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Assessment of candidate metallization systems deposited on diamond
using nano-indentation and nano-scratching tests
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a b s t r a c t

Mechanical suitability of ohmic contacts among the select metallization systems, deposited on a p-type heavily

boron-doped homoepitaxial diamond layer, was evaluated viamechanical tests on the nanoscale. Two candidate

metallization systems were considered: Si/Al and Ti/Pt/Au. Metallizations were performed using two different

techniques: plasma-enhanced chemical vapour deposition and “lift-off”. Effectiveness of the techniques was

assessed via mechanical tests on the microscale and the nanoscale. Nano-indentation experiments were per-

formed to determine the mechanical properties of the layers. Nano-scratching experiments were used to evalu-

ate the mechanical adhesion on the diamond substrate. Scanning electron microscopy was applied for

observation of the morphology of the surface and the indent and for detecting defects.
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1. Introduction

Diamond is well known as a promisingmaterial for power electron-

ics due to its desirable electrical and thermomechanical properties [1–

3]. Nevertheless, many technological issues must be resolved to ade-

quately exploit diamond and to manufacture competitive power elec-

tronic devices that can withstand high temperatures of up to 300 °C.

This study focuses on diamond metallization systems that play the

role of ohmic contacts. The metallization systems must satisfy many

conditions, such as having the ability to withstand high voltages and

current density, good mechanical properties, and good adhesion on

the diamond substrate, among other requirements.

Many researchers are interested in the deposition of ohmic contacts

on diamond based on the premise that goodmechanical adhesion of the

metallization systems is a key requirement for achieving efficient device

bonding and power transmission. Refractory metals such as Ti, Mo, Ta,

and W are known to form adhering carbide layers on diamond at high

temperatures [4–6]. Ti-based contacts are more widely used due to

the formation of a TiC layer during annealing, which enables achieve-

ment of low contact resistivity and good mechanical adhesion. More-

over, transition metals such as Cr, Ni, and Ni\\Cr are widely used in

other multi-chip module (MCM) technologies involving Si, A1N, SiC,

and alumina substrates [7]. Themechanical and electrical performances

of Cr, W, Ni, and Al layers as frameworks have been investigated and

documented in the literature [8]. The ohmic contact metallization sys-

tems evaluated in the studies mentioned above were deposited on a di-

amond sample by the same photolithography process. It was noted that

Ni is a suitable contact metallization system for utilization in high

power, high temperature, and good mechanical strength diamond

Schottky barrier diode applications. Nevertheless, themechanical adhe-

sion and thermal stability of these species was not investigated. The

electrical capability and thermal stability after post-deposition anneal-

ing of metallization systems such as C/Ti/Ni, C/Ti/Cr, and C/Ti/W have

previously been investigated. Under the relevant deposition conditions

of these studies, it was concluded that the adhesion of Ti/Ni to diamond

is higher than that of single layer Cu due to the formation of TiC, and that

only Cr is inert to AuSn during annealing [9]. Cr also offers better adhe-

sion and enhances the diffusion barrier properties (compared with

Ti\\W) for Au-based conductor metallization systems on diamond sub-

strates [7]. From the latter observation, it can be deduced that both the

die attachment and the diffusion mechanisms are highly important for

the thermomechanical stability of the assembly involving diamond.

The deposition technique also appeared to be of great importance. The

adhesion of sputtered Au/(Ti\\W) to diamond was significantly in-

creased when the surface was activated by the sputter etch technique

[7]. The electrical performance and intermetallic reaction of a Ti/Pt/Au

multilayer after annealing at 800 °C and 900 °C under vacuum was

also studied [10]. It was found that Au and Pt inter-diffused, but the Pt

barrier was not fully consumed and effectively served as a barrier to Ti

diffusion through the Au layer to the contact surface. Notably, some

frameworks have been appended to Si/Al based contacts, leading to

good electrical characteristics of such systems [11]. However, overall,
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concrete advancements on the study of adhesion of such deposited

films on diamond are rare.

