 , ψ 4 ) ∈ V T , ∀Φ 3 ∈ L 2 (ω; H 1 0 (0, 1)), (5.3) 
where

F m 3 (x ) = B1 F m 3 (x , X) dX, x ∈ ω.
We refer to Appendix C for the proof.

We also send the reader to Sec.C.2.3 of the Appendix, for the case (i).

The strong formulation of the limit problem

The strong formulations are the same for both cases (i), (ii). We will use the following notation.

Notation 5.1. The convolution of functions K and F is

(K * F m α )(x , X 3 ) = 1 0 K(X 3 , y 3 ) F m α (x , y 3 ) dy 3 . Define σ ± = λ b (Tre(u ± ))I + 2µ b e(u ± ) ∈ L 2 (Ω ± ; R 9 ), K α (X 3 , y 3 ) = D(X 3 -y 3 )X 2 3 (3 -2X 3 ) + 6(1 -2X 3 ) (X 3 -y 3 )H(X 3 -y 3 ) + (1 -y 3 ) 2 (y 3 -2y 3 X 3 -X 3 ) ,
where H(x) is the Heaviside function and D(x) the Dirac delta distribution at point x.

Let {ε} be a sequence of positive real numbers which tends to 0. Let (u ε , σ ε ) be the solution of (2.9) and U ε and R ε be the first two terms of the decompostion of u ε on Ω i ε . Let f satisfy assumptions (3.22). Then the limit problems for cases (i), (ii) can be written as follows.

Bending problem in the beams:

( U 1 , U 2 ) ∈ L 2 (ω, H 1 (0, 1)) 2 is the unique solution of the problem              πκ 4 0 4κ 3 1 E m ∂ 4 U α ∂X 4 3 = F m α a.e. in ω × (0, 1), ∂ U α ∂X 3 (•, •, 0) = ∂ U α ∂X 3 (•, •, 1) = 0, a.e. in ω, U α (•, •, 0) = u - α|Σ , U α (•, •, 1) = u + α|Σ , a.e. in ω, (5.4 
)

3D elasticity problem in Ω + ∪ Ω -: (u ± , σ ± ) ∈ (H 1 (Ω + ∪ Ω -)) 3 × (L 2 (Ω)) 3×3 S
is the unique weak solution of the problem

- 3 j=1 ∂σ ± ij ∂x j = F i in Ω ± , i = 1, 2, 3, (5.5) 
together with the boundary conditions

σ + i3 = 0 in ω × {L}, σ - i3 = 0 in ω × {-L}, (5.6) 
and the transmission conditions

         [σ ± i3 ] |Σ = F m i on Σ, [u ± 3 ] |Σ = 0 on Σ, σ + α3 = - 3πκ 4 0 κ 3 1 E m [u ± α ] |Σ + 1 0 K α * F m α dX 3 on Σ, α = 1, 2.
(5.7)

The weak formulation of the limit problem

Lemma 5.3. The weak formulation of the limit problem can be rewritten as

Ω + ∪Ω - σ ± : e(v) dx + 3πκ 4 0 κ 3 1 E m Σ 2 α=1 [u ± α ] |Σ [v ± α ] |Σ ds = = Ω + ∪Ω - F v dx + Σ 3 α=1 F m α v - α ds + Σ 2 α=1 [v ± α ] |Σ 1 0 K α * F m α dX 3 ds, ∀v ∈ V. (5.8) Proof. Step 1. Decomposition of U α . Denote V d = η ∈ C 3 ([0, 1]) | η(X 3 ) = (b -a)X 2 3 (3 -2X 3 ) + a, (a, b) ∈ R 2 .
Observe that a function

X 3 -→ η(X 3 ) = (b -a)X 2 3 (3 -2X 3 ) + a of V d satisfies η(0) = a, η(1) = b, dη dX 3 (0) = 0, dη dX 3 
(1) = 0, and

d 4 η dX 4 3 = 0 in (0, 1).
Hence for any function ψ ∈ H 2 0 (0, 1) we have

1 0 d 2 η dX 2 3 (t) d 2 ψ dX 2 3 (t) dt = 0.
Let U α be in L 2 (ω; H 2 0 (0, 1)) the solution of the following problem:

             πκ 4 0 4κ 3 1 E m ∂ 4 U α ∂X 4 3 (x , X 3 ) = F m α (x , X 3 ) a.e. in ω × (0, 1), ∂ U α ∂X 3 (•, •, 0) = ∂ U α ∂X 3 (•, •, 1) = 0, a.e. in ω, U α (•, •, 0) = U α (•, •, 1) = 0, a.e. in ω.
Using Green's function we can write U α in the following way:

U α (x , X 3 ) = 4κ 3 1 πE m κ 4 0 1 0 ξ α (X 3 , y 3 ) F m α (x , y 3 ) dy 3 ,
where ξ α is the solution of the equation

             d 4 ξ α dX 4 3 = D(X 3 -y 3 ), y 3 ∈ (0, 1), dξ α dX 3 (0) = dξ α dX 3 (1) = 0, ξ α (0) = ξ α (1) = 0.
(5.9)

Solving the equation above we obtain

ξ α (X 3 , y 3 ) = 1 6 (X 3 -y 3 ) 3 H(X 3 -y 3 ) - 1 6 (1 -y 3 ) 2 (2y 3 + 1)X 3 3 + 1 2 (1 -y 3 ) 2 y 3 X 2 3 .
The function U α is uniquely decomposed as a function belonging to L 2 (ω; V d ) and a function in L 2 (ω; H 2 0 (0, 1)):

U α (x , X 3 ) = (1 -X 3 ) 2 (2X 3 + 1)u - α|Σ (x ) -X 2 3 (3 -2X 3 )u + α|Σ (x ) + U α (x , X 3 ) = U α (x , X 3 ) + U α (x , X 3 )
for a.e. (x , X 3 ) ∈ ω × (0, 1).

(5.10)

Step 2. Taking into account the decomposition (5.10) and using as a test function

ψ α = [v ± α ] |Σ X 2 3 (3 - 2X 3 ) + v - α|Σ in (5.
3) we obtain

Ω + ∪Ω - σ ± : e(v) dx + 3πκ 4 0 2κ 3 1 E m ω 2 α=1 1 0 ∂ 2 U 1 ∂X 2 3 [v ± 1 ] |Σ + ∂ 2 U 2 ∂X 2 3 [v ± 2 ] |Σ (1 -2X 3 ) dX 3 dx = = Ω + ∪Ω - F v dx + ω 2 α=1 [v ± α ] |Σ 1 0 F m α X 2 3 (3 -2X 3 ) - 3πκ 4 0 2κ 3 1 E m ∂ 2 U α ∂X 2 3 (1 -2X 3 ) dX 3 dx + + ω 3 α=1 F m α v - α dx . (5.11)
Making use of the solutions for U α and U α we can write

Ω + ∪Ω - σ ± : e(v) dx + 3πκ 4 0 κ 3 1 E m ω 2 α=1 [u ± α ] |Σ [v ± α ] |Σ dx = Ω + ∪Ω - F v dx + + ω 2 α=1 [v ± α ] |Σ 1 0 F m α X 2 3 (3 -2X 3 ) -6(1 -2X 3 ) 1 0 d 2 ξ α dX 2 3 (X 3 , y 3 ) F m α (x , y 3 )dy 3 dX 3 dx + + ω 3 α=1 F m α v - α dx . (5.12)
Using the notation for the convolution and the expression for

d 2 ξ α dX 2
From the variational formulation (5.8) the final strong formulation is obtained.

