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ALGORITHMS FOR COUPLED MECHANICAL DEFORMATIONS

AND FLUID FLOW IN A POROUS MEDIUM

WITH DIFFERENT TIME SCALES

FATIMA-ZOHRA DAÏM, DANIELLE HILHORST, JACQUES LAMINIE, AND ROBERT

EYMARD

Abstract. In this paper, we solve a problem describing the mechanical de-

formations of a porous medium in the presence of a monophasic linear flow

or a two phase nonlinear flow with the purpose of modelizing subsidence of

hydrocarbon reservoirs. An essential characteristics of this problem is that the

mechanical deformation and the flow have different time scales. In petroleum

industry, one uses different very efficient simulators for the flow problem and the

mechanical deformations, which enables to handle complex models. Therefore

it is necessary to be able to combine as efficiently as possible the exploitation

of these simulators. We propose two alternative splitting approaches. The first

one is the staggered algorithm used by engineers, which amounts to a Gauss-

Seidel method in the one phase linear case. The second approach is based upon

the preconditioned conjugate gradient method. We use a numerical multi-scale

method in both of these algorithms. We compare these two approaches and we

show that the preconditioned conjugate gradient algorithm is faster and more

robust than the staggered algorithm. Applying the preconditioned conjugate

gradient algorithm therefore seems to compensate for the fact that the inf-sup

condition for the mixed discretization method is not satisfied when combining

the simulators for the mechanical deformations and for the flow computations.

Key Words. Porous media, Darcy flow, Mechanical deformations, Gauss

Seidel method, Nonlinear conjugate gradient method, Inf-Sup condition, Mixed

formulation, Multiscale algorithm.

1. Introduction

The production of oil and gas in soft highly compacting reservoirs induces an
important reduction of the pore volume, which increases the oil productivity. This
compaction leads to undesirable effects such as surface subsidence or damage of well
equipments. A well- known example of subsidence is the Ekofisk field in the North
Sea in Norway, where a sea floor subsidence rate of 42 cm/year has been reached
at the end of 1993 (see [11]). The cases of the Valhall field in Norway (see [9]) and
the Bachaquero (see [8]) and Tia Juana (see [7]) fields in Venezuela also illustrate
the importance of the subsidence phenomenon in oil production. The purpose of
this paper is to simulate the mechanical deformations of the porous media in the
presence of a Darcy flow in two space dimensions, taking into account that they
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have different time scales.

The behavior of the skeleton is described through a linear elastic equation,
whereas we consider two alternative flow models, a monophasic linear case and
a two phase nonlinear one. The coupling between these equations is given by the
Biot’s law which connects the variation of the porosity of the ground to the vari-
ation of the mechanical deformations. The main physical unknowns for the linear
monophasic flow are the pressure and the porosity; as for the two phase nonlinear
flow, the unknown functions are the pressure, saturation and porosity, and the ge-
omechanical problem is written in terms of the displacement. A possible way is to
write a complete simulator involving all the flow and mechanical unknowns (see [2]),
but this seems to be too expensive. In practice the variation of the displacement
is much smaller than the variation of the flow unknowns which means that we are
dealing with a multi-scale phenomenon. In the petroleum industry, there already
exist different simulators which permit to separately solve the flow problem and the
geomechanical one, and since those simulators are very efficient and able to handle
complex models, it seems natural to combine them. Typically the flow simulators
are based upon a finite volume method whereas one applies a standard finite ele-
ment method for the discretization of the geomechanical problem. In practice, one
has to deal with the fact that geomechanical simulators are more expensive than
flow simulators; further one should keep in mind the fact that the inf-sup condition
is not satisfied by the mixed discretization method imposed by using the separate
simulators. The purpose of this work is to compare two splitting approaches in the
case of a two dimensional prototype, extending a previous study performed in a
one-dimensional case (see [4]):

• the first one, which has been introduced by engineers, is based upon the
computation of the flow unknowns and the displacement by means of a fixed
point method; more precisely one makes use of an iterative procedure and
we show that in the monophasic linear case this amounts to a Gauss-Seidel
type iteration method;

• the new splitting approach which we propose is based upon a preconditioned
conjugate gradient method.

In fact, we use a multi-scale coupling algorithm where we study the impact of ratio
of the time steps of the mechanical and fluid flow computations on the precision of
the numerical results.

The new algorithm turns out to be more robust than the first one; in particular
it works fine even though the Inf-Sup condition is not satisfied in the mixed dis-
cretization method and it is faster and less expensive. Note that the precision of
the computations is satisfactory as soon as the ratio of the two time steps is not
too large. These approaches are applied in both the cases where the mechanical
deformations of the ground are coupled to a mononphasic linear flow and to a two
phase nonlinear flow.

We present the two problems in Section 2. We will refer to the model with the
monophasic linear flow as to the linear model and we will call nonlinear model the
system involving the nonlinear two phase flow. In Section 3 we discretize the two
models and present the complete discretized problems. In Section 4 we show that
the Inf-Sup condition is not satisfied because of the mixed discretization which is
imposed by using separate simulators. We introduce in Section 5 the first splitting
approach which we refer to as the multi-scale staggered algorithm and we show that
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in the linear case it amounts to a Gauss-Seidel method. In Section 6 we present our
new approach based upon the preconditioned conjugate gradient method in both
the linear and the nonlinear models. Finally, we present in Section 7 the numerical
results: the two approaches are compared in terms of robustness and convergence
rates.

2. Mathematical model

In this section, we assume small deformations of the medium and write the equa-
tions for the flow and the mechanical deformations of the ground.

