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We present an approach to derive performance bounds of a queue under
histogram-based input traffics. The results are obtained through strong stochastic
bounds on the queue length and on the output traffic. The bounds provide
probability inequalities on transient behaviors and on steady-state when it
exists. We consider both stationary and non stationary traffics and provide
some numerical techniques in both cases. Unlike approximate methods, these
bounds can be used to check if the Quality of Service constraints are satisfied
or not. Our approach provides a trade-off between the accuracy of results and
the computational complexity and it is much faster than the histogram-based

simulation.
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1. INTRODUCTION

Nowadays, more and more applications are based on
network technologies that require high data rates,
such as video on demand, health care applications,
or financial transactions. Network performance
has an important impact on such applications and
may cause quality problems which lead to customer
dissatisfactions. One important research area in
the context of performance evaluation and network
dimensioning is to develop accurate traffic models
in order to design networks ensuring the required
Quality of Service (QoS). Thus, it is essential that
the underlying models reflect as much as possible the
relevant characteristics of the traffic.

We propose to use some measurements on the traffic
instead of well-known stochastic processes currently
used in queuing theory. Usually, one derives from the
measurements a complex arrival process with a fitting
algorithm.

This arrival process is then integrated into a so-
called structured Markov chain which models the queue.
Many algorithms have been derived to solve the steady-
state distribution for this type of queues (see [1] and
references therein).

In this paper, we propose a different approach: we
use directly the measurements to obtain a distribution
of arrivals during a time slot. This direct integration
of the measurements into the model without a fitting
procedure is an important aspect of the approach.
We claim that fitting measurements to parametrize
a stochastic process gives an approximation. Such
an approximation on the processes involved in the
queueing model may lead to incorrect results (see
[2] for service time distributions approximated by a
Gaussian distribution). Instead, we construct empirical
distributions which are stochastic bounds of the traffic
distribution, while Hernàndez et al. [3, 4, 5] only
build approximations of this distribution. Thanks to
the monotonicity of the model, we use these empirical
distributions in the queuing model to obtain upper and
lower bounds on the performance indices. Bounding
methods are sufficient to provide dimensioning solutions
which guarantee the performance measure constraints
and they reduce the computational times. We advocate
that the traffic characteristics are much better described
by discrete distributions than the two moments which
are used as parameters for a queue with general
distribution service or arrivals.

We do not assume the stationarity of the arrival
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traffic to be as general as possible. The main results
are obtained for the transient distributions of the
queue length and the output traffic (departure flow) at
any time. Under the stationarity traffic assumption,
we obtain more powerful results (see Section 4).
If the traffic is stationary or upper bounded by a
stationary traffic, we obtain bounds using the steady-
state distribution of an ergodic Markov chain. To avoid
the curse of dimensionality, we propose to bound the
traffic process by two simpler processes which can be
numerically handled. These processes are used for the
analysis of the transient regime and the steady-state
as well. We propose new algorithms which are based
on the computation of the transient distributions and
which contain a steady-state detection test based on the
coupling of two sample-paths.

The histogram based approach for traffic modeling
and performance analysis had been introduced in the
literature 20 years ago. The first work was proposed
by Skelly et al. [6] in the area of network calculus to
model the video sources and to predict buffer occupancy
distributions. More recently, Hernàndez et al. [3, 4, 5]
have proposed a performance analysis model to obtain
histograms of buffer occupancy. Their approach, called
HBSP (Histogram Based Stochastic Process) works
directly with histograms using a set of specific operators
in discrete time. It is based on a basic histogram
model (called HD) for the input traffic, which enters
a finite capacity buffer to receive a constant service
under the First Come First Served (FCFS) server policy
from a multi-server. The analysis is limited to a single
node. The method consists in solving numerically the
HD/D/1/K queue. As the state space and the size
of the traffic description are too large, the authors
approximate the histogram of traffic by a smaller one to
have a numerical algorithm with a smaller complexity.

A similar approach was proposed by Tancrez et
al. [7] for the performance analysis of production
lines which are stochastic event graphs. Continuous
distributions are discretized by dividing the support
into equal subintervals and by mapping each subinterval
into one single point. The mass probability of any sub-
interval is associated with the upper limit or the lower
limit to provide strong stochastic bounds. The analysis
relies on the stochastic monotonicity of the stochastic
event graphs.

The technical part of the paper is organized as
follows. In section 2, we introduce the queuing model
and the various assumptions that we make about the
input traffic. Section 3 is devoted to the description
of our methodology to construct bounding histograms.
The algorithm presented in [8] is based on a dynamic
programming approach and it computes an optimal
bounding histogram with a given size. We also prove
stochastic comparisons on transient distributions when
we replace the traffic by a stochastically larger or
smaller arrival process. In Section 4, we analyze the
stationary traffic. This is a necessary step to study

more complicated traffics such as the weak stationary
traffic in section 5 and to prove our numerical algorithm.
We also present the existing approximative histogram
reduction method (HBSP) in section 4.3 in order to
compare it with our bounding approach. This part
of the paper is an extension of [9]. We show that
we have a trade-off between the accuracy of bounds
and the computational complexity. Finally in Section
5, we show how we can compute very easily the
performance indices when the traffic is only stationary
during short periods of time. This approach generalizes
the algorithm presented for the stationary traffic and
avoids many computation steps to be much more
efficient than the simulation of the underlying trace.
The same arguments (i.e. stochastic monotonicity,
stochastic bounds) are used to simplify the numerical
computations for the steady-state in Section 4 and
the step by step analysis of the transient regime with
steady-state detection in Section 5. We advocate
that associated with measurements and their statistical
analysis, these arguments provide an efficient technique
for network dimensioning.