Remark 5.1. The limit model can have an in-plane discontinuity at the interface. This is the limit behavior resulting from the deformation of the beams in the thin layer, whose bending leads to localized shearing at the interface but which are basically inextensible in the transverse direction. We note that starting with a linear elasticity for the blocks and the layer in-between, we end up with a kind of a linearized contact problem for two elastic blocks in the limit. A suitable choice of the load in the right-hand side should keep the tangential sliding small, such that the context of the linearity and small deformations is not violated.

6 Additional remarks

Other possible configurations

In this section we outline other possible configurations.

Remark 6.1. The case

r = κ 1 ε 2 , δ = κ 2 ε 2 , κ 1 , κ 2 > 0,
can also be considered, but should be studied separately. The structure obtained in this context will no longer correspond to the set of the thin beams but to some kind of a perforated domain.

Remark 6.2. For the case ε 2 δ 3 r 4 → 0, we obtain from the estimates (3.15), (3.16)

that lim r,ε,δ→0 u(•, •, δ) -u(•, •, 0) L 2 ( ωε) = 0. Therefore, u + |Σ = u - |Σ , where u ± ∈ H 1 (Ω + ∪ Ω -, Γ)
is the limit of the function u ε . Hence we obtain two limit problems on the domains Ω + , Ω -with Dirichlet boundary conditions, and the layer has no influence on the limit problem.

Numerical illustration

In this section solutions u r,ε,δ of the equation (2.8) are compared with the solution u of (5.5)-(5.7) for the 2D case. The solutions u r,ε,δ are computed numerically for different r, ε, δ with the commercial finite element software COMSOL Multiphysics. Triangular elements were used for the computations. The relation between the parameters is chosen in a following way

r = ε 3/2 , δ = ε 4/3 .
This corresponds to the Case (ii) with η 0 = 1.5, κ 0 = κ 1 = 1. A comparison between the sequence of the solutions u ε and u is done for jumps in displacement and stress. Components of the jumps are computed for different ε, and it is shown that the following norms tend to 0 as ε tends to 0:

[u ε,1 ] -[u 1 ] L 2 (Σ) , [u ε,2 ] L 2 (Σ) , σ + ε,12 -σ + 12 L 2 (Σ) , σ + ε,22 -σ + 22 L 2 (Σ) .
The stiffness coefficients and the applied force are chosen as follows A comparison of the results for different values of ε are gathered in the Table 1 in terms of the closing error between the simulated result and the limit problem. Simulations for smaller ε are already computationally expensive and require additional computational capacities. For example, for ε = 0.0008 it was not possible to perform computations due to lack of memory on the system used.

E = 2 • 10 11 , ν = 0.3, f ε = (10 3 , 10 3 ).
Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft (Grants No. OR 190/4-2 and OR 190/6-1). 

u -U L 2 (B r,ε ) ≤ Cr ∇u L 2 (B r,ε ) , (A.1)
where the constant does not depend on r and ε.

Step 1. Estimate of R(0).

Recalling the definition of R from (3.2) and using

Dr

x 1 dx 1 dx 2 = Dr x 2 dx 1 dx 2 = 0, we can write

∀x 3 ∈ [-ε, 0], R 1 (x 3 ) = 1 I 2 r 4 Dr x 2 u 3 (x) -U 3 (x 3 ) dx 1 dx 2 .

By Cauchy's inequality

∀x 3 ∈ [-ε, 0], |R 1 (x 3 )| 2 ≤ 1 I 2 2 r 8 Dr x 2 dx 1 dx 2 × Dr (u 3 (x) -U 3 (x 3 )) 2 dx 1 dx 2 ≤ C r 4 Dr (u 3 (x) -U 3 (x 3 )) 2 dx 1 dx 2 .
Integrating with respect to x 3 gives

0 -ε |R 1 (x 3 )| 2 dx 3 ≤ C r 4 
Br,ε

(u(x) -U(x 3 )) 2 dx.

Using (A.1), we can write

R 1 L 2 (-ε,0) ≤ C r ∇u L 2 (B r,ε ) . (A.2)
The derivative of R 1 is equal to

dR 1 dx 3 (x 3 ) = 1 I 2 r 4 Dr x 2 ∂u 3 (x) ∂x 3 dx 1 dx 2
for a.e. x 3 ∈ (-ε, 0). Then proceeding as above, we obtain for a.e. x 3 ∈ (-ε, 0)

dR 1 dx 3 (x 3 ) 2 ≤ C r 4 Dr ∂u 3 (x) ∂x 3 2 dx 1 dx 2 . Hence dR 1 dx 3 L 2 (-ε,0) ≤ C r 2 ∂u 3 ∂x 3 L 2 (B r,ε ) ≤ C r 2 ∇u L 2 (B r,ε ) . (A.3)
We recall following classical estimates for φ ∈ H 1 (-a, 0), where a > 0

|φ(0)| 2 ≤ 2 a φ 2 L 2 (-a,0) + a 2 φ 2 L 2 (-a,0) , φ 2 L 2 (-a,0) ≤ 2a|φ(0)| 2 + a 2 φ 2 L 2 (-a,0) . (A.4)
Due to (A.2)-(A.3), (A.4) 1 with a = r and ε > r, R 1 (0) satisfies

|R 1 (0)| 2 ≤ C r 3 ∇u 2 L 2 (B r,ε ) .
The estimates for R 2 (0), R 3 (0) are obtained in the same way. Hence we get (3.6) 1 .

Step 2. Estimate of R L 2 (0,δ) . Poincaré's inequality yields

R -R(0) L 2 (0,δ) ≤ δ dR dx 3 L 2 (0,δ) .
From (3.5) 3 , (A.4) 2 and (3.6) 1 we get

R 2 L 2 (0,δ) ≤ 2δ|R(0)| 2 + δ 2 dR dx 3 2 L 2 (0,δ) ≤ C δ r 3 ∇u 2 L 2 (B r,ε ) + C δ 2 r 4 e(u) 2 L 2 (B r,δ ) . (A.5)
Hence (3.6) 2 is proved.

Step 3. Estimate of U -U(0). Applying the inequality (3.5) 4 from Theorem 3.1 the following estimates on U hold:

dU 3 dx 3 L 2 (0,δ) ≤ C r e(u) L 2 (B r,δ ) , dU α dx 3 L 2 (0,δ) ≤ R L 2 (0,δ) + C r e(u) L 2 (B r,δ ) . (A.6)
Combining (A.6) 2 with (A.5) gives

dU α dx 3 2 L 2 (0,δ) ≤ C δ r 3 ∇u 2 L 2 (B r,ε ) + C δ 2 r 4 e(u) 2 L 2 (B r,δ ) + C r 2 e(u) 2 L 2 (B r,δ ) .
Taking into account assumption (2.7) 2 , we obtain (3.6) 3 . Then by (3.6) 3 , (A.6) 1 and Poincaré's inequality formulas (3.6) 4 , (3.6) 5 follow.