We denote by Ω the computational domain of the geomechanics and by ω ⊂ Ω
the computational domain for the fluid flow so that the reservoir is completely
impermeable in Ω \ ω (see Figure 1). Furthermore we assume that Ω is much
larger than ω since the mechanical effects can be observed on a much larger scale
than the scale of the reservoir domain; in particular the boundary conditions for
the mechanical unknowns must be set sufficiently far away from ω. Moreover we
suppose that the solid matrix is incompressible. The coupling between flow and
mechanics is given by Biot’s law which connects the variation of the porosity of
the medium to its mechanical deformation. We also suppose that the medium is
submitted to the fluid pore pressure. For the sake of simplicity we do not take
into account the gravity force and the capillary effects in the case of the nonlinear
two-phase flow.

Figure 1. The reservoir and the geomechanical domains.

We will study two models:

1. the first one describes the mechanical deformations of the porous media in
the presence of a monophasic linear flow and is referred to as the linear

model;
2. the second one, which describes the same mechanical deformations as the

linear model, is coupled with a two-phase compressible flow; we refer to it
as the nonlinear model.

In both cases the coupling between the flow and the geomechanics is given by Biot’s
law. The full system consists in the equations governing the time evolution of the
fluid pore pressure p = p(x, t), the porosity of the medium φ = φ(x, t), and in
the nonlinear model the fluid saturation S = S(x, t) and the displacement field
u = u(x, t) of the porous medium.
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2.1. Monophasic linear flow. A monophasic linear flow of compressible fluid is
modelled by an evolution equation such that the unknown functions are the fluid
pressure p and the porosity of the medium φ. The equation of mass conservation
is uniform parabolic and is given by

φ0 ρ0
o co

∂p

∂t
−

ρ0
o

ηo

div
(
κ ∇p

)
+ ρ0

o

∂φ

∂t
= Q in ω × (0, T ],(1)

with the boundary and initial conditions⎧⎪⎨
⎪⎩

κ

ηo

∇p · n = 0 on γN × (0, T ],

p = pD on ∂ω,
p(·, 0) = p0 in ω.

2.2. Two phase nonlinear flow. The two phase compressible flow, where we
neglect the capillary effects so that the water and oil pressures are equal, is given
by the system of equations⎧⎪⎨

⎪⎩
∂

∂t

(
ρw(p)Sφ

)
− div

(ρw(p) krw,o(S)

ηw

κ∇p
)

= 0 in ω × (0, T ],

∂

∂t

(
ρo(p)(1 − S)φ

)
− div

(ρo(p) kro,w(S)

ηo

κ∇p
)

= 0 in ω × (0, T ].
(2)

with the boundary and initial conditions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p = pD on ∂ω × (0, T ],
κ

ηi

∇p · n = 0 on γN × (0, T ] for i = o and w,

p(·, 0) = p0 in ω,
S(·, 0) = S0 in ω.

The indices w and o denote respectively the water and oil phases.

Next we define all the quantities introduced above:

• γN a subset of the boundary of ω;
• S = S(x, t) the saturation of the water phase, and 1 − S is the saturation

of the oil phase;
• p = p(x, t) the pressure of both phases;
• φ = φ(u) the porosity of the porous medium and φ0 is the initial value of

the porosity;
• κ the intrinsic permeability;
• ci the fluid compressibility of the phase i where i ∈ {o, w};
• ρi = ρi(p) the density of the phase i, which linearly depends on the pressure,

such that it is given by ρi(p) = ρ0
i (1 + ci p), where ρ0

i denotes the initial
density of the phase i;

• kri,j = kri,j(S) the relative permeability of the phase i in presence of the
phase j;

• ηi the dynamical viscosity of the phase i;
• Q a term source.

2.3. The geomechanical model. We suppose that the rock has an elastic behav-
ior so that the geomechanics is modeled by the elastic linear equation. We obtain
the elliptic equation{

divσ(u) − b(x)∇p = 0 in Ω × (0, T ],
σ(u) = 2με(u) + λ(divu)I in Ω × (0, T ],

(3)
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with the boundary conditions{
u = 0 on ΓD,
σ · n = q on ΓN ,

where ΓD ∩ΓN = ∅, ΓD ∪ΓN = ∂Ω and ∂Ω is the boundary of the domain Ω. The
functions σ and ε are respectively the stress and the strain tensors of the porous
medium with

ε(u) =
1

2
(∇u + ∇tu).

λ and μ are the Lamé constants in drained conditions, q is a given function, and
the function b is defined by

b(x) =

{
0 in Ω\ω,
1 in ω.

2.4. Biot’s law. The geomechanics and the flow model are coupled by Biot’s law
which connects the variation of the porosity of the porous medium to its mechanical
deformations. The corresponding equation is given by

∂φ

∂t
= b(x) div

∂u

∂t
in Ω × (0, T ].(4)

3. The discretization

In order to approximate the fluxes and to insure the mass conservation, we
apply the finite volume method, which we refer to as FV, for the discretization
of the reservoir problem, and the finite element method, which we refer to as FE,
to discretize the geomechanical problem. The choice of the mesh points, which is
standard for such problems, is indicated in the Figure 2.

ω

Ω

 The computation of the displacement on the vertexes of the triangles.

 The computation of the reservoir unknowns in the centers of the control volumes.
Figure 2. The finite volume and the finite element mesh points.
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In practice the variations of the displacement are slower than that of the unknown
functions of the flow problem; in other words we have to deal with a multiscale
phenomenon. The displacement u is computed at the times {T k}k=1,··· ,p such that

T 0 = 0 < T 1, · · · < T k < · · · < T p = T,

where {T k}k=1,··· ,p is a partition of the interval [0, T ]. We also suppose that
T k+1 − T k = ΔT for k = 0, ..., p − 1 and refer to ΔT as the period of the
geomechanical computations. The unknown functions p, S and φ are computed
at the times t1,k+1, . . . , tn,k+1, . . . , tq,k+1, where t0,k+1 = T k < t1,k+1 < · · · <
tn,k+1 < · · · < tq,k+1 = T k+1, for all k ∈ {0, · · · , p−1}. We denote by {T k}k=0,··· ,p

the meeting times of the geomechanical and the reservoir simulations. We set
tn+1,k+1 − tn,k+1 = Δt, n = 0, · · · , q − 1, k = 0, · · · , p − 1. The parameters
Δt and ΔT can vary in the course of the computations; for the sake of simplicity
we consider them as fixed in our presentation.

