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ABSTRACT. The standard Monte Carlo estimations of rare events probabilities suffer from too much

computational time. To make estimations faster, kernel-based estimators proved to be more efficient

for binary systems whilst appearing to be more suitable in situations where the Probability Density

Function (pdf) of the samples is unknown. We propose a kernel-based Bit Error Probability (BEP)

estimator for coded M -ary Quadrature Amplitude Modulation (QAM) systems. We defined soft real

bits upon which an Epanechnikov kernel-based estimator is designed. Simulation results showed

accurate, reliable and efficient BEP estimates for 4-QAM and 16-QAM symbols transmissions over

the additive white Gaussian noise channel and over a frequency-selective Rayleigh fading channel.

RÉSUMÉ. Les estimations de probabilités d’événements rares par la méthode de Monte Carlo clas-

sique souffrent de trop de temps de calculs. Des estimateurs à noyau se sont montrés plus efficaces

sur des systèmes binaires en même temps qu’ils paraissent mieux adaptés aux situations où la fonc-

tion de densité de probabilité est inconnue. Nous proposons un estimateur de Probabilité d’Erreur

Bit (PEB) à noyau pour les systèmes M -aires codés de Modulations d’Amplitude en Quadrature

(MAQ). Nous avons défini des bits souples à valeurs réelles à partir desquels un estimateur à noyau

d’Epanechnikov est conçu. Les simulations ont montré des estimées de PEB précises, fiables et

efficaces pour des transmissions MAQ-4 et MAQ-16 sur canaux à bruit additif blanc Gaussien et à

évanouïssements de Rayleigh sélectif en fréquence.

KEYWORDS : Bit error probability, Bit error rate, Probability density function, Monte Carlo method,

Kernel estimator.

MOTS-CLÉS : Probabilité d’erreur binaire, Taux d’erreur binaire, Fonction de densité de probabilité,

Méthode Monte Carlo, Estimateur à noyau.



1. Introduction

In digital communications, the Bit Error Probability (BEP) that serves for the perfor-
mance characterisation of a communication system is generally determined in the form
of an estimate commonly called Bit Error Rate (BER). Several approaches of the BEP
estimation have been studied. A few attempts to analytically estimate the BEP were re-
ported in [1], [2]. However, simulation-based techniques of the BEP estimation have been
the most investigated, surely because of the increasing complexity, of the contemporary
and emerging digital communication systems, that renders impossible the derivation of
a closed-form solution of the BEP estimate. A simulation-based technique of the BEP
estimation that does not depend on the complexity of the digital communication system is
that technique which proceeds with the errors counting in the received bits sequence and
then determines the BEP estimate, i.e. the BER, as the ratio of the number of the observed
errors over the total number of the transmitted bits. That technique, called the classical (or
standard) Monte Carlo (MC) method, is a universal technique as it does not depend on the
digital communication system. For this reason, it is commonly used as the baseline for the
other methods. This universal technique which is moreover straightforward unfortunately
suffers from its high computational cost. Indeed, it is known as computationally the most
costly of the methods [3]. Samples of very large size may be required by this technique
to perform BEP estimates with a given accuracy. This is further obvious when small BER
values have to be computed. To mathematically exhibit this disadvantage of the classical
MC method, one can easily be provided with a lower bound of the sample size Nmc in
function of the BEP pe and the normalised error ε of the estimate p̂e: Nmc > 1/ε2pe

(see e.g.: [4]). The sample size is the number of data used in the estimation of a given
BEP. The normalised error ε is defined as the ratio of the standard deviation of p̂e over
pe. Therefore, to estimate a BEP pe = 10−4, the classical MC method with standard de-
viation smaller than 0.1pe, should at least be run with a total number of transmitted data
equal to 106.

To overcome the problem of the classical MC method efficiency, a class of simulation-
based techniques, referred to as variance-reducing techniques, have been developed du-
ring the 1970s with the goal to reduce the sample size. These variance-reducing tech-
niques have been discussed in details in [3]. More specifically, they include the im-
portance sampling (also called modified Monte-Carlo) technique [5], the extreme-value
theory method [6], the tail extrapolation method [7] and the quasi-analytical estimation
technique [3]. The importance sampling method has been the most successfull and the
most investigated of these variance-reducing techniques. Some recent investigations on
this technique dealt with very low BER performance estimation for coded modulations.
For instance, Cavus et al. [8] developed an approach that combines the importance sam-
pling technique with trapping sets. Their approach allowed a successful simulation of
the performance of Low Density Parity Check (LDPC) codes over an Additive White
Gaussian Noise (AWGN) channel at BERs smaller than 10−6.

More recently, new simulation-based techniques of the BEP estimation have been de-
veloped. They rely on non-parametric Probability Density Function (pdf) estimations.
Soft observations are used to estimate the pdf that is generally assumed unknown. Very
few of the non-parametric estimation techniques are based on Gaussian mixture mo-
dels [9]. Gaussian mixture models rely on the assumption that the pdf of the received
observations is a mixture of Gaussians. The parameters of each Gaussian, i.e. the mean,
the variance and the a priori probabilities, together with the number of Gaussians are es-



timated by simulation. The expression of the BEP estimate is then derived as a function
of the estimated parameters. On the contrary, the non-parametric kernel-based estimation
techniques have been more investigated. They rely on kernel density estimators [10]. The
estimation solely relies on the observed samples and there is no need to estimate the num-
ber of Gaussian components as for the Gaussian mixture. Several kernel-based BEP esti-
mators built around the Gaussian kernel function have shown to reach good performance
on the uncoded binary-input Gaussian channel. This is the case of the kernel-based BEP
estimator for soft BERs computation [4], where the estimator performance was analysed
for Code Division Multiple Access (CDMA) schemes. Efficient and accurate BEP esti-
mates were reported. This is also the case with the study reported in [12]. A kernel-based
estimator for soft BERs computation demonstrated that kernel-based estimators of the
BEP can perform well in an unsupervised manner, i.e. without requiring the transmitted
data to be known. Always based on the Gaussian kernel function, a maximum likelihood-
based smoothing parameter optimisation was studied [13] for the kernel estimators of
BEP. Illustrations of the effectiveness of the maximum likelihood-based smoothing pa-
rameter selection were made for binary coded transmission schemes involving Turbo and
LDPC codes over CDMA systems. For the first time, a work addressing the issue of
efficient kernel-based BEP estimation for M -ary transmissions schemes was reported
in [14]. This paper extends the work in [14] by thoroughly studying the kernel-based
BEP estimation for coded M -ary Quadrature Amplitude Modulations (QAM) transmis-
sions schemes. In the proposed estimator, the samples used for the estimation are soft bits
that are sampled from the output of the soft error-correcting code decoder. Beyond the
AWGN channels, frequency-selective Rayleigh fading channels are targetted. Under this
framework, the issue of kernel-based efficient BEP estimation becomes more challenging
with respect to the previous contexts presented above. Firstly, shifting from binary real
constellations to M -ary complex constellations involves the estimation of complex pdfs.
Secondly, when frequency-selective Rayleigh fading channels are considered, the pdf of
the soft observations to be estimated loses its Gaussian nature and finding an appropriate
smoothing parameter for the kernel is not straightforward.