Step 4. We prove the estimate (3.6) 6 . By Korn's inequality, there exists a rigid displacement r

r(x) = a + b ∧ x + ε 2 e 3 , a = 1 ε 3 Wε u(x) dx, b = 6 ε 5 Wε x + ε 2 e 3 ∧ u(x) dx, such that u -r L 2 (Wε) ≤ Cε e(u) L 2 (Wε) , ∇(u -r) L 2 (Wε) ≤ C e(u) L 2 (Wε) . (A.7)
Besides, by Poincaré-Wirtinger inequality we have

u -a L 2 (Wε) ≤ Cε ∇u L 2 (Wε) . (A.8)
Using the following Sobolev embedding theorem W s,p ⊂ W t,q , for s, p, t, q : s ∈ R, s > t, p ∈ N and

1 q = 1 p - s -t n we get H 1/2 ⊂ L 4 or ϕ L 4 (Y ) ≤ C ϕ H 1/2 (Y ) , ∀ϕ ∈ H 1/2 (Y ).
Moreover, by definition of the H 1/2 norm for W = Y × (-1, 0), we have

ϕ H 1/2 (Y ) ≤ C ϕ L 2 (W ) + ∇ϕ L 2 (W ) , ∀ϕ ∈ H 1 (W ).
Therefore,

ϕ L 4 (Y ) ≤ C ϕ L 2 (W ) + ∇ϕ L 2 (W ) , ∀ϕ ∈ H 1 (W ).
With the change of variables

y ε = εy, for (y 1 , y 2 ) ∈ Y, (y 1 , y 2 , y 3 ) ∈ W,
and defining

ϕ ε (y ε ) = ϕ y ε ε , we obtain 1 √ ε ϕ ε L 4 (Yε) ≤ C 1 ε 3/2 ϕ ε L 2 (Wε) + 1 √ ε ∇ϕ ε L 2 (Wε) , ∀ϕ ε ∈ H 1 (W ε ) or ϕ L 4 (Yε) ≤ C 1 ε ϕ L 2 (Wε) + ∇ϕ L 2 (Wε) , ∀ϕ ∈ H 1 (W ε ).
Therefore, (A.7) and the inequality above lead to

u -r L 4 (Yε) ≤ C e(u) L 2 (Wε) . (A.9)
From the identity 1 πr 2

Dr (u(x , 0) -r(x , 0))dx = U(0) -a -b ∧ ε 2 e 3 ,
the estimate (A.9) and Hölder's inequality we get

U(0) -a -b ∧ ε 2 e 3 ≤ 1 πr 2 Dr 1 4/3 dx 3/4 Dr |u(x , 0) -r(x , 0)| 4 dx 1/4 ≤ C r 1/2 e(u) L 2 (Wε) . (A.10)
From Cauchy-Schwarz's inequality and taking into account (A.8), we derive

|b| ≤ C ε 5 Wε x + ε 2 e 3 2 dx 1/2 Wε |u(x) -a| 2 dx 1/2 ≤ C ε 5 • ε • ε 3/2 u -a L 2 (Wε) ≤ C ε 5/2 ε ∇u L 2 (Wε) ≤ C ε 3/2 ∇u L 2 (Wε) . (A.11)
Using (A.10) and (A.11), we obtain

|U(0) -a| ≤ U(0) -a -b ∧ ε 2 e 3 + b ∧ ε 2 e 3 ≤ C r 1/2 e(u) L 2 (Wε) + C ε 1/2 ∇u L 2 (Wε) .
(A.12)

The estimates (A.4) and (A.8) yield

u(•, •, 0) -a 2 L 2 (Yε) ≤ Cε ∇u 2 L 2 (Wε) . (A.13)
Combining (A.12) and (A.13) gives

u(•, •, 0) -U(0) 2 L 2 (Yε) ≤ C( u(•, •, 0) -a 2 L 2 (Yε) + U(0) -a 2 L 2 (Yε) ) ≤ Cε ∇u 2 L 2 (Wε) + C ε 2 r e(u) 2 L 2 (Wε) + Cε ∇u 2 L 2 (Wε) ≤ Cε ∇u 2 L 2 (Wε) + C ε 2 r e(u) 2 L 2 (Wε) .
Hence we get (3.6) 6 .

Therefore,

∇u L 2 (Ω + δ ) ≤ Cε 1/2 ∇u L 2 (Ω + δ ) + C εδ 3/2 r 2 u V + C u V .
For ε small enough the following holds true:

∇u L 2 (Ω + δ ) ≤ C εδ 3/2 r 2 u V + C u V .
Inserting this in (A.23) we derive (3.13)- (3.14).

Proof of Lemma 3.5. From the estimates in Theorem 3.1, (3.6) 2 and (3.6) 3 and after summation over all the beams, we get (making use of the assumption (2.7) 2 )

∇u 2 L 2 (Ω i r,ε,δ ) ≤ C δ r ∇u 2 L 2 (Ω -) + δ 2 r 2 e(u) 2 L 2 (Ω i r,ε,δ ) ≤ C δ 2 r 2 u 2 V . (A.24)
From (A.14) and (A.17) 1 , it follows that

ξ∈Ξε ε 2 |U ξ (0)| 2 = U(•, •, 0) 2 L 2 ( ωε) ≤ C ε 2 r u 2 V + C u 2 V , ξ∈Ξε |U ξ (0)| 2 ≤ C 1 r + 1 ε 2 u 2 V .
Using (3.5) 4 , (3.6) 3 , (A.4), we obtain ξ∈Ξε 

U ξ,3 2 
L 2 (0,δ) ≤ C δ ε 2 + δ 2 r 2 u 2 V , ξ∈Ξε U ξ,α 2 
L 2 (0,δ) ≤ C δ ε 2 + δ 4 r 4 u 2 V . (A.25) Additionally, ξ∈Ξε ūξ 2 L 2 (B r,δ ) ≤ Cr 2 e(u) 2 L 2 (Ω i r,ε,δ ) ≤ Cr 2 u 2 V . ( 
L 2 (B r,δ ) ≤ C r 2 δ ε 2 + δ 4 r 2 + δ 2 + r 2 u 2 V ≤ C r 2 δ ε 2 1 + ε 2 δ 3 r 4 u 2 V , ξ∈Ξε u ξ,3 2 
L 2 (B r,δ ) ≤ C r 2 δ ε 2 + δ 2 + r 2 u 2 V ≤ C r 2 δ ε 2 1 + ε 2 δ r 2 u 2 V . 2 
From the last inequalities, we derive (3.17) 2 and (3.17) 3 .

B Properties of the periodic unfolding operators. Estimates for the compactness.

Lemma B.1. (Properties of the operators T ε , T ε ) 1. ∀v, w ∈ L 2 (ω × (0, δ)) T ε (vw) = T ε (v)T ε (w), ∀v, w ∈ L 2 (ω × B r,δ ) T ε (vw) = T ε (v)T ε (w). 2. ∀u ∈ L 1 (ω × (0, δ)) δ ω×(0,1) T ε (u) ds 1 ds 2 dX 3 = ωε×(0,δ) u ds 1 ds 2 dx 3 , ∀u ∈ L 1 (ω × B r,δ ) r 2 δ ω×B1 T ε (u) ds 1 ds 2 dX 1 dX 2 dX 3 = ωε×B r,δ u ds 1 ds 2 dx 1 dx 2 dx 3 . 3. ∀u ∈ L 2 (ω × (0, δ)) T ε (u) L 2 (ω×(0,1)) ≤ 1 √ δ u L 2 (ω×(0,δ)) , ∀u ∈ L 2 (ω × B r,δ ) T ε (u) L 2 (ω×B1) ≤ 1 r √ δ u L 2 (ω×B r,δ ) .
4. Let u be in L 2 (ω, H 1 (0, δ)). Then we have

δT ε (∇ x3 u) = ∇ X3 T ε (u).
Let u be in L 2 (ω, H 1 (B r,δ )). Then we have

rT ε (∇ xα u) = ∇ Xα T ε (u), δT ε (∇ x3 u) = ∇ X3 T ε (u), where α = 1, 2.
Proof. Properties 1-3 are obtained similarly to the proof of Lemma 5.1 of [START_REF] Blanchard | Griso Junction of a periodic family of elastic rods with a 3d plate. Part I[END_REF]. Property 4 is the direct consequence of the chain rule:

∂(T ε (u)) ∂X α = rT ε ∂u ∂x α , α = 1, 2, ∂(T ε (u)) ∂X 3 = δT ε ∂u ∂x 3 , ∂(T ε (u)) ∂X 3 = δT ε ∂u ∂x 3 .
From Lemmas 3.2 and B.1 we obtain the following result.