Due to the lack of data concerning the mechanical and the adhesion

characteristics ofmetallic films on diamond substrates, herein,we study

some candidate metallization systems for use as ohmic contacts on dia-

mond for high temperature power electronics. The ohmic contacts stud-

ied here are Ti/Pt/Au and Si/Al systems. The use of a thick Si or Ti layer

allows the formation of a SiC or TiC carbide layer, which ensures strong

bonding. This latter point is essential if high reliability of the diamond

device packaging is required. Surface morphology analyses are per-

formed using scanning electron microscopy (SEM) and the energy dis-

persive X-ray (EDX) technique to detect surface defects derived from

deposition or annealing. Nano-indentation tests with large (XP) and

small (DCM) displacements are performed to determine the elastic

properties and hardness of the deposited films. Finally, the adhesion of

the multilayers on the diamond substrate is evaluated using nano-

scratching tests.

2. Experimental procedure

2.1. Deposition of thin films

A1.5mm thick, heavily boron-doped diamond film deposited on the

3 × 3 × 0.5 mm lb. diamond sample used in this study. The boron den-

sity in the film was approximately 3 × 1020 cm−3. The sheet resistance

of the sample was measured by four probe measurement to be about

110Ω/□. Variousmetallization systemswere deposited on the diamond

sample by vacuum evaporation. For Si/Al metallization, a 0.2 μmSi layer

was first deposited at 475 °C by plasma-enhanced chemical vapour de-

position (PECVD). The metallized substrate was then annealed in a

rapid thermal processing (RTP) furnace at 1200 °C under vacuum for

10 s prior to cleaning with hydrofluoric acid to remove any oxides on

the surface, including the native SiO2. The purpose of this operation is

to form a silicon carbide layer at the interface between silicon and dia-

mond. This layer was used to help to ensure good adhesion of the

layer stack on diamond. Upon completion of this operation, a 0.5 μm

thick Al film was formed by the photolithography technique or by

“lift-off”. This step was followed by annealing at 450 °C for 20 min in a

tubular passage furnace to improve the adhesion of the metallization

system.

On the second diamond substrate, a Ti/Pt/Au multilayer was formed

by “lift-off”, where the multilayer comprised respective layers with

thicknesses of 0.1, 0.05, and 0.5 μm. Once these films were obtained,

the sample was annealed at 450 °C for 30 min. This is the minimum

temperature at which Ti and Si form a carbide layer with diamond [11].

2.2. Mechanical characterization

2.2.1. Nano-indentation tests

The mechanical properties of the layers, such as the stiffness and

hardness, were determined by using anMTS© nano-indentation device

equipped with a Berkovich pyramidal indenter. This type of device can

continuously measure the stiffness of the contact via “Continuous Stiff-

ness Measurement”. Nano-indentation tests with small and large dis-

placements were carried out at room temperature (23 °C) depending

on the thickness of the deposited films. The test conditions are specified

in Table 1. For large displacements, the tests were performed with an

MTS XP nano-indenter in dynamic mode, making it possible to obtain

the overall Hardness and Young's Modulus values of the multilayer.

However, the DCM nano-indenter was utilized for small displacement

(400 nm). The DCM nano-indenter permits determination of the indi-

vidual properties of the filmswith quite good precision. Themechanical

properties of the layers, such as the hardness and elastic modulus, were

determined via the commonOliver-Pharrmethod [12]. Formore details

about the nano-indentation technique, one can refer to papers by Alexis

or Msolli and co-workers [13–15], for instance.

2.2.2. Nano-scratching tests

The adhesion of the deposited multilayers was also assessed using

nano-scratching tests. The test parameters were adapted depending

on the thickness of the metallization layer (see Table 2). Nano-

scratching tests were performed on the sample surface by moving a

Berkovich tip in three successive steps and measuring the penetration

depth. The first step was carried out to determine the surface topogra-

phy and to correctly set the position of the indenter. The aim of the sec-

ond step was to scratch the sample surface. The applied load was then

increased progressively up to a maximal value and subsequently re-

duced. Finally, the spring-back and the topography of the residual

scratch were measured from a last scan using a small applied load.

