
HAL Id: hal-01449235
https://hal.science/hal-01449235v1

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Usage control policy enforcement in SDN-based clouds:
a dynamic availability service use case

Khalifa Toumi, Muhammad Sabir Idrees, Fabien Charmet, Reda Yaich,
Gregory Blanc

To cite this version:
Khalifa Toumi, Muhammad Sabir Idrees, Fabien Charmet, Reda Yaich, Gregory Blanc. Usage control
policy enforcement in SDN-based clouds: a dynamic availability service use case. HPCC 2016 : 18th
IEEE International Conference on High Performance Computing and Communications, Dec 2016,
Sydney, Australia. pp.578 - 585, �10.1109/HPCC-SmartCity-DSS.2016.0087�. �hal-01449235�

https://hal.science/hal-01449235v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Usage Control Policy Enforcement in SDN-based Clouds:
A Dynamic Availability Service Use Case

Khalifa Toumi∗, Fabien Charmet∗, Muhammad Sabir Idrees†, Reda Yaich† and Gregory Blanc∗
∗Institut Mines-Télécom, Télécom SudParis, Université Paris-Saclay

9, rue Charles Fourier, 91011 Evry Cedex, France
Email: name.surname@telecom-sudparis.eu
†Institut Mines-Télécom, Télécom Bretagne

2, rue de la Châtaigneraie, 35512 Cesson-Sévigné, France
Email: muhammad.idrees, reda.yaich@telecom-bretagne.eu

Abstract—With the growing interest in Software Defined
Networking (SDN) and thanks to the programmability
provided by SDN protocols like OpenFlow, network ap-
plication developers have started implementing solutions
to fit corporate needs, like firewalls, load balancers and
security services. In this paper, we present a novel solution
to answer those needs with usage control policies. We
design a policy based management framework offering SDN
network security policies. This approach is used to enforce
performance requirements (e.g., to ensure a certain level of
network connectivity). A top-down approach is proposed,
in order to refine the policies into the appropriate network
rules, via the OpenFlow protocol. Finally, we implement the
solution with an availability service use case and we provide
a set of experiments to evaluate its efficiency.

Keywords-Usage Control; SDN; OpenFlow; Network Poli-
cies; Service Availability

I. INTRODUCTION

Everything-as-a-Service is emerging as a business
transformation approach, far exceeding the usual cloud
service provider stack (IaaS, PaaS, SaaS) and attracting
many players to the market. This often implies a relaxed
security in an environment where the concepts of external
threats and internal assets is now blurred [1]. In such
clouds, ensuring the availability of this wealth of diverse
services may require as much flexibility as it is needed
to orchestrate them. In this regard, the Software Defined
Network (SDN) paradigm is a realistic contender to
enhance the security of a cloud computing environment
thanks to its network-wide visibility and programmability
features. It introduces an additional abstraction layer
between the control plane and data, which are now
decoupled. Decision process is now centralized in a single
component, namely the SDN controller, which offers a
global view of the network to the operators. Thus, they
are able to anticipate network resources misuse and plan
network bandwidth allocation more efficiently for the
hosted services.

Recent research works have already highlighted the
promises of SDN by proposing new security services [2]–
[5]. In particular, countering massive threats such as
distributed denial of service (DDoS) attacks has been
extensively studied [4] as SDN key features are expected
to minimize the delay from detection to mitigation. Other
aspects of the SDN paradigm have also been leveraged:
FRESCO [2] provides a modular framework to develop
security applications over SDN while SIMPLE [3] builds

upon the decoupling of the control plane from the data
plane to ease the process from policy expression to
middlebox traffic steering. Chaining services is made
possible not only for physically-hosted services, but also
to compose network virtual functions as in Slick [6].
[5] proposes a new energy efficient routing algorithm
with SDN for data center networks. This approach can
schedule flows to the queues of each link to minimize
the energy for the given volume of data center traffic.

Although the importance of these solutions, it still
has a critical need on a whole framework that pro-
vides orchestration and automatic management of net-
work policies [7]. Indeed, we need a flexible and generic
mechanism that permits to respond automatically to the
detected alerts and problems. Moreover, the solution
should provide a high abstract description of the security
services to be used with different cloud providers without
dependence from their used technology.

However, SDN and the OpenFlow protocol, a de-facto
standard for the southbound interface, do not allow to
trivially acquire services requirements and translate them
into forwarding policies. Indeed, among the previous
examples, writing applications that could be directly en-
forced in the network usually relies on a domain-specific
language, slowing its adoption. On the other hand, when
high-level languages are provided to express policies, they
can only be translated to the extent of a service chain,
which is not directly deployable to the forwarding plane.
Therefore, there is a need for a policy-based management
framework able to collect high-level inputs from operators
and provide appropriate reaction scripts that can configure
SDN equipments. Additionally, the programmability of
the network is rarely exploited to introduce autonomicity:
a policy management approach should be context-aware,
so that policies are dynamically enforced depending on
the network and security states.