3.1. Finite volume scheme for the flow problem. Let τh be the set of the
control volumes; we denote by m(K) the measure of the control volume K and by
N (K) the set of its neighbors. We define the transitivity between two neighboring

volume elements K and L by TK,L =
m(eK,L)

d(xK ,xL)
where m(eK,L) is the measure of

their common interface; we remark that there is a point xK in each volume element
K and that the segment [xK ,xL] is orthogonal to the interface eK,L. Further we
denote by d(xK ,xL) the distance between the points xK and xL. Finally we define
the approximations of the pressure, the saturation and the porosity by

ph,Δt(x, t) = pn+1,k+1
K if (x, t) ∈ K × (tn,k+1, tn+1,k+1],

Sh,Δt(x, t) = Sn+1,k+1
K if (x, t) ∈ K × (tn,k+1, tn+1,k+1],

φh,Δt(x, t) = φn+1,k+1
K if (x, t) ∈ K × (tn,k+1, tn+1,k+1],

(5)

for all n = 0, · · · , q − 1 and for all k = 0, · · · , p− 1. In a similar way, we define the
quantities ρn

i,K , (i = o, w).

3.1.1. Discretization of the monophasic linear flow. In order to obtain the
finite volume scheme one formally integrates the equation (1) on the cell K ×
(tn,k+1, tn+1,k+1]; this yields
(6)

m(K)φ0ρ
0
oco

pn+1,k+1
K − pn,k+1

K

Δt
−

ρ0
o

ηo

κ
∑

L∈N (K)

TK,L

(
pn+1,k+1

L − pn+1,k+1
K

)
+

+ m(K)ρ0
o

φn+1,k+1
K − φn,k+1

K

Δt
= Qn+1,k+1

K ,

where Qn+1,k+1
K is the approximation of

∫
K

∫ tn+1,k+1

tn,k+1

Q dx dt. We suppose that

φn+1,k+1
K is obtained by linear interpolation, namely

φn+1,k+1
K = φ0,k+1

K + Δφk+1
K

(n + 1)Δt

ΔT
,

for all n = 0, · · · , q − 1, k = 0, · · · , p − 1 and for all K ∈ τh where the variation of
the porosity Δφk+1

K on K over a period T k+1 − T k = ΔT , which is given by

Δφk+1
K = φq,k+1

K − φ0,k+1
K ,
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is computed by a discrete approximation of Biot’s law (see (14) below). Further we
introduce the vector notations

pn,k+1 = (pn,k+1
K )K∈τh

,Sn,k+1 = (Sn,k+1
K )K∈τh

and ΔΦk+1 = (Δφk+1
K )K∈τh

.

Let Nv denote the number of the volume elements. The previous notations permit
to rewrite (6) as

(7) Rh pn+1,k+1 + Dh ΔΦk+1 = φ0 co Dhp
n,k+1 + Δt Q

n+1,k+1
h ,

where

• Rh = φ0 co Dh + Δt Rh;
• The symmetric positive definite matrix Rh comes from the discretization

of the gradient operator;
• Dh is a diagonal matrix such that its diagonal elements are given by dKK =

m(K)
for K = 1, · · · , Nv;

• The right hand side Δt Qn+1
h of the reservoir model (6) is such that

Qn+1
h =

( 1

ρ0
o

Qn+1,k+1
K

)
K

.

We successively substitute the pressures pn,k+1 for n = 1, · · · , q−1 in (7) to obtain
the equation for pq,k+1

Rq
h pq,k+1 +

( q−1∑
i=0

Ri
h (co φ0 Dh)q−1−i

)
Dh

q
ΔΦk+1 =

= Δt

q−1∑
i=0

(co φ0 Dh)q−1−i Ri
h Q

i,k+1
h + (co φ0 Dh)q p0,k+1.

3.1.2. Discretization of the nonlinear two-phase flow. We integrate (2) on
the space time element K × (tn,k+1, tn+1,k+1] to obtain

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(K)
φn+1,k+1

K ρn+1,k+1
w,K Sn+1,k+1

K − φn,k+1
K ρn,k+1

w,K Sn,k+1
K

Δt
−

−
∑

L∈N (K) Λn+1,k+1
w,K,L = 0,

m(K)
φn+1,k+1

K ρn+1,k+1
o,K (1 − Sn+1,k+1

K ) − φn,k+1
K ρn,k+1

o,K (1 − Sn,k+1
K )

Δt
−

−
∑

L∈N (K) Λn+1,k+1
o,K,L = 0,

where the terms of the form Λn+1,k+1
w,K,L and Λn+1,k+1

o,K,L correspond to an “upstream

weighting scheme” (see [5]):

Λn+1,k+1

w,K,L =

⎧⎪⎪⎨
⎪⎪⎩

κ TK,L

ρ
n,k+1

w,K krw,o(S
n,k+1

K )

ηw

(pn+1,k+1

L − p
n+1,k+1

K ) if p
n+1,k+1

L > p
n+1,k+1

K ,

κ TK,L

ρ
n,k+1

w,L krw,o(S
n,k+1

L )

ηw

(pn+1,k+1

L − p
n+1,k+1

K ) otherwise,

Λn+1,k+1

o,K,L =

⎧⎪⎪⎨
⎪⎪⎩

κ TK,L

ρ
n,k+1

o,K kro,w(Sn,k+1

K )

ηo

(pn+1,k+1

L − p
n+1,k+1

K ) if p
n+1,k+1

L > p
n+1,k+1

K ,

κ TK,L

ρ
n,k+1

o,L kro,w(Sn,k+1

L )

ηo

(pn+1,k+1

L − p
n+1,k+1

K ) otherwise.
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Next we rewrite (8) in the more compact form