Lemma B.2.

There exists a constant C, independent of ε, δ and r, such that 

T ε ( U ε ) L 2 (ω,H 1 (0,1)) ≤ C, (B.1) T ε ( U ε,3 ) -U ε,3 (•, •, 0) L 2 (ω,H 1 (0,1)) ≤ C r δ , (B.2) T ε ( R ε ) L 2 (ω,H 1 (0,1)) ≤ C δ , (B.3) ∂T ε ( U ε ) ∂X 3 -δT ε ( R ε ) ∧ e 3 L 2 (ω×(0,1)) ≤ C r δ , (B.4) T ε ( u ε ) L 2 (ω×(0,1),H 1 (D1)) ≤ C r 2 δ 2 , (B.5) ∂T ε ( u ε ) ∂X 3 L 2 (ω×B1) ≤ C r δ . (B.
∂ U ∂X 3 -R ∧ e 3 =         ∂ U 1 ∂X 3 -R 2 ∂ U 2 ∂X 3 + R 1 ∂ U 3 ∂X 3         = 0.
Then (4.4) yields (4.10). Equalities in (4.7) are the consequences of ∂ U 3 ∂X 3 = 0 and estimates (3.9), (3.10). Again due to (3.9), (3.10), we obtain

U α (x , 0) = u - α |Σ (x ), U α (x , 1) = u + α |Σ (x ), for a.e. x ∈ ω. From Lemma B.2 we have T ε ( u ε ) L 2 (ω,H 1 (B1)) ≤ C r δ
. From this and (4.12) we deduce (4.13).

The strain tensor of the displacement u ε is

T ε e(u ε ) ij = T ε e(u ε ) ij , i, j = 1, 2, T ε e(u ε ) 13 = 1 2 1 δ ∂T ε ( U ε,1 ) ∂X 3 -T ε ( R ε,2 ) - r δ ∂T ε ( R ε,3 ) ∂X 3 X 2 + T ε e(u ε ) 13 , T ε e(u ε ) 23 = 1 2 1 δ ∂T ε ( U ε,2 ) ∂X 3 + T ε ( R ε,1 ) + r δ ∂T ε ( R ε,3 ) ∂X 3 X 1 + T ε e(u ε ) 23 , T ε e(u ε ) 33 = 1 δ ∂T ε ( U ε,3 ) ∂X 3 + r δ ∂T ε ( R ε,1 ) ∂X 3 X 2 - r δ ∂T ε ( R ε,2 ) ∂X 3 X 1 + T ε e(u ε ) 33 . Define the field u ∈ L 2 (ω × (0, 1), H 1 (D 1 , R 3 )) by u α = u α , u 3 = u 3 + X 1 Z 1 + X 2 Z 2 .
Then

∂ u 3 ∂X 1 = ∂ u 3 ∂X 1 + Z 1 , ∂ u 3 ∂X 2 = ∂ u 3 ∂X 2 + Z 2 .
C Appendix: Derivation of the limit problem C.1 Equations for the domain Ω i ε Proof. (of Proposition 5.1)

Step 1. Obtain the limit equations in Ω i ε . We will use the following test function:

v ε (x) = r δ ψ(εξ)        δ r ϕ 1 x 3 δ - x 2 -εξ 2 r ϕ 4 x 3 δ δ r ϕ 2 x 3 δ + x 1 -εξ 1 r ϕ 4 x 3 δ ϕ 3 x 3 δ - x 1 -εξ 1 r dϕ 1 dX 3 x 3 δ - x 2 -εξ 2 r dϕ 2 dX 3 x 3 δ        , ξ = x ε Y ,
where ψ ∈ C ∞ c (ω), ϕ 3 and ϕ 4 ∈ H 1 0 (0, 1), ϕ 1 and ϕ 2 ∈ H 2 0 (0, 1). Computation of the symmetric strain tensor gives

e(v ε ) = r δ 2 ψ(εξ)        0 0 - 1 2 x 2 -εξ 2 r dϕ 4 dX 3 . . . 0 1 2 x 1 -εξ 1 r dϕ 4 dX 3 . . . . . . dϕ 3 dX 3 - x 1 -εξ 1 r d 2 ϕ 1 dX 2 3 - x 2 -εξ 2 r d 2 ϕ 2 dX 2 3        in εξ + B 1 .
Then

δ 2 r T ε e(v ε ) → ψ(x )        0 0 - 1 2 X 2 dϕ 4 dX 3 . . . 0 1 2 X 1 dϕ 4 dX 3 . . . . . . dϕ 3 dX 3 -X 1 d 2 ϕ 1 dX 2 3 -X 2 d 2 ϕ 2 dX 2 3        = V (x , X) strongly in L 2 (ω × B 1 ).
Moreover,

T ε ( v ε ) → ψ(x )   ϕ 1 (X 3 ) ϕ 2 (X 3 ) 0   strongly in L 2 (ω × B 1 ).
Unfolding the integral over Ω i ε , we obtain

Ω i ε σ ε : e(v ε )dx = ξ∈Ξε εξ+B r,δ σ ε : e(v ε )dx = r 2 δ ξ∈Ξε B1 T ε (σ ε ) : T ε e(v ε ) dx dX 1 dX 2 dX 3 = r 2 δ ε 2 ω×B1 T ε (σ ε ) : T ε e(v ε ) dx dX 1 dX 2 dX 3 .
In the same way, integrating the forces we get

Ω i ε f ε • v ε dx = r 2 δ ε 2 ω×B1 T ε (f ε ) • T ε ( v ε )dx dX 1 dX 2 dX 3 .
Taking the limit gives

κ 4 0 κ 3 1 ω×B1 Θ : V dx dX = 2 α=1 ω×B1 F m α (x , X)ψ(x )ϕ α (X)dx dX. (C.1)
We can localize the equation above. This gives

πκ 4 0 4κ 3 1 µ m ω×(0,1) ∂ R 3 ∂X 3 dϕ 4 dX 3 ψ dx dX 3 + πκ 4 0 4κ 3 1 E m ω×(0,1) 4 ∂ U 3 ∂X 3 dϕ 3 dX 3 + ∂ 2 U 1 ∂X 2 3 d 2 ϕ 1 dX 2 3 + ∂ 2 U 2 ∂X 2 3 d 2 ϕ 2 dX 2 3 ψ dx dX 3 = ω×(0,1) F m 1 ϕ 1 + F m 2 ϕ 2 ψdx dX 3 . (C.2)
The density of the tensor product

