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Exact convergence rates in central limit theorems for a
branching random walk with a random environment in time∗

Zhiqiang Gao†, Quansheng Liu ‡

May 8, 2016

Abstract

Chen [Ann. Appl. Probab. 11 (2001), 1242–1262] derived exact convergence rates in a central limit
theorem and a local limit theorem for a supercritical branching Wiener process. We extend Chen’s results
to a branching random walk under weaker moment conditions. For the branching Wiener process, our
results sharpen Chen’s by relaxing the second moment condition used by Chen to a moment condition of
the form EX(ln+ X)1+λ < ∞. In the rate functions that we find for a branching random walk, we figure
out some new terms which didn’t appear in Chen’s work. The results are established in the more general
framework, i.e. for a branching random walk with a random environment in time. The lack of the second
moment condition for the offspring distribution and the fact that the exponential moment does not exist
necessarily for the displacements make the proof delicate; the difficulty is overcome by a careful analysis
of martingale convergence using a truncating argument. The analysis is significantly more awkward due
to the appearance of the random environment.

2000 Mathematics Subject Classification. Preliminary 60K37, 60J10, 60F05, 60J80.

Key Words and phrases. Branching random walk, random environment in time, central limit theorems,
convergence rate.

1 Introduction
The theory of branching random walk has been studied by many authors. It plays an important role, and
is closely related to many problems arising in a variety of applied probability setting, including branching
processes, multiplicative cascades, infinite particle systems, Quicksort algorithms and random fractals (see
e.g. [30, 31]). For recent developments of the subject, see e.g. Hu and Shi [23], Shi [37], Hu [22], Attia
and Barral [4] and the references therein.

In the classical branching random walk, the point processes indexed by the particles u, formulated by
the number of its children and their displacements, have a fixed constant distribution for all particles u. In
reality this distributions may vary from generation to generation according to a random environment, just
as in the case of a branching process in random environment introduced in [2, 3, 38]. In other words, the
distributions themselves may be realizations of a stochastic process, rather than being fixed. This property
makes the model be closer to the reality compared to the classical branching random walk. In this paper,
we shall consider such a model, called a branching random walk with a random environment in time .

Different kinds of branching random walks in random environments have been introduced and studied in
the literature. Baillon, Clément, Greven and den Hollander [6, 19] considered the case where the offspring
distribution of a particle situated at z ∈ Zd depends on a random environment indexed by the location z,
while the moving mechanism is controlled by a fixed deterministic law. Comets and Popov [12, 13] studied
the case where both the offspring distributions and the moving laws depend on a random environment
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indexed by the location. In the model studied in [9, 14, 24, 33, 40], the offspring distribution of a particle of
generation n situated at z ∈ Zd(d ≥ 1) depends on a random space-time environment indexed by {(z, n)},
while each particle performs a simple symmetric random walk on d-dimensional integer lattice Zd(d ≥ 1).
The model that we study in this paper is different from those mentioned above. It should also be mentioned
that recently another different kind of branching random walks in time inhomogeneous environments has
been considered extensively, see e.g. Fang and Zeitouni (2012, [16]), Zeitouni (2012, [42]) and Bovier and
Hartung(2014, [10]). The readers may refer to these articles and references therein for more information.

Denote by Zn(·) the counting measure which counts the number of particles of generation n situated in
a given set. For the classical branching random walk, a central limit theorem on Zn(·), first conjectured by
Harris (1963, [21]), was shown by Asmussen and Kaplan (1976, [1, 26]), and then extended to a general
case by Klebaner (1982, [27]) and Biggins (1990, [7]); for a branching Wiener process, Révész (1994,[35])
studied the convergence rates in the central limit theorems and conjectured the exact convergence rates,
which were confirmed by Chen (2001,[11]). Kabluchko (2012,[41]) generalized Chen’s partial results using
a different method. Révész, Rosen and Shi (2005,[36]) obtained a large time asymptotic expansion in the
local limit theorem for branching Wiener processes, generalizing Chen’s result.

The first objective of our present paper is to extend Chen’s results to the branching random walk under
weaker moment conditions. In our results about the exact convergence rate in the central limit theorem and
the local limit theorem, the rate functions that we find include some new terms which didn’t appear in Chen’s
paper [11]. In Chen’s work, the second moment condition was assumed for the offspring distribution.
Although the setting we consider now is much more general, in our results the second moment condition
will be relaxed to a moment condition of the form EX(ln+X)1+λ < ∞ . It has been well known that in
branching random walks, such a relaxation is quite delicate. Another interesting aspect is that we do not
assume the existence of exponential moments for the moving law, which holds automatically in the case of
the branching Wiener process. The lack of the second moment condition (resp. the exponential moment
condition) for the offspring distribution (resp. the moving law) makes the proof delicate. The difficulty
will be overcome via a careful analysis of the convergence of some associated martingales using truncating
arguments.

The second objective of our paper is to extend the results to the branching random walk with a random
environment in time. This model first appeared in Biggins and Kyprianou (2004, [8, Section 6]), where a
criterion was given for the non-degeneration of the limit of the natural martingale; see also Kuhlbusch (2004,
[28]) for the equivalent form of the criterion on weighted branching processes in random environment. For
Zn(·) and related quantities on this model, Liu (2007,[32]) surveyed several limit theorems, including large
deviations theorems and a law of large numbers on the rightmost particle. In [18], Gao, Liu and Wang
showed a central limit theorem on the counting measure Zn(·) with appropriate norming. Here we study
the convergence rate in the central limit theorem and a local limit theorem for Zn(·). Compared with the
classical branching random walk, the approach is significantly more difficult due to the appearance of the
random environment.

The article is organized as follows. In Section 2, we give a rigorous description of the model and
introduce the basic assumptions and notation, then we formulate our main results as Theorems 2.3 and 2.4.
In Section 3, we introduce some notation and recall a theorem on the Edgeworth expansions for sums of
independent random variables used in our proofs. We give the proofs of the main theorems in Section 5 and
6, respectively. Whilst Section 4 will be devoted to the proofs of the reminders.

2 Description of the model and the main results

2.1 Description of the model
We describe the model as follows ([18, 32]). A random environment in time ξ = (ξn) is formulated as
a sequence of random variables independent and identically distributed with values in some measurable
space (Θ,F). Each realization of ξn corresponds to two probability distributions: the offspring distribution
p(ξn) = (p0(ξn), p1(ξn), · · · ) on N = {0, 1, · · · }, and the moving distributionG(ξn) on R. Without loss of
generality, we can take ξn as coordinate functions defined on the product space (ΘN,F⊗N) equipped with
the product law τ of some probability law τ0 on (Θ,F), which is invariant and ergodic under the usual shift
transformation θ on ΘN: θ(ξ0, ξ1, · · · ) = (ξ1, ξ2, · · · ).