Rh(DhΔΦk+1,Sn,k+1,pn,k+1;Sn+1,k+1,pn+1,k+1) = 0,(9)

where the operator Rh is nonlinear. Given a variation of the porosity ΔΦk+1 over
the period T k+1−T k = ΔT and a pair (Sn,k+1,pn,k+1), one computes the solution
pair (Sn+1,k+1,pn+1,k+1) of Problem (9) by means of the Newton method. We
use the notation R−1

h in the expression of the solution in order to have the same
notations as in the linear model; for all n = 0, · · · , q − 1, we write

(Sn+1,k+1,pn+1,k+1) = R−1
h (Dh ΔΦk+1,Sn,k+1,pn,k+1).(10)

In order to compute the last value of the pressure pq,k+1 which in turn will permit
to calculate the displacement at this time with the geomechanical module, we need
to perform q computations by means of the Newton method. We use the notation
pq,k+1 = R−q

h (Dh ΔΦk+1) for the successive results of the simulations:

(11)

{
For n = 0, · · · , q − 1

(Sn+1,k+1,pn+1,k+1) = R−1
h (Dh ΔΦk+1,Sn,k+1,pn,k+1).

3.2. Finite element computation of the geomechanical equilibrium. We
denote by uh,ΔT (., T k), k = 0, ..., p, the piece-wise linear approximation of the func-
tion u(., T k), which one obtains by solving the discrete linear system∫

Ω

σ(uh,ΔT (., T k)):ε(vh) dx −

∫
ω

(div vh) ph,Δt(., T
k) dx = 〈fh,ΔT ,vh〉,(12)

where

〈fh,ΔT ,vh〉 =

∫
ΓN

(σ(uh,ΔT (., T k))n).vh ds −

∫
∂ω

pD n.vh ds,

for all k = 0, · · · , p and for suitable test functions vh; here

σ(u) : ε(u) =
3∑

i,j=1

σij(u) εij(u),

with σ(u) = (σij)i,j and ε(u) = (εij)i,j . Further the components of uk correspond
to the values of the vector function uh,ΔT (., T k) at the vertices of the triangular-
ization. Using these notations and in view of (12) we obtain the matrix expression

(13) Gh uk+1 − Bh pq,n+1 = Fk+1
h ,

for all k = 1, · · · , p − 1, where

• Gh is the symmetric positive definite stiffness matrix, and
• The sparse matrix Bh = (bmn)m=1,··· ,2Ns, n=1,··· ,Nv

corresponds to the cou-
pling between flow and mechanical deformations, Ns is the number of the
vertices of the triangularization, and BT

h is the transpose matrix of Bh.

3.3. Discretization of Biot’s law. Next let us express the relation between the
discrete displacement and the discrete porosity, namely

m(K)Δφk+1
K =

∫
K

div{uh,ΔT (x, T k+1) − uh,ΔT (x, T k)} dx,(14)

for all k = 0, · · · , p − 1, and for all K ∈ τh. With the vector notations introduced
above, (14) can be rewritten as

Dh ΔΦk+1 = BT
h (uk+1 − uk).(15)

8



3.4. The complete discrete problem. Finally we state the complete discrete
problem for both the linear and nonlinear models:
(16)

(i) in the case of the linear flow we have that

Rq
h pq,k+1 = −

1

q

( q−1∑
i=0

Ri
h (co φ0 Dh)q−1−i

)
Dh ΔΦk+1+

+(co φ0 Dh)q p0,k+1 + Δt

q−1∑
i=0

(co φ0 Dh)q−1−i Ri
h Q

i,k+1
h ,

(ii) whereas in the case of the nonlinear flow we have

pq,k+1 = R−q
h (Dh ΔΦk+1),

together with the system

(17)

{
Gh uk+1 − Bh pq,k+1 = Fk+1

h ,
Dh ΔΦk+1 = BT

h (uk+1 − uk),

for all k = 1, · · · , p − 1.

4. Inf-Sup Condition

In this section we show that the mixed method used in the discretization of
this coupled problem (Finite Elements-Finite Volumes) is not stable for the linear
model as well as in the nonlinear model. For the sake of simplicity, we consider
below the case that q = 1 which means that Δt = ΔT . When the fluid has a small
co compressibility and the time step is small too, the linear system (16-17) is close
to (

Gh −Bh

BT
h 0

) (
uk+1

pk+1

)
=

(
Fk+1

h

BT
h uk

)
.(18)

In view of the theorem 4.3, p. 127 of [1] we have that the mixed problem (18)
admits a solution if and only if the LBB condition (Ladyshenskaja-Babushka-
Brezzi condition) is satisfied. Here this condition reduces to where Vh is the space
of the piecewise linear functions. The condition (19) implies that the application
associated to the matrix Bh is surjective. The Schur complement Sh associated to
the system (18) is given by Sh = BT

h G−1
h Bh. In this case, as we show in figure 3,

this operator is only positive semi-definite.
We remark that the inf-sup condition implies that the operator Sh is definite.

Indeed, let {λi}i=1,··· ,n be the eigenvalues of the Schur complement such that λ1 ≤
λ2 ≤ · · · ≤ λn and let {vi}i=1,··· ,n be the associated eigenvectors. We denote

respectively by ηmin and ηmax the smallest and largest eigenvalues of G−1
h . We

have for all i = 1, · · · , n,

∃ β > 0 such that ‖Bh ηh‖ ≥ β ‖ηh‖ for all ηh ∈ Vh,(19)

ηmin ‖Bh vi‖2 ≤ (Sh vi,vi) ≤ ηmax‖Bh vi‖2,
ηmin ‖Bh vi‖2 ≤ λi ‖vi‖2 ≤ ηmax ‖Bh vi‖2.

(20)

Therefore if the condition (19) is satisfied, it follows that

ηmin β2 ≤ λ1,(21)

which implies that the operator Sh is positive definite.
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Figure 3. The dependance of the largest eigenvalue of S−1
h de-

pending on the mesh size.