C ∞ c (ω) ⊗ H 1 0 (0, 1) (resp. C ∞ c (ω) ⊗ H 2 0 (0, 1)) in L 2 (ω; H 1 0 (0, 1)) (resp. L 2 (ω; H 2 0 (0, 1))) implies πκ 4 0 4κ 3 1 µ m ω×(0,1) ∂ R 3 ∂X 3 ∂Φ 4 ∂X 3 dx dX 3 + πκ 4 0 4κ 3 1 E m ω×(0,1) 4 ∂ U 3 ∂X 3 ∂Φ 3 ∂X 3 + ∂ 2 U 1 ∂X 2 3 ∂ 2 Φ 1 ∂X 2 3 + ∂ 2 U 2 ∂X 2 3 ∂ 2 Φ 2 ∂X 2 3 dx dX 3 = ω×(0,1) F m 1 Φ 1 + F m 2 Φ 2 dx dX 3 ∀Φ 3 , Φ 4 ∈ L 2 (ω; H 1 0 (0, 1)), ∀Φ 1 , Φ 2 ∈ L 2 (ω; H 2 0 (0, 1)). (C.3) Step 2. Obtain R 3 , U 3 . Since ϕ 3 ∈ H 1 0 (0, 1)
is not in the right-hand side of equation (C.2), we obtain

E m 1 0 ∂ U 3 ∂X 3 dϕ 3 dX 3 dX 3 = 0 ⇒ ∂ 2 U 3 ∂X 2 3 = 0 a.e. in ω × (0 , 1). (C.4) 
Moreover, we have U 3 (x , 0) = 0 for a.e. x ∈ ω. Therefore, there exists a ∈ L 2 (ω) such that U 3 (x , X 3 ) = X 3 a(x ), for a.e. (x , X 3 ) ∈ ω × (0, 1).

Similarly, recalling ϕ 4 ∈ H 1 0 (0, 1) and taking

ϕ 1 = ϕ 2 = ϕ 3 = 0 in (C.2), leads to µ m 1 0 ∂ R 3 ∂X 3 dϕ 4 dX 3 dX 3 = 0 ⇒ ∂ 2 R 3 ∂X 2 3 = 0 a.e. in ω × (0, 1).
This together with the boundary conditions (4.4) from Proposition 4.1 gives R 3 = 0.

The variational problem (5.1) and the boundary conditions (4.9)-(4.10) allow us to determine U α (α = 1, 2) in terms of the applied forces F m α and the traces u ± α|Σ .

C.2 Equations for the macroscopic domain

C.2.1 Determination of U 3
Proof. (of Lemma 5.1) For the sake of simplicity we extend φ to a function belonging to W 1,∞ (R 2 ) which is still denoted by φ. We take

Ξ ε = ξ ∈ Z 2 ; (εξ + εY ) ∩ ω = ∅ .
Observe that Ξ ε ⊂ Ξ ε . Consider the following estimate:

φ ε,r -φ L ∞ (ω) = χ ε r • ε Y φ ε • ε Y -φ L ∞ (ω) ≤ sup ξ∈ Ξε χ • r (φ(εξ) -φ(εξ + •)) L ∞ (Yε) = sup ξ∈ Ξε χ ε r • (φ(εξ) -φ(εξ + ε•)) L ∞ (Y ) ≤ ε χ L ∞ (R 2 ) ∇φ L ∞ (R 2 ) . (C.5)
The partial derivative of φ ε,r -φ with respect to x α is

∂(φ ε,r -φ) ∂x α (x ) = 1 r ∂χ ∂X α ε r x ε Y φ ε x ε Y -φ(x ) -χ ε r x ε Y ∂φ ∂x α (x ), for a.e. x ∈ ω, ∂(φ ε,r -φ) ∂x α (εξ + εy ) = 1 r ∂χ ∂X α ε r y (φ(εξ) -φ(εξ + εy )) -χ ε r y ∂φ ∂x α (εξ + εy ), ξ ∈ Ξ ε , for a.e. y ∈ Y.
Since χ has compact support in R 2 , there exists R > 0 such that supp(χ) ⊂ D R . Thus, the support of the function y -→ χ ε r y is included in the disc D rR/ε . As a consequence we get for a.e. y ∈ D rR/ε

|φ(εξ) -φ(εξ + εy )| ≤ rR ∇φ L ∞ (R 2 ) .
Using the above estimate, the norms of the derivatives satisfy

∂(φ ε,r -φ) ∂x α p L p (εξ+εY ) = ε 2 ∂χ ∂X α ε r • φ(εξ) -φ(εξ + ε•) r -χ ε r • ∂φ ∂x α (εξ + ε•) p L p (Y ) ≤ Cr 2 ∇χ p L ∞ (R 2 ) ∇φ p L ∞ (R 2 ) .
The constant C does not depend on ε and r. Combining the above estimates for ξ ∈ Ξ ε , that gives

∇(φ ε,r -φ) L p (ω) ≤ C r ε 2/p ∇χ L ∞ (R 2 ) ∇φ L ∞ (R 2 ) . (C.6)
The constant does not depend on r and ε. Hence, estimates (C.5) and (C.6) imply that φ ε strongly converges toward φ in W 1,p (ω).

Proof. (of Lemma 5.2) For any ψ 3 ∈ C 1 (ω × [0, 1]) satisfying ψ 3 (x , 0) = 0 for every x ∈ ω, we consider the following test function:

v ε,α (x) = 0 for a.e. x ∈ Ω ε , α = 1, 2, v ε (x) = 0 for a.e. x ∈ Ω -, v ε,3 (x) = r δ ψ 3 (x , 1) 1 -χ ε r x ε Y + ψ 3 ε x ε Y , 1 χ ε r x ε Y , for a.e. x ∈ Ω + ε , v ε,3 (x) = r δ ψ 3 ε x ε Y , x 3 δ , for a.e. x ∈ Ω i ε .
If r ε is small enough, v ε is an admissible test function. The symmetric strain tensor in Ω i ε is given by

e(v ε ) = r δ 2      0 0 0 . . . 0 0 . . . . . . ∂ψ 3 ∂X 3 εξ, x 3 δ     
a.e. in εξ + B r,δ .

Then

δ 2 r T ε e(v ε ) →      0 0 0 . . . 0 0 . . . . . . ∂ψ 3 ∂X 3 (x , X 3 )      = V (x , X) strongly in L 2 (ω × B 1 ).
The elements of the symmetric strain tensor in Ω + ε are written as follows:

e 11 (v ε ) = e 22 (v ε ) = e 12 (v ε ) = e 33 (v ε ) = 0, e α3 (v ε ) = e 3α (v ε ) = 1 2 r δ ∂ψ 3 ∂x α (x , 1)(1 -χ(y)) + 1 2δ ∂χ ∂y α (y) ψ 3 (x , 1) -ψ 3 ε x ε Y , 1 
,

where y = ε r x ε Y .
Using Lemma 5.1 and taking into account r δ → 0, the following convergences hold:

v ε (• + δe 3 ) -→ 0 strongly in H 1 (Ω + ; R 3 ), e(v ε ) -→ 0 strongly in L 2 (Ω + ; R 9 ).
Moreover,

T ε (v ε ) -→ 0 strongly in H 1 (ω × B 1 ; R 3 ).
Using v ε as a test function in (2.9) and passing to the limit in the unfolded formulation, gives ω×(0,1)

∂ U 3 ∂X 3 (x , X 3 ) ∂ψ 3 ∂X 3 (x , X 3 ) dx dX = ω×(0,1) a(x ) ∂ψ 3 ∂X 3 (x , X 3 ) dx dX = 0.
Hence a = 0. Since the test functions are dense in

V s = Ψ ∈ L 2 (ω; H 1 (0, 1)) | Ψ(x , 0) = 0 a.e. in ω
we obtain ω×(0,1)