2.2.3. Morphology and EDX analysis

Observations were carried out with a field emission gun scanning

electron microscope (FEG SEM-7000F from JEOL with the incident elec-

tron beam maintained between 10 and 15 kV) to analyse the surface

morphology of the films. The analysis was corroborated by chemical

analysis with an SDD Bruker X flash energy dispersive X-ray spectrom-

eter (EDX).

3. Study of Si/Al metallization system

3.1. Morphology of the surface

Fig. 1 showsmicrographs obtained by scanning electronmicroscopic

(SEM) analysis of the metallization surface at various magnifications

ranging from ×500 to ×50,000. The Si/Al multilayer did not have any

detectable defects. The Si/Al multilayer appeared relatively dense and

homogeneous at low magnification. Observations at higher magnifica-

tion revealed the presence of clusters of a fewmicrons, evenly distribut-

ed on the sample surface (Fig. 1a). The microstructure of the deposited

Al comprised equiaxed grains with diameters of 100 nm (Fig. 1b).

EDX spot analyses were carried out on themetallization surface. The

overall spectrum attests the presence of two layers of aluminium and

silicon in region 3 (Fig. 1a). Indeed, the “interaction pear” of the SEM in-

cident beam has a depth greater than the deposition thickness of alu-

minium, which also explains the detection of the sub-Si layer.

However, the previously observed clusters denoted as region 4 (Fig.

1a) are those of aluminium because the Al content is higher than the

Si content.

Table 1

Operating conditions for nano-indentation tests.

Berkovich tip nature DCM XP

Load resolution 1 nN 100 nN

Column displacement resolution 0.05 nm 0.1 nm

Number of tests 30 10

Displacement into the surface 400 nm 2 μm

Approach velocity 8 nm/s 8 nm/s

Distance between nano-indents 10 μm 50 μm

Table 2

Operating conditions for nano-scratching tests.

Distance between scratches 500 μm

Scratch length 700 μm

Scratching velocity 10 μm/s

Topography load 0.1 mN

Scratching load 0.1 mN to

80 mN

Final load 0.1 mN

Number of scratches 2 − 3



3.2. Mechanical properties of Si/Al system

3.2.1. Nano-indentation with MTS XP indenter

To obtain a scatter in the data, ten nano-indentation tests were per-

formed with an imposed depth of 2 μm. Nano-indentation tests at large

displacement (where the maximum load reached 1500 mN) were use-

ful for determining the variation of the mechanical properties of the Si/

Al multilayer with the indented depth. Fig. 2a shows the load evolution

as a function of the penetration into the surface for all the tests. Good re-

peatability of the load displacement responses was observed. To facili-

tate interpretation of the curves, the nature of the different layers that

were reached and their thicknesses are shown directly on the graph.

Each load curve can be divided into three distinct parts.

The first part appears linear and is located between the loading start

and a penetration depth close to 500 nm. It is characterized by the low-

est slope for the entire load curve. This is explained by the fact that the

stiffness and hardness of Si and Al are much smaller than those of dia-

mond. The second portion corresponds to a transition and ranges be-

tween 500 nm and 1300 nm, where the influence of diamond

becomes more important. Over 1300 nm, the influence of metallization

becomes negligible and the applied load increases sharply due to the

very high hardness of diamond.

Fig. 2b shows the average stiffness and hardness curves as functions

of the indentation depth. The Young's modulus increased progressively

from the start of the response to reach a plateau at 750 GPa from a pen-

etration depth of 1100 nm. The highest dispersion observed at the end

of the test and the slight decrease of the load, are due to initiation of

cracking of the diamond substrate, which begins from an indentation

depth of 1500 nm. This crack is confirmed by the flat portions present

on the load displacement curves (see Fig. 2a).

As shown in the same figure, the hardness evolved differently,

where it increased very slightly up to a penetration depth of 600 nm.