Moreover if the fluid has a too small compressibility, the time step Δt should also
have a minimum value, which is rather constraining. However the constraint would
disappear with a different choice of the finite element method in the mechanical
simulator.

5. Multi-step staggered algorithm

We show in Figure 4 below a graphical representation of the algorithm which is
valid in both the cases of the linear and the nonlinear models; it clearly expresses
the fact that the mechanical deformations happen in a much slower time scale than
the porous medium flow.

Δt

uk+1

pq,k+1

ΔΦk+1

Reservoir simulations

Geomechanics computation

T k+1
− T k = ΔT

Figure 4. Sketch of the iterations between reservoir and mechan-
ical computations on the time period ΔT .
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5.1. The case of the linear model. We solve the set of equations (16-17), where
cr is a relaxation parameter, by means of a fixed point method. The corresponding
algorithm, where the iteration parameter is denoted by l, is given by
(22)
Initialization of the period:

p
0,k+1
0 = p

0,k+1
1 = pq,k, are given by the previous period,

ΔΦk+1
0 = 0,

Iterations on the period ΔT = qΔt:
For l = 0, · · · , until convergence,
Reservoir simulations:

For n = 0, · · · , q − 1,

Rh p
n+1,k+1

l+1 + cr φ0 Dh(pn+1,k+1

l+1 − p
n,k+1

l+1 ) +
Δt

ΔT
Dh ΔΦk+1

l = φ0 co Dhp
n,k+1

l+1 +

+Δt Q
n+1,k+1

h .

Geomechanics computation:

Gh uk+1
l+1 + Bh p

q,k+1
l+1 = Fk

h,

Dh ΔΦk+1
l+1 = BT

h (uk+1
l+1 − uk) − cr co φ0 Dh(pq,k+1

l+1 − p0,k).

The parameter cr, which is often used by the engineers in petroleum industry, is
refered to as the rock compressibility and the algorithm (22) can be seen as a

Gauss-Seidel method with a relaxation parameter γ =
(
1 +

cr

co

)−1

.

Remark 1. The staggered algorithm (22) when cr = 0 and q = 1, which is a
classical splitting method, can be seen as a Block Gauss-Seidel method for solving
the pressure/displacement coupled system. Indeed this method consists in solving
system M xl+1 = N xl +b for each iteration l, where N is upper triangular matrix
of A and M = A− N. In our case

A =

(
Rh BT

h

−Bh Gh

)
,M =

(
Rh 0

−Bh Gh

)
, N =

(
0 −BT

h

0 0

)
,

and

b =

(
Dh pk + BT

h uk + Δt Qk+1

Fk+1
h

)
, xl+1 =

(
pk+1

l+1

uk+1
l+1

)
,

This method converges if and only if the spectre ρ(M−1 N) < 1.

5.2. The case of the nonlinear model. As in the case of the linear model, we
use a fixed point method; we obtain the following algorithm

Period initialisation:

S
0,k+1
0 = S0,k+1 = Sq,k;p0,k+1

0 = p0,k+1 = pq,k; are given by the previous period

ΔΦk+1
0 = 0.

Iterations on the period ΔT = qΔt:
For l = 0, · · · , until convergence,

Reservoir simulation:
For n = 0, · · · , q − 1,
Newton method :

Rh(ΔΦk+1 + cr
ΔT

(n+1)Δt
(pn+1,k+1

l+1 − p0,k+1),Sn,k+1,pn,k+1;Sn+1,k+1,pn+1,k+1)

= 0.
Geomechanical computations:

Gh uk+1
l+1 − Bh p

q,k+1
l+1 = Fk+1

h ,

Dh ΔΦk+1
l+1 = BT

h (uk+1
l+1 − uk) − cr co φ0 Dh(pq,k+1

l+1 − p0,k).

11



6. Preconditioned conjugate gradient method

6.1. Linear model. To apply the preconditioned conjugate gradient method to
the linear model, we have two alternatives to construct the Schur complement.

1. Extract the expression of the displacement uk+1 from the first equation of
(17) and substitute it into the second one, and then replace the result in
the first one of (16).

2. Substitute the second equation of (17) in the first one of (16), extract than
the expression of the pressure pq,k+1 from the result and substitute it into
the first equation of (17).

It seems difficult to apply the preconditioned conjugate gradient method in the first
approach because we can not define the matrix vector product, which is immediate
in the second case. Hence, we obtain using the second approach
(23)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Gh + Bh R−q

h

q−1∑
i=0

Ri
h(co φ0 Dh)q−1−i B

T
h

q

)
uk+1 =

= Fk+1
h +(co φ0 Dh)q p0,k+1+Bh R−q

h

( q−1∑
i=0

(co φ0 Dh)q−1−iRi
h S

i+1,k+1
h

)
,

Rq
h pq,k+1 = −

q−1∑
i=0

Ri
h (co φ0 Dh)q−1−i BT

h

q
uk+1+

q−1∑
i=0

(coφ0Dh)q−1−iRi
hS

i+1,k+1
h + coφ0 Dh)q p0,k+1.

where S
i+1,k+1
h = Δt Q

i,k+1
h +

BT
h

q
uk for all i ∈ {0, · · · , q − 1}. We the apply the

preconditioned conjugate gradient algorithm to the first equation of (23) with Gh

as preconditioning matrix and apply a fixed point algorithm to obtain the solution
of the coupled system (23).

6.2. Nonlinear model. We now extend the preconditioned conjugate gradient
method to the nonlinear case. From the formulas (16)-(17) we obtain{

Gh uk+1 − BhR
−q
h (BT

h (uk+1 − uk)) = Fk+1
h ,

pq,k+1 = R−q
h (BT

h (uk+1 − uk)).
(24)

We apply the nonlinear preconditioned conjugate gradient method to (24). The
residual at each iteration is given by

(25) Gh uk+1
l+1 −Bh R−q

h (BT
h (uk+1

l+1 −uk))−Fk+1
h = Gh uk+1

l+1 −Bh p
q,k+1
l+1 −Fk+1

h .