2. QUEUEING MODEL

Following Hernández-Orallo [3, 4, 5], we use a discrete
time queueing model. The number of transmission units
produced by the corresponding traffic source during the
kth slot is denoted by discrete random variable A(k).
Q(k) and D(k) denote respectively the buffer length
and the output (departure) traffic during the kth slot.
These output parameters are also derived as discrete
random variables. The buffer size is noted by B and
the service capacity during a slot by S. We now give

FIGURE 1: Input and output parameters of a queueing
model

the evolution equations for the buffer length and the
departure traffic. As we consider a discrete-time model,
we have to describe the exact sequence of events during
a slot. We assume that the arrivals occur first and
they are followed immediately by services. We assume
that the admission is performed per packet with Tail
Drop policy: a packet is accepted if there is a place in
the buffer, otherwise it is rejected. The buffer length
(occupancy) Q(k) can be expressed with the following
recursive formula:

Q(k) = min(B, (Q(k − 1) +A(k)− S)+), k ≥ 1. (1)
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where operator (X)+ = max(X, 0). Similarly, the
output traffic D(k) is:

D(k) = min(S, Q(k − 1) +A(k)), k ≥ 1. (2)

We assume that the input arrivals are independent of
the current queue state and the past of the arrival
process. Under these assumptions, the model of the
queue is a time-inhomogeneous Discrete Time Markov
Chain (DTMC).

In this paper we want to cope with some non
stationary arrival processes. We advocate that
monotonicity of the evolution equation (defined in the
next sections) as well as stochastic bounds may help to
solve such a queueing model when the arrival process
is not stationary. However, we have to consider first
the stationarity assumption to derive some results,
theorems and algorithms which will be then generalized
for non stationary arrival processes. More precisely,
we state in the next section the monotonicity of the
queueing model for the transient analysis and we derive
bounds for the transient distribution of the queue length
and the output traffic. Note that the stochastic ordering
in distribution (defined in the appendix) will de denoted
as ≤st while the equality will be denoted by =st. We
consider in the queueing model three cases for the
arrival process:

1. First, we assume the stationarity of the arrival
process to state the theoretical results and to
present the simplest algorithm. For all k, we have:

A(k) =st A

As arrivals are stationary and identically indepen-
dently distributed (i.i.d.), the underlying model is
a time-homogeneous DTMC taking values in a to-
tally ordered state space. Without loss of general-
ity, we suppose in the following that the considered
DTMC models are ergodic.

2. We just assume that the A(k) are independent and
all upper bounded by a common stationary arrival
process A. For all k, we have:

A(k) =st Ak and Ak ≤st A

We will see that the analysis of the model under
the stationary, bounding traffic provides some
stochastic performance guarantees.

3. A common assumption in traffic modeling is a kind
of weak stationarity: on short time scale the traffic
is stationary, while for longer periods it is not. Such
an assumption is consistent with the night and day
evolution of traffic observed by long traces. In that
case, we have for all time instant k in a given time
interval I:

A(k) =st AI

The process in that case is piecewise stationary.
Note that during period I, the underlying model is

a time-homogeneous DTMC, thus one can use the
method developed for the first case to perform the
analysis during transient period I.

Finally, we are interested in the performance analysis
of the queue under real traffic traces. We use several
strategies to extract the histogram-based traffic model
from these traces according to the assumptions we made
on the nature of the traffic. We illustrate in Figure
2, a real trace extracted from the MAWI traffic [10].
Precisely, it corresponds to an IP measurements during
one hour for a 150 Mbps transpacific line (samplepoint-
F) for the 9th of January 2007 between 12:00 and 13:00.
This traffic trace has an average rate of 109 Mbps.
Using a sampling interval of T = 40 ms (25 samples
per second), the resulting traffic trace has 90,000 frames
(periods), an average of 4.37Mb per frame and 80511
distinct values.

FIGURE 2: MAWI traffic trace.

3. BOUNDING APPROACH

The complexity of the numerical analysis depends on
the size of the arrival distributions whatever the method
we may use. We advocate that it is possible to aggregate
in some sense the distribution to obtain stochastic
bounds on the performance measures in an easier way.
We first present how we can bound a distribution
with the stochastic ordering. Then, we prove the
monotonicity of the queueing model. Intuitively, this
property implies that if the arrival traffic ”increases” in
some sense, so does some other quantities such as the
queue length, the output flow and the loss probabilities.

3.1. Bounding histogram construction

In order to reduce the computation complexity, we
propose to apply the bounding approach to diminish
the size of the support of the input histogram
(distribution) used during the computation. We use
in the sequel the term of bins to indicate the states of
a distribution. The main advantage of this approach is
the computation of bounds rather than approximations.
Unlike approximations, the bounds allow us to check if
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QoS are satisfied or not. We consider bounds for the ≤st

ordering (see Appendix). For a given probability mass
function (discrete distribution or histogram) d defined
on N bins, an upper and a lower bounding distribution,
d1 and d2 with n << N bins are built. Moreover,
d1 and d2 are the optimal bounds with respect to a
given positive, increasing reward function, r . Formally,
for a given distribution d defined on H (|H| = N),
we compute bounding distributions d1 and d2 defined
respectively on Hu, Hl (|Hu| = n, |Hl| = n) such that:

1. d2 ≤st d ≤st d1,
2.