In this paper, we propose a policy-based manage-
ment approach that collects and processes the output
of monitoring tools (e.g., incident alerts and network
metrics) and provides the necessary OpenFlow rules to
reconfigure the data plane. Our framework offers a set
of formal security policies and SDN templates which
will be used to automate the network configuration and
reactions by managing and deploying rules, as well as,
detecting potential conflicts. For this purpose, we use
a high level formalism, the OrBAC [8] model, which

main benefits are: a) the introduction of a distinctive
entity, the organization, permitting the representation of
global entities in which a policy is applied, e.g., an
SDN infrastructure, b) the usability of administration, c)
the diversiy of access types (permission, prohibition and
obligation), and d) the definition of a high abstraction
level which simplifies the management of policy rules
and the detection of conflicts.

Moreover, our framework includes a new policy instan-
tiation engine to map OrBAC policies and monitoring
notifications for context awareness, and an SDN policy
deployment engine to translate the inferred rules into
OpenFlow configurations. This last feature allows an
administrator to write rules for an SDN infrastructure
without deep knowledge of the OpenFlow standard. Dif-
ferent security services may be implemented easily with
our framework such as availability, attack mitigation, etc.
In this paper, we will demonstrate the availability service
as a case study.

The rest of the paper is structured as follows. In Section
II related work is discussed. In Sections III, IV and V,
the proposed framework, architecture, components and
workflow, are detailed respectively. In Section IV, the
experimentation is presented and discussed. Finally, in
section V, the conclusion with some lines of future work
are presented.

II. RELATED WORK

While SDN is expected to fulfill many promises with
respects to alleviating the load of network operators [9],
[10], it often fails to provide a context-aware framework
for policy-based network management (PBNM), as it does
not fulfill its requirements per se [11], in particular high-
level policy definition is not natively supported. Addition-
ally, a recent survey by Kreutz et al. [12] points a few
challenges inherent to SDN low-level rule management,
among others, dynamic policy enforcement and conflict
detection are quoted.

One of the salient features of the SDN paradigm is
that it makes programming the network possible, but
not necessarily easy. Indeed, many controller platforms
require that high-level policies be managed at the indi-
vidual switch level, in terms of rules installed in each
switch [13]. However, the community generally agrees
that SDN applications should specify high-level policies
in two distinct parts: an endpoint policy, that specifies
actions to packets at the controller domain level; a
routing policy, that specifies paths taken by the traffic
according to traffic engineering considerations [13]. Ear-
lier, Foster et al. [14] had noted that leveraging SDN
control languages to program networks according to some
policy was not straightforward. Their early state-of-the-
art analysis of the OpenFlow controller languages has
exposed some substantial difficulties: (1) network func-
tions written in these languages do not compose; (2)
low-level hardware-dependent semantics complexify how
rules are written and distributed; (3) network programs’
two-tiered architecture (spanning both the controller and
the switch) incurs concurrency issues. To address these
issues, they proposed Frenetic [14], a high-level network

programming language, and in particular, a network pol-
icy management library that includes a set of source-
level operators for constructing and manipulating streams
of network traffic. They later extend their work in the
Pyretic language [15] by introducing an abstract packet
model, a sequential composition operator and a topology
abstraction using network objects. Concurrently, Voellmy
et al. have proposed Procera [16], a functional reactive
programming language like Frenetic, with which it shares
similar constructs. But unlike Frenetic which applies only
to packets, Procera handles any event stream allowing
for both sequential and parallel composition, and uses
function values to represent high-level policy. While these
languages were all declarative, Voellmy et al. took another
direction when proposing the Maple language [17] which
introduces algorithmic policies, high-level policies that
decide the behaviors of an entire network. Kang et al.
have considered an abstraction similar to Maple, i.e., the
whole network is one big switch [13], but are more con-
cerned than other proposals on how to satisfy user-defined
policies and adhere to the underlying hardware resources
constraints at the same time. Extending such work into the
domain of PBNM, Machado et al. [11] propose a policy
authoring framework that is able to capture business-level
requirements in the shape of Service-Level Agreements
(SLAs) and translate them into low-level system configu-
rations automatically. It leverages network infrastructure
information obtained through SDN features to perform
logic reasoning on the policy objectives. In contrast,
FRESCO offers a development environment that is spe-
cialized to serve the needs of security applications [2]. It
facilitates the rapid design, and modular composition of
OF-enabled detection and mitigation modules. A similar
effort has been introduced with EnforSDN [18] where
middleboxes are described as two distinct layers: a cen-
tralized policy resolution layer (usually performed at the
controller) and a policy enforcement layer, implemented
in each individual switch.

Most of these frameworks usually assume specific
knowledge on the user-side, either through the expertise
of a programming language or a security tool. The
policies define through such frameworks may often blend
several sources, which may lead to conflicting rulesets,
even more in a context-aware environment. This requires
a comprehensive reasoning environment able to handle
contexts, and as well as detecting and resolving conflicts.
Tripathy et al. [19] have recently addressed such issue
through a policy management framework while ensuring
the consistency of deployed policies with the centralized
network-wide policy. In this paper, we are leveraging a
common usage control model language to specify the
endpoint policy of the network. As OrBAC is an all-
purpose policy model language, it is expected to be
more powerful in dealing with contexts, conflicts and
usages, which can be wider than the scope of the existing
DSLs. Recently, Li et al. [20] have also demonstrated
the possibility to translate SLAs into OrBAC rules, po-
tentially extending its usage to cloud service providers
and customers exchanges. On the other hand, we have
provided a number of generic OpenFlow rule constructs

that allow the translation of OrBAC rules into individual
switch configurations. The particular use case we present
is a proof that programming the network can be addressed
as designing an organization policy. For the moment,
the results are similar to legacy mechanisms used to
provide resilience to cloud services (replication, load-
balancing, etc.). However, leveraging the SDN paradigm
for network virtualization allows for increased flexibility
in managing resources, which can be costly in replication
strategies.