In order to obtain the descent coefficient αl, we have to compute the gradient of
the left hand side of (25)
(26)

∇x

(
Gh x−BhR

−q
h (BT

h (x−uk))

)
· dl = Gh · dl−∇x

(
BhR

−q
h (BT

h (x−uk))

)
· dl,

and use the following finite difference approximation with x = uk+1
l+1

∇x

(
BhR

−q
h (BT

h (uk+1
l+1 − uk))

)
· dl ≈

Bh

R−q
h (BT

h (uk+1
l+1 + ε dl − uk)) −R−q

h (BT
h (uk+1

l+1 − uk))

ε
,
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where ε is a small parameter. Let us note by p̃
q,k+1
l the intermediate pressure given

by

p̃
q,k+1
l = R−q

h (BT
h (uk+1

l+1 + ε dl − uk)),

We will speak of one reservoir simulation when we perform in fact a set of q reservoir
computations; in order to obtain the descent parameter αl, we have to perform one
reservoir simulation.
(27)
Initialization of the period:

uk+1
0 is given,

p
q,k+1
0 = R−q

h (BT
h (uk+1

0 − uk)), −→ Reservoir simulation

r0 = Fk+1
h − Gh uk+1

0 + Bh p
q,k+1
0 ,

C d0 = r0,
z0 = d0.

Iterations on the period ΔT = qΔt:
For l = 0, · · · , until convergence

p̃
q,k+1
l+1 = R−q

h (BT
h (uk+1

l + ε dl − uk)), −→ Reservoir simulation

yl = Gh dl+1 − Bh

p̃
q,k+1
l+1 − p

q,k+1
l

ε
,

αl =

(
rl, zl

)(
yl,dl

) ,

uk+1
l+1 = uk+1

l + αl dl,

p
q,k+1
l+1 = R−q

h (BT
h (uk+1

l+1 − uk)), −→ Reservoir simulation

rl+1 = Fk+1
h − Gh uk+1

l + Bh p
q,k+1
l+1 ,

Gh zl+1 = rl+1, −→ Geomechanical computation

βl+1 =

(
rl+1, zl+1

)(
rl, zl

) ,

dl+1 = zl+1 + βl+1dl.

Remark 2. We remark that the algorithm (27) coincides with the preconditioned
conjugate algorithm in the linear case (23).

7. Numerical results

First, we show numerically that the schemes which we use are of second order
under the stability condition. For the linear case, we construct analytical solutions
by choosing a pressure p and a displacement u, and computing the corresponding
right hand sides of (3), (1) and (4). We show that the staggered algorithm and
the preconditioned conjugate gradient algorithm both give similar results and we
also show that the preconditioned conjugate gradient algorithm is faster than the
staggered algorithm and more robust, in particular when the Inf-Sup condition
is not satisfied (see Section 4). Then, we study the influence of the ratio of the
time steps q = ΔT/Δt. In order to try to better simulate the physics, we also use a
second analytic solution as a test case, where the displacement u varies much slower
than the pressure p. In particular we check that the errors between the analytical
solution and the computational one are similar for the staggered algorithm and the
preconditioned conjugate gradient algorithm independantly of the ratio q. Moreover
it is not surprising that when q is large these errors are very important whereas we
observe that for smaller values of q, the errors are close to those with the schemes
where q = 1, that is where ΔT = Δt. This validates the multiscale approach. The
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problem of the precise choice of q is still open and will be the subject of future
work.

We then validate both algorithms in the nonlinear case with physical parameters.
We show the influence of the ratio q and of the viscosity rates ηw, ηo on the behavior
of the solution; we note that the results which we obtain agree with the physical
previsions.

We conclude that the multiscale algorithm is well adapted and gives accurate re-
sults and that the preconditioned conjugate gradient method is less costly and more
robust than the staggered algorithm; in particular it permits to perform numerical
computations even in the case that the Inf-Sup condition is not fulfilled.

For most numerical results we refere [3].

7.1. Linear model. We define the following test case. We set Ω = [0, 1]2, ω ⊂ Ω

with ω =
[1

3
,
2

3

]2

and

p(x, z, t) = 104 (x −
1

3
)2 (x −

2

3
)2 (z −

1

3
)2 (z −

2

3
)2 cos(t),

u(x, z, t) = 100 (x2 − x)2 (z2 − z)2 cos(t)

(
1
1

)
,

where the time interval of the simulations is (0, 10]. We inject the functions p and
u in (1), (3), and (4) to obtain the right-hand-sides [3] and compare the staggered
and the preconditioned conjugate gradient algorithms in the case that Δt = ΔT
(i.e. q = 1) and co = 1; in this case one can check numerically that the Inf-Sup
condition is satisfied (see section 4). In what follows we denote by (ph,uh) the
approximate solution.

We observe in this case that the two approaches have a similar behavior (see
Figures 5 and 6). The order of convergence is equal to 2 for the pressure as Figure
5 shows. For the displacement field u (see figure 6) when Δx > 1/45 we also have
second order accuracy, but this is not the case for smaller values of Δx. These is
due to the violation of the stability condition which has the form Δt ≤ CΔx2.

In Section 4, we have seen that in the case of small fluid compressibility the
Inf-Sup condition imposes a lower bound on Δt, which is not usual. The Tables 2
and 1 show that when the fluid has a small compressibility (co = 0.5), the staggered
algorithm converges only in cases that the time step Δt is not too small. Moreover
Table 1 shows the robustness of the preconditioned conjugate gradient algorithm
with respect to the staggered algorithm. We observe that the staggered algorithm
converges for the first period T 1 = 1 and then breaks down whereas the precondi-
tioned conjugate gradient algorithm converges rather fast. Table 1 shows how to
make the staggered algorithm converge. The idea is to perform the computations
either with a positive rock compressibility cr or with a larger time step. In any case
the robustness of the preconditioned conjugate gradient method can be observed
in terms of costs as well as of quality (see Tables 1, 2, and 3).