∂ U 3 ∂X 3 (x , X 3 ) ∂Ψ ∂X 3 (x , X 3 ) dx dX = 0 ∀Ψ ∈ V s . (C.7)
C.2.2 Determination of u ± α and u 3 Proof. (of Theorem 5.1)

For any v ∈ V such that v |Ω -∈ W 1,∞ (Ω -, R 3 ) and v |Ω + ∈ W 1,∞ (Ω + , R 3
), we first define the displacement v ε,r in the following way:

v ε,r (x) = v(x) 1 -χ ε r x ε Y + v ε x ε Y , x 3 χ ε r x ε Y , for a.e. x ∈ Ω -∪ Ω + . (C.8)
Then let h denote the following function belonging to W 1,∞ (-L, L):

h(x 3 ) =    x 3 + L L , x 3 ∈ [-L, 0], 1, x 3 ≥ 0.
(C.9)

Now consider the test displacement

v ε (x) = v(x) 1 -h(x 3 ) + v ε,r (x)h(x 3 ), for a.e. x ∈ Ω -, v ε (x) = v ε,r (x , x 3 -δ), for a.e. x ∈ Ω + ε , v ε (x) =        ψ 1 ε x ε Y , x 3 δ ψ 2 ε x ε Y , x 3 δ v 3 ε x ε Y , 0 - ε δ x ε Y • ∂ψ ∂X 3 ε x ε Y , x 3 δ        for a.e. x ∈ Ω i ε ,
where

ψ α ∈ C 1 (ω; C 3 ([0, 1])), α = 1, 2, satisfies ψ α (x , 0) = v α|Ω -(x , 0), ψ α (x , 1) = v α|Ω + (x , 0) for every x ∈ ω. If r ε is small enough, v ε is an admissible test displacement.
Due to Lemma 5.1, the following convergences hold:

v ε (• + δe 3 ) -→ v strongly in H 1 (Ω + ; R 3 ), v ε -→ v strongly in H 1 (Ω -; R 3 ), e(v ε ) -→ e(v) strongly in L 2 (Ω + ∪ Ω -; R 9 ).
Computing the strain tensor in Ω i ε gives

e ij (v ε ) = 0 (i, j) = (3, 3), e 33 (v ε ) = - r δ 2 X 1 ∂ 2 ψ 1 ∂X 2 3 ε x ε Y , X 3 + X 2 ∂ 2 ψ 2 ∂X 2 3 ε x ε Y , X 3 .
Therefore,

T ε (v ε ) -→   ψ 1 (x , X 3 ) ψ 2 (x , X 3 ) v 3 (x , 0)   strongly in L 2 (ω × B 1 ; R 3 ), δ 2 r T ε e(v ε ) 33 -→ -X 1 ∂ 2 ψ 1 ∂X 2 3 (x , X 3 ) + X 2 ∂ 2 ψ 2 ∂X 2 3 (x , X 3 ) strongly in L 2 (ω × B 1 ).
Unfolding and taking the limit in (2.9) gives

Ω ± σ ± : e(v) dx - κ 4 0 κ 3 1 ω×B1 Θ : X 1 ∂ 2 ψ 1 ∂X 2 3 + X 2 ∂ 2 ψ 2 ∂X 2 3 dx dX = Ω ± F v dx + ω×B1 (F m 1 ψ 1 + F m 2 ψ 2 + F 3 v 3 ) dx dX.
Since the space W 1,∞ (Ω + ; R 3 ) is dense in H 1 (Ω + ; R 3 ), the space of these functions in W 1,∞ (Ω -, R 3 ) vanishing on Γ is dense in H 1 (Ω -; R 3 ) and since the space C 1 (ω; C 3 ([0, 1])) is dense in L 2 (ω; H 1 (0, 1)), the equality above holds for every v in V and every ψ 1 , ψ 2 in L 2 (ω; H 1 (0, 1)) satisfying

ψ α (x , 0) = v α|Ω -(x , 0), ψ α (x , 1) = v α|Ω + (x , 0) for a.e. x ∈ ω.
Finally, integrating over D 1 and making use of (C.3), (C.7) and (5.2) yields the result.

C.2.3 Case (i)

We introduce the classical unfolding operator.

Definition C.1. For a Lebesgue-measurable function ϕ on ω, the unfolding operator T ε is defined as follows:

T ε (ϕ)(s, y) = ϕ ε s ε Y + εy , for a.e. (s, y) ∈ ω ε × Y, 0, for a.e. (s, y) ∈ Λ ε × Y.
Recall that (see [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF]) the following lemma holds true.

Lemma C.1. Let φ be in W 1,∞ (ω) and let φ ε be defined by

φ ε (x ) = χ x ε Y φ ε x ε Y + 1 -χ x ε Y φ(x ) for a.e. x ∈ ω.
Then we have

T ε (φ ε ) -→ φ strongly in L 2 (ω; H 1 (Y )), T ε (∇φ ε ) -→ ∇φ strongly in L 2 (ω × Y ).
Theorem C.1. The variational formulation for the problem (2.9) in the case (i) is given by

Ω + ∪Ω - σ ± : e(v) dx + πκ 4 0 4κ 3 1 E m ω×(0,1) 2 α=1 ∂ 2 ψ α ∂X 2 3 ∂ 2 U α ∂X 2 3 dx dX 3 + πκ 4 0 4κ 3 1 µ m ω×(0,1) ∂ R 3 ∂X 3 ∂ψ 4 ∂X 3 dx dX 3 + πκ 4 0 κ 3 1 E m ω×(0,1) ∂ U 3 ∂X 3 ∂Φ 3 ∂X 3 dx dX 3 = Ω + ∪Ω - F v dx + ω×(0,1) 2 α=1 F m α ψ α dx dX 3 + ω F m 3 v 3 dx , ∀(v, ψ 1 , ψ 2 , ψ 3 , ψ 4 ) ∈ V T , ∀Φ 3 ∈ L 2 (ω; H 1 0 (0, 1)). 
(C.10)

Proof. Step 1. Take the limit in the weak formulation.

In addition to (4.1) and (4.2) we have

T ε (u ε ) u -weakly in L 2 (Ω -; H 1 (Y )), (C.11) T ε (∇u ε ) ∇u -+ ∇ y u -weakly in L 2 (Ω -× Y ), (C.12) T ε (u ε )(• + δe 3 , ••) u + weakly in L 2 (Ω + ; H 1 (Y )), (C.13) T ε (∇u ε )(• + δe 3 , ••) ∇u + + ∇ y u + weakly in L 2 (Ω + × Y ), (C.14) where u -belongs to L 2 (Ω -; H 1 per (Y ; R 3 )) and u + belongs to L 2 (Ω + ; H 1 per (Y ; R 3 )).
Remark C.1. Here the third variable of u ε is considered as a parameter, on which the unfolding operator T ε does not have any effect.

Step 2. Determination of U 3 .

To determine the function a introduced in Proposition 5.1, take ψ 3 ∈ C 1 (ω × [0, 1]), satisfying ψ 3 (x , 0) = 0 for every x ∈ ω, and consider the following test function:

v ε,α (x) = 0 for a.e. x ∈ Ω ε , α = 1, 2, v ε (x) = 0 for a.e. x ∈ Ω -, v ε,3 (x) = ε 1/3 ψ 3 (x , 1) 1 -χ x ε Y + ψ 3 ε x ε Y , 1 χ x ε Y for a.e. x ∈ Ω + ε , v ε,3 (x) = ε 1/3 ψ 3 ε x ε Y , x 3 ε 2/3 χ x ε Y for a.e. x ∈ Ω i ε .
We obtain the following convergences:

v ε (• + δe 3 ) -→ 0 strongly in H 1 (Ω + ∪ Ω -; R 3 ), e(v ε ) -→ 0 strongly in L 2 (Ω + ∪ Ω -; R 9 ), T ε (v ε ) -→ 0 strongly in H 1 (ω × B 1 ; R 3 ).
Unfolding and taking the limit as in the Subsection C.2.1 we obtain that a = 0.