III. SDN POLICY ENFORCEMENT AND
MANAGEMENT FRAMEWORK

In this paper, we design a new framework that will
offer a high description of network security policies.
It will permit to react and re-configure dynamically an
SDN network against incidents and attacks. Different
components are defined:

• Context and Monitoring Module - CMM: A
monitoring service must be defined in order to
provide reports on the status of VMs, the network
and the detected attacks or malicious behaviors.
These status will define conditions or alerts that
monitor the changes in the system behavior. Several
intrusion detection systems and network monitoring
tools may be used in a multi-cloud environment.
In this paper, we do not focus on the choice or
the update of a monitoring solution. However,
we will work on the management of the received
notifications in order to define contexts that will be
used to activate or deactivate the adequate reaction
policies.

• Security Policy Module - SPM: SPM is composed
of two sub components 1), Security Policy Modeling
and 2), Security Policy Enforcement Engine. The
SPM specifies and models the security requirements
to be taken into account within the applications.
The security policy to be applied is a set of rules
defining the objectives that need to be respected
by the system. It includes different rule types:
permissions, prohibitions and obligations. Section
IV presents how to specify and model the SDN
security policy using the Or-BAC model and it gives
different elements and components used to build
such a policy. Whereas, policy decision engine is
the architecture engine that will receive the requests
and the notifications. Based on them, it will activate
and deactivate the adequate policies and rules.
This engine has to manipulate a set of pre-defined
network security policies based on the activated
context. More details about this module is presented
in Section IV-B.

• SDN Security Module - SSM: SSM is responsible
for the implementation of the current policy in the
Policy Enforcement Points (PEPs). PEPs comprise
the OpenFlow switches and the SDN controller. The
PEP will enforce automatically the selected policy by

Figure 1. Workflow of the policy enforcement approach

the SPM using the OpenFlow scripts. More details
about this module could be found in Section V.

Fig. 1 illustrates the workflow of our approach. A
monitoring engine continuously supervises the data plane
(2) to detect any failures, that may be system- or network-
based. This component updates accordingly the virtual
machines’ status, as well as the network status based on
alerts received from local or external sources (1). When
resources are critically damaged (failure, error, etc.), the
OrBAC-PDP (Policy Decision Point) is notified (3). This
policy engine activates contexts based on the status of
the networks or virtual machines (4). Appropriate reme-
diation policies are then selected and pushed into the data
plane in order to preserve the availability of the targeted
services (5, 6, 7). The deployment of these policies is
ensured by the SSM module based on predefined SDN
templates.

A. Availability service use case

With our framework, several network security policies
may be proposed as the availability and attack mitigation
services. The first one aims to enhance the application
performance against system and network failures. It will
offer a technique to distribute traffic between different
servers when it is needed. It will apply some techniques
as the load balancing and the replication strategies based
on the SDN technologies and only when some condi-
tions are detected. Indeed, our solution may adapt the
dynamic changes of the cloud (adding and deleting VMs,
modification of the allocated resources, migration of a
VM, etc). The second service is responsible to react
against the detected attacks. It offers the cloud providers
to complement their practical defense systems. In the rest
of this paper, we will focus more about the availability
service that will be used as a case study of our proposal.
All the presented examples will be related to this service.

In this section, we present two possible reactions that
are managed by our availability service.
• The first one is based on the use of a replica

server with degraded Quality of Service (QoS). This
scenario presents the case where the provider pledges
to preserve the availability of the service without
necessarily maintaining the quality of the network.
The replica is deployed to receive live copies of user
requests, but does not honor them as long as the

main server is running. However, if connectivity to
the main server is lost or get degraded, the replica
takes over the main server and see its QoS increased
to act as the main service:
During the whole lifecycle of the service, two servers
are kept alive, one, the main server, with the re-
quested QoS and the second, the backup or replica,
with degraded QoS. The role of the availability
policy is to manage the performance of the networks
and to redirect the flows to the replica with the
modification of its QoS in case of a connection
problem with the main server. In other words, even if
the main server could not provide the required QoS,
we provide new paths with the needed performances
for the replica to keep the requested QoS.

• The second service proposes a load balancing on
demand. At the beginning, only one server provides a
service to the customers. Next, based on the network
status, a second server is provided in order to achieve
the required QoS. This policy provides network
resilience for the customer’s service by categorizing
the network status into three different states. The
NORMAL state, where the service can answer re-
quests properly and does not suffer from bandwidth
nor computation power shortage. The MIDDLE state
corresponds to a service with several simultane-
ous connections or less than 50% of its available
bandwidth remaining. Finally, the CRIT ICAL state
characterizes an offline system. In this scenario, the
second machine is solicited depending on the state
of the main machine.