This was followed by a rapid increase above 600 nm to reach a value

of 25 GPa. These initial results do not permit determination of the stiff-

ness and hardness of each layer, considering the influence of the

diamond substrate at this stage. It is interesting to note that the influ-

ence of the diamond substrate on the stiffness calculation emerges

faster (even at small loads) than on the hardness determination. This

has previously been observed for other coated substrates [16]. The hard-

ness and stiffness of the diamond substrate appear to be respectively

equal to 25GPa and 750GPa. Other studies of themechanical properties

reported values for thick diamond coatings deposited onWC substrates

close to that found herein [17,18].

The nano-indents relevant for these curves were observed by scan-

ning electron microscopy (SEM) to confirm the previous analyses. Fig.

3 shows the morphology of the nano-indent and the indented layers.

Microcracks were noticeable in the diamond substrate (Fig. 3a). The

nano-indent had a notable “barrel-shaped” form on its edges, resulting

from incompressible plastic deformation and the up-flowof the alumin-

ium layer around the indenter. This “pile-up” against the indenter faces

is characteristic of work-hardenedmaterials such as aluminium. Assess-

ment of the pile-up is important because pile-up leads to differences be-

tween the true contact area and the apparent contact area, which is

usually observed after indentation. In this case, the indented material

appears to be stiffer. The advantage of continuous stiffness measure-

ment (CSM) is that it takes into account the instantaneous variation of

the contact area by use of particular values of some adjusting parame-

ters (see Ref. [19] and [20] for the meaning and details of the contact

area calculations). During testing, all the layers are crossed, as shown

by EDX mapping (see Fig. 3b and EDX profilometry on bottom of the

nano-indent; see Fig. 4).

3.2.2. Nano-indentation with DCM indenter

The large displacement nano-indentation tests did not permit deter-

mination of the intrinsic mechanical properties of the aluminium layer.

Only the properties of the diamond substrate were estimated. There-

fore, small displacement nano-indentation tests were carried out with

the dynamic control module (DCM) nano-indenter MTS that offers bet-

ter resolution even at small applied loads due to its lower stiffness.

Fig. 1. Si/Al surface micrographs obtained by SEM observation at different magnifications. (a) 6000 and (b) × 50,000.

Fig. 2. Nano-indentation data for the Si/Al bilayer using XP tip. (a) Loading/unloading curves and (b) variation of hardness and Young's modulus against penetration into surface.



Fig. 5a shows the load evolutionwith the imposed penetration depth

of the indenter (themaximum depth was 400 nm). The load profiles do

not show any discontinuities despite the significant dispersion, mainly

due to the higher sensitivity of the DCM tip to the surface roughness.

The spring-back was very small (b20 nm). This is mainly due to the

small yield strength of Al, associatedwith its significant plastic deforma-

tion. Since DCM type indenter is highly sensitive, creep displacements

are observed during the holding load segment. Indeed, during the

hold, the indenter continues to penetrate into the surface. Subsequently,

the area of the indent increases. For the studied metallization, the dis-

placement creep reaches 40 nm at room temperature.

The curves of the average hardness and elastic stiffness module as a

function of the penetration depth are shown in Fig. 5b. The stiffness was

stabilized at 70 GPa for indentation depths ranging from 40 to 60 nm,

which is just one-tenth of the Al film thickness. The influence of Si and

diamond was small at this depth. However, over 80 nm, the measured

stiffness increased progressively because of the influence of the dia-

mond substrate. Therefore, the stiffness and hardness of the Al layer

could be estimated as 70 GPa and 1 GPa respectively. Other studies pro-

vide reference values consistent with themodulus values found herein.

The hardness values also remained very close to bibliographical results

[21].

3.2.3. Nano-scratching tests

The adhesion of the Si/Al bilayer was evaluated via nano-scratching

tests according to the experimental conditions described in Table 2. The

penetration depth and the dimensionless friction coefficient were de-

termined with respect to the scratch distance (Fig. 6).

The nano-scratching tests provide comparable and reproducible

profiles regardless of the location of the preformed scratches (Fig. 7).