When the environment ξ = (ξn) is given, the process can be described as follows. It begins at time 0
with one initial particle ∅ of generation 0 located at S∅ = 0 ∈ R; at time 1, it is replaced by N = N∅
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new particles ∅i = i(1 ≤ i ≤ N) of generation 1, located at Si = L∅i(1 ≤ i ≤ N), where N,L1, L2, · · ·
are mutually independent, N has the law p(ξ0), and each Li has the law G(ξ0). In general, each particle
u = u1...un of generation n is replaced at time n + 1 by Nu new particles ui(1 ≤ i ≤ Nu) of generation
n+ 1, with displacements Lui(1 ≤ i ≤ Nu), so that the i-th child ui is located at

Sui = Su + Lui,

where Nu, Lu1, Lu2, · · · are mutually independent, Nu has the law p(ξn), and each Lui has the same law
G(ξn). By definition, given the environment ξ, the random variables Nu and Lu, indexed by all the finite
sequences u of positive integers, are independent of each other.

For each realization ξ ∈ ΘN of the environment sequence, let (Γ,G,Pξ) be the probability space under
which the process is defined (when the environment ξ is fixed to the given realization). The probability
Pξ is usually called quenched law. The total probability space can be formulated as the product space
(ΘN × Γ, EN ⊗ G,P), where P = E(δξ ⊗ Pξ) with δξ the Dirac measure at ξ and E the expectation with
respect to the random variable ξ, so that for all measurable and positive g defined on ΘN × Γ, we have∫

ΘN×Γ

g(x, y)dP(x, y) = E
∫

Γ

g(ξ, y)dPξ(y).

The total probability P is usually called annealed law. The quenched law Pξ may be considered to be the
conditional probability of P given ξ. The expectation with respect to P will still be denoted by E; there will
be no confusion for reason of consistence. The expectation with respect to Pξ will be denoted by Eξ.

Let T be the genealogical tree with {Nu} as defining elements. By definition, we have: (a) ∅ ∈ T; (b)
ui ∈ T implies u ∈ T; (c) if u ∈ T, then ui ∈ T if and only if 1 ≤ i ≤ Nu. Let

Tn = {u ∈ T : |u| = n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and represents the
number of generation to which u belongs.

2.2 Main results
Let Zn(·) be the counting measure of particles of generation n: for B ⊂ R,

Zn(B) =
∑
u∈Tn

1B(Su).

Then {Zn(R)} constitutes a branching process in a random environment (see e.g. [2, 3, 38]). For n ≥ 0,
let N̂n (resp. L̂n) be a random variable with distribution p(ξn) (resp. G(ξn)) under the law Pξ, and define

mn = m(ξn) = EξN̂n, Πn = m0 · · ·mn−1, Π0 = 1.

It is well known that the normalized sequence

Wn =
1

Πn
Zn(R), n ≥ 1

constitutes a martingale with respect to the filtration (Fn) defined by

F0 = {∅,Ω}, Fn = σ(ξ,Nu : |u| < n), for n ≥ 1.

Throughout the paper, we shall always assume the following conditions:

E lnm0 > 0 and E
[

1

m0
N̂0

(
ln+ N̂0

)1+λ
]
<∞, (2.1)

where the value of λ > 0 is to be specified in the hypothesis of the theorems. Under these conditions,
the underlying branching process {Zn(R)} is supercritical, Zn(R)→∞ with positive probability, and the
limit

W = lim
n
Wn
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verifies EW = 1 and W > 0 almost surely (a.s.) on the explosion event {Z∞ →∞} (cf. e.g. [3, 39]).
For n ≥ 0, define

ln = EξL̂n, σ(ν)
n = Eξ

(
L̂n − ln

)ν
, for ν ≥ 2;

`n =

n−1∑
k=0

lk, s(ν)
n =

n−1∑
k=0

σ
(ν)
k , for ν ≥ 2, sn =

(
s(2)
n

) 1
2 .

We will need the following conditions on the motion of particles:

P
(

lim sup
|t|→∞

∣∣EξeitL̂0
∣∣ < 1

)
> 0 and E

(
|L̂0|η

)
<∞, (2.2)

where the value of η > 1 is to be specified in the hypothesis of the theorems. The first hypothesis means
that Cramér’s condition about the characteristic function of L̂0 holds with positive probability.

Let {N1,n} and {N2,n} be two sequences of random variables, defined respectively by

N1,n =
1

Πn

∑
u∈Tn

(Su − `n) and N2,n =
1

Πn

∑
u∈Tn

(
(Su − `n)2 − s2

n

)
.

We shall prove that they are martingales with respect to the filtration (Dn) defined by

D0 = {∅,Ω}, Dn = σ(ξ,Nu, Lui : i ≥ 1, |u| < n), for n ≥ 1.

More precisely,we have the following propositions.

Proposition 2.1. Assume (2.1) and E
(

ln−m0

)1+λ
< ∞ for some λ > 1, and E

(
|L̂0|η

)
< ∞ for some

η > 2. Then the sequence {(N1,n,Dn)} is a martingale and converges a.s.:

V1 := lim
n→∞

N1,n exists a.s. in R.

Proposition 2.2. Assume (2.1) and E
(

ln−m0

)1+λ
< ∞ for some λ > 2 , and E

(
|L̂0|η

)
< ∞ for some

η > 4. Then the sequence {(N2,n,Dn)} is a martingale and converges a.s.:

V2 := lim
n→∞

N2,n exists a.s. in R.

Our main results are the following two theorems. The first theorem concerns the exact convergence rate
in the central limit theorem about the counting measure Zn, while the second one is a local limit theorem.
We shall use the notation

Zn(t) = Zn((−∞, t]), φ(t) =
1√
2π
e−t

2/2, Φ(t) =

∫ t

−∞
φ(x)dx, t ∈ R.

Theorem 2.3. Assume (2.1) for some λ > 8, (2.2) for some η > 12 and Em−δ0 <∞ for some δ > 0. Then
for all t ∈ R,

√
n
[ 1

Πn
Zn(`n + snt)− Φ(t)W

]
n→∞−−−−→ V(t) a.s., (2.3)

where

V(t) = − φ(t) V1

(Eσ(2)
0 )1/2

+
(Eσ(3)

0 ) (1− t2) φ(t) W

6(Eσ(2)
0 )3/2

.

Theorem 2.4. Assume (2.1)for some λ > 16, (2.2) for some η > 16 and Em−δ0 <∞ for some δ > 0. Then
for any bounded measurable set A ⊂ R with Lebesgue measure |A| > 0,

n

[
√

2πsnΠ−1
n Zn(A+ `n)−W

∫
A

e
− x2

2s2n dx

]
n→∞−−−−→ µ(A) a.s., (2.4)
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where

µ(A) =
|A|

2Eσ(2)
0

(
− V2 + 2 xAV1

)
+
|A| c(A)

8(Eσ(2)
0 )2

with xA =
1

|A|

∫
A

xdx and

c(A) = W E
(
σ

(4)
0 − 3

(
σ

(2)
0

)2)
+ 4 (Eσ(3)

0 )(V1 − xAW )− 5(Eσ(3)
0 )2

3 Eσ(2)
0

W.