∑
i∈H r(i)d(i) −

∑
i∈Hl r(i)d2(i) is minimal

among the set of distributions on n bins that are
stochastically lower than d ,

3.
∑

i∈Hu r(i)d1(i) −
∑

i∈H r(i)d(i) is minimal
among the set of distributions on n bins that are
stochastically upper than d .

Notice that ∀ i ∈ H and i /∈ Hu (resp. ∀ i ∈
H and i /∈ Hl), d1 (i) = 0 (resp. d2 (i) = 0) to
establish the stochastic comparisons (Definition A.1 of
the Appendix). Thus d1 and d2 denote the optimal
bounding distributions on n bins with respect to reward
r .

An algorithm to construct bounding distributions
satisfying the constraints 1, 2 and 3 has been
proposed in [8]. This algorithm is based on dynamic
programming and has a complexity of O(N2 n). In
the following example, the upper bounding distribution
obtained by this bounding algorithm is illustrated. The
number of bins in the bounding histograms is fixed in
the algorithm. A good number of bins satisfying the
required trade-off between the accuracy of the bounds
and the computation time can be determined in an
incremental manner: one begins with a reduced number
of bins, if the accuracy of bounds is not satisfactory,
the number of bins can be incremented. The iteration
can be stopped, if the the required accuracy is reached
and/or the computation time of bounds exceeds a fixed
threshold.

Example 1. Let d = [0.3, 0.1, 0.1, 0.1, 0.2, 0.2]
be a discrete distribution defined on support H =
{1, 2, 3, 4, 5, 6} (|H| = N = 6). The reward function
r is set to r(i) = ai, ∀ ai ∈ H. The expected reward of
distribution d is then R[d ] =

∑
ai∈H r(i) d(i) = 3.4.

The computation of the optimal upper bounding
distribution, d1 defined on 4 bins is equivalent to
determine the 4-hops path having R[d1]−R[d ] minimal.
We illustrate in Figure 3 the tree explored by the
algorithm proposed in [8] to define the optimal upper
bound distribution. In this figure, each path from the
root to a leaf represents a distribution with correct
reduced size. We note that the probability of a deleted
bin (the state that do not appear in the path) is
added to its immediate successor (to its immediate
predecessor, in the lower bounding case). The optimal
upper bound algorithm [8] determines the distribution

FIGURE 3: The tree explored to define the optimal 4
single hops path.

d1 = [0.3, 0.2, 0.3, 0.2] defined on Hu = {1, 3, 5, 6},
with R[d1] = 3.6.

From Figure 4, one can see that the cumulative
distribution function of the upper bound d1 is always
greater or equal to that of d . Therefore it follows from
Definition A.1 of the Appendix that d1 is a stochastic
upper bound of d .

FIGURE 4: Cumulative distribution functions (cdf) of
d and d1.

3.2. Monotonicity of the queueing model

In this section, we prove that we can use bounding
histograms for the arrival process and obtain bounds on
the other histograms such as queue length, departure
traffic. The evolution equations (Eq. 1, and Eq. 2)
correspond to the original system under input arrival
A(k). For bounding models, the same evolution
equations are considered under the bounding input
arrival process Ã(k). We note by Q̃(k) (resp. D̃(k))
the buffer length (resp. the departure traffic) for the
bounding system under bounding arrival Ã(k):

Q̃(k) = min(B, (Q̃(k − 1) + Ã(k)− S)+), k ≥ 1,

D̃(k) = min(S, Q̃(k − 1) + Ã(k)), k ≥ 1.

The relationship between the original and the bounding
systems is established by the fact that the ≤st order is
associated with increasing functions and the underlying
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measures are defined by increasing functions. We
present here only the upper bounding case, and the
lower bounding case can be similarly derived. In
the following theorems and the related corollaries, we
assume that at the beginning, Q(0) ≤st Q̃(0) and
D(0) ≤st D̃(0).

Theorem 3.1. [Monotonicity of the Queue length]
If A(k) ≤st Ã(k), ∀k > 0, then Q(k) ≤st

Q̃(k), ∀k > 0.

Proof. The proof is a direct consequence of Theorem
4.3.9, page 163 in [11]. We can write:

Q(k) = Ψ(Q(k − 1), A(k)). (3)

It follows from Eq. 1 that function Ψ is increasing both
in the first and the second parameter (with respect to
Q(k−1) and A(k)). We assume thatQ(0) ≤st Q̃(0), and
A(k) ≤st Ã(k). The proof goes by induction. Assume
that Q(k − 1) ≤st Q̃(k − 1). Since Ψ is increasing (see
Property 2 in the appendix):

Q(k) = Ψ(Q(k − 1), A(k)) ≤st Ψ(Q̃(k − 1), A(k))

≤st Ψ(Q̃(k − 1), Ã(k)) = Q̃(k).

Thus the queue length under arrival Ã(k) is greater or
equal in the sense of the ≤st ordering than the queue
length under arrival A(k): Q(k) ≤st Q̃(k).

We have a similar result for the lower bounds.

Corollary 3.1. If Ã(k) ≤st A(k), ∀k > 0, then
Q̃(k) ≤st Q(k), ∀k > 0.