The behaviour was initially linear with a constant penetration rate of

−2 nm·μm−1. This behaviour is mainly due to the ductile and rather

hard Al layer. Once the diamond substrate was reached, an abrupt

change of the penetration rate occurred, but the profile remained linear.

For depths below 500 nm, the topographic profile of the final scan

matched the penetration profile during scratching. This indicates that

the Al layer undergoes substantial plastic deformation as during the in-

dentation tests. Over the stated depth, the topographic profile becomes

different from that measured during scratching. The gap between the

two profiles could reach a maximum of about 160 nm at the end of

scratching, which corresponds to the diamond elastic spring-back that

represents 20% of the total strain at maximum load.

The evolution of the friction coefficient as a function of the penetra-

tion distance is shown in Fig. 6b. The friction coefficient, μ, is the ratio of

the lateral versus the normal force imposed by the indenter. This coeffi-

cient increased sharply when the tip began to penetrate the Al layer,

reaching a value of 0.3 at a scratching distance of 180 μm (penetration

depth equal to−304 nm, normal load equal to 12.92 mN). At this nor-

mal load, a slight perturbation of the friction coefficient was observed,

indicative of different mechanical behaviour due to the removal of Al

chips during scratching. Thus, the friction coefficient continued to in-

crease to reach a value of 0.5 when the indenter reached the Si/Al inter-

face. Finally, the friction coefficient began to fall and stabilize at a value

of around 0.23 at the end of the test when the tip reached the diamond

substrate.

Fig. 7 shows the morphology of the two scratches formed on the Si/

Al bilayer. From the beginning of the scratching process, the Al film

underwent plastic deformation due to its low hardness, with “bead” for-

mation on the edges. At the end of the scratching, initial formation of

chips was observed due to the cohesive failure of Al. This damage con-

firms the evolution of the recorded friction coefficient and the abrupt

topography variations. No delamination or chip formationwas observed

when the tip passed through the silicon layer, evidencing therefore, the

good adhesion of this layer to diamond. This result was also confirmed

by the gradual evolution of the friction coefficient when the tip passed

through the Si layer and scratched the diamond.

Fig. 3. Nano-indent obtained from nano-indentation test on Si/Al metallization system; (a) SEM micrograph of the deformation morphology showing cracks in diamond and (b) EDX

mapping showing the composition of the multilayer.

Fig. 4. Chemical analyses using EDX profilometry of the nano-indent formed on Si/Almultilayer. (a)Morphology of the indent and the direction of analysis and (b) compositions along the

chosen analysis direction.



4. Study of Ti/Pt/Au metallization system

4.1. Morphology of the surface

Themicrographs acquired at lowmagnification show defect reparti-

tion over the entire sample surface (Fig. 8). These defects are either blis-

ters with diameters varying between 5 and 30 μm or peeling of the

metallization species. From the micrographs obtained at higher magni-

fication, the average grain size of the Au film was determined as 2 μm.

These defects appear to be generated during the deposition process.

Blisters often result from the presence of residual stresses in the layers

and/or brittle interfacial areas.

In order to determine the location of these defects, EDX analyses

were performed. The composition of the layers and origin of the defects

on the surface were determined by chemical analysis of two character-

istic zones of the sample surface: a defect-free zone (region 1) and an

area corresponding to peeling (region 2) (Fig. 8).

Chemical analysis of region 1 shows the presence of a gold layer on

the substrate surface. The other layers were not detected due to their

low thickness with respect to the gold layer. Conversely, chemical anal-

ysis of region 2 revealed only the presence of carbon, corresponding to

diamond. Peeling seemed to be localized between Ti and diamond or

between Pt and Ti. Several EDX analyses were performed in the peeling

areas using incident electrons at small acceleration voltages (~5 kV).

The aimwas to analyse thin layerswhilemaintaining a correct statistical

measurement by performing long acquisitions. For the analyses carried

out in the peeling areas, only carbonwas highlighted. However, it is dif-

ficult to precisely decide on the peeling area in view of the low thick-

nesses of the Ti and Pt layers. During the deposition process, non-

negligible compressive residual stress was produced in the Ti/C inter-

face. When the stress in the metallization system is compressive, buck-

ling-driven interface delamination occurs, as observed for the Ti/Pt/Au

metallization system.