Remark 2.5. For a branching Wiener process, Theorems 2.3 and 2.4 improve Theorems 3.1 and 3.2 of Chen
(2001,[11]) by relaxing the second moment condition used by Chen to the moment condition of the form
EX(ln+X)1+λ <∞ (cf. (2.1)). For a branching random walk with a constant or random environment, the
second terms in V(·) and µ(·) are new: they did not appear in Chen’s results [11] for a branching Wiener
process; the reason is that in the case of a Brownian motion, we have σ(3)

0 = σ
(4)
0 − 3

(
σ

(2)
0

)2
= 0.

Remark 2.6. As will be seen in the proof, the numbers 8, 12, 16, 16 listed in the conditions are due to
technical reasons. It is interesting to find the best bounds for λ and η, which seems to be delicate.

Remark 2.7. In the deterministic case (with constant environment), Theorem 2.3 reduces to [17, Theorem
1.2] which itself improves a result by Kabluchko [41, Theorem 5 and Remark 2] obtained under the stronger
second moment condition EZ2

1 (R) <∞ on the branching mechanism.

Remark 2.8. When the Cramér condition P
(

lim sup|t|→∞
∣∣EξeitL̂0

∣∣ < 1
)
> 0 fails, the situation is

different. Actually, while revising our manuscript we find that for a branching random walk on Z in a
constant environment, a different lattice version (while the Cramér condition fails) of Theorems 2.3 and 2.4
has been established very recently in [20].

For simplicity and without loss of generality, hereafter we always assume that ln = 0 (otherwise, we
only need to replace Lui by Lui − ln) and hence `n = 0. In the following, we will write Kξ for a constant
depending on the environment, whose value may vary from lines to lines.

3 Notation and Preliminary results
In this section, we introduce some notation and important lemmas which will be used in the sequel.

3.1 Notation
In addition to the σ−fields Fn and Dn, the following σ-fields will also be used:

I0 = {∅,Ω}, In = σ(ξk, Nu, Lui : k < n, i ≥ 1, |u| < n) for n ≥ 1.

For conditional probabilities and expectations, we write:

Pξ,n(·) = Pξ(·|Dn), Eξ,n(·) = Eξ(·|Dn); Pn(·) = P(·|In), En(·) = E(·|In).

As usual, we set N∗ = {1, 2, 3, · · · } and denote by

U =

∞⋃
n=0

(N∗)n

the set of all finite sequences, where (N∗)0 = {∅} contains the null sequence ∅.
For all u ∈ U , let T(u) be the shifted tree of T at u with defining elements {Nuv}: we have 1)

∅ ∈ T(u), 2) vi ∈ T(u) ⇒ v ∈ T(u) and 3) if v ∈ T(u), then vi ∈ T(u) if and only if 1 ≤ i ≤ Nuv .
Define Tn(u) = {v ∈ T(u) : |v| = n}. Then T = T(∅) and Tn = Tn(∅).

For every integer m ≥ 0, let Hm be the Chebyshev-Hermite polynomial of degree m ([34]):

Hm(x) = m!

bm2 c∑
k=0

(−1)kxm−2k

k!(m− 2k)!2k
. (3.1)
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The first few Chebyshev-Hermite polynomials relevant to us are:

H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15,

H7(x) = x7 − 21x5 + 105x3 − 105x, H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105.

It is known that ([34]) : for every integer m ≥ 0

Φ(m+1)(x) =
dm+1

dxm+1
Φ(x) = (−1)mφ(x)Hm(x).

3.2 Two preliminary lemmas
We first give an elementary lemma which will be often used in Section 4.

Lemma 3.1. (a) For x, y ≥ 0,

ln+(x+ y) ≤ 1 + ln+ x+ ln+ y, ln(1 + x) ≤ 1 + ln+ x. (3.2)

(b) For each λ > 0, there exists a constant Kλ > 0, such that

(ln+ x)1+λ ≤ Kλx, x > 0, (3.3)

(c) For each λ > 0, the function

(ln(eλ + x))1+λ is concave for x > 0. (3.4)

Proof. Part (a) holds since ln+(x+ y) ≤ ln+(2 max{x, y}) ≤ 1 + ln+ x+ ln+ y. Parts (b) and (c) can be
verified easily.

We next present the Edgeworth expansion for sums of independent random variables, that we shall need
in Sections 5 and 6 to prove the main theorems. Let us recall the theorem used in this paper obtained by Bai
and Zhao(1986, [5]), that generalizing the case for i.i.d random variables (cf. [34, P.159, Theorem 1]).

Let {Xj} be independent random variables, s atisfying for each j ≥ 1

EXj = 0,E|Xj |k <∞ with some integer k ≥ 3. (3.5)

We write B2
n =

∑n
j=1 EX2

j and only consider the nontrivial case Bn > 0. Let γνj be the ν-order cumulant
of Xj for each j ≥ 1. Write

λν,n = n(ν−2)/2B−νn

n∑
j=1

γνj , ν = 3, 4 · · · , k;

Qν,n(x) =
∑ ′

(−1)ν+2sΦ(ν+2s)(x)

ν∏
m=1

1

km!

(
λm+2,n

(m+ 2)!

)km
= −φ(x)

∑ ′
Hν+2s−1(x)

ν∏
m=1

1

km!

(
λm+2,n

(m+ 2)!

)km
,

where the summation
∑ ′

is carried out over all nonnegative integer solutions (k1, . . . , kν) of the equation
k1 + 2k2 + · · ·+ νkν = ν, and s = k1 + · · ·+ kν .

For 1 ≤ j ≤ n and x ∈ R, define

Fn(x) = P
(
Bn
−1

n∑
j=1

Xj ≤ x
)
, vj(t) = EeitXj ;

Ynj = Xj1{|Xj |≤Bn}, Z
(x)
nj = Xj1{|Xj |≤Bn(1+|x|)}, W

(x)
nj = Xj1{|Xj |>Bn(1+|x|)}.

The Edgeworth expansion theorem can be stated as follows.
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Lemma 3.2 ([5]). Let n ≥ 1 and X1, · · · , Xn be a sequence of independent random variables satisfying
(3.5) and Bn > 0. Then for the integer k ≥ 3,

|Fn(x)− Φ(x)−
k−2∑
ν=1

Qνn(x)n−ν/2| ≤ C(k)

{
(1 + |x|)−kB−kn

n∑
j=1

E|W (x)
nj |

k+

(1 + |x|)−k−1B−k−1
n

n∑
j=1

E|Z(x)
nj |

k+1 + (1 + |x|)−k−1nk(k+1)/2
(

sup
|t|≥δn

1

n

n∑
j=1

|vj(t)|+
1

2n

)n}
,

where δn =
1

12
B2
n(

n∑
j=1

E|Ynj |3)−1, C(k) > 0 is a constant depending only on k.

4 Convergence of the martingales {(N1,n,Dn)} and {(N2,n,Dn)}
Now we can proceed to prove the convergence of the two martingales defined in Section 2.

4.1 Convergence of the martingale {(N1,n,Dn)}
The fact that {(N1,n,Dn)} is a martingale can be easily shown: it suffices to notice that

Eξ,nN1,n+1 = Eξ,n
(

1

Πn+1

∑
u∈Tn+1

Su

)
=

1

Πn+1
Eξ,n

( ∑
u∈Tn

Nu∑
i=1

(Su + Lui)

)

=
1

Πn+1

∑
u∈Tn

Eξ,n

(
Nu∑
i=1

(Su + Lui)

)

=
1

Πn+1

∑
u∈Tn

mnSu = N1,n.