We now wish to validate both algorithms in the multiscale case where q > 1. We
set Ω = ω = [0, 1]2 and we choose test functions such that the displacement field u
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varies less fast than the pressure function p.

p(x, z, t) = 10 (x2 − x)2 (z2 − z)2 cos(2t) + 10,

u(x, z, t) = ((x2 − x)2 (z2 − z)2 + 10) cos(
t

5
)

(
1
1

)
.

In Figure 7, we remark that the error p−ph on the pressure for q equal to 1, 10 or
20 is similar for the two algorithms, which validates the multiscale method whereas
for q = 50 to q = 200, the error grows with q. The error on the displacement u (see
Figure 8) behaves in a similar way.
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Figure 5. L2(ω)-norm of the error p− ph as a function of Δx, on
the left-hand-side with the staggered algorithm and on the right-
hand-side with the preconditioned conjugate gradient algorithm
with q = 1, co = 1 and Δt = 0.01.
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Figure 6. L2(Ω)-norm of the error u−uh as a function of Δx, on
the left-hand-side with the staggered algorithm and on the right-
hand-side with the preconditioned conjugate gradient algorithm
with q = 1, co = 1 and Δt = 0.01.
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Figure 7. The relative error p − ph in L2(ω)-norm as a function
of time, on the left-hand-side with the staggered algorithm and
on the right-hand-side with the preconditioned conjugate gradient
algorithm for different values of q with co = 1, Δt = 0.01 and
Δx = 1/40.
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Staggered algorithm P.C.G Algorithm
T i Iterations CPU Iterations CPU
T 1 = 1 117 3.523E+1 7 2.079
T 3 = 3 × × 10 4.190
T 5 = 5 × × 10 2.929
T 7 = 7 × × 9 6.649
T 9 = 9 × × 9 2.680

Table 1. The number of iterations to compute the solution at the
times Ti and the corresponding CPU times for the staggered algo-
rithm and the preconditioned conjugate gradient algorithm with
q = 1, co = 0.5 and Δt = 0.01 (× indicates the absence of conver-
gence).
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Figure 8. The relative error u−uh in L2(Ω)-norm as a function
of time, on the left-hand-side with the staggered algorithm and
on the right-hand-side with the preconditioned conjugate gradient
algorithm for different values of q with co = 1, Δt = 0.01 and
Δx = 1/40.

7.2. Nonlinear model. In this section, we consider the nonlinear model which
describes the mechanical deformations of the porous media in the presence of the
two phase flow for water and oil. We take Ω = ω = [0, 1]2 as space domains and
suppose that water is injected in order to extract the oil. We fix the pressure p at
the outcoming phase whereas we fix a value for the water flux Qw and we prescribe
Qo = 0 for the oil flux at the incoming phase. The phases water and oil are
assumed to be compressible. The physical parameters are ηo = 5.10−3 Pa.s, ηw =
1.10−3 Pa.s, κ = 2.10−14, φ0 = 0.30, ρ0

o = 950 kg.m−3, ρ0
w = 1000 kg.m−3,
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Relaxed by cr = 0.2, Δt = 0.01 cr = 0 and Δt = 0.1
T i Iterations CPU Iterations CPU
T 1 = 1 13 4.176 23 6.740
T 3 = 3 12 3.872 25 7.300
T 5 = 5 13 4.196 24 7.160
T 7 = 7 13 4.185 24 6.920
T 9 = 9 13 4.208 26 7.650

Table 2. The number of iterations and the corresponding CPU
times to compute the solution at the times Ti for the staggered
algorithm with q = 1 and co = 0.5 on the one hand with a relaxed
algorithm, and on the other hand by taking a larger value of Δt.

Staggered algorithm q = 1 P. C. G. algorithm q = 1
T i Iterations CPU Iterations CPU
T 1 = 1 11 3.538 5 1.993
T 3 = 3 12 3.871 9 3.318
T 5 = 5 12 3.895 9 3.317
T 7 = 7 13 4.228 7 2.660
T 9 = 9 13 4.212 8 2.971

Table 3. Comparison of the efficency of both algorithms at dif-
ferent times with q = 1 in a case where the Inf-Sup condition is
satisfied.

Staggered algorithm q = 10 P. C. G. algorithm q = 10
T i Iterations CPU Iterations CPU
T 1 = 1 11 5.362 6 3.950
T 3 = 3 12 5.862 9 5.790
T 5 = 5 13 6.356 10 6.399
T 7 = 7 13 6.378 8 5.170
T 9 = 9 13 6.361 9 5.800
Table 4. Comparison of the efficency of both algorithms at dif-
ferent times with q = 10 in a case that the Inf-Sup condition is
satisfied.

cw = 4.10−8 Pa−1, co = 1.10−8 Pa−1, λ = 5.108 Pa, μ = 2.108 Pa, atmospheric
pressure = 105 Pa. The viscosities ηo and ηw and the compressibilities co and cw

of the fluids are prescribed in each simulation. We denote by R the ratio of the
viscosities, namely R = ηo/ηw. We perform tests with different values of this ratio
to check its influence on the flow. The initial pressure is the atmospheric pressure
105 Pa and the outcoming pressure is 0 Pa.

Figure 9 shows the time evolution of the L2(Ω)-norm of the difference of the sat-
uration computed with different values of q and the reference saturation computed
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with q = 1, both for the staggered scheme and for the preconditioned conjugate
gradient algorithm. The figures 10 and 11 show similar results for the pressure and
for the deplacement. We observe that all three errors grow with q. This is not
surprising and it shows that one has to be slightly careful with the choice of q.