The remainder of this paper is organised as follows: in Section 2 a theoretical formu-
lation of the BEP followed by MC-based and kernel-based approaches to estimate it are
described; in Section 3 a description of the different features of the proposed kernel-based
BEP estimator is provided; in Section 4 the simulation framework and analysis parameters
are presented and simulation results are discussed. Section 5 concludes the paper.

2. The bit error rate, an estimate of the bit error probability

2.1. The bit error probability

In order to theoretically formulate the BEP, let us consider a coded digital communi-
cation system that operates with Quadrature Amplitude Modulation (QAM) schemes. At
the transmitter-end, a signal containing coded M -QAM waveforms is transmitted over a
noisy channel. M is the QAM constellation size. The transmitted signal corresponds to
a bit sequence (bj)1≤j≤N . At the receiver-end, more precisely at the output of the chan-
nel decoder, we assume being provided with independent and identically distributed soft
real bits (Xj)1≤j≤N such that the hard decision consists of a bit b̂j = 0 (resp. b̂j = 1)
when Xj < 0 (resp. Xj > 0). Let X denote the univariate real random variable that



describes the soft bits (Xj)1≤j≤N and let f
(0)
X (x) (resp. f

(1)
X (x)) be the conditional pdf

of Xj conditional to bj = 0 (resp. bj = 1). The BEP can be stated as:

pe = Pr[X > 0, bj = 0] + Pr[X < 0, bj = 1] (1)

= Pr[X > 0 | bj = 0] Pr[bj = 0] + Pr[X < 0 | bj = 1] Pr[bj = 1] (2)

= π0

∫ +∞

0

f
(0)
X (x) dx + π1

∫ 0

−∞

f
(1)
X (x) dx, (3)

where π0 = Pr[bj = 0] and π1 = Pr[bj = 1] are the a priori probabilities of the bits
values “0” and “1” respectively. The BER is an estimate of the BEP and can be computed
based on simulations. Several simulation-based approaches of the BER computation exist.

2.2. The Monte Carlo methods of BEP estimation

We denote by Monte Carlo methods, the classical MC method and the modified
Monte-Carlo simulation technique also called importance sampling. To introduce the
classical MC method of BEP estimation, let us consider that the transmitted bits sequence
(bj)1≤j≤N are all binary “0” valued. Consequently, Eq. (3) of the BEP can be written as

pe =

∫ +∞

0

f
(0)
X (x) dx, (4)

=

∫ +∞

−∞

f
(0)
X (x)I(x > 0) dx, (5)

= E [I(X > 0)] . (6)

where E[.] is the mathematical expectation operator and I is such as,

I(x) =

{

1, x ≥ 0
0, x < 0.

A natural and straightforward estimator p̂e of pe as given by Eq. (6) is as

p̂e =
1

N

N
∑

j=1

I(Xj > 0), (7)

where (Xj)1≤j≤N are the realisations of X . Using Eq. (7), the BEP estimate, i.e. the
BER can be computed as the number of errors over the total number of observations: this
way of calculating the BER defines the classical MC method.

As about the modified Monte-Carlo simulation technique, it has been introduced by
Shanmugam et al. based on the following principle [5]: if the regions of the receiver input
(i.e. the channel output) which contribute to an important event that is of interest are
known, then the input distribution is biased (modified) in such a way that more samples
are taken from the important regions. In this technique, the statistical properties of the
receiver input are assumed to be known and the BEP to be estimated is given by

pe =

∫ ∞

−∞

h(y)fY (y) dy, (8)

where fY (y) is the pdf of the receiver output given that the transmitted bit is of value “0”

(i.e., fY (y) refers to f
(0)
X (y)) and h(y) is equal to 1 if y is greater than the hard decision



threshold and 0 otherwise. In function of the modified pdf f∗
Y (y) which is created by

biasing the input samples, the BEP is rewritten as

pe =

∫ ∞

−∞

h∗(y)f∗
Y (y) dy, (9)

where h∗(y) = B(y)h(y), B(y) = fY (y)/f∗
Y (y) being the bias. The BER is finally

computed as the BEP estimate p̂e given by

p̂e =
1

N

N
∑

j=1

h∗(yj), (10)

where y1, . . . , yN are the output sequence at the bit sampling times produced by the biased
input sequence.

2.3. The kernel method of BEP estimation

In the kernel-based BEP estimation technique, the marginal conditional pdfs f
(0)
X (x)

and f
(1)
X (x) are estimated as follows:























f̂
(0)
X (x) = 1

n0

n0
∑

j=1

1
h0

K
(

x−Xj

h0

)

f̂
(1)
X (x) = 1

n1

n1
∑

j=1

1
h1

K
(

x−Xj

h1

)

,

(11)

where K is any even regular pdf with zero mean and unit variance called the kernel, n0

(resp. n1) is the cardinality of the subset of the soft observations among X1, . . . , XN

which are likely to be decoded into a binary “0” (resp. “1”) bit value and h0 (resp.
h1) is a parameter called smoothing parameter (or bandwidth) that depends on the soft
observations X1, . . . , Xn0 (resp. X1, . . . , Xn1 ). Let us notice that n0 + n1 = N . Then,
the estimate p̂e of the BEP pe of Eq. (3) can be expressed as follows,

p̂e = π̂0

∫ +∞

0

f̂
(0)
X (x) dx + π̂1

∫ 0

−∞

f̂
(1)
X (x) dx. (12)

where π̂0 and π̂1 are the estimates of π0 and π1 respectively. To compute Eq. (12), the
prior determination of the kernel K and the smoothing parameters h0 and h1 is necessary.