We shall prove the a.s. convergence of the martingale by showing that the series

∞∑
n=1

In converges a.s., with In = N1,n+1 −N1,n. (4.1)

To this end, we first establish a lemma. For n ≥ 1 and |u| = n, set

Xu = Su

(
Nu
m|u|

− 1

)
+

Nu∑
i=1

Lui
m|u|

, (4.2)

and let X̂n be a generic random variable of Xu, i.e. X̂n has the same distribution with Xu (for |u| = n).
Recall that N̂n has the same distribution as Nu, |u| = n.

We proceed the proof by proving the following lemma:

Lemma 4.1. Under the conditions of Proposition 2.1, we have

Eξ|X̂n|(ln+ |X̂n|)1+λ ≤ Kξn

(
(lnn)1+λ + Eξ

N̂n
mn

(ln+ N̂n)1+λ + (ln−mn)1+λ

)
, (4.3)

where Kξ is a constant.

Proof. For u ∈ Tn,

|Xu| ≤ |Su|
(

1 +
Nu
mn

)
+

∣∣∣∑Nu
i=1 Lui

∣∣∣
mn

,
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ln+ |Xu| ≤ 2 + ln+ |Su|+ ln(1 +Nu/mn) + ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

Lui

∣∣∣∣∣ ,
4−λ(ln+ |Xu|)1+λ ≤ 21+λ + (ln+ |Su|)1+λ +

(
ln

(
1 +

Nu
mn

))1+λ

+

(
ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

.

Hence we get that

4−λ|Xu|(ln+ |Xu|)1+λ ≤
8∑
i=1

Ji,

with

J1 = 21+λ|Su|
(

1 +
Nu
mn

)
, J2 = |Su|(ln+ |Su|)1+λ

(
1 +

Nu
mn

)
,

J3 = |Su|
(

1 +
Nu
mn

)(
ln

(
1 +

Nu
mn

))1+λ

, J4 = |Su|
(

1 +
Nu
mn

)(
ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

,

J5 =
21+λ

mn

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣ , J6 =
(ln+ |Su|)1+λ

mn

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣ , J7 =

(
ln

(
1 +

Nu
mn

))1+λ
∣∣∣∣∣ 1

mn

Nu∑
i=1

Lui

∣∣∣∣∣ ,
J8 =

1

mn

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣
(

ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

.

Since

lim
n→∞

1

n

n∑
j=1

Eξ|L̂j |q = E|L̂1|q <∞, q = 1, 2,

there exists a constant Kξ <∞ depending only on ξ such that for n ≥ 1 and |u| = n,

Eξ|L̂n| ≤ Kξn, Eξ|Su| ≤
n∑
j=1

Eξ|L̂j | ≤ Kξn, Eξ|Su|2 =

n∑
j=1

Eξ|L̂j |2 ≤ Kξn. (4.4)

By the definition of the model, Su, Nu and Lui are mutually independent under Pξ. On the basis of the
above estimates, we have the following inequalities, where Kξ is a constant depending on ξ, whose value
may be different from lines to lines: for n ≥ 1 and |u| = n,

EξJ1 = 21+λEξ|Su|Eξ
(

1 +
Nu
m|u|

)
≤ Kξn;

EξJ2 ≤(3.3) KλEξ(|Su|2 + |Su|) ≤ Kξn ;

EξJ3 ≤ Eξ|Su|Eξ
(

1 +
Nu
m|u|

)(
ln

(
1 +

Nu
mn

))1+λ

≤ Kξn

(
Kξ + Eξ

N̂n
mn

(ln+ N̂n)1+λ +
(

ln−mn

)1+λ

)
;

EξJ4 ≤ Eξ|Su| Eξ

[(
1 +

Nu
m|u|

)(
ln
(
eλ +

1

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣ )
)1+λ

]

≤ (Kξn)Eξ

[(
1 +

Nu
m|u|

)(
lnEξ

(
eλ +

1

m|u|

Nu∑
i=1

|Lui|
∣∣∣ Nu))1+λ

]
(by Jensen’s inequality under Eξ(·|Nu) using the concavity of (ln(eλ + x))1+λ)

= (Kξn)Eξ
(

1 +
Nu
m|u|

)(
ln
(
eλ +

1

m|u|

Nu∑
i=1

Eξ |Lui|
))1+λ

≤ Kξn

(
Kξ(lnn)1+λ + Eξ

( 1

m|u|
Nu
(

ln+Nu
)1+λ

)
+ 2
(

ln−mn

)1+λ
)
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≤ Kξn(lnn)1+λ +KξnEξ
1

mn
N̂n
(

ln+ N̂n
)1+λ

+Kξn
(

ln−mn

)1+λ
;

EξJ5 ≤ 21+λEξ|L̂n| ≤ Kξn;

EξJ6 = Eξ(ln+ |Su|)1+λEξ
1

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣ ≤ Eξ(ln(eλ + |Su|))1+λEξ
1

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣
≤ (ln(eλ + Eξ|Su|))1+λEξ|L̂n| ≤ (ln(Kξn))1+λKξn ≤ Kξn(lnn)1+λ;

EξJ7 ≤ Eξ

[
1

mn

Nu∑
i=1

(Eξ|Lui|)
(

ln
(
1 +

Nu
mn

))1+λ
]

(by the independence between Nu and Lui)

≤ KξnEξ
[

1

mn
Nu3λ

(
1 + (ln+Nu)1+λ + (ln−mn)1+λ

)]
≤ Kξn+KξnEξ

1

mn
N̂n
(

ln+ N̂n
)1+λ

+Kξn
(

ln−mn

)1+λ
;

EξJ8 ≤ Eξ

[
1

mn

∣∣∣Nu∑
i=1

Lui

∣∣∣( ln+
∣∣∣Nu∑
i=1

Lui

∣∣∣+ ln−mn

)1+λ
]

≤ Eξ

[
1

mn

∣∣∣Nu∑
i=1

Lui

∣∣∣2λ(( ln+
∣∣∣Nu∑
i=1

Lui

∣∣∣)1+λ

+ (ln−mn)1+λ

)]

≤(3.3) Kλ
1

mn
Eξ
∣∣∣Nu∑
i=1

Lui

∣∣∣2 + 2λ(ln−mn)1+λ 1

mn
Eξ
∣∣∣Nu∑
i=1

Lui

∣∣∣
≤ Kλ

1

mn
Eξ

Nu∑
i=1

Eξ|Lui|2 + 2λ(ln−mn)1+λ 1

mn
Eξ

Nu∑
i=1

Eξ
∣∣∣Lui∣∣∣

≤ Kξn+Kξn(ln−mn)1+λ.

Hence we get that for n ≥ 1 and |u| = n,

Eξ|Xu|(ln+ |Xu|)1+λ ≤ Kξn

(
(lnn)1+λ + Eξ

N̂n
mn

(
ln+ N̂n

)1+λ

+ (ln−mn)1+λ

)
. (4.5)

This gives (4.3).