Moreover, it follows from Eq. 2 that we have bounds
on the departure flows. The proof is based on the same
arguments that we have used for Theorem 3.1, and it is
omitted here for the sake of readability.

Theorem 3.2. [Monotonicity of the Output Flow]
If A(k) ≤st Ã(k), ∀k > 0, then D(k) ≤st

D̃(k), ∀k > 0.

The above theorems assert the ≤st comparison for
the transient behaviors of the original and bounding
systems. Note that, we have only assumed that
the arrivals are independent, we do not make any
assumption on the stationarity of the arrival process.
The various assumptions that we will make in the
following sections allow us to derive corollaries of these
main results. For instance, when the steady-state exists,
one may obtain the stochastic comparison of the steady-
state distributions.

4. ASSUMING THE STATIONARITY OF
THE INPUT TRAFFIC

This section has several objectives. First, we want
to state the main results for the stationary traffic.
We also consider the case of a non stationary
traffic stochastically bounded by a stationary process.

Second, we present the numerical algorithm based
on convolution and stochastic bounds. The main
advantage of this algorithm is that it has a proven
convergence test. It is also generalized for non
stationary traffic in Section 5. Finally, we compare our
results to an existing, approximative method (HBSP
method) which is also based on the reduction of the size
of the traffic distribution [3]. In the following δ0 and δB
are two distributions of probability for the queue length
such that δ0[0] = 1.0 and δB [B] = 1.0 where B denotes
the buffer size.

4.1. Comparison results

We now give the comparison results as corollaries of
Theorems 3.1 and 3.2. The first result asserts the ≤st

comparison for the steady-state case when both traffics
(the real one and the bounding one) are assumed to be
stationary.

Corollary 4.1. Let A (resp. Ã) be the stationary
exact (resp. upper bounding) input histogram (distribu-
tion) such that A ≤st Ã, and Q, D (resp. Q̃, D̃) be
the stationary buffer length, departure flow under the
exact A, (resp. upper bounding Ã) input arrival. If
Q(0) ≤st Q̃(0), and D(0) ≤st D̃(0), then we have:

Q ≤st Q̃ and D ≤st D̃.

Proof. Since at each time k, the arrivals are distributed
by A and Ã and by construction A ≤st Ã, we have
A(k) ≤st Ã(k), ∀k > 0. Thus, the conditions
of Theorems 3.1 and 3.2 are satisfied, and we have
comparisons for all k:

Q(k) ≤st Q̃(k) and D(k) ≤st D̃(k).

Remark that due to the ergodicity assumption, Q and
D exist, thus Q(k) and D(k) converges in distribution
to Q and Q̃ when k → ∞. Since the ≤st ordering is
closed under the convergence in distribution, we have:

Q ≤st Q̃ and D ≤st D̃.

We can also obtain bounds when the traffic is
non stationary but it is bounded by a stationary
distribution. In this case the bounding model is
constructed by considering that at each time, the input
arrivals are distributed independently, identically with
an upper bounding stationary histogram Ã:

Corollary 4.2. Let Ak be the input histogram at
time k and Ã be an upper bounding histogram for all
input histograms:

Ak ≤st Ãk =st Ã, ∀k > 0 (4)

and Qk, Dk be the histograms of the buffer length and
the departure flow at time k under arrival histograms
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Ak, while Q̃ and D̃ be the histograms of the stationary
buffer length and the departure flow processes under
the upper bounding, stationary arrival distribution Ã.
If at time 0, both Q0 and Q̃0 are equal to the Dirac
distribution at 0: Q0 =st Q̃0 =st δ0, then

Qk ≤st Q̃ and Dk ≤st D̃, ∀k.

Proof. It is similar to the previous case, and only the
buffer length case is given. Due to the condition on
arrivals (Eq. 4), it follows from Theorem 3.1 that

Qk ≤st Q̃k, ∀k. (5)

However, only the bounding model converges in
distribution. Since at time 0, Q̃0 ≤st Q̃ and Q̃(k) is
constructed by an increasing function (Eq. 3),

Q̃0 ≤st Q̃1 ≤st Q̃2 ≤st · · · ≤st Q̃∞ =st Q̃

Therefore Eq. 5 can be rewritten as
Qk ≤st Q̃, ∀k.

4.2. Numerical analysis

Let gmin and gmax be two distributions of probability
representing indeed two realizations of the same
stochastic process with two distinct initial values.
When they become equal, they couple and they will stay
equal for the remaining life of the process. As we assume
ergodicity, this implies that the value obtained after
the coupling is equal to the steady-state distribution
of the Markov chain. The following theorem states
that gmin and gmax provide at each time step t, two
stochastic bounds for the transient distributions, π(t)

of the underlying process.

1. Initialize t=0
2. Initialize g

(0)
min = δ0

3. Initialize g
(0)
max = δB

4. Initialize π(0) (see the paragraph below)
5. Iterate

(a) increase time instant t

(b) compute new g
(t)
min with arrival distribution A

and distribution g
(t−1)
min

(c) compute new g
(t)
max with arrival distribution A

and distribution g
(t−1)
max

(d) compute new π(t) with arrival distribution A
and distribution π(t−1)

6. Until (gmin = gmax) or (t = EndOfTime)

The first stopping condition implies that we have a
coupling of the two sample paths and a convergence of
the numerical algorithm. The second condition means
that we have not observed convergence at the end of
the execution. In that case, the computation time must
be increased. This typically occurs for very short traces
as we have always observed that the coupling time is
very small compared to the time for the measurements.