Step 3.

For any v ∈ V such that v |Ω -∈ W 1,∞ (Ω -; R 3 ) and v |Ω + ∈ W 1,∞ (Ω + ; R 3
), we define the displacement v ε in the following way:

v ε (x) = v(x) 1 -χ x ε Y + v ε x ε Y , x 3 χ x ε Y , for a.e. x ∈ Ω -∪ Ω + . (C.15)
Consider the following test displacement:

v ε (x) = v(x) 1 -h(x 3 ) + v ε (x)h(x 3 ) + εΨ (-) (x , x 3 ) v x ε Y , for a.e. x ∈ Ω -, v ε (x) = v ε (x , x 3 -δ) + εΨ (+) (x , x 3 -δ) v x ε Y , for a.e. x ∈ Ω + ε , v ε (x) =        ψ 1 ε x ε Y , x 3 δ ψ 2 ε x ε Y , x 3 δ v 3 ε x ε Y , 0 - ε δ x ε Y • ∂ψ ∂X 3 ε x ε Y , x 3 δ        for a.e. x ∈ Ω i ε ,
where

• v ∈ H 1 per (Y ; R 3 ), • ψ α ∈ C 1 (ω; C 3 ([0, 1])), α = 1, 2, satisfies ψ α (x , 0) = v α|Ω -(x , 0), ψ α (x , 1) = v α|Ω + (x , 0) for every x ∈ ω, • Ψ (-) ∈ W 1,∞ (Ω -), Ψ (+) ∈ W 1,∞ (Ω + ) satisfies Ψ (±) (x , 0) = 0, a.e. in ω, Ψ (-) = 0 on Γ,
• h(x 3 ) is defined as in (C.9).

Using (5.2), we obtain the following convergences:

T ε (v ε (•, ••)) -→ v strongly in L 2 (Ω -; H 1 (Y )), T ε (∇v ε (•, ••)) -→ ∇v + Ψ (-) ∇ y v strongly in L 2 (Ω -× Y ), T ε (v ε (• + δe 3 , ••)) -→ v strongly in L 2 (Ω + ; H 1 (Y )), T ε (∇v ε (• + δe 3 , ••)) -→ ∇v + Ψ (+) ∇ y v strongly in L 2 (Ω + × Y ).
Moreover,

T ε (T ε (v ε )) -→     ψ 1 (x , X 3 ) ψ 2 (x , X 3 ) v 3 (x , 0)     strongly in L 2 (ω; H 1 (Y × B 1 )), δ 2 r T ε (T ε (e 33 (v ε ))) -→ -X 1 ∂ 2 ψ 1 ∂X 2 3 (x , X 3 ) -X 2 ∂ 2 ψ 2 ∂X 2 3 (x , X 3 ) strongly in L 2 (ω × Y × B 1 ).
Unfolding and taking the limit, we obtain

Ω ± ×Y (σ ± + σ ± ) : e(v) + Ψ (±) e y ( v) dxdy - κ 4 0 κ 3 1 ω×B1 Θ : X 1 ∂ 2 ψ 1 ∂X 2 3 + X 2 ∂ 2 ψ 2 ∂X 2 3 dx dX = = Ω ± F v dx + ω×B1 (F m 1 ψ 1 + F m 2 ψ 2 + F 3 v 3 ) dx dX. (C.16)
Since σ ± and e(v) do not depend on y and due to the periodicity of the fields v and u ± , the equality above reads

Ω ± σ ± : e(v) dx + Ω ± ×Y σ ± : Ψ (±) e y ( v) dxdy - κ 4 0 κ 3 1 ω×B1 Θ : X 1 ∂ 2 ψ 1 ∂X 2 3 + X 2 ∂ 2 ψ 2 ∂X 2 3 dx dX = = Ω ± F v dx + ω×B1 (F m 1 ψ 1 + F m 2 ψ 2 + F 3 v 3 ) dx dX.
Step 3. To determine σ we first take v = 0. We then obtain

Ω ± ×Y σ ± : Ψ (±) e y ( v) dxdy - κ 4 0 κ 3 1 ω×B1 Θ : X 1 ∂ 2 ψ 1 ∂X 2 3 + X 2 ∂ 2 ψ 2 ∂X 2 3 dx dX = ω×B1 (F m 1 ψ 1 + F m 2 ψ 2 ) dx dX.
Since the right-hand side does not contain v,

Ω ± ×Y σ ± : Ψ (±) e y ( v) dxdy = 0,
which corresponds to the strong formulation

             3 j=1 ∂ σ ± ij ∂y j = 0, in Ω ± × Y, 3 j=1 σ ± ij = 0, on ∂(Ω ± × Y ),
for i = 1, 2, 3. Therefore, σ ± = 0, and (C.16) is rewritten as

Ω ± σ ± : e(v) dx - κ 4 0 κ 3 1 ω×B1 Θ : X 1 ∂ 2 ψ 1 ∂X 2 3 + X 2 ∂ 2 ψ 2 ∂X 2 3 dx dX = = Ω ± F v dx + ω×B1 (F m 1 ψ 1 + F m 2 ψ 2 + F 3 v 3 ) dx dX. (C.17)
Since the space W 1,∞ (Ω + ; R 3 ) is dense in H 1 (Ω + ; R 3 ), since the space of functions in W 1,∞ (Ω -, R 3 ) vanishing on Γ is dense in H 1 (Ω -; R 3 ) and since the space C 1 (ω; C 3 ([0, 1])) is dense in L 2 (ω; H 1 (0, 1)), the equality above holds for every v in V and every ψ 1 , ψ 2 in L 2 (ω; H 1 (0, 1)) satisfying ψ α (x , 0) = v α|Ω -(x , 0), ψ α (x , 1) = v α|Ω + (x , 0) for a.e. x ∈ ω.

Finally, integrating over D 1 and using (5.2), we obtain the result. The sequence (u ε , σ ε ) shows the following convergence behavior:

C.3 Convergences

• u ε → u -strongly in H 1 (Ω -), u ε (• + δe 3 ) → u + strongly in H 1 (Ω + ),

• σ ε → σ -strongly in L 2 (Ω -), σ ε (• + δe 3 ) → σ + strongly in L 2 (Ω + ),

• δ 2 r T ε (σ ε ) → Θ strongly in L 2 (ω × B 1 ), where

Θ ij =      -E m X 1 ∂ 2 U 1 ∂X 2 3 + X 2 ∂ 2 U 2 ∂X 2 3
, (i, j) = (3, 3), 0, otherwise,

• δT ε ( R ε,α ) → R α , α = 1, 2 strongly in L 2 (ω; H 1 (0, 1)),

• T ε ( U ε,α ) → U α , α = 1, 2 strongly in L 2 (ω; H 1 (0, 1)),

T ε ( U ε,3 ) → u ± 3 (•, 0) strongly in L 2 (ω; H 1 (0, 1)), δ r T ε ( U ε,3 -U ε,3 (•, •, 0)) → 0 strongly in L 2 (ω; H 1 (0, 1)).

Proof.