The choice of the kernel function K is related to the density function under estima-
tion. As an example, for the estimation of a power limited process, the kernel should
have a finite variance. Also, whenever the observed samples are distributed over a large
scale, distributions with an infinite support (e.g., Gaussian distribution) should be chosen.
However, distributions such as Epanechnikov, Uniform or Quartic that have finite support
should be selected to model the kernel function when the observed samples are bounded.
Once the kernel function K is selected, then comes the choice of the smoothing parameter
h (i.e. h0 and h1).

The design of the smoothing parameter h is indeed a major issue since it is crucial to
the performance of the estimator, especially in terms of accuracy. It has been demons-
trated [15] that if h → 0 when the sample size n (i.e. n0 or n1) → ∞, then the estimator
is asymptotically unbiased. The methods for optimally selecting the smoothing parameter



are all based on the minimisation of the estimation error. A common way of measuring
the estimation error is the Mean Integrated Squared Error (MISE), a function of h, given
by [16],

MISE(h) =

∫

E

[

f̂X(x) − fX(x)
]2

dx. (13)

Under standard technical assumptions (see e.g. [17]), the MISE is asymptotically (i.e. as
the sample size n → ∞) approximated by the Asymptotic Mean Integrated Squared Error
(AMISE),

AMISE(h) = n−1h−1

∫

K2(x) dx + h4

∫

f
′′

X(x)2 dx

(∫

x2K(x)/2 dx

)2

, (14)

where f
′′

X(x) is the second derivative of the pdf fX(x). The minimisation of (14) with
respect to h gives

h∗
AMISE =

[

∫

K2(x) dx
∫

f
′′

X(x)2 dx
(∫

x2K(x) dx
)2

]1/5

n−1/5, (15)

where, in the context of this paper, the quantity n denotes the sample size, whether n0 or
n1, of the subset of the soft observations that are used to estimate whether the marginal

conditional pdf f
(0)
X (x) or f

(1)
X (x).

Clearly, the constraint in Eq. (15) is the prior knowledge of the targeted distribu-

tion fX(x) (i.e. f
(0)
X (x) or f

(1)
X (x)), which is of course unknown and searched for. A

multitude of techniques [18] that provide a way to bypass this constraint include plug-in
methods [19], cross-validation techniques [20], [21] and variable kernel density estima-
tion methods [22], [23]. Unfortunately, none of these techniques has yet been considered
as the best in every situation [18]; hence the difficulty to find a universal optimal smoo-
thing parameter. In practice, a convenient technique is to replace the unknown pdf fX

by a reference distribution with mean and variance matching those of the data. In the
literature, the Gaussian distribution is a popular choice for the kernel function so that
many designs regarding the choice of the optimal smoothing parameter are available. By
selecting a Gaussian kernel function K and using a Gaussian reference distribution (i.e.
the unknown pdf fX is assumed Gaussian), the optimal expression of the smoothing pa-
rameter has been derived from Eq. (15) as follows [24],

h∗
AMISE = (4/3)

1/5
σn−1/5, (16)

where σ2 is the variance of the soft observations X1, . . . , Xn. The expression of Eq. (16)
is indeed an estimate of h∗

AMISE and is called the rule-of-thumb bandwidth.
A practical problem with the rule-of-thumb bandwidth is its sensitivity to outliers

[28]. A single outlier may cause a too large estimate of σ and hence implies a too large
bandwidth. Moreover, the sample standard deviation σ̂ can be used as an estimate of σ.
However, it is noted [25] that σ̂ is not appropriate for the non-Gaussian densities. So,
a more robust estimator is obtained from the interquartile range which is a measure that
indicates the range over which the 50% most centered samples are spread. Let’s denote
by R the interquartile range. By dividing the sample X into quarters, R can be derived
as R = Q3

X − Q1
X where Q1

X and Q3
X are respectively the first and the third quartiles.



Still keeping the assumption that the true pdf fX is Gaussian, we have X ∼ N (µ, σ2)
and W = (X − µ)/σ ∼ N (0, 1). Hence asymptotically [28],

R = Q3
X − Q1

X ,

= (µ − σQ3
W ) − (µ − σQ1

W ),

= σ(0.67 − (−0.67)),

= 1.34σ,

(17)

and thus σ can be estimated by σ̂ = R/1.34 which can be plugged into Eq. (16) to give
the following version of the rule-of-thumb bandwidth,

h∗
AMISE = 0.79Rn−1/5. (18)

By combining Eq. (16) and Eq. (18), a more robust estimate of σ is given by min(σ̂, R/1.34)
[26], [17] and hence the following robust version of the rule-of-thumb optimal bandwidth
is:

h∗
robust = (4/3)

1/5
min (σ̂, R/1.34) n−1/5. (19)

3. The proposed kernel-based BEP estimator

Let us consider a digital communication system with multi-carrier transmissions of
M -ary QAM waveforms over frequency-selective Rayleigh fading channels. Such a
communication system model involves inter-symbol and inter-carrier interferences and
subsequently complex receiver schemes are required. Nowadays, advanced receivers cha-
racterise the contemporary and emerging wireless communication systems. As the nature
of the pdf of the soft observations depends not only on the type of the receiver but also
on the channel model, it is very difficult to find the exact parametric model that describes
the received distribution. In these conditions, a method as the modified Monte-Carlo that
assumes the pdf of the received soft bits to be known cannot be applied. However, the
kernel approach is well justified. So, the objective of this work is to compute soft coded
BERs of M -ary QAM transmissions schemes using the kernel approach of the BEP es-
timation. The digital communication system under consideration also includes a channel
codec (encoder/decoder). The soft coded BER is the BER that is computed from soft
bits taken at the output of the channel decoder. The soft bits are the soft outputs of the
channel decoder that normally serve for the hard decision making. We assume that the
channel decoder operates with soft inputs in the form of LLR values and can deliver soft
outputs in the form of LLR values. As M -QAM waveforms of alphabet {s1, s2, . . . , sM}
are transmitted, the channel outputs are M -ary waveforms (soft symbols). To provide the
channel decoder with appropiate inputs, a symbol-to-bit soft demapping (see 3.1) has to
be done in order to convert the channel outputs which are soft symbols into soft bits in
the form of LLR values. In addition, suited soft bits in the form of real values have to be
given at the input of the BEP estimator. In 3.2, we define these soft real bits and establish
in 3.3 the key equation for the BEP estimate computation.