4.2. Mechanical properties of Ti/Pt/Au system

4.2.1. Nano-indentation with MTS XP indenter

Fig. 9a shows the corresponding loading-unloading curves for tests

performed on the diamond substrate with the Ti/Pt/Au metallization

system. The test results were reproducible. The general shape of the

curves was similar to that of those already described for Si/Al metalliza-

tion on diamond. The load increased slightly in the first stage due to the

low stiffness and hardness of gold. As previously observed, no influence

of the intermediate layers of Ti and Pt was observed because of the thin-

ness of these layers. The load increased rapidly to reach a maximum

depth of 1600 nm at the end due to the high stiffness of the diamond

substrate. The elastic spring-back represents nearly 50% of the total pen-

etration distance. This is higher than that observed for Al/Si metalliza-

tion. The present value is mainly due to the spring-back of the

diamond substrate.

Fig. 9b shows the change in the stiffness and hardness of the system

as a function of the penetration depth.Due to theprogressive increase of

the depth from gold to diamond, the stiffness increased to reach a max-

imum value of about 750 GPa, which is greater than that found for the

Si/Al metallized substrate. This value corresponds to the Young'smodu-

lus of diamond. From this depth (600 nm), the stiffness decreased con-

siderably with many perturbations, the origin of which is certainly

related to the appearance of cracks within the diamond substrate itself,

as seen above. However, the hardness continued to increase to a maxi-

mum average value of 26 GPa, which is very close to the value deter-

mined for the Si/Al metallized substrate.

The observation of the nano-indentmorphology shows the presence

of three cracks (Fig. 10a). These cracks appeared on the faces that were

in contact with the indenter and propagated to the edges (~3 μm).

These cracks were separated from the nano-indent centre by 500 nm.

All of the obtained nano-indents were characterized by these cracks

on their inner faces. Mapping showed that the apparent surface in the

centre was predominantly that of diamond. Due to its low thickness,

the Pt layer (0.05 μm) was not detectable.

Pile-up occurred during plastic deformation of the ductile Au, and

superposed plies were observed at the crater edges. This is expected

due to the strain hardening nature of Au. The pile-up tends to increase

the contact area of the indenter and to enhance the gradient of plastic

deformation.

The chemical composition of the nano-indent throughout the sec-

tion was determined as shown in Fig. 11. These chemical analyses con-

firm the location of the cracks in diamond based on consideration of the

size of the zone in contact with diamond.

Fig. 5. Nano-indentation data for the Si/Al multilayer using DCM-type tip. (a) Loading/unloading curves and (b) average hardness and Young's modulus against penetration into surface.

Fig. 6. Nano-scratching data for the deposited Si/Al bilayer. (a) Depth profiles and (b) variation of the friction coefficient during the scratch test for Si/Al bilayer.



4.2.2. Nano-indentation with DCM indenter

Nano-indentation tests at small displacements were carried out to

characterize the intrinsic properties of the surface gold layer (Fig.

12a). The behaviour of the metallization species was almost plastic

given the very small spring-back measured during unloading. In fact,

this spring-back is too small compared to the maximum penetration

depth. In addition, creep displacement is produced at the hold but it is

not as significant as the one observed for the Si/Al metallization. Dis-

placement creep is not exceeding 15 nm.

Fig. 12b shows the changes in the averagemechanical properties as a

function of the penetration depth. A plateau was logged for a depth of

40 nm. This plateau corresponds to the intrinsic properties of the gold

layer; the stiffness was nearly 80 GPa and the hardness was close to

1 GPa.

4.2.3. Nano-scratching tests

The scratching profiles obtained during the tests performed on the

Ti/Pt/Au multilayer are shown in Fig. 13a. The profile indicates that

the penetration depth increased rapidly until the end of the scratch

when it reached the diamond substrate. The profile of the “post scan”

shows that the spring-back started very early during scratching and

corresponded to that of the entire metallization system with diamond.