IV. SECURITY POLICY MODULE - SPM
A. Modeling Security Policies

Based on the different requirements and challenges
highlighted in the Section I, we need to select a security
policy model which is capable of modeling various types
of security requirements (access control, usage control,
and information flow, etc.), provide a way to enforce
security requirement dynamically, and most importantly
security policy model should be capable of handling
conflicts in security policies. In this section, we will
present our solution to model SDN network which is
adequate for handling most of these requirements.
Traditionally security policies define a set of rules which
are intended to control the access to resources and their
usage during this access. RBAC [21] is the most well
known model defining security policies as a set of permis-
sions. Permissions are rules granting the right to access
a specific resource. The approach used by RBAC model
to specify security policies is static. Later, the OrBAC
model [8] proposed to introduce another type of rules
named prohibitions which are denying rights to access
specific resources. Obligations are the third type of rules
specified to enforce the usage control. They are actions
that the system or users are required to take. These
actions are essential for the expression and enforcement
of a large number of requirements. In SDN network, we
consider these three types of security rules. We model
these rules using the OrBAC model. Instead of modelling
the policy by using the concrete implementation-related

concepts of subject, action and object, the OrBAC model
suggests reasoning with the roles that subjects, actions
or objects are assigned within an organization. The role
of a subject is simply called a role as in the RBAC
model. The role of an action is called activity and the
role of an object is called view. The security rules specify
that some roles are permitted or prohibited or obliged to
carry out some activities on some specific views under
certain conditions. The main advantage of OrBAC model
in the SDN network is that the security rules do not apply
statically but their activation may depend on contextual
conditions [8]. For this purpose, the concept of context is
explicitly included in OrBAC. Many types of contexts
have been defined within the OrBAC model in order
to take into account different types of conditions. The
activation of some contexts activates the rules defined
under that specific context.

1) Specification of Access and Usage Control Rules:
Using the concepts introduced by the OrBAC model and
based on a first order logic formalism, the specification of
the abstract permissions or prohibitions is defined using
a 5-places predicate as follows:

Definition 1: an OrBAC security rule is defined as:
Security_Rule (Org, Role, Activity,

View, Context) where Security_Rule ∈
{Permission, Prohibition}.

The obligations differ from permissions/prohibitions by
controlling the behavior of the system based on specific
events that may occur. For the definition of obligations,
we consider two different contexts: the obligation’s acti-
vation context and the obligation’s violation context.
• Obligation Activation: An obligation has an acti-

vation event after which it becomes effective. This
event may be a temporal or an action-based event
[22].

• Obligation Violation: An obligation has a violation
event which specifies when it is violated. This event
may be an action-based, temporal or a relative tem-
poral deadline [22].

From its specification until its fulfillment, an obligation
can have different status, apart from Obligation Activation
and Obligation Violation:
• Obligation Deactivation: An active obligation is

deactivated when its context ceases to hold. The
deactivation of an obligation depends on the type
of the obligation. Some obligations may remain
required forever after their activation until they are
fullfilled [22].

• Obligation Fulfillment: An obligation is fullfilled
when its action is taken. Thus, the obligation ceases
to be required [22].

Thus, the specification of the obligations can be ex-
pressed as follows:
Definition 2: an OrBAC obligation is defined as:
Obligation (Org, Role, Activity,

View, Activation_Context,
Violation_Context).

Considering our OrBAC security policy model, we
have designed a set of entities and components that will
permit to define an SDN security policy. In the following

we present some examples of privileges and conditions
for our SDN network availability use case (cf. section
III):
• P1: A subscribed system administrator in Cloud

Service provide (CSP) facility is authorized to access
various SDN controller services in a default context:

– P1: Permission(CSP,
system-admin, access,
sdn-controller-services,
default-context)

• P2: The SDN controller is allowed to activate
loadBalancing-on-demand which is running on the
main server by using the best path in a normal
context:

– P2: Permission(CSP,
SDN-Controller, activate,
loadBalancing-on-demand,
normal-context)

• O1: The SDN controller is obliged to self-activate
loadBalancing-on-demand which is running on the
main-server, when the network status is partially
critical:

– O1: Obligation(CSP,
SDN-Controller, self-activate,
loadBalancing-on-demand,
partial_critical_network_status,
system-timeout)

• O2: The SDN controller is obliged to redi-
rect loadBalancing-on-demand to the second-server,
when the network status is critical:

– O2: Obligation(CSP,
SDN-Controller, redirect,
loadBalancing-on-demand,
critical_network_status,
system-timeout)

Based on the OrBAC derivation mechanism [8], we
first define the set of concrete subject [admin-user-
1, controller-1], action [access-cmd, activate-cmd, self-
activate-cmd, redirect-cmd] and objects [sdn-service-
pack, s1]. In the next step, we start by empowering,
considering, and using these subjects, actions, and ob-
jects into roles, activities and views, respectively. For
instance, we empower admin-user-1 subject into system-
admin Role, access-cmd action is considered for Access
activity, and we use sdn-service-pack object into sdn-
controller-services view. Thus, the concrete rules look like
as follows:
• P1′: Is_Permitted(admin-user-1,
access-cmd, sdn-service-pack)