3.1. The symbol-to-bit soft demapping

At the transmitter-end, before the modulation, the coded bits are grouped into bit
vectors b = (b1b2 . . . bk), each with length k = log2(M). Bit vectors b are then mapped



onto constellation points s ∈ χ = {s1, s2 . . . , sM} for transmission. At the receiver-
end, the soft bit for each coded bit is calculated based on the received signal r. At the
ith sample period, the observed symbol is ri and the symbol-to-bit soft demapping [27]
results in the computation of k soft bits in the form of LLR (Lj)1≤j≤k. The jth soft bit
Lj is then given by

Lj = log

(

Pr[bj = 1|ri]

Pr[bj = 0|ri]

)

, (20)

and can be rewritten as

Lj = log









∑

s∈χ
(1)
j

Pr[s|ri]

∑

s∈χ
(0)
j

Pr[s|ri]









, (21)

where χ
(ξ)
j , ξ ∈ {0, 1}, denotes the signal subset of χ with the jth bit equal to ξ. From

Bayes’ rule and the assumption of signals s1, s2, . . . , sM with equal probabilities, we get

Lj = log









∑

s∈χ
(1)
j

p[ri|s]
∑

s∈χ
(0)
j

p[ri|s]









. (22)

For a fading channel, ri = gis + ηi, where s ∈ χ, ηi a complex-valued realisation of the
AWGN η ∼ N (0, σ2) and gi, a complex-valued element of the channel matrix (a vector)
g. Thus, p[ri|s] ∼ N (gis, σ

2) and the conventional Max-Log-MAP demapper allows Lj ,
1 ≤ j ≤ k, of Eq. (22) to be derived in function of ri, gi and s as follows:

Lj ≈ − 1

σ2

[

min
s∈χ

(1)
j

|ri − gis|2 − min
s∈χ

(0)
j

|ri − gis|2
]

. (23)

Let us remark that in the case of the AWGN channel, ri = s + ηi and therefore gi is a
scalar always equal to 1.

3.2. The proposed kernel-based estimator inputs

The outputs of the channel decoder are soft bits in the form of LLR values Lj . How-
ever, we define the inputs of the kernel-based estimator to be soft bits (Xj)1≤j≤N in the
form of soft real values +1 or −1. The soft bit Xj is given by:

Xj = Pr[bj = 1|ri] − Pr[bj = 0|ri]. (24)

From Eq. (20) and Pr[bj = 1|ri] + Pr[bj = 0|ri] = 1, we derive the expressions of
Pr[bj = 1|ri] and Pr[bj = 0|ri] in function of the soft LLR values Lj as follows:







Pr[bj = 1|ri] = eLj /
(

1 + eLj

)

Pr[bj = 0|ri] = 1/
(

1 + eLj

)

. (25)

From Eq. (25) and Eq. (24), we derive the expression of the soft bit Xj as a function of
the channel decoder output Lj :

Xj =
1 − e−Lj

1 + e−Lj
. (26)



The soft bits (Xj)1≤j≤N are used by the proposed kernel-based estimator to derive the
coded M -QAM BER values. Otherwise, if needed, soft symbol error probabilities can be
estimated using soft M -ary symbols. The definition of the soft M -ary symbols is given
in Appendix A.

3.3. The proposed kernel-based estimator equation

As defined in Eq. (26), the soft bits (Xj)1≤j≤N are bounded with values in the in-
terval [−1, +1]. So, the selection of the popular Gaussian kernel function cannot be
strongly justified against the selection of finite support kernel functions. Among the
multiple finite support distributions that are candidates for the kernel function selec-
tion, the Epanechnikov distribution is the simplest one in a computational point of view.
For these reasons, we select the Epanechnikov distribution as the kernel function, i.e.,
K(x) = 3

4

(

1 − x2
)

I(|x| ≤ 1). Then it can be checked that the kernel estimator with
bandwith h will be restricted to interval [−1−h, 1+h]. Since optimally chosen h remains
much smaller than 1 for large samples, we can consider that numerically the support cons-
traint for the distribution of X is satisfied when using the Epanechnikov kernel. There-
fore, we need to find the corresponding smoothing parameter h∗

Epa that approximates well
h∗

AMISE of Eq. (15). According to the related literature on bandwidth selection based on
the Gaussian kernel, h∗

robust (see Eq. (19)) is the best approximation of h∗
AMISE. We then

determine h∗
Epa based on the concept of canonical bandwidths as follows [28],

h∗
Epa =

δEpa

δGau
h∗

robust, (27)

where δGau ≈ (1/4)
1/10

= 0.7764 is the canonical bandwidth of the Gaussian kernel
and δEpa ≈ 151/5 = 1.7188 is the canonical bandwidth of the Epanechnikov kernel. The
canonical bandwidths are closely related to the rescaling of a kernel function called the
canonical kernel [29]. The principle of the canonical kernel is to uncouple the problems
of choosing h and K and the idea for separating these choices is to find the canonical
bandwidths so that the AMISE will be asymptotically equal for different kernels (for
instance, the Gaussian and the Epanechnikov kernels).

Now, the two key parameters that completely define the proposed kernel-based BEP
estimator are known: the kernel function K(x) = 3

4

(

1 − x2
)

I(|x| ≤ 1) and the smoo-
thing parameter as given in Eq. (27). The expressions of the two marginal conditional pdfs

f̂
(0)
X (x) and f̂

(1)
X (x) can be derived from Eq. (11). Then, Eq. (12) of the BEP estimate

can be rewritten as follows,

p̂e = π̂0

∫ +∞

0

1

n0h∗
0

n0
∑

j=1

K

(

x − Xj

h∗
0

)

dx + π̂1

∫ 0

−∞

1

n1h∗
1

n1
∑

j=1

K

(

x − Xj

h∗
1

)

dx,

(28)
where h∗

0 (resp. h∗
1), computed based on Eq. (27), is the selected optimal smoothing

parameter which will govern the accuracy of the estimation of f̂
(0)
X (x) (resp. f̂

(1)
X (x)). By

the means of some mathematical transformations that are detailed in Appendix B, Eq. (28)
leads to the following convenient equation that will serve for the BER computation,
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(29)



where αj = −Xj/h∗
0, βj = −Xj/h∗

1, L0 (resp. L1) is the cardinality of the subset of
(αj)1≤j≤n0

(resp. (βj)1≤j≤n1
) which are less than −1 (resp. greater than 1).