Generally, we have π(0) = δ0 which means that the
queue is empty at the beginning. But this is not
necessary and we consider a general value for π(0) to
help the generalization in Section 5. We represent in
Fig. 5 the behavior of the distributions during the
computation.

FIGURE 5: Convergence and coupling.

Theorem 4.1. For all t, we have g
(t)
min ≤st π

(t) ≤st

g
(t)
max

Proof. Clearly, this is true for t = 0 as δ0 and
δB are the extremal values under the ≤st ordering
for the underlying distribution. The induction proof
comes from the monotonicity property of the operator.

Indeed, if g
(t0)
min ≤st π

(t0) for t0, the monotonicity of the

model implies that g
(t0+1)
min ≤st π

(t0+1) (see [9] for more
details).

We advocate that our numerical method, which is
based on the stochastic monotonicity of the model, has
many advantages compared with well-known numerical
techniques. First, we compute both the transient
distributions and the steady-state distribution. Our
method gives results for the transient analysis as we
also compute π(t) for all t and we provide a test of
the stationarity of the distribution to avoid computing
the transient distribution once we have reached the
steady-state. In some sense, this numerical procedure is
inspired by the stationarity detection heuristic proposed
by Ciardo et al. in [12] and improved by Sericola
in [13] for the efficient computation of reliability. In
our case, the stationarity is proved by the coupling
while it was only a numerical test in Ciardo’s approach.
Furthermore we have a proved test of convergence in
the following sense: when we stop the algorithm at
step t, we have the proof that the result is within the

interval [g
(t)
min, g

(t)
max]. We do not have such a result with

iterative techniques where the convergence test consists
in computing the difference between two successive
distributions π(t) and π(t−1) (i.e. checking the norm
of (π(t) − π(t−1))). As stated in [1], such a method is
not an accurate test for convergence, and it may provide
incorrect numerical results.

Finally, we have to address the complexity of the

computation of g
(t)
min, π(t) and g

(t)
max. We have chosen
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to use the convolution operator rather than a vector-
matrix product for the sake of performance. Let
lX (resp. lY ) be the size of the distribution of the
queue (respectively the arrivals), then the matrix has
approximatively lX × lY non zero elements and the
complexity of the vector matrix product in a sparse
format is O(lX × lY ). The computation based on
convolution is much simpler as stated in the following
property.

Property 1. The convolution (noted ⊗) of the
distributions of two independent random variables X
and Y is a distribution with at most lX × lY bins. This
computation requires O((lX + lY )log(lX + lY )) with a
Fast Fourier Transform (FFT) approach [14].

4.3. Approximative histogram reduction:
HBSP method

Considering a real traffic trace, Hernández et al. have
proposed in [3, 4, 5] to use the histogram approach and
the stochastic process for characterizing network traffic
and analyzing the performance of the model. They
approximate the histogram of buffer occupancy for a
finite capacity queue. If the original histogram denoted
by A has a range of I = [0, Nmax] bins, the method
proposes to define an interval size of lA = Nmax/n such
that a binned process {A(k)} has a reduced state space
I ′ = {0, . . . (n − 1)}. A value a of I is mapped to i
in I ′ such that i = b a

lA
c, which is also denoted by

i = classA(a). Inversely, a value i ∈ I ′ corresponds
to the midpoint of interval i: a = lA . i+ lA/2, a ∈ I.

Assuming that the traffic is stationary, the arrival
process is given by A(k) =st A, ∀k. We denote by
dA a distribution associated with the stationary input
arrival, A. The stochastic process of the evolution of
HBSP model (denoted by distribution dQ) is based on
the following recurrence relation:

dQ(k) = Φb̂
Ŝ

(dQ(k − 1)⊗ dA). (6)

where, Ŝ = classA(S) (resp. b̂ = classA(B)). The
operator Φ limits buffer lengths so that they cannot
become negative and cannot overflow the corresponding
class of buffer capacity. This operator is defined as
follows:

Φb
a(x) =

 0, for x < a,
x− a, for a ≤ x ≤ b+ a,

b, for x ≥ b+ a.
(7)

Hernández et al. have also proposed an improvement for
their method and defined the notion of oversampling.
An m−oversampling consists in splitting each class i
of the HBSP histogram having probability p(i) into m
classes with equal probability p(i)/m. For example, let
LH be the computed HBSP histogram with n = 10
bins. The use of an oversampling factor of 10, means to
define an histogram on 100 bins. When we increase the
number of bins we increase consequently the accuracy

of the results. However, we should note that the results
obtained by the HBSP method (without oversampling)
on 100 bins is more accurate than the results obtained
by using the HBSP histogram defined on 10 bins with
an oversampling factor of 10. For this reason, in the
rest of the paper, we will directly consider the HBSP
method on the desired number of bins without using
an oversampling. We give now an example to illustrate
that our bounding histograms and the approximative
histogram obtained by the HBSP method are different.

Example 2. For the MAWI traffic histogram defined
on 80511 bins, the HBSP approximation with n =
10 gives the green histogram in Figure 6. The red
histogram corresponds to the lower bound while the
black histogram is the upper bound. These bounding
histograms are computed for the reward function r :
r(i) = ai, ∀ ai ∈ A and by using the same number
of bins (n = 10). The expected reward of the original
histogram is R[A] = 4.3756 × 106 bits, the expected
reward of the HBSP histogram is R[A] = 4.3757 ×
106 bits and the expected reward of our bounding
histograms are R[A] = 4.1644 × 106 bits for the lower
bound and R[A] = 4.5843 × 106 bits, for the upper
bound. At first sight, HBSP method seems more
accurate. We will see in the next section it is not true.