• P2′: Is_Permitted(controller-1,
activate-cmd, s1)

• O1′: Is_Obliged(controller-1,
self-activate-cmd, s1)

• O2′: Is_Obliged(controller-1,
redirect-cmd, s1)

As mentioned before, the approach that we are consid-
ering is dynamic since it takes into account the changes
that may happen during the application execution. These
changes are modeled in the security policies (as shown

in security rules: P1,P2,O1,O2) as a specific context.
Thus, in order to invoke the permissions or obligation,
the activation context should. More specifically for obli-
gations, when Activation Context is evaluated as true, the
obligation is considered active and it should be fulfilled
before the Violation Context holds. Whereas, if Violation
Context holds, then the obligation is considered violated.
In section IV-B, we will explain in a detail how the
context is managed and evaluated dynamically to enforce
security policies.

2) Conflict Management: In SDN networks, security
rules can be hierarchically structured so that they are in-
herited in the organization, role, activity and view hierar-
chies. Since a security policy can be inconsistent because
of conflicting security rules (for example a permission can
be in conflict with a prohibition). Our solution should be
able of managing the conflicts at abstract levels. In our
approach, we provide two possible reactions regarding
this problem:
• Separation Constraints: When assigning a concrete

entity to an abstract one, the separation constraints
are verified to prevent the user from violating one
and potentially generate concrete conflicts. The sep-
aration constraints are not exclusively used to pre-
vent concrete conflicts but can be used to specify
separation of duty.

• Rule Priorities: Define a priority order between the
two conflicting rules. We associate the authorization
rules with priorities in order to evaluate their sig-
nificance in conflicting situations. Priorities between
access control rules may be sometimes derived from
the rules syntactical format.

B. OrBAC-PDP:Security Policy Enforcement Engine

In the previous sections, we introduced our concepts of
SDN security policies. In this section, we present how the
policy engine module analyzes and interprets these secu-
rity policies and dynamically enforce them. This module
acts as a Policy Decision Point (OrBAC-PDP) with a
public SDN API in order to manage security policies.
It allows to take a decision (allow/deny) according to
specific actions to be applied within the application and
also trigger obligations for example in the case of usage
control rule enforcement or in the case of any security
flaw detection. More specifically, once security policies
are loaded in the OrBAC-PDP, the next step is to dynam-
ically control the enforcement of these security policies
based on the changed occurring in the environment. Thus,
the set of active/inactive policies needs to be synchronized
with the set of active/inactive rules which are already
enforced by the SDN controller. For this purpose, we have
defined an enforcement approach based on the concept
of push and pull modes, depending on the type of the
security rules that we are considereing.
• Pull Enforcement: is a type of mode in which

SDN controller invokes OrBAC-PDP to retrieve all
the active rules related to permissions and prohi-
bitions. The SDN controller calls, using the vari-
ables <subject, action, object>, the API method
Is permitted in order to evaluate the access as shown
in code snippet in the Listing 1.

1 resultPermission = policy.is_Permitted(
_subject, _action, _object);

2 resultProhabition = policy.is_Prohibitted(
_subject, _action, _object);

3 if ((resultPermission == true) && (
resultProhabition ==false)){

4 notificationList.prepareActiveRuleList(
policy);

5 } else{
6 notifyNegativeEvalutationResult(_subject

+ "is not allowed to perform the
specific" +_action + "on the" +
_object);}

Listing 1. Security policy pull enforcement

While evaluating the security policies, the OrBAC-
PDP consults the context and monitoring module
in order to retrieve an actual status of the context
as shown in Figure 1. Based on the context status
and the elements in the query, the OrBAC-PDP
checks its concrete rules (see rules P1′ ,P2′ ,O1′ ,O2′)
to decide about the access. In our approach as
a response the OrBAC-PDP send a list of active
and inactive rules to the SDN controller. Based
on this list, as shown in Listing 3, the SDN
controller activate or deactivate different network
configurations.

• Push Enforcement: is a type of mode in which,
instead of SDN controller, the OrBAC-PDP pushes
the changes, that occur in the security policy, to the
SDN controller in the form of notifications to activate
or deactivate different network configurations. Our
core purpose to define push mode is to control
obligation enforcement during the application
execution. As discussed in the previous section
IV-A, these obligations can have different states
(Activation, Deactivation, Violation, Fulfillment),
during the whole lifecycle of the application
execution. In our approach, we enforce these
different changes of obligation through considering
and evaluating different states of the context. For
this purpose, the context and monitoring modules
are actively monitoring the changes happening in
the environment and regularly notify the status of
context to the OrBAC-PDP. Once the OrBAC-PDP
has been notified that a context is in a new state,
an analysis phase takes place in the OrBAC-PDP
to check if there is any obligation that is activate,
deactivate, fulfilled or obligation is violated.