The optimal smoothing parameters h∗
0 and h∗

1 of Eq. (29) are derived based on Eq. (27)
and Eq. (19) as follows,







h∗
0 = 2.3449min (σ̂, R/1.34) n

−1/5
0

h∗
1 = 2.3449min (σ̂, R/1.34) n

−1/5
1

. (30)

Then, the soft coded BERs are computed by simulations using Eq. (29). The simula-
tions have been run for M -ary QAM transmissions over the AWGN channel and over a
frequency-selective Rayleigh fading channel. In the next Section, we deal with the simu-
lation results of the proposed kernel-based BEP estimator.

4. Simulation results

4.1. Channel models and performance analysis tools

The proposed kernel-based BEP estimator has been simulated on a single-carrier M -
ary QAM transmission scheme over the AWGN channel and also on a multi-carrier M -ary
QAM transmission scheme over a frequency-selective Rayleigh fading channel. Gray-
coded 4-QAM and 16-QAM constellations were considered. The frequency-selective
Rayleigh fading channel was ten taps long with a sample period of 12.8µs, a maxi-
mum Doppler shift set to 8 Hz and average taps gains given in watts by the vector
[0.0616 0.4813 0.1511 0.0320 0.1323 0.0205 0.0079 0.0778 0.0166 0.0188] [30], [31].
To mitigate inter-symbol and inter-carrier interferences, a cyclic prefix Orthogonal Fre-
quency Division Multiplexing (OFDM) technique was implemented [32]. The length of
the Cyclic Prefix was set to 9 and the number of OFDM sub-carriers set to 128. A 128-
point FFT (Fast Fourier Transform) was performed. The Channel codec was a 4/7-rate
LDPC code with a Gallager-based parity check matrix built to be of rank 15. The number
of iterations while decoding the LDPC code was set to 10 in the simulations involving
the AWGN channel. It was set to 30 in the simulations regarding the frequency-selective
Rayleigh fading channel.

To analyse the performance of the proposed kernel-based estimator for soft coded
BER computation, we used different analysis parameters, namely the absolute bias, the
Confidence Interval (CI), the sample size saving and the CPU time. We defined the ab-
solute bias as |E[p̂e] − pe |. To compute the absolute bias, a certain number of the BEP
estimates p̂e has to be processed. As the theoretical expression of pe is not available,
a reference value has to be determined too. So, benchmark values have been computed
for each value of the information bit energy to noise power spectral density ratio denoted
Eb/N0. The benchmark values were computed using the classical MC simulations whilst
handling a threshold on the number of observed errors. The threshold depends on the
channel model. In the case of the AWGN channel, at least 100 errors have been observed.
As about the frequency-selective Rayleigh fading channel, a threshold of 1 000 errors was
set. The absolute bias allows the analysis of the estimator accuracy. The smaller it is,
the more accurate is the estimation. Visually, excellent accuracy performance results in
plotted data points of the BEP estimates values which are pointwise consistent with their
corresponding benchmark data points.



The accuracy alone is not sufficient to evaluate with thoroughness the proposed BEP
estimator performance. For instance, a good accuracy result of an estimate can be the fact
of a lucky coincidence while suffering from reliability. The CI is intended to measure how
reliable the estimator is. The smaller the CI is, the more reliable the estimate is. Let l be
the size of a set of the BEP estimates p̂e. The (1−α) CI is the interval I = [ p̂e−ǫ, p̂e +ǫ]
such that the probability of having the true value of pe inside I is equal to (1− α), that is
to say, Pr( p̂e − ǫ ≤ pe ≤ p̂e + ǫ) = 1 − α, i.e.,

Pr

( −ǫ

σ̂l/
√

l
≤ T ≤ ǫ

σ̂l/
√

l

)

= 1 − α,

where T = (pe− p̂e)/(σ̂l/
√

l) and σ̂2
l is a chi square distribution. Thus ǫ can be estimated

thanks to the reciprocal cumulative density function of T denoted F−1
T (x) for 0 ≤ x ≤ 1

by:

ǫ =
σ̂l√

l
F−1

T (α/2).

Assuming that p̂e follows a Gaussian distribution with mean pe and standard deviation σ,
the random variable T follows a Student’s t-distribution with (l − 1) degrees of freedom.
When s is high, T is well approximated by a Gaussian distribution. However, due to
complexity issues, we only simulated a limited number of BEP estimates (l = 21), which
justifies the use of the Student’s t-distribution with (l − 1) degrees of freedom for T .
Hereafter, a CI for α = 0.05 has been chosen.

The efficiency of the proposed estimator is evaluated thanks to the sample size reduc-
tion with respect to the classical MC method. If NK is the sample size required by the
proposed estimator to achieve a given performance (of accuracy and reliability) and Nmc,
the sample size required by the classical MC to achieve equal (or almost) performance,
then the sample size saving is defined by the ratio Nmc/NK . Therefore, the greater (than
1) the sample size saving is, more efficient is the proposed estimator. The sample size
saving is closely linked to the computational cost engendered by the BEP estimate com-
putation. To evaluate this aspect of the estimator efficiency, the CPU time has been com-
puted by simulation. The CPU time shows to how much is the energy consumption. It
tells us about the inherent computational cost of the estimator.

4.2. Numerical results and discussions

In this Subsection, we analysed through simulation results the performance of the pro-
posed kernel-based estimator with respect to the analysis parameters defined above. Since
the importance sampling method requires (see Eq. (10)) the pdf of the receiver input to
be known in advance, a fair comparison with our proposed estimator is not possible with-
out resorting to additional techniques. For this reason, we only made comparisons with
respect to the universal classical MC method. Simulations of the proposed kernel-based
estimator for soft coded BERs computation have been performed both in the AWGN
channel and in a frequency-selective Rayleigh fading channel. The Rayleigh fading chan-
nels are more characteristic of the contemporary and emerging digital communication
systems. They are moreover more challenging than the AWGN channels regarding BEP
estimations. For these reasons, we’ll roughly evaluate the performance of the proposed
estimator as far as the AWGN channel is concerned. However, most of the proposed esti-
mator performance analysis will focus on simulation results involving the Rayleigh fading
channel.