FIGURE 6: Reduced histograms with 10 bins for the
MAWI traffic (some very small probability values are
not readable for the HBSP method).

FIGURE 7: Cumulative probability distributions (cdf)
for the MAWI traffic.

The cumulative probability distributions of these
histograms are presented in Figure 7. We can also see
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from this figure that the HBSP method does not provide
bounds while the bounds supply well the coverage of the
exact distribution.

4.4. Numerical results

Note that all the computations in this paper are
performed with MATLAB software on a simple laptop.

This section presents some numerical results to
validate our approach and show its relevance in
determining the performance measures of a single
queue. The experiments illustrated here have been
performed with real traffic Internet traces under the
stationary arrival assumption. We compute some
performance measures such as blocking probabilities,
the expected length of buffers, etc. For all the
experiments, the reward function is defined as r(i) = ai,
∀ ai ∈ A.

Note that the histogram-based traffic model can be
a powerful and compact description, if the sufficient
accuracy can be reached with a small number of bins.
Thus, for a simple queue with real traffic trace, the
question that would be interesting to know is: how
many bins are needed to obtain a good accuracy?
We will try to answer this question by studying the
following aspects: the influence of the size of the
support (after reduction) on the accuracy of the results,
the relationship between the buffer size and some
performance measures for a given number of bins
and then the interaction between these three factors,
namely: the number of bins, the buffer size and the
accuracy of the results.

Accuracy versus the size of bounding histograms We
consider a single queue under the MAWI traffic traces
(Figure 2), and analyze the influence of the number of
bins on the accuracy of the results. We set the mean
transmission rate to 110 Mb/s and the buffer size to
B = 1 Mb. In Figure 8, we compute the blocking
probability and the mean buffer length for different
number of bins (varying from 10 to 200). In each figure,
we give the results computed by different methods:
1) Our method with original histogram (without size
reduction). These results are noted by Exact. 2) HBSP
method (histogram construction and reduction as given
in [3]. 3) The proposed lower and upper bounds with
reduced size histograms.

We observe that when the size of the support (the
number of bins) increases, the results obtained by
different methods become more accurate. However, for
small size support, the results of the HBSP method
are far worse than ours. In addition, we distinguish
an oscillatory behavior for the results of HBSP which
are sometimes lower and often higher than exact values.
Thus the HBSP method does not provide bounding
but approximate results. The upper and lower bounds
become very close to the exact ones for the number of
bins greater 30.

In Figure 9, we illustrate the cumulative probability
distribution of the buffer length by taking the number
of bins equal to 20 or 100. We see that the stochastic
upper bound (resp. stochastic lower bound) is always
under (resp. above) the exact curve while the HBSP
distribution crosses the exact curve.

(a) Blocking probability

(b) Mean buffer length

FIGURE 8: Accuracy versus the number of bins: QoS
parameters using the MAWI traffic

(a) bins=20

(b) bins=100

FIGURE 9: Cumulative probability distribution of the
buffer occupancy under the MAWI traffic
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The HBSP method does not provide a good
approximation for small number of bins (bins=20).
When the number of bins is equal to 100, all methods
provide better results and our bounds are the most
accurate ones. When the number of bins is 100, the
exact computations are obtained in 1897 seconds (s),
the results of the HBSP method in 0.007 s while the
lower and upper bounds are respectively computed in
0.35 s and 0.33 s. So, the HBSP method and bounds are
computed in less than one second against more than 30
minutes for the exact method. We remark also that the
HBSP method is the fastest, but the time to derive
our bounds is very short and the method is largely
faster than the exact computation with very relevant
precisions.

Performance measures versus the sizes of the buffer and
bounding histograms. For this aspect, the performed
experiment is based on the CAIDA OC-48 traffic trace
[15] collected in both directions of an OC48 link at the
AMES Internet Exchange (AIX) on the 24th of April,
2003. The collected trace is one hour long with an
average rate of 92Mb/s. For our experiment, we take
5-minutes of packet header trace. Using a sampling
period of T = 10 ms (100 samples per second), the
resulting traffic trace has 30,000 frames and mean value,
E[A] = 1.2885× 105 bits. We consider the relationship
between the buffer size and the blocking probability
(resp. mean buffer length) for bounding histograms,
HBSP model and the exact result.

(a) Blocking Probability

(b) Mean buffer occupancy

FIGURE 10: QoS parameters using CAIDA OC-48
traffic trace, bins=10

The performance indices are calculated by varying
the buffer size from 5 × 103 bits to 105 bits. We note
that the size of the original histogram is 24930 states.
The support of the bounding histograms and the HBSP
model is equal to 10 for Figure 10 while it is equal to
100 for Figure 11.

(a) Blocking probability

(b) Mean buffer occupancy

FIGURE 11: QoS parameters using CAIDA OC-48
traffic trace, bins=100

This experiment yields to the same conclusions as
above. In Figure 10, the HBSP method does not
converge for small buffer capacities (that is why the
points were not shown). For the other points, we see
that the quality of our bounds are better than the
results obtained by the HBSP method. Thus, to finish
our assessments, we propose to vary respectively the
buffer capacity and the support size of the input traffic
distribution and observe the blocking probabilities
computed by the different methods.