1 while(_context.getContextState())
2 {
3 resultObligation= policy.Is_Obliged(_subject

, _object, _action);
4 if (resultobligation == true)
5 {
6 for (Iterator<CConcreteObligation> it =

policy.GetConcreteObligations().
iterator(); it.hasNext();) {

7 CConcreteObligation
_obligation = it.next();

8 if (_obligation.IsActive()) {
9 notificationList.

prepareActiveRuleList
(policy);

10 ... } } } }

Listing 2. Security policy push enforcement

Thus, based on this analysis, the OrBAC-PDP
retrieves all the active obligations, see code snippet
in Listing 2, and push these active obligations
to the SDN controller to dynamically enforce
security policies. In our approach, we use the same
message format defined in Listing 3 to notify active
obligations. The SDN controller receives notification
about a new security policy to be deployed, or about
changes on the current security policies deployed
and generates a new security adaptation plan (a list
of actions – activate/deactivate/reconfigure – to be
performed in the network) conformed to the security
policy.

1 <xml version ="1.0" encoding="UTF-8"standalone
="Yes"?>

2 <Notification>
3 <RuleStatus>
4 <Rules>
5 <Rule Id="P1", Type ="Permission",

Value ="active">
6 <Status>"active"</Status>
7 <Subject>"admin-user-1"</Subject>
8 <Action>"access-cmd"</Action>
9 <Object>"sdn-service-pack"</Object>

10 </Rule>
11 <Rule Id="P2", Type ="Permission",

Value ="inactive">
12 <Status>"active"</Status>
13 <Subject>"controller-1"</Subject>
14 <Action>"activate-cmd"</Action>
15 <Object>"s1"</Object>
16 </Rule>
17 <Rule Id="O1", Type ="obligation",

Value ="active">
18 <Status>"active"</Status>
19 <Subject>"controller-1"</Subject>
20 <Action>"self-activate-cmd"</Action>
21 <Object>"s1"</Object>
22 </Rule>
23 <Rule> ... </Rule>
24 </Rules>
25 </RuleStatus>
26 </Notification>

Listing 3. Security policy: Active/Inactive rules

V. SDN SECURITY MODULE - SSM

This module aims to deploy the selected rules by
the SPM into the SDN switches. Indeed, any OrBAC
security rule should be translated to a set of three possible
actions: adding, deleting and/or modifying a rule from the
flow table of an SDN switch. In this module, we have
designed three SDN templates for each action. Indeed,
each template is a predesigned form of an openflow script
related to the three possible actions (adding, deleting
and updating). They provide the consistent code that will
permit to create the final OpenFlow scripts. The creation
of these scripts will be based also on a set of inputs that
should be prepared by the SSM module.

With our approach, the deployment of an OrBAC
security policy is based on the Algorithm 1. It will take
two inputs:
• The security policy that contains the list of rules to

apply and to deactivate and
• The network topology that contains the list of

switches, servers, the links between them with the
different configuration details as (the IP address,
ports, etc). It will be used to configure the OpenFlow
scripts.

Based on these inputs, our algorithm will compose each
rule on the security policy to a set of adding, deleting
and/or updating rule. The network topology will permit
to enrich these rules with the required information as
the switch ID, the path to deploy and the servers IP
address. Finally, when all the OrBAC security rules are
analyzed. our algorithm will deploy the needed strategy in
the controlled switches based on the OpenFlow templates
and the rest API of the controller.

Algorithm 1 SSM: SDN policy deployment

Input: Security Policy SP; Network Topology NT
Output: OpenFlow scripts deployed in the SDN switches

flow To add[],To delete[],To update[];
. These arrays will contain respectively the list of

. OpenFlow rule to add,to delete and to update
for Ri in SP do

Ri.extract Add Rule(To add);
Ri.extract Delete Rule(To delete);
Ri.extract update Rule(To update);

end for
Concertize(To add,To delete,To update,NT);
Deploy Policy();

VI. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the our framework with a
use case on network availability.

A. Implementation

In order to implement the use case, we have set up a
testbed (see Figure 2) featuring several hardware servers
and OpenFlow (OF) switches:

• 4 Alcatel OS6860 switches, OF-capable with 24
ports running at 1 Gbps.

• Two web servers running Apache v2.4.7 providing
a set of video files. (Named main server and second
server in the following)

• Two clients streaming video from the server using
Tapas [23], an adaptive video streaming client. It
simulate a video player without adding the compu-
tational overhead of the decoding process.

• An SDN controller managing the switches. In these
experiments, we have installed Floodlight1 on a
virtual machine. The OrBAC PDP, the security poli-
cies and the SDN security module are deployed in
the same virtual machine for eased communication.
This machine will be responsible for the reaction
strategies and the automatic deployment.

1Floodlight is an open source controller, available at http://www.
projectfloodlight.org/floodlight/

Figure 2. Exprimental testbed.

The use case represents a client watching videos over
the internet. In our setup, the clients will be virtual
machines and video will be played using Tapas. The
testbed will serve as the provider’s infrastructure. In
this paper, we do not cover the network monitoring and
notification processes.

B. Evaluation

Network Failure Scenario: In this experiment, we
want to prove the feasibility of our solution when several
non-simultaneous network failures occur. The situation is
presented in the second availability service (load balanc-
ing on demand).