Insights of the proposed estimator performance over the AWGN channel

To analyse the accuracy of the proposed estimator when performing over the AWGN
channel, Figure 1 illustrates the curves of coded BERs in function of Eb/N0. Simulations
with sample sizes NK (see Table 1 and Table 2) in the form of 10p, p ∈ {3, 4, 5, 6}, have
been run to cover coded BER values from 10−1 down to 10−5. The blue dashed curves in
the figure are related to the theoretical uncoded BERs and are given for illustration. The
data points of the proposed estimator are borne by the green curves with diamond mark
at each data point. The red curves are for the benchmarks. As Figure 1 lets see, the green
curve and the red one are combined in a unique curve as well for the pair (of curves)
related to 4-QAM as for that related to 16-QAM. This demonstrated that the proposed
estimator achieved very accurate estimates. To quantify the achieved accuracy, Table 1
(for 4-QAM) and Table 2 (for 16-QAM) report numerical data that show how small are
the corresponding absolute biases compared to the associated benchmarks.

As about the reliability of the proposed estimator, we show in Table 1 and Table 2
the intervals I representing the achieved CIs. Small CIs, each containing its corres-
ponding estimate value, have been observed. In the case of 4-QAM where true coded
BERs values from 1.1 × 10−1 down to 4.4 × 10−6 are estimated, the smallest of the CIs
is [0.94pe, 1.06pe] and the largest one is [0.54pe, 1.46pe]. In the case of 16-QAM, the
smallest of the CIs is [0.97pe, 1.03pe] and the largest of all is [0.73pe, 1.27pe] for true
coded BER values from 1.9× 10−1 down to 1.1× 10−5. These numerical data show that
the proposed estimator is not only accurate but also reliable when performing over the
AWGN channel.

We are now interested in knowing roughly whether or not the proposed estimator
yielded sample size savings with respect to the classical MC simulation technique. Using
simulations, we have been able to note that sample size savings can be obtained from the
proposed estimator. Numerical values of the sample size savings Nmc/NK are given in
the last columns of Table 1 and Table 2.
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Figure 1. Performance of the proposed estimator over the AWGN channel



Table 1. 4-QAM numerical results (AWGN channel)

Eb/N0 Benchmark Bias I NK Nmc/NK

00 dB 1.1 × 10−1 0.03 × 10−1 [0.94pe, 1.06pe] 103 1.8
01 dB 6.7 × 10−2 0.22 × 10−2 [0.90pe, 1.10pe] 103 1.6
02 dB 3.1 × 10−2 0.22 × 10−2 [0.82pe, 1.18pe] 103 1.9
03 dB 1.2 × 10−2 0.11 × 10−2 [0.93pe, 1.07pe] 104 2.0
04 dB 3.0 × 10−3 0.18 × 10−3 [0.81pe, 1.19pe] 104 2.6
05 dB 4.7 × 10−4 0.30 × 10−4 [0.89pe, 1.11pe] 105 2.5
06 dB 4.9 × 10−5 0.38 × 10−5 [0.66pe, 1.34pe] 105 2.5
07 dB 4.4 × 10−6 0.09 × 10−6 [0.54pe, 1.46pe] 106 > 5.0

Performance analysis over a frequency-selective Rayleigh fading channel

Based on the plots in Figure 2, the accuracy of the proposed estimator can be analysed
in both cases of 4-QAM and 16-QAM M -ary symbols transmissions over the frequency-
selective Rayleigh fading channel as specified above in 4.1. The blue dashed curves in
the figure are those of the theoretical uncoded BERs. They are drawn for illustration. The
benchmarks related to both transmission schemes of 4-QAM and 16-QAM are given by
the curves coloured in red. The green curves with diamond mark at each data point bear
the soft coded BER values that describe the performance of the proposed kernel-based
estimator. We can see that the soft coded BER data points are very close to their corres-
ponding benchmarks. So, we conclude that the accuracy of the kernel-based estimator
is satisfactory. The observed accuracy is the fact of the absolute biases achieved by the
estimator. The associated numerical values are given by the 3rd column of Table 3 and
Table 4 regarding the 4-QAM scheme and 16-QAM respectively. We can notice that they
are quite negligible compared to their respective benchmarks.

To evaluate the performance of the proposed estimator in terms of reliability, let us
focus on the 4th columns of Table 3 and Table 4. These columns contain numerical data
of the intervals I that describe the CIs achieved by the proposed estimator. An estimator
is considered to be acceptable if the estimated value of pe lies in an interval which is
smaller than Imax = [0, 3pe] with a probability of 0.95 [5]. In this paper, we considered
Imax = [0.50pe, 1.50pe] as the largest acceptable interval of the CI. From BER values
in the neighbourhood of 2 × 10−1 down to the lower in the neighbourhood of 3 × 10−4,
smaller than Imax values of the CIs have been observed for reasonable sample sizes NK

(see 5th columns of Table 3 and Table 4). The largest of the observed CIs values is

Table 2. 16-QAM numerical results (AWGN channel)

Eb/N0 Benchmark Bias I NK Nmc/NK

00 dB 1.9 × 10−1 0.03 × 10−1 [0.97pe, 1.03pe] 103 2.1
02 dB 1.2 × 10−1 0.02 × 10−1 [0.95pe, 1.05pe] 103 1.8
04 dB 4.8 × 10−2 0.05 × 10−2 [0.96pe, 1.04pe] 104 1.6
06 dB 8.8 × 10−3 0.26 × 10−3 [0.91pe, 1.09pe] 104 1.8
08 dB 6.0 × 10−4 0.77 × 10−4 [0.89pe, 1.11pe] 105 1.6
10 dB 1.1 × 10−5 0.13 × 10−5 [0.73pe, 1.27pe] 106 > 3.0
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Figure 2. Performance of the proposed estimator over Rayleigh channel

[0.52pe, 1.48pe]. The smallest one is [0.89pe, 1.11pe]. In addition, we checked from the
numerical data and noted that all the data points of the estimates (see the green curves in
Figure 2) are associated to soft coded BER mean values that are inside their corresponding
intervals I . This checking combined with the observed intervals I that are associated to
the achieved CIs allow us to conclude that the proposed estimator is reliable.