We depict some obtained results in Table 1. We
recall here that the parameters considered in these
experiments are taken from [5, 3] in order to compare
results.

From Table 1, we see clearly that our bounds provide
a good coverage of the exact solution and it becomes
more accurate with the increase of the number of bins.
Regarding the HBSP method, we observe that for small
number of bins (bins=10), the HBSP method does
not converge when buffer size is approximately less
than ×104 and gives less accurate results elsewhere.
However, our bounds provide fairly good coverages on
the exact results. We notice also that when the number
of bins increases, the considered methods provide closer
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Buffer Exact bins Lower Upper HBSP

size Bound Bound

10 0.3344 0.4591 /

5 × 103 0.4011 100 0.3957 0.4087 0.4614

200 0.3958 0.4050 0.4259

10 0.2667 0.3936 /

104 0.3492 100 0.3401 0.3585 0.3922

200 0.3447 0.3529 0.3690

10 0.0696 0.2571 0.7698

5 × 104 0.1631 100 0.1536 0.1742 0.1980

200 0.1583 0.1683 0.1740

10 0.0166 0.2188 0.7204

105 0.0903 100 0.0796 0.1023 0.1201

200 0.0848 0.0961 0.9991

TABLE 1: Blocking probabilities versus buffer size and
number of bins.

results to the exact ones.

5. PIECEWISE STATIONARY ARRIVAL
PROCESS

We now assume that the traffic is stationary for short
time periods and evolves when we change the time
period. For the sake of simplicity we assume that these
time periods have the same length. More precisely, the
time interval for the trace analysis is divided into k
consecutive periods of duration T . During each period,
the traffic is stationary: between time instants iT and
(i + 1)T excluded, the traffic is distributed following
distribution A(i). We still assume that the arrivals are
independent. As mentioned in Section 2, the system
is modeled by an inhomogeneous discrete time Markov
chain.

5.1. Numerical algorithm

We want to emphasize that the numerical method based
on the convolution of distributions for stochastically
monotone models is still efficient to study the system as
soon as T is larger than the expectation of the coupling
time. Let us now explain how we modify the algorithm
to cope with this new assumption on the traffic.

First note that in the time interval [iT, (i + 1)T ),
the traffic is stationary. Thus, we have to analyze
the transient distribution of a homogenous Markov
chain during each time interval. The whole analysis
consists in computing the distribution at time iT by a
numerical computation for period [(i− 1)T, iT ) to find
the initial distribution for interval [iT, (i + 1)T ). By
taking into account the monotonicity of the system and
the coupling, unnecessary computations are avoided as
depicted in Fig. 12. For the first time period, we
proceed as the former algorithm for stationary traffic.
We begin to compute the upper and lower sample-paths
for the distribution. Two cases may occur: one may

observe the convergence due to the coupling before T
(see Fig. 12) or T is reached before the occurrence of
the coupling (see Fig. 13).

FIGURE 12: Efficient computation with coupling

FIGURE 13: Computation without coupling in the first
period.

If the first case, we jump to time instant T without
any computation of the distribution as soon as we
have detected the coupling. Indeed, as the two
distributions have coupled, we have reached the steady-
state distribution thus it is not necessary to continue
the numerical process. Of course, as the traffic is not
stationary after the end of the time period, the obtained
distribution is not really the steady-state distribution
(but we still call it steady-state to explain that the
distribution does not change until the end of the time
period).

1. Iterate on the period number i from 0 to k-1

(a) Initialize t=iT
(b) Initialize gmin = δ0
(c) Initialize gmax = δB
(d) If (i = 0) initialise gcur = δ0
(e) Iterate

i. increase time instant t
ii. compute new gmin with arrival distribu-

tion A(i)

iii. compute new gmax with arrival distribu-
tion A(i)

iv. compute new gcur with arrival distribu-
tion A(i)
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(f) Until (gmin = gmax) or (t = iT + T − 1)
(g) If coupling (i.e. gmin = gmax), jump to

t = iT + T − 1 without any new computation
of the distributions gmin, gmax, et gcur which
are all equal.

Thus, the coupling time has a strong impact on
the efficiency of this numerical method. We illustrate
an example with real traffic trace, we consider the
MAWI trace [10] which corresponds to an IP traffic
on transpacific line with link capacities of 128 Kbps,
carried between the 6th of march 2007 at 18 : 00 and
the 7th of march 2007 at 4 : 24 : 27. For a sampling
period of 40 ms, we obtain the trace shown in Figure
14 with 922873 frames and 4579 different states.

FIGURE 14: MAWI traffic trace (more than 10 hours).

The following trace is considered with a period
duration of 10mn for a queue with size 2 × 106 bits
and a service capacity of 300 kbps. Knowing that the
sampling time is 40ms, a time period, T contains 15000
time instants. During that period the traffic is supposed
to be stationary.

We note that the average number of iterations before
the convergence is 450, the median is 265 and the third
quartile is 435. The distribution of the number of
iterations before convergence has a low variability, its
coefficient of variation is 0.74. In most of the cases
the number of iterations is smaller than 400 and this is
quite small compared to the 15000 iterations we must
compute if we do not detect the steady-state. More than
half of the experiments with our algorithm consists in
300 steps of computation instead of 15 000 for a naive
algorithm. Clearly, our approach is much more efficient
than the histogram-based simulation which requires the
computation of the whole path with 15 000 time steps.