Proof of Proposition 2.1. We have already seen that {(N1,n,Dn)} is a martingale. We now prove its con-
vergence by showing the a.s. convergence of

∑
In (cf. (4.1)). Notice that

In = N1,n+1 −N1,n =
1

Πn

∑
u∈Tn

Xu.

We shall use a truncating argument to prove the convergence. Let

X ′u = Xu1{|Xu|≤Π|u|} and I ′n =
1

Πn

∑
u∈Tn

X ′u.

The following decomposition will play an important role:

∞∑
n=0

In =

∞∑
n=0

(In − I ′n) +

∞∑
n=0

(I ′n − Eξ,nI ′n) +

∞∑
n=0

Eξ,nI ′n. (4.6)

We shall prove that each of the three series on the right hand side converges a.s. To this end, let us first
prove that

∞∑
n=1

1

(ln Πn)1+λ
Eξ|X̂n|(ln+ |X̂n|)1+λ <∞ a.s. (4.7)
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Since limn→∞ ln Πn/n = E lnm0 > 0 a.s., for a given constant 0 < δ1 < E lnm0 and for n large enough,

ln Πn > δ1n,

so that, by Lemma 4.1,

1

(ln Πn)1+λ
Eξ|X̂n|(ln+ |X̂n|)1+λ ≤ Kξ

δ1+λ
1

1

nλ

[
(lnn)1+λ + Eξ

N̂n
mn

(ln+ N̂n)1+λ + (ln−mn)1+λ

]
.

Observe that for λ > 1,

E
∞∑
n=1

1

nλ

[
Eξ
N̂n
mn

(ln+ N̂n)1+λ + (ln−mn)1+λ

]

=

∞∑
n=1

1

nλ

[
E
N̂0

m0
(ln+ N̂0)1+λ + E(ln−m0)1+λ

]
<∞,

which implies that
∞∑
n=1

1

nλ

[
Eξ
N̂n
mn

(ln+ N̂n)1+λ + (ln−mn)1+λ

]
<∞ a.s.

Therefore (4.7) holds.
For the first series

∑∞
n=0(In − I ′n) in (4.6), we observe that

Eξ|In − I ′n| = Eξ

∣∣∣∣∣ 1

Πn

∑
u∈Tn

Xu1{|Xu|>Πn}

∣∣∣∣∣
≤ Eξ

{
1

Πn

∑
u∈Tn

Eξ,n(|Xu|1{|Xu|>Πn})

}
= Eξ

(
|X̂n|1{|X̂n|>Πn}

)
≤ 1

(ln Πn)1+λ
Eξ|X̂n|(ln+ |X̂n|)1+λ.

From this and (4.7),

Eξ
∞∑
n=0

∣∣∣In − I ′n∣∣∣ ≤ ∞∑
n=0

Eξ|In − I ′n| <∞,

whence
∑∞
n=0(In − I ′n) converges a.s.

For the third series
∑∞
n=0 Eξ,nI ′n, as Eξ,nIn = 0, we have

Eξ
∞∑
n=0

|Eξ,nI ′n| = Eξ

∞∑
n=0

|Eξ,n(In − I ′n)| ≤
∞∑
n=0

Eξ|In − I ′n| <∞,

so that
∑∞
n=0 Eξ,nI ′n converges a.s. It remains to prove that the second series

∞∑
n=0

(I ′n − Eξ,nI ′n) converges a.s. (4.8)

By using the fact that
∑n
k=1(I ′k − Eξ,kI ′k) is a martingale w.r.t. {Dn+1} and by the a.s. convergence of an

L2 bounded martingale (see e.g. [15, P. 251, Ex. 4.9]), we only need to show that the series
∑∞
n=0 Eξ(I ′n−

Eξ,nI ′n)2 converges a.s. Notice

Eξ(I ′n − Eξ,nI ′n)2 = Eξ

(
1

Πn

∑
u∈Tn

(X ′u − Eξ,nX ′u)

)2

= Eξ

(
1

Π2
n

∑
u∈Tn

Eξ,n(X ′u − Eξ,nX ′u)2

)

≤ Eξ
1

Π2
n

∑
u∈Tn

Eξ,nX ′2u =
1

Πn
Eξ(X̂2

n1{|X̂n|≤Πn})
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=
1

Πn
Eξ
(
X̂2
n1{|X̂n|≤Πn}1{|X̂n|≤e2λ} + X̂2

n1{|X̂n|≤Πn}1{|X̂n|>e2λ}

)
≤ e4λ

Πn
+

1

Πn
Eξ

X̂2
nΠn(ln Πn)−(1+λ)

|X̂n|(ln+ |X̂n|)−(1+λ)

( because x(lnx)−1−λ is increasing for x > e2λ)

=
e4λ

Πn
+

1

(ln Πn)1+λ
Eξ|X̂n|(ln+ |X̂n|)1+λ.

Therefore by (4.7), we see that
∑∞
n=0 Eξ(I ′n − Eξ,nI ′n)2 <∞ a.s.. This implies (4.8).

Combining the above results, we see that the series
∑
In converges a.s., so that N1,n converges a.s. to

V1 =

∞∑
n=1

(N1,n+1 −N1,n) +N1,1.

4.2 Convergence of the martingale {(N2,n,Dn)}
To see that {(N2,n,Dn)} is a martingale, it suffices to notice that (remind that we have assumed `n = 0)

Eξ,nN2,n+1 = Eξ,n
(

1

Πn+1

∑
u∈Tn+1

(S2
u − s2

n+1)

)

=
1

Πn+1

∑
u∈Tn

Eξ,n
( Nu∑
i=1

(
(Su + Lui)

2 − s2
n+1

))

=
1

Πn+1

∑
u∈Tn

Eξ,n

(
Nu∑
i=1

(S2
u + 2SuLui + L2

ui − s2
n+1)

)

=
1

Πn+1

∑
u∈Tn

Eξ,n

(
Nu∑
i=1

Eξ,n
{

(S2
u + 2SuLui + L2

ui − s2
n+1)

∣∣∣Nu})

=
1

Πn+1

∑
u∈Tn

mn(S2
u + σ(2)

n − s2
n+1) =

1

Πn

∑
u∈Tn

(S2
u − s2

n) = N2,n.

As in the case of {(N1,n,Dn)}, we will prove the convergence of the martingale {(N2,n,Dn)} by
showing that

∞∑
n=1

(N2,n+1 −N2,n) converges a.s.,

following the same lines as before. For n ≥ 1 and |u| = n, we will still use the notation Xu and In, but
this time they are defined by:

Xu = (S2
u − s2

n)(
Nu
mn
− 1) +

1

mn

Nu∑
i=1

(L2
ui − σ(2)

n ) +
2

mn
Su

Nu∑
i=1

Lui, (4.9)

In = N2,n+1 −N2,n =
1

Πn

∑
u∈Tn

Xu. (4.10)

Instead of Lemma 4.1, we have:

Lemma 4.2. For n ≥ 1 and |u| = n, let X̂n be a random variable with the common distribution of Xu

defined by (4.9), under the law Pξ. If the conditions of Proposition 2.2 holds, then

Eξ|X̂n|(ln+ |X̂n|)1+λ ≤ Kξn
2

[
Eξ
N̂n
mn

(ln+ N̂n)1+λ + (ln−mn)1+λ + 1

]
. (4.11)
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Proof. Observe that for |u| = n,

|Xu| ≤ |s2
n − S2

u|(1 +
Nu
mn

) +

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣+ |Su|

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣ ,
ln+ |Xu| ≤ 2 + ln+ |s2

n − S2
u|+ ln(1 +

Nu
mn

) + ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣
+ ln+

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣+ ln+ |Su|,

6−λ(ln+ |Xu|)1+λ ≤ 21+λ + (ln+ |s2
n − S2

u|)1+λ + (ln(1 +
Nu
mn

))1+λ

+

(
ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣
)1+λ

+

(
ln+

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

+ (ln+ |Su|)1+λ.