As far as the efficiency of the proposed estimator is concerned, we provided compa-
risons to the classical MC method in terms of the sample size saving given by Nmc/NK .
In the last columns of Table 3 and Table 4, sample size savings that characterised the ob-
served accuracy (the absolute biases) and reliability (the CIs) of the proposed estimator
are reported. To derive the sample size saving, the sample size Nmc is that required by
the classical MC estimator to achieve almost equal accuracy and reliability. However, the
values of Nmc that are preceded by the greater-than symbol (see the last rows in Table 3
and in Table 4) are smaller than the sample sizes which are truly required to meet almost
equivalent reliability and accuracy as the proposed estimator. The right values are not
given because of the computational cost. We determined Nmc by the means of simula-

Table 3. 4-QAM numerical results (Rayleigh channel)

Eb/N0 Benchmark Bias I NK Nmc/NK

00 dB 1.86 × 10−1 0.12 × 10−1 [0.88pe, 1.12pe] 2.0 × 103 2.0
04 dB 8.86 × 10−2 0.24 × 10−2 [0.77pe, 1.23pe] 5.0 × 103 1.2
08 dB 3.08 × 10−2 0.04 × 10−2 [0.73pe, 1.27pe] 7.0 × 103 3.7
12 dB 9.20 × 10−3 0.70 × 10−3 [0.70pe, 1.30pe] 2.5 × 104 3.1
16 dB 2.00 × 10−3 0.34 × 10−3 [0.55pe, 1.45pe] 6.0 × 104 3.3
20 dB 2.64 × 10−4 0.68 × 10−4 [0.52pe, 1.48pe] 1.6 × 105 > 8.1



Table 4. 16-QAM numerical results (Rayleigh channel)

Eb/N0 Benchmark Bias I Nk Nmc/NK

00 dB 2.58 × 10−1 0.13 × 10−1 [0.89pe, 1.11pe] 1.0 × 103 3.0
04 dB 1.50 × 10−1 0.06 × 10−1 [0.86pe, 1.14pe] 2.0 × 104 1.0
08 dB 6.28 × 10−2 0.26 × 10−2 [0.87pe, 1.13pe] 5.0 × 104 1.0
12 dB 2.31 × 10−2 0.12 × 10−2 [0.81pe, 1.19pe] 5.0 × 104 2.6
16 dB 7.00 × 10−3 1.00 × 10−3 [0.73pe, 1.27pe] 5.0 × 104 2.0
20 dB 1.50 × 10−3 0.08 × 10−3 [0.67pe, 1.33pe] 1.0 × 105 > 5.1
24 dB 3.42 × 10−4 0.36 × 10−4 [0.54pe, 1.46pe] 4.1 × 105 > 6.3

tions. As we can see throughout the last columns of Table 3 and Table 4, sample size
savings are observed. To illustrate how significant are the observed sample size reduc-
tions, let us consider the row of Eb/N0 = 12 dB in Table 4. The proposed kernel-based
estimator achieves an efficiency described by a sample size of 50 000 against 127 995 for
the classical MC estimator. In the same time, quite equal CIs ([0.81pe, 1.19pe] for the
proposed estimator versus [0.80pe, 1.20pe] for the classical MC estimator) are obtained.
While the true BER is equal to 0.0231, the classical MC method performed the estimation
with an absolute bias of 0.0011 meanwhile the proposed estimator yielded quite equal ab-
solute bias of 0.0012. So for quite equal accuracy and reliability, the proposed estimator
yielded significant sample size reduction. We also observed that for Eb/N0 = 20 dB
(in Table 4), both the proposed estimator and the classical MC method performed with
equal absolute biases: the true BER is 0.0015 and the estimate is 0.0014. However, the
proposed estimator not only performed more efficiently with a sample size saving greater
than 5 but also showed to be more reliable: an achieved CI of [0.67pe, 1.33pe] against
[0.62pe, 1.38pe] for the classical MC estimator.

Let us now exhibit the effect of the sample size reductions according to a computa-
tional efficiency point of view. We noted that the proposed estimator, by enabling sample
size savings, also enabled CPU time savings, i.e., less energy consumption than the classi-
cal MC method. We computed the CPU times on a personal computer with an Intel(R)
Core(TM) i5-6200U CPU 2.30GHz. We noted that the classical MC method and the pro-
posed estimator yielded almost equal CPU time when the samples used for the estimation
are of equal sizes. For instance, at Eb/N0 = 16 dB and for a sample size of 6.0 × 104,
the CPU time equals 13 seconds for the classical MC method against 14 seconds for the
proposed estimator. However, when the sample size increases it causes the CPU time
to increase too. So, the sample size saving brought by the proposed estimator is benefi-
cial in terms of the power consumption. To illustrate this, the performance achieved at
Eb/N0 = 20 dB (see Table 3) is at the cost of a CPU time of 1 minute for the proposed
estimator while being by far greater than 2 hours for the classical MC method.

Until now, we analysed the performance of the proposed estimator in terms of accu-
racy, reliability and efficiency. Let us end with an asymptotic analysis that can provide a
better understanding of the estimator improvement as the sample size increases. For this
purpose, Table 5 reports numerical data that show how the absolute bias and the CI evolve
as the sample size increases. It appears that, when the sample size increases, the absolute
bias of the estimation decreases and the interval I of the CI becomes smaller.