Step 1. We prove (C.18). We first recall a classical identity: if T is a symmetric 3 × 3 matrix we have λ m T r(T )T r(T ) + Then by standard weak lower semi-continuity, Lemma 4.1 and (4.16) give (we recall that R 3 = 0) 

Ω + ∪Ω -
∂X 3 + δ ∂T ε ( R ε,1 ) ∂X 3 X 2 -δ ∂T ε ( R ε,2 ) ∂X 3 X 1 + δ 2 r T ε (( e(u ε )) 33 → ∂ R 1 ∂X 3 X 2 - ∂ R 2 ∂X 3 X 1
strongly in L 2 (ω × B 1 ).

Hence, the equalities (3. Finally, due to the strong convergence above together with (C.25) 2 and (A.17) 2 , we get u ε (• + δe 3 ) → u + strongly in H 1 (Ω + ).

Almost any z ∈ R 2

 2 can be decomposed in the way z = [z] Y + {z} Y , where [z] Y ∈ Z 2 , and {z} Y ∈ Y . Moreover, we set:

Figure 1 :

 1 Figure 1: The reference configuration

7 ) 1 -( 3 . 7 )

 7137 6 follows directly from (2.11), (3.5) 3 , (3.5) 4 and (3.6) 2 -(3.6) 3 , and the estimates (3.8) are the consequences of the estimates in Lemma 3.1 and (2.11).

.16) 5

 5 The limit problem 5.1 The equations for the domain Ω i ε Proposition 5.1. ( U 1 , U 2 ) satisfy the variational formulation

Fig. 2 (

 2 Fig. 2 (a) provides the solution of the equation (5.5)-(5.7) in macroscopic blocks, and jumps in the equivalent von Mises stresses across the interface can be observed. Fig. 2 (b) shows the local ε-solution in the layer for ε = 0.004.A comparison of the results for different values of ε are gathered in the Table1in terms of the closing error between the simulated result and the limit problem. Simulations for smaller ε are already computationally expensive and require additional computational capacities. For example, for ε = 0.0008 it was not possible to perform computations due to lack of memory on the system used.Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft (Grants No. OR 190/4-2 and OR 190/6-1).

Figure 2 :

 2 Figure 2: Simulation results

  A.26) Then (3.6) 2 , (A.25) and (A.26) give ξ∈Ξε u ξ,α

Theorem C. 2 . 2 α=1∂ 2 U α ∂X 2 3 2

 2223 Under the assumptions (3.22) on the applied forces, we first have (convergence of the stress energy)lim ε→0 E(u ε ) = Ω + ∪Ω -σ ± : e(u) dx + πκ dx dX 3 . (C.18)

2 + E m 2 ( 1 +δ ε 2 ω×B1T 2 + E m 2 ( 1 + 2 + 4 (

 221222124 2µ m T ij T ij = E m T 2 33 + E m (1 + ν m )(1 -2ν m ) (T 11 + T 22 + 2ν m T 33 ) ν m ) [(T 11 -T 22 ) 2 +4consider the total elastic energy of the displacement u ε , given by (2.10):E(u ε ) = Ωε σ ε : e(u ε ) dx = Ωε f ε • u ε dx. (C.20)The left-hand side of (C.20) isE(u ε ) = Ωε σ ε : e(u ε ) dx = Ω - σ ε : e(u ε )dx + Ω i ε σ ε : e(u ε )dx + Ω + ε σ ε : e(u ε )dx = Ω - σ ε : e(u ε )dx + r 2 ε (σ ε ) : T ε e(u ε ) dx dX + Ω + ε σ ε : e(u ε )dx. (C.21)The second term of the right-hand side in the equation above is transformed using identity (C.19):ω×B1 T ε (σ ε ) : T ε e(u ε ) dx dX = ω×B1 E m e 2 33 (u ε ) + E m (1 + ν m )(1 -2ν m )e 11 (u ε ) + e 22 (u ε ) + 2ν m e 33 (u ε ) ν m ) e 11 (u ε ) -e 22 (u ε ) e 12 (u ε )) 2 + (e 13 (u ε )) 2 + (e 23 (u ε ))2 dx dX.

E m e 2 33Step 2 .

 22 (u) dx dX ≤ lim inf ε→0 E(u ε ). (C.22) Besides, the convergences in Proposition 4.1 lead to lim sup ε→0 E(u ε ) = lim sup ε→0 Ωεf ε • u ε dx = lim ε→0 Ωε f ε • u ε dx = Ω + ∪Ω - F • u dx +As an immediate consequence of the convergence (C.23) above, we haveσ ε → σ -strongly in L 2 (Ω -), σ ε (• + δe 3 ) → σ + strongly in L 2 (Ω + ), δ 2 r T ε (σ ε ) → Θ strongly in L 2 (ω × B 1 ). (C.24) Hence e(u ε ) → e(u -) strongly in L 2 (Ω -), e(u ε (• + δe 3 )) → e(u + ) strongly in L 2 (Ω + ), δ 2 r T ε ( e(u ε )) → X strongly in L 2 (ω × B 1 ). (C.25)From (C.25) 1 and Korn's inequality(2.11) in Ω -, we deduce thatu ε → u -strongly in H 1 (Ω -).The strong convergence above and the estimates (3.9)-(3.10) yieldu ε (•, 0)1 ωε → u - |Σ = U(•, 0) strongly in L 2(Σ). (C.26) From (C.25) 3 and (4.15) 4 we derive that δ r ∂T ε ( U ε,3 )

  4) 1 -(3.4) 3 with the estimates (3.8) 1 -(3.11) and the convergence in (C.26) lead toδT ε ( R ε,α ) → R α , α = 1, 2 strongly in L 2 (ω; H 1 (0, 1)), (C.27) δ r T ε ( U ε,3 -U ε,3 (•, •, 0)) → 0 strongly in L 2 (ω; H 1 (0, 1)), (C.28) T ε ( U ε,3 ) → u - 3|Σ = u + 3|Σ strongly in L 2 (ω, H 1 (0,1)). (C.29) The fourth estimate in Lemma B.2, the convergences in (C.26)-(C.27) and the equalities (4.11) imply thatT ε ( U ε,α ) → U α , α = 1, 2 strongly in L 2 (ω; H 1 (0,1)). (C.30) From the convergences in (C.29)-(C.30) and the estimates (3.11)-(3.12) we obtain u ε (•, δ)1 ωε → u + |Σ = U(•, 1) strongly in L 2 (Σ). (C.31)

Table 1 :

 1 Norms of the residual

	0.59	0.6

3 • 10 -5 1.05 1.1 0.02 2.5 • 10 -5 1.6 • 10 -5

A Appendix: Proofs of result of Sec. 3

Proof of Lemma 3.1. Applying the 2D-Poincaré-Wirtinger's inequality we obtain the following estimate:

we get the result.

Proof of Lemma 3.3. Using (3.6) 6 and then summing over all of the periodicity cells gives

(A. [START_REF] Trabucho | Viano Mathematical Modelling of Rods, Hand-book of Numerical Analysis[END_REF] In the same way, the following estimate is derived:

Applying (3.7) 2 we can write

From (3.7) 6 we have

Using (A.16) and the estimates above we obtain (3.11), (3.12).

Proof of Lemma 3.4. From Korn's inequality and the trace theorem we derive

(A.17)

We know that there exists a rigid displacement r

where the constant does not depend on δ (since

from (3.11) and (3.12) we obtain

Combining this with (A.19) gives

Therefore,

These estimates together with (A.18) allow us to obtain estimates on u 1 , u 2 , u 3 . This yields

(A.23)