Therefore

6−λ|Xu|(ln+ |Xu|)1+λ ≤
8∑
i=1

Ki

with

K1 = |s2
n − S2

u|(1 +
Nu
mn

)

[
21+λ +

(
ln(1 +

Nu
mn

)
)1+λ

+

(
ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣
)1+λ

+

(
ln+

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ ]

,

K2 = |s2
n − S2

u|(1 +
Nu
mn

)

[
(ln+ |s2

n − S2
u|)1+λ + (ln+ |Su|)1+λ

]
,

K3 =

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣
[
21+λ + (ln+ |s2

n − S2
u|)1+λ + (ln+ |Su|)1+λ

]
,

K4 =

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣ ( ln(1 +
Nu
mn

)
)1+λ

,

K5 =

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣
(ln+

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

+

(
ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣
)1+λ

 ,
K6 =

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣ |Su|
[
21+λ + (ln+ |s2

n − S2
u|)1+λ + (ln+ |Su|)1+λ

]
,

K7 =

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣ |Su|( ln(1 +
Nu
mn

)
)1+λ

,

K8 =

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣ |Su|
(ln+

∣∣∣∣∣ 2

mn

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

+

(
ln+

∣∣∣∣∣ 1

mn

Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣∣
)1+λ

 .
It is clear that (4.4) remains valid here; similarly, we get

Eξ|σ(2)
n − L2

ui| = Eξ|σ(2)
n − L̂2

n|2 ≤ Kξn

(recall that L̂n is a random variable with the same distribution as Lui for any |u| = n and i ≥ 1). By the
definition of the model, Su, Nu and Lui are mutually independent under Pξ. On the basis of the above
estimates, we have the following inequalities: for |u| = n,

EξK1 ≤ Eξ|S2
u + s2

n|Eξ(1 +
Nu
mn

)

[
21+λ +

(
ln(1 +

Nu
mn

)
)1+λ

+

(
ln
(
eλ +

1

mn

Nu∑
i=1

Eξ|σ(2)
n − L2

ui|
))1+λ
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+

(
ln
(
eλ +

2

mn

Nu∑
i=1

Eξ|Lui|
))1+λ ]

(by Jensen’s inequality under Eξ(·|Nu))

≤ Kξn

[
Kξ + Eξ

Nu
mn

(
ln+Nu

)1+λ
+
(

ln−mn

)1+λ
+ (lnn)1+λ

]
;

EξK2 ≤ 2(Eξ|Su|2+ε + |sn|2+ε) ≤ Kξn
2;

EξK3 ≤ Eξ
( 1

mn

Nu∑
i=1

Eξ|σ(2)
n − L2

ui|
)(

21+λ + (ln(eλ + Eξ|s2
n − S2

u|))1+λ + (ln(eλ + Eξ|Su|))1+λ

)
≤ Kξn(lnn)1+λ;

EξK4 ≤ Kξn+KξnEξ
Nu
mn

(
ln(1 +

Nu
mn

)
)1+λ

;

EξK5 ≤ 3λEξ
1

mn

∣∣∣∣ Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣
[(

ln+
∣∣∣ Nu∑
i=1

Lui

∣∣∣)1+λ

+
(

ln+
∣∣∣ Nu∑
i=1

(σ(2)
n − L2

ui)
∣∣∣)1+λ

+

2(ln−mn)1+λ + 1

]

≤ Kλ
1

mn
Eξ

[∣∣∣∣ Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣2 +
(

ln+
∣∣∣ Nu∑
i=1

Lui

∣∣∣)2+2λ
]

+

KλEξ
1

mn

∣∣∣∣ Nu∑
i=1

(σ(2)
n − L2

ui)

∣∣∣∣2 +Kξn((ln−mn)1+λ + 1) (by (3.3) and 2ab ≤ a2 + b2)

≤(3.3) Kλ
1

mn
Eξ
[ Nu∑
i=1

Eξ(σ(2)
n − L2

ui)
2
]

+Kλ
1

mn
Eξ
[ Nu∑
i=1

Eξ
∣∣∣Lui∣∣∣]+Kξn((ln−mn)1+λ + 1)

≤ Kξn
(
(ln−mn)1+λ + 1

)
;

EξK6 ≤(3.2) Eξ
(

2

mn

Nu∑
i=1

Eξ|Lui|
)
Eξ
[
Kλ|Su|

(
1 + (ln+ |Su|)1+λ + (ln s2

n)1+λ
)]

≤(3.3) KξnEξ
[
|Su|2 + |Su|+ s2

n

)]
≤ Kξn

2;

EξK7 ≤ Eξ

((
ln(1 +

Nu
mn

)
)1+λ 2

mn

Nu∑
i=1

Eξ|Lui|

)
Eξ|Su|

≤ Kξn
2
[
Eξ
Nu
mn

(
ln+Nu

)1+λ

+ (ln−mn)1+λ
]
;

EξK8 ≤ Kξn
2
(
(ln−mn)1+λ + 1

)
(similar reason as in the estimation for EξK5).

Combining the above estimates, we get that

Eξ|X̂n|(ln+ |X̂n|)1+λ ≤ Kξn
2

(
Eξ
N̂n
mn

(
ln+ N̂n

)1+λ

+ (ln−mn)1+λ + 1

)
(4.12)

This ends the proof of Lemma 4.2.

Proof of Proposition 2.2 . The proof is almost the same as that of Proposition 2.1: we still use the decom-
position (4.6), but with In and Xu defined by (4.10) and (4.9), and Lemma 4.2 instead of Lemma 4.1, to
prove that the series

∑∞
n=0(N2,n+1 −N2,n) converges a.s., yielding that {N2,n} converges a.s. to

V2 =

∞∑
n=1

(N2,n+1 −N2,n) +N2,1.
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5 Proof of Theorem 2.3

5.1 A key decomposition
For u ∈ (N∗)k(k ≥ 0) and n ≥ 1, write for B ⊂ R,

Zn(u,B) =
∑

v∈Tn(u)

1B(Suv − Su).

It can be easily seen that the law of Zn(u,B) under Pξ is the same as that of Zn(B) under Pθkξ. Define

Wn(u,B) = Zn(u,B)/Πn(θkξ), Wn(u, t) = Wn(u, (−∞, t]),
Wn(B) = Zn(B)/Πn, Wn(t) = Wn((−∞, t]).