Next we discuss the cost of the computations in terms of the number of iterations
and the CPU time. The tables 5 and 6 illustrate the comparison between the two al-
gorithms in the multiscale case where q = 20. In the case that co = cw = 4.10−9 (see
Table 5) we observe that the preconditioned conjugate gradient algorithm is less
expensive than the staggered algorithm. On the other hand when co = 1.10−8 Pa−1

and cw = 4.10−8 Pa−1 (see Table 6) the two algorithms require a similar number
of iterations.

Figure 12 shows the oil saturation and the pressure when the viscosity rate
R = 100 or in other words when the oil phase is 100 times more viscous than the
water phase. We observe the presence of a preferred outcoming direction exhibited
by the finger at the time t = 100 s; on the contrary the oil comes out in a symmetric
fashion in the case of Figure 13 where R = 1. The figures 14 and 15 show a similar
phenemenon at the time t = 580 s. Let us remark that this agrees with the physical
predictions.

The previous results have been obtained on a squared mesh without any preferred
directions. The figures 16 and 18 exhibit two grids with different preferred directions
and their influence on the numerical results at the times t = 100 s and t = 580 s;
it turns out that one obtains completely different saturation profiles. Here the
numerical scheme cannot cope with the physical instability.

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−4

Ti

||S
a −

 S
 ||

L2 (Ω
)

q  20
q  50 
q  100

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−4

Ti

||S
a −

 S
 ||

L2 (Ω
)

q  20
q  50 
q  100

Figure 9. The time evolution of the L2(Ω)-norm of the error be-
tween the reference solution (q = 1) and the approximate satura-
tions computed for different values of q on the left-hand-side by
the staggered algorithm and on the right-hand-side by the precon-
ditioned conjugate gradient algorithm.

19



0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5
x 104

Ti

||p
a −

 p
 ||

L2
Ω

)

q  20
q  50 
q  100

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5
x 104

Ti

||p
a −

 p
 ||

L2
Ω

)

q  20
q  50 
q  100

Figure 10. The time evolution of the L2(Ω)-norm of the error
between the reference solution and the approximate pressures com-
puted for different values of q on the left-hand-side by the staggered
algorithm and on the right-hand-side by the preconditioned conju-
gate gradient algorithm.
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Figure 11. The time evolution of the (L2(Ω))2-norm of the error
between the reference solution and the approximate displacements
computed for different values of q on the left-hand-side by the stag-
gered algorithm and on the right-hand-side by the preconditioned
conjugate gradient algorithm.

Figure 12. Saturation on the left-hand-side and pressure on the
right-hand-side at the time t = 100 s with R = 100 on a regular
mesh.
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Figure 13. Saturation on the left-hand-side and pressure on the
right-hand-side at the time t = 100 s with R = 1 on a regular
mesh.

Figure 14. Saturation on the left-hand-side and pressure on the
right-hand-side at the time t = 500 s with R = 100 on a regular
mesh.

Figure 15. Saturation on the left-hand-side and pressure on the
right-hand-side at the time t = 500 s with R = 1 on a regular
mesh.
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Figure 16. Saturation at the time t = 100 s with R = 100 and
two different meshes: on the left-hand-side with vertically stretched
cells and on the right-hand-side with horizontally stretched cells
ones.

Figure 17. Saturation at the time t = 580 s where R = 100 and
two different meshes: on the left-hand-side with vertically stretched
cells and on the right-hand-side with horisontally stretched cells
ones.

Figure 18. Pressure at time t = 100 s where R = 100 and two
different meshes: on the left-hand-side with vertically stretched
cells and on the right-hand-side with horisontaly stretched cells
ones.
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Multiscale staggered algorithm q = 20 P. C. G. algorithm q = 20
T i Iterations CPU Iterations CPU
T 1 = 20 126 0.611E+3 19 0.172E+3
T 3 = 60 122 0.507E+3 17 0.145E+3
T 7 = 140 113 0.368E+3 16 0.107E+3
T 9 = 180 108 0.350E+3 15 0.997E+2
T 10 = 200 104 0.378E+3 15 0.110E+3
T 20 = 400 52 0.110E+2 12 0.524E+2

Table 5. Comparison in terms of iterations and CPU
times between the multiscale staggered algorithm and the
preconditioned conjugate gradient algorithm at the times
T 1, T 3, T 7, T 9, T 10 and T 20 with co = cw = 4.10−9 Pa−1.

Multiscale staggered algorithm q = 20 P. C. G. algorithm q = 20
T i Iterations CPU Iterations CPU
T 1 = 20 11 0.488E+2 14 0.319E+3
T 3 = 60 11 0.464E+2 12 0.285E+3
T 7 = 140 10 0.217E+2 12 0.142E+3
T 9 = 180 10 0.216E+2 11 0.129E+3
T 10 = 200 9 0.196E+2 11 0.130E+3
T 20 = 400 6 0.130E+2 7 0.742E+2

Table 6. Comparison in terms of iterations and CPU
times between the multiscale staggered algorithm and the
preconditioned conjugate gradient algorithm at the times
T 1, T 3, T 7, T 9, T 10 and T 20 with co = 1.10−8 Pa−1 and cw =
4.10−8 Pa−1.

8. Operation cost

We apply the preconditioned conjugate gradient algorithm even in the case of a
slightly nonsymmetric problem. We have at each period the following computation
costs:

• We compute the initial residual, and the first descent direction, which re-
quires one reservoir simulation and one geomechanical computation.

• At each iteration we compute αl and the preconditioned direction zl+1,
which requires one reservoir simulation and one geomechanical computa-
tion.

• At the end of each period, we perform one reservoir simulation.

The fact that we need to perform two reservoir simulations at each iteration is not
constraining since one simulation requires 15 mn of CPU time whereas 6 hours are
necessary for one geomechanical computation.

Remark 3. The convergence criterium for both algorithms is based upon the relative
variation of the pressure from one iteration to the next; it is given by

‖pl+1 − pl‖∞
patm

< 10−j(28)

where patm is the atmospheric pressure with j = 6 for the linear case and j = 3 for
the nonlinear model.
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