Initial situation: During the initial deployment, the
context is set as normal-context. Based on this context
the OrBAC-PDP will activate a set of rule. Among them,
we find the following rule:

• P2: Permission(CSP, SDN-Controller,
activate, loadBalancing-on-demand,
normal-context)

These latter will be mapped to openflow scripts that
will deploy the best path for the client. As shown in
Figure 5, flow rules are pushed toward the different
switches during the first period. During this phase, only
one client is using the web service. Figure 3 shows an
average latency of around 500 µs between client 1 and
the server. As shown in Figure 4, the client’s requests
increases the packet-per-second rate received by the main
server.

Figure 3. Network failure experiment: The latency of the client 1 and
2.

Incident: A partial network failure occurs, which
means a network problem is detected in the best path.
We simulate this by unplugging a cable between switch
1 and switch 3. We observe the loss of connectivity at the
9th period in Figure 4 (no data received by the Apache
server).

Figure 4. Network failure experiment: Number of packets received by
the deployed servers.

Response: Once the failure is detected, the context
partial critical network status is activated.

This context triggers the following new rule:
• O1: Obligation(CSP,
SDN-Controller, self-activate,
loadBalancing-on-demand,
partial_critical_network_status,
system-timeout)

.
Let’s analyse the reaction of our system after the

deployment of this rule: Figure 5 from period 11 to 12
shows the OrBAC-PDP deploying the new path, allowing
the traffic to reach server 1 with a lower QoS. In Figure 5,
between the periods 9 and 12, we notice that flow rules are
pushed on the switches. Once new flow rules are effective,
the connectivity is re-established for client 1, with a much
higher latency though (> 2 ms). In the meantime, a new
client attempts to access the service, but is redirected to
the backup server in accordance to the availability policy.
The Qos for client 2 is the same as for client 1 in a
normal situation. Latency in periods [1-7] for client 1 is

similar as the client 2 latency during periods [16-29] (see
Figure 3).

Figure 5. Network failure experiment: Number of packets sent by the
controller.

Incident: Now a complete failure occurs in the
network, implying that there is no network path leading
to server 1. In Figure 3 from the 19th period to the 25th,
the server 1 is not reachable anymore. Therefore, the
communication between client 1 and server 1 must be
redirected toward the second server.

Response: The context is now set as criti-
cal network status. The OrBAC engine activates and
deactivates different rules. Let’s take the example of the
following rule:
• O2: Obligation(CSP, SDN-Controller,
redirect, loadBalancing-on-demand,
critical_network_status,
system-timeout)

The OrBAC-PDP will ask the controller to deploy new
openflow rules to the switches, thus enabling a new path
for client 1 with a new server S2.

We observe, in Figure 4, the second server taking over
the first one in processing the requests from client 1. The
latency of the two clients are now similar, at around 500
µs.

VII. CONCLUSION

In this paper, we have designed a flexible and generic
framework that will manage and define dynamically the
network security policies and push/pull them to the SDN
equipment. This solution permits to respond automatically
to the detected alerts and problems. It offers also to an
administrator or a developer to specify modify rules or
to configure a service without a deep knowledge of the
openflow standard.

We illustrated our work with a real SDN testbed and
ran different experiments with an availability security
policy as a case study. The results assure the feasibility
and the importance of our solution that may enhance the
performance of the application.

Future work aims at completing the implementation
with the appropriate monitoring tools to assist network
administrators in tasks such as alert data extraction and
verification of the VM status. We also plan to evaluate our
solution in more complex network scenarios, including
different network operators.

ACKNOWLEDGMENT

This research has been supported in part by the Eu-
ropean Union’s Horizon 2020 Research and Innovation

Programme under grant agreement No. 643964 (SUPER-
CLOUD), and by the French national Fund for Digital
Society (FSN). The opinions expressed in this paper
are those of the authors and do not necessarily reflect
the views of the European Commission, or the French
Government.

REFERENCES

[1] J. Cropper, J. Ullrich, P. Frühwirt, and E. Weippl, “The
role and security of firewalls in IaaS cloud computing,” in
Proceedings - 10th International Conference on Availabil-
ity, Reliability and Security, ARES 2015, 2015, pp. 70–79.

[2] S. Shin, P. Porras, V. Yegneswaran, M. Fong, and G. Gu,
“FRESCO: Modular Composable Security Services for
Software-Defined Networks,” in Network and Distributed
System Security Symposium (NDSS 2013), 2013, pp.
1–16. [Online]. Available: http://www.csl.sri.com/users/
vinod/papers/fresco.pdf{\%}5Cnpapers3://publication/
uuid/5A7E2F2B-FBAC-48CF-BDCE-0C4A1A4604FB

[3] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu, “SIMPLE-fying Middlebox Policy Enforcement
Using SDN,” SIGCOMM Comput. Commun. Rev., vol. 43,
no. 4, pp. 27–38, 2013. [Online]. Available: http:
//doi.acm.org/10.1145/2534169.2486022

[4] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-
defined networking (SDN) and distributed denial of service
(DDOS) attacks in cloud computing environments: A
survey, some research issues, and challenges,” pp. 602–
622, 2016.