By definition, we have Πn(θkξ) = mk · · ·mk+n−1, Zn(B) = Zn(∅, B), Wn(B) = Wn(∅, B), Wn =
Wn(R). The following decomposition will play a key role in our approach: for k ≤ n,

Zn(B) =
∑
u∈Tk

Zn−k(u,B − Su). (5.1)

Remark that by our definition, for u ∈ Tk,

Zn−k(u,B − Su) =
∑

v1···vn−k∈Tn−k(u)

1B(Suv1···vn−k)

represents number of the descendants of u at time n situated in B.
For each n, we choose an integer kn < n as follows. Let β be a real number such that max { 2

λ ,
3
η} <

β < 1
4 and set kn = bnβc, the integral part of nβ . Then on the basis of (5.1), the following decomposition

will hold:
Π−1
n Zn(snt)− Φ(t)W = An +Bn + Cn, (5.2)

where

An =
1

Πkn

∑
u∈Tkn

[Wn−kn(u, snt− Su)− Eξ,knWn−kn(u, snt− Su)] ,

Bn =
1

Πkn

∑
u∈Tkn

[Eξ,knWn−kn(u, snt− Su)− Φ(t)] ,

Cn = (Wkn −W )Φ(t).

Here we remind that the random variables Wn−kn(u, snt − Su) are independent of each other under the
conditional probability Pξ,kn .

5.2 Proof of Theorem 2.3
First, observe that the condition Em−δ0 < ∞ implies that E

(
ln−m0

)κ
< ∞ for all κ > 0. So the

hypotheses of Propositions 2.1 and 2.2 are satisfied under the conditions of Theorem 2.3.
By virtue of the decomposition (5.2), we shall divide the proof into three lemmas.

Lemma 5.1. Under the hypothesis of Theorem 2.3,
√
nAn

n→∞−−−−→ 0 a.s. (5.3)

Lemma 5.2. Under the hypothesis of Theorem 2.3,

√
nBn

n→∞−−−−→ 1

6
Eσ(3)

0 (Eσ(2)
0 )−

3
2 (1− t2)φ(t)W − (Eσ(2)

0 )−
1
2φ(t)V1 a.s. (5.4)

Lemma 5.3. Under the hypothesis of Theorem 2.3,
√
nCn

n→∞−−−−→ 0 a.s. (5.5)
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Now we go to prove the lemmas subsequently.

Proof of Lemma 5.1. For ease of notation, we define for |u| = kn,

Xn,u = Wn−kn(u, snt− Su)− Eξ,knWn−kn(u, snt− Su), X̄n,u = Xn,u1{|Xn,u|<Πkn},

Ān =
1

Πkn

∑
u∈Tkn

X̄n,u.

Then we see that |Xn,u| ≤Wn−kn(u) + 1.
To prove Lemma 5.1, we will use the extended Borel-Cantelli Lemma. We can obtain the required result

once we prove that ∀ε > 0,
∞∑
n=1

Pkn(|
√
nAn| > 2ε) <∞. (5.6)

Notice that

Pkn(|An| > 2
ε√
n

)

≤ Pkn(An 6= Ān) + Pkn(|Ān − Eξ,knĀn| >
ε√
n

) + Pkn(|Eξ,knĀn| >
ε√
n

).

We will proceed the proof in 3 steps.
Step 1 We first prove that

∞∑
n=1

Pkn(An 6= An) <∞. (5.7)

To this end, define
W ∗ = sup

n
Wn,

and we need the following result :

Lemma 5.4. ([29, Th. 1.2]) Assume (2.1) for some λ > 0 and Em−δ0 <∞ for some δ > 0. Then

E(W ∗ + 1)(ln(W ∗ + 1))λ <∞. (5.8)

We observe that

Pkn(An 6= An) ≤
∑
u∈Tkn

Pkn(Xn,u 6= Xn,u) =
∑
u∈Tkn

Pkn(|Xn,u| ≥ Πkn)

≤
∑
u∈Tkn

Pkn(Wn−kn(u) + 1 ≥ Πkn)

= Wkn

[
rnP(Wn−kn + 1 ≥ rn)

]
rn=Πkn

≤Wkn

[
E
(
(Wn−kn + 1)1{Wn−kn+1≥rn}

)]
rn=Πkn

≤Wkn

[
E
(
(W ∗ + 1)1{W∗+1≥rn}

)]
rn=Πkn

≤W ∗(ln Πkn)−λE(W ∗ + 1)(ln(W ∗ + 1))λ

≤ KξW
∗n−λβE(W ∗ + 1)(ln(W ∗ + 1))λ,

where the last inequality holds since

1

n
ln Πn → E lnm0 > 0 a.s. , (5.9)

and kn ∼ nβ . By the choice of β and Lemma 5.4, we obtain (5.7).

Step 2. We next prove that ∀ε > 0,

∞∑
n=1

Pkn(|An − Eξ,knAn| >
ε√
n

) <∞. (5.10)
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Take a constant b ∈ (1, eE lnm0). Observe that ∀u ∈ Tkn , n ≥ 1,

EknX̄2
n,u =

∫ ∞
0

2xPkn(|X̄n,u| > x)dx = 2

∫ ∞
0

xPkn(|Xn,u|1{|Xn,u|<Πkn} > x)dx

≤ 2

∫ Πkn

0

xPkn(|Wn−kn(u) + 1| > x)dx = 2

∫ Πkn

0

xP(|Wn−kn + 1| > x)dx

≤ 2

∫ Πkn

0

xP(W ∗ + 1 > x)dx

≤ 2

∫ Πkn

e

(lnx)−λE(W ∗ + 1)(ln(W ∗ + 1))λdx+ 9

≤ 2E(W ∗ + 1)(ln(W ∗ + 1))λ

(∫ bkn

e

(lnx)−λdx+

∫ Πkn

bkn
(lnx)−λdx

)
+ 9

≤ 2E(W ∗ + 1)(ln(W ∗ + 1))λ(bkn + (Πkn − bkn)(kn ln b)−λ) + 9.

Then we have that

∞∑
n=1

Pkn(|An − Eξ,knAn| >
ε√
n

)

=

∞∑
n=1

EknPξ,kn(|An − Eξ,knAn| >
ε√
n

)

≤ ε−2
∞∑
n=1

nEkn

Π−2
kn

∑
u∈Tkn

Eξ,knX
2

n,u

 = ε−2
∞∑
n=1

n

Π−2
kn

∑
u∈Tkn

EknX
2

n,u


≤ ε−2

∞∑
n=1

nWkn

Πkn

[
2E(W ∗ + 1)(ln(W ∗ + 1)λ)(bkn + (Πkn − bkn)(kn ln b)−λ) + 9

]
≤ 2ε−2W ∗E(W ∗ + 1)(ln(W ∗ + 1)λ)

( ∞∑
n=1

n

Πkn

bkn +

∞∑
n=1

n(kn ln b)−λ
)

+ 9ε−2W ∗
∞∑
n=1

n

Πkn

.

By (5.9) and λβ > 2, the three series in the last expression above converge under our hypothesis and hence
(5.10) is proved.