Table 5. Asymptotic behaviour of the proposed kernel-based estimator

NK Benchmark Bias I

AWGN channel:
1.0 × 103 3.0 × 10−3 0.55 × 10−3 [0.39pe, 1.61pe]
1.0 × 104 3.0 × 10−3 0.18 × 10−3 [0.81pe, 1.19pe]
1.0 × 105 3.0 × 10−3 0.00 × 10−3 [0.94pe, 1.06pe]

Rayleigh channel:
1.0 × 103 8.9 × 10−2 0.38 × 10−2 [0.76pe, 1.24pe]
1.0 × 104 8.9 × 10−2 0.24 × 10−2 [0.83pe, 1.17pe]
1.0 × 105 8.9 × 10−2 0.08 × 10−2 [0.87pe, 1.13pe]

5. Conclusion

We studied the problem of the universal Monte Carlo (MC) simulation technique
efficiency improvement regarding the Bit Error Probability (BEP) estimation of digital
communication systems. We designed a kernel-based estimator for efficient and reliable
computations of Bit Error Rate (BER) in contemporary and emerging digital commu-
nication systems that rely on coded M -ary Quadrature Amplitude Modulation (QAM)
transmissions schemes. The proposed kernel-based BEP estimator has been designed to
perform with soft real bits that are sampled from soft outputs of the channel decoder. We
completely defined the estimator by selecting a kernel function that follows an Epanech-
nikov distribution with associated smoothing parameters that have been derived based on
the canonical kernel concept. Simulation of the proposed estimator was made and results
were reported regarding coded 4-QAM and 16-QAM single carrier transmissions over the
additive white Gaussian noise channel. Simulation results were also reported for coded
4-QAM and 16-QAM multiple carrier transmissions over a frequency-selective Rayleigh
fading channel. Based on the observed simulation results, the performance of the pro-
posed kernel-based BEP estimator has been analysed in terms of accuracy, reliability,
computational and sample size efficiency. Better performance than the universal classi-
cal MC method has been achieved by the proposed estimator for BEP estimates covering
coded BER values from the neighbourhood of 10−1 down to the vicinity of 10−5.
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Appendix A

Bit-to-symbol soft mapping

In the bit-to-symbol soft mapping, the goal is to map k = log2(M) soft bits onto a sin-
gle complex-valued symbol. The complex-valued symbol is the soft observation that can
be used, e.g., for coded symbol error rate estimate computation. Let Ẑj be the complex-

valued soft observation to be estimated by the means of bit-to-symbol soft mapping. Ẑj

is expressed as follows:

Ẑj =

M
∑

m=1

sm Pr[sm]. (A.1)

As a bit vector (b1b2...bk) is assigned to each sm at the transmitter and since s1, s2, . . . , sM

are independent, we get

Pr[sm] =
k
∏

j=1

Pr[bj,m], (A.2)



where bj,m is the jth bit in the bit vector (b1b2...bk) assigned to sm. Finally, with the help

of Eq. (26), we conclude with the expression of Ẑj as follows:

Ẑj =
M
∑

m=1

sm

k
∏

i=1

ebi,mLi

1 + eLi
. (A.3)

Appendix B

Equation for the bit error rate computation

The BER estimate as given in Eq. (28) is

p̂e = π0

∫ +∞

0

1

n0

n0
∑

j=1

1

h∗
0

K

(

x − Xj

h∗
0

)

dx + π1

∫ 0

−∞

1

n1

n1
∑

j=1

1

h∗
1

K

(

x − Xj

h∗
1

)

dx,

(B.1)
where n0 (resp. n1) is the cardinality of the subset of the soft observations among
(Xj)1≤j≤N which are likely to be decoded into a binary “0” (resp. “1”) bit value and
h∗

0 (resp. h∗
1) is the selected optimal smoothing parameter which will govern the accu-

racy of the estimation of f̂
(0)
X (x) (resp. f̂

(1)
X (x)). More explicitly, as the kernel function

K(x) = 3
4

(

1 − x2
)

I(|x| ≤ 1), we have

p̂e = π0

n0

∫ +∞

0

n0
∑

j=1

3
4h∗

0

[

1 −
(

x−Xj

h∗

0

)2
]

I
(∣

∣

∣

x−Xj

h∗

0

∣

∣

∣
≤ 1

)

dx

+π1

n1

∫ 0

−∞

n1
∑

j=1

3
4h∗

1

[

1 −
(

x−Xj

h∗

1

)2
]

I
(∣

∣

∣

x−Xj

h∗

1

∣

∣

∣
≤ 1

)

dx.

(B.2)

Then, using one of the properties of the integral, we get

p̂e = π0

n0

n0
∑

j=1

∫ +∞

0
3

4h∗

0

[

1 −
(

x−Xj

h∗

0

)2
]

I
(∣

∣

∣

x−Xj

h∗

0

∣

∣

∣ ≤ 1
)

dx

+π1

n1

n1
∑

j=1

∫ 0

−∞
3

4h∗

1

[

1 −
(

x−Xj

h∗

1

)2
]

I
(∣

∣

∣

x−Xj

h∗

1

∣

∣

∣
≤ 1

)

dx.

(B.3)

Now, let u = (x − Xj)/h∗
0 and v = (x − Xj)/h∗

1 by the change of variables rule. We
obtain

p̂e = 3π0

4n0

n0
∑

j=1

∫ +∞

−Xj/h∗

0

(

1 − u2
)

I (|u| ≤ 1) du

+ 3π1

4n1

n1
∑

j=1

∫ −Xj/h∗

1

−∞

(

1 − v2
)

I (|v| ≤ 1) dv,

(B.4)

and then,

p̂e =
3π0

4n0

n0
∑

j=1

∫

[αj , +∞[∩ [−1, 1]

(

1 − u2
)

du +
3π1

4n1

n1
∑

j=1

∫

]−∞, βj ]∩ [−1, 1]

(

1 − v2
)

dv,

(B.5)



where αj = −Xj/h∗
0 and βj = −Xj/h∗

1. Depending on the values of αj (resp. βj),
three cases are possible among which one leads to zero; hence we get,

p̂e = 3π0

4n0

{

∑

αj<−1,
1≤j≤n0

[

t − t3

3

]1

−1
+

∑

|αj |≤1,
1≤j≤n0

[

t − t3

3

]1

αj

}

+ 3π1

4n1

{

∑

βj>1,
1≤j≤n1

[

t − t3

3

]1

−1
+

∑

|βj |≤1,
1≤j≤n1

[

t − t3

3

]βj

−1

}

.

(B.6)

Finally, the BER estimate expression is as follows:

p̂e = π0L0

n0
+ π1L1

n1
+ 3π0

4n0

{

∑

|αj |≤1,
1≤j≤n0

(

2
3 − αj +

α3
j

3

)

}

+ 3π1

4n1

{

∑

|βj |≤1,
1≤j≤n1

(

2
3 + βj − β3

j

3

)

}

,

(B.7)

where L0 (resp. L1) is the cardinality of the subset of (αj)1≤j≤n0
(resp. (βj)1≤j≤n1

)
which are less than −1 (resp. greater than 1).