[5] G. Xu, B. Dai, B. Huang, and J. Yang, “Bandwidth-Aware
Energy Efficient Routing with SDN in Data Center Net-
works,” in High Performance Computing and Communi-
cations (HPCC), 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security (CSS), 2015 IEEE 12th
International Conferen on Embedded Software and Sys-
tems (ICESS), 2015 IEEE 17th International Conference
on. IEEE, 2015, pp. 766–771.

[6] B. Anwer, T. Benson, N. Feamster, D. Levin, and
J. Rexford, “A Slick Control Plane for Network
Middleboxes,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’13. New York,
NY, USA: ACM, 2013, pp. 147–148. [Online]. Available:
http://doi.acm.org/10.1145/2491185.2491223

[7] S. Richard, “Effective Network Orchestration Starts by
Automating Provisioning,” Gartner, Tech. Rep., 2015. [On-
line]. Available: https://www.gartner.com/doc/3122020/
effective-network-orchestration-starts-automating

[8] A. A. El Kalam, R. El Baida, P. Balbiani,
S. Benferhat, F. Cuppens, Y. Deswarte, A. Miege,
C. Saurel, and G. Trouessin, “Organization Based
Access Control,” in Proceedings of the 4th IEEE
International Workshop on Policies for Distributed
Systems and Networks POLICY 2003, 2003, pp. 120–
131. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1206966

[9] H. Kim and N. Feamster, “Improving network manage-
ment with software defined networking,” IEEE Communi-
cations Magazine, vol. 51, no. 2, pp. 114–119, 2013.

[10] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar,
R. Amorim, and D. Pinheiro, “Enhancing network
management frameworks with SDN-like control,” . . .
Management (IM . . . , pp. 688–691, 2013. [Online].
Available: http://ieeexplore.ieee.org/ielx7/6560458/
6572961/06573054.pdf?tp={\&}arnumber=6573054{\&
}isnumber=6572961{\%}5Cnhttp://ieeexplore.ieee.org/
xpls/abs{\ }all.jsp?arnumber=6573054

[11] C. C. Machado, J. A. Wickboldt, L. Z. Granville, and
A. Schaeffer-Filho, “Policy authoring for software-defined
networking management,” in Proceedings of the 2015
IFIP/IEEE International Symposium on Integrated Net-
work Management, IM 2015, 2015, pp. 216–224.

[12] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: A comprehensive survey,” Proceedings of the
IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[13] N. Kang, Z. Liu, J. Rexford, and D. Walker,
“Optimizing the ”One Big Switch” Abstraction in
Software-Defined Networks,” Conext’13, p. 17, 2013.
[Online]. Available: http://www.cs.princeton.edu/{∼}jrex/
papers/rule-place13.pdf

[14] N. Foster, R. Harrison, M. J. Freedman,
C. Monsanto, J. Rexford, A. Story, and
D. Walker, “Frenetic: a network programming
language,” Proceeding of the 16th ACM SIGPLAN
international conference on Functional programming
- ICFP ’11, p. 279, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2034812{\%}5Cnhttp:
//dl.acm.org/citation.cfm?doid=2034773.2034812

[15] C. Monsanto, J. Reich, N. Foster, J. Rex-
ford, and D. Walker, “Composing software-
defined networks,” Proceedings of the 10th
USENIX conference on Networked Systems Design
and Implementation, pp. 1–14, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?id=2482626.
2482629{\%}5Cnhttp://www.frenetic-lang.org/pyretic/

[16] A. Voellmy, H. Kim, and N. Feamster, “Procera: a lan-
guage for high-level reactive network control,” in Proceed-
ings of the first workshop on Hot topics in software defined
networks, 2012, pp. 43–48.

[17] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak,
“Maple: simplifying SDN programming using algorithmic
policies,” Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, pp. 87–98, 2013. [Online].
Available: http://doi.acm.org/10.1145/2486001.2486030

[18] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and
E. Raichstein, “EnforSDN: Network policies enforcement
with SDN,” in Proceedings of the 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management,
IM 2015, 2015, pp. 80–88.

[19] B. K. Tripathy, A. G. Sethy, P. Bera, and M. A. Rah-
man, “A Novel Secure and Efficient Policy Management
Framework for Software Defined Network,” in Computer
Software and Applications Conference (COMPSAC), 2016
IEEE 40th Annual, vol. 2. IEEE, 2016, pp. 423–430.

[20] Y. Li, N. Cuppens-Boulahia, J. M. Crom, F. Cuppens, and
V. Frey, “Expression and enforcement of security policy
for virtual resource allocation in IaaS cloud,” in IFIP
Advances in Information and Communication Technology,
vol. 471, 2016, pp. 105–118.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman, “Role-Based Access Control Models,” pp.
38–47, 1996. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs{\ }all.jsp?arnumber=485845

[22] Y. Elrakaiby, F. Cuppens, and N. Cuppens-Boulahia, “For-
mal enforcement and management of obligation policies,”
Data and Knowledge Engineering, vol. 71, no. 1, pp. 127–
147, 2012.

[23] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo,
“TAPAS: a Tool for rApid Prototyping of Adaptive Stream-
ing algorithms,” in Proceedings of the 2014 Workshop
on Design, Quality and Deployment of Adaptive Video
Streaming. ACM, 2014, pp. 1–6.