5.2. Numerical results

We consider a queue with a service capacity equal
to S = 300 Kbps. We assume that the arrivals are
extracted from the MAWI-10h trace. We assume that
the traffic is stationary within period of 10 mn. The
precision threshold for the numerical algorithm is ε =
10−9. We note that for our bounding results, the input

traffic is reduced to 100 bins for each period. In the
following tables, we report the obtained upper and lower
bounds on the sample-path. As shown in Table 2 and 3,
the results are quite accurate for the exact results and
for the bounds as well.

Buffer size Exact Lower Upper
Bound Bound

2 × 105 0.0333847 0.0333695 0.0334154

5 × 105 0.0059227 0.0059153 0.0059558

106 0.0016837 0.0016452 0.0017109

2 × 106 0.0005061 0.0004722 0.0005254

3 × 106 0.0001911 0.0001692 0.0002031

TABLE 2: Blocking probabilities versus buffer
size.

Buffer size Exact Lower Upper
Bound Bound

2 × 105 3559.58 3506.79 3574.81

5 × 105 7617.23 7491.65 7656.11

106 11231.2 11006.1 11312.2

2 × 106 15853.5 15395.2 16043.4

3 × 106 18170.1 17989.9 19027.2

TABLE 3: Expected buffer lengths versus
buffer size.

Finally we report in Table 4 the computation times. The
last column contains the results for histogram-based analysis
where we use the original traffic with an algorithm which
does not check the steady-state for the distribution of the
queue length during the periods where the traffic does not
change. In the second column, we give the computation
times for the approach with the original traffic (exact
histogram) and the steady-state detection as introduced
in the first part of this section. Clearly the detection of
steady-state improves considerably the performance of the
algorithm. Finally it is still possible to speed up the method
using bounds on the traffic as shown by the results given in
the third and the fourth column.

Buffer Exact Lower Upper Hist.-Based
Size Bound Bound Analysis

2 × 105 17.0 3.6 4.2 859

5 × 105 49.2 16.9 15.5 3546

106 172 61.4 63.0 5745

2 × 106 1315 434 469 22233

3 × 106 3239 953 994 57746

TABLE 4: Computation times in second.

6. CONCLUSION

We show how to derive stochastic bounds on the queue
length and the departure traffic for a queue under input
traffic histograms constructed from real traffic traces. We
state that the comparison method with the ≤st ordering
does not require that the traffic is stationary. We
also present a numerical technique suitable to various
assumptions about the stationary of the input process and
these approaches are much faster than the trace based
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simulation. We define bounding histograms of smaller
sizes to manage the computationally complexity. Thus we
have a trade-off between the accuracy of results and the
computational complexity. The bounds are much more
relevant than the approximations for network dimensioning
and QoS evaluation. Finally it is worthy to remark that
our approach can be used to study the performance of any
system which is associated with a stochastically monotone
model and such that some measurements are available.
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APPENDIX A. STOCHASTIC COMPARI-
SON

We refer to [11] for theoretical issues of the stochastic
comparison method. We consider state space G =
{1, 2, . . . , n} endowed with a total order denoted as ≤.
Let X and Y be two discrete random variables taking
values on G, with cumulative probability distributions
FX and FY , and probability mass functions dX and dY

(dX(i) = Prob(X = i), and dY (i) = Prob(Y = i), for
i = 1, 2, . . . , n).

Definition A.1. The three following definitions are
known to be equivalent:

• generic definition: X ≤st Y ⇐⇒ Ef(X) ≤
Ef(Y ), for all increasing (non decreasing) func-
tions f : G → R+ whenever expectations exist.
• cumulative probability distributions:

X ≤st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ G.

• probability mass functions:

X ≤st Y ⇔ ∀i, 1 ≤ i ≤ n,
n∑

k=i

dX(k) ≤
n∑

k=i

dY (k)

(A.1)
Notice that we use interchangeably X ≤st Y and
dX ≤st dY .

Property 2. If X ≤st Y , then for any increasing
function f ,

f(X) ≤st f(Y )

Example 3. We consider two discrete random vari-
ables with dX = [0.1, 0.2, 0.1,
0.2, 0.05, 0.1, 0.25], and dY =
[0.25, 0.05, 0.1, 0.15, 0.15, 0.3] defined respectively
on support {1, . . . , 7} and {2, . . . , 7}. The set G is the
union of support of the two distributions dY and dX

with null probabilities if an element does not belong
to one of them. We can easily verify that dX ≤st dY :
the probability mass of dY is concentrated to higher
states such as the probability cumulative distribution
of dY is always below the cumulative distribution of
dX (Figure. A.1).

FIGURE A.1: dX ≤st dY : Probability mass functions
(left) and cumulative distribution functions (right).

We apply the following definition to compare Markov
chains.

Definition A.2. Let {X(n), n ≥ 0} (resp.
{Y (n), n ≥ 0}) be a DTMC. We say {X(n), n ≥ 0} ≤st

{Y (n), n ≥ 0}, if X(n) ≤st Y (n), ∀n ≥ 0.

The following definition present the stochastic
monotonicity of a DTMC.

Definition A.3 (Stochastic monotonicity). Let
{X(n), n ≥ 0} be a DTMC, we say that {X(n), n ≥ 0}
is stochastic monotone if

X(0) ≤st X(1) ⇒ X(n) ≤st X(n+ 1), for all n > 0.
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