This spring-back was very high compared to the one obtained for the

Si/Al metallization system and represents more than the half of the

total penetration depth at the end of the test. However, the profile of

the “post scan” became irregular and fluctuated in the middle of the

scan. SEM observations are required to understand these variations.

The friction coefficient increased rapidly to 0.6 when the indenter

crossed gold and platinum, then decreased and stabilized at 0.25

when the diamond substrate was reached (Fig. 13b).

The morphology of the scratches formed on the Ti/Pt/Au multilayer

is shown in Fig. 14. The beads on the edges of the scratchwere obtained

due to the ductility of gold. Peeling of the multilayer occurred from a

scratch distance of 160 μm, even before the tip reached the diamond

substrate. At this distance, the indenter was at a depth corresponding

to the thickness of Ti for a critical scratch load of about 25 mN. These

variations appeared due to the deformation of the multilayer, and par-

ticularly due to themechanically affected Ti/C interface. At a scratch dis-

tance of over 230 μm, the ductile fracture continued to the end of the

scratch.

5. Conclusion

The Si/Al metallization system had a uniform morphology with

some Al clusters evenly distributed on the surface. The Al surface com-

prised grainswith uniformdiameters. Changes in the stiffness and hard-

ness of the bilayer against the penetration depth were determined by a

nano-indentation test. The mechanical properties of aluminium (Hal =

1 GPa and Eal = 70 GPa) and diamond (HC = 25 GPa and EC =

750 GPa) were determined. It was not possible to determine the me-

chanical properties of the Si layer given its low thickness and because

this layer was sandwiched between twomaterials with strongmechan-

ical properties. A significant creep displacement was noticed at room

Fig. 7. SEM Micrographs showing the morphology of the scratches formed on Si/Al bilayer.

Fig. 8. Ti/Pt/Au surface micrographs obtained by SEM observations at different

magnifications. The micrographs show the presence of several blisters of constant size

over the surface and peeling occurred due to compressive stress.



temperature during the hold time. This creep displacement attests of a

viscoplastic behaviour of the metallization system. Moreover, due to

the ductile nature of Al, a pile-up phenomenon was observed on the

edges of the indent leading to significant plastic deformation. Nano-

scratching tests showed that the failure in aluminium is cohesive; the

interface strength can therefore be taken as being greater than the

shear strength of aluminium. The silicon layer appears to adhere well

to the diamond substrate due to formation of a SiC interphase at the in-

terface during heat treatment, as previously documented in many

studies.

Unlike Si/Al metallization systems, the diamond substrate with the

Ti/Pt/Au metallization system has many defects distributed on its sur-

face, formed by blistering or peeling. EDX spectrometric analysis indi-

cated that peeling of the layers possibly occurred at the Ti/C interface,

involving a buckling-driven interface delamination mechanism. High

load nano-indentation tests revealed the presence of cracks on the

nano-indents. These cracks initiate within the diamond substrate and

propagate to the metallization system, as shown by EDX spectrometric

analysis and indent micrographs. The intrinsic mechanical properties

of the gold layer and diamond were determined as HAu = 1 GPa,

EAu =80 GPa, HC =26 GPa, and EC =750 GPa. Unlike the Si/Al metalli-

zation system, Ti/Pt/Au metallization system exhibits small creep dis-

placement. Nano-scratching tests reveal the brittleness of the Ti/C

interface, indicated by the formation of several chips on the scratch

edge when the tip reached the Ti layer.
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Fig. 12. Nano-indentation data for the Ti/Pt/Aumultilayer using DCM-type tip. (a) Loading/unloading curves and (b) variation of hardness and Young's modulus against penetration into

surface.

Fig. 13. Nano-scratching data for the deposited Ti/Pt/Au multilayer. (a) Depth profiles and (b) variation of the friction coefficient during the scratch test.

Fig. 14.Micrographs of scratch formed on Ti/Pt/Au multilayer: morphology of the scratch.