Step 3. Observe

Pkn

(
|Eξ,knĀn| >

ε√
n

)

≤
√
n

ε
Ekn |Eξ,knĀn| =

√
n

ε
Ekn

∣∣∣ 1

Πkn

∑
u∈Tkn

Eξ,knX̄n,u

∣∣∣
=

√
n

ε
Ekn

∣∣∣ 1

Πkn

∑
u∈Tkn

(−Eξ,knXn,u1{|Xn,u|≥Πkn})
∣∣∣

≤
√
n

ε

1

Πkn

∑
u∈Tkn

Ekn(Wn−kn(u) + 1)1{Wn−kn (u)+1≥Πkn}

=

√
nWkn

ε

[
E(Wn−kn + 1)1{Wn−kn+1≥rn}

]
rn=Πkn

≤ W ∗

ε

√
n
[
E(W ∗ + 1)1{W∗+1≥rn}

]
rn=Πkn

≤ W ∗

ε

√
n

(ln Πkn)λ
E(W ∗ + 1) lnλ(W ∗ + 1)

≤ W ∗

ε
Kξn

1
2−λβE(W ∗ + 1) lnλ(W ∗ + 1).
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Then by (5.9) and λβ > 2, it follows that

∞∑
n=1

Pkn

(
|Eξ,knĀn| >

ε√
n

)
<∞.

Combining Steps 1-3, we obtain (5.6). Hence the lemma is proved.

Proof of Lemma 5.2 . For ease of notation, set

D1(t) = (1− t2)φ(t), κ1,n =
s

(3)
n − s(3)

kn

6(s2
n − s2

kn
)3/2

.

Observe that
Bn = Bn1 +Bn2 +Bn3 +Bn4, (5.11)

where

Bn1 =
1

Πkn

∑
u∈Tkn

(
Eξ,knWn−kn(u, snt− Su)− Φ

(
snt− Su

(s2
n − s2

kn
)1/2

)
− κ1,nD1

(
snt− Su

(s2
n − s2

kn
)1/2

))
;

Bn2 =
1

Πkn

∑
u∈Tkn

(
Φ

(
snt− Su

(s2
n − s2

kn
)1/2

)
− Φ(t)

)
;

Bn3 = κ1,n
1

Πkn

∑
u∈Tkn

(
D1

(
snt− Su

(s2
n − s2

kn
)1/2

)
−D1(t)

)
;

Bn4 = κ1,nD1(t)Wkn .

Then the lemma will be proved once we show that
√
nBn1

n→∞−−−−→ 0; (5.12)
√
nBn2

n→∞−−−−→ −(Eσ(2)
0 )−

1
2φ(t)V1; (5.13)

√
nBn3

n→∞−−−−→ 0; (5.14)
√
nBn4

n→∞−−−−→ 1

6
Eσ(3)

0 (Eσ(2)
0 )−

3
2D1(t)W. (5.15)

We will prove these results subsequently.
We first prove (5.12). The proof will mainly be based on the following result about asymptotic expansion

of the distribution of the sum of independent random variables:

Proposition 5.5. Under the hypothesis of Theorem 2.3, for a.e. ξ,

εn = n1/2 sup
x∈R

∣∣∣∣∣Pξ
( ∑n−1

k=kn
L̂k

(s2
n − s2

kn
)1/2

≤ x
)
− Φ(x)− κ1,nD1(x)

∣∣∣∣∣ n→∞−−−−→ 0.

Proof. Let Xk = 0 for 0 ≤ k ≤ kn − 1 and Xk = L̂k for kn ≤ k ≤ n − 1. Then the random variables
{Xk} are independent under Pξ. Denote by vk(·) the characteristic function of Xk: vk(t) := EξeitXk .
Using the Markov inequality and Lemma 3.2, we obtain the following result:

sup
x∈R

∣∣∣∣∣Pξ
( ∑n−1

k=kn
L̂k

(s2
n − s2

kn
)1/2

≤ x
)
− Φ(x)− κ1,nD1(x)

∣∣∣∣∣
≤Kξ

(s2
n − s2

kn)−2
n−1∑
j=kn

Eξ|L̂j |4 + n6

 sup
|t|>T

1

n

(
kn +

n−1∑
j=kn

|vj(t)|
)

+
1

2n

n .

By our conditions on the environment, we know that

lim
n→∞

n(s2
n − s2

kn)−2
n−1∑
j=kn

Eξ|L̂k|4 = E|L̂0|4/(Eσ(2)
0 )2. (5.16)
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By (2.2), L̂n satisfies
P
(

lim sup
|t|→∞

|vn(t)| < 1
)
> 0.

So there exists a constant cn ≤ 1 depending on ξn such that

sup
|t|>T

|vn(t)| ≤ cn and P(cn < 1) > 0.

Then Ec0 < 1. By the Birkhoff ergodic theorem, we have

sup
|t|>T

(
1

n

n−1∑
j=kn

|vj(t)|
)
≤ 1

n

n−1∑
j=1

cj → Ec0 < 1.

Then for n large enough, sup
|t|>T

1

n

(
kn +

n−1∑
j=kn

|vj(t)|
)

+
1

2n

n

= o(n−m), ∀m > 0. (5.17)

From (5.16) and (5.17), we get the conclusion of the proposition.

From Proposition 5.5, it is easy to see that
√
n|Bn1| ≤Wknεn

n→∞−−−−→ 0.

Hence (5.12) is proved.
We next prove (5.13). Observe that

Bn2 = Bn21 +Bn22 +Bn23 +Bn24 +Bn25,

with Bn21 =
1

Πkn

∑
u∈Tkn

[
Φ

(
snt− Su

(s2
n − s2

kn
)1/2

)
− Φ(t)− φ(t)

(
snt− Su

(s2
n − s2

kn
)1/2
− t
)]

1{|Su|≤kn},

Bn22 =
1

Πkn

∑
u∈Tkn

[
Φ

(
snt− Su

(s2
n − s2

kn
)1/2

)
− Φ(t)

]
1{|Su|>kn},

Bn23 = − 1

Πkn

∑
u∈Tkn

(
snt− Su

(s2
n − s2

kn
)1/2
− t
)
φ(t)1{|Su|>kn},

Bn24 =
1

(s2
n − s2

kn
)1/2

(
sn − (s2

n − s2
kn)1/2

)
Wknφ(t)t,

Bn25 = − 1

(s2
n − s2

kn
)1/2

φ(t)N1,kn .

By Taylor’s formula and the choice of β and kn, we get

ε̃n =
√
n sup
|y|≤kn

∣∣∣∣∣Φ
(

snt− y
(s2
n − s2

kn
)1/2

)
− Φ(t)− φ(t)

(
snt− y

(s2
n − s2

kn
)1/2
− t
)∣∣∣∣∣

≤
√
n sup
|y|≤kn

∣∣∣∣ snt− y
(s2
n − s2

kn
)1/2
− t
∣∣∣∣2 n→∞−−−−→ 0.

Thus
|
√
nBn21| ≤Wkn ε̃n

n→∞−−−−→ 0. (5.18)

We continue to prove that
√
nBn22

n→∞−−−−→ 0;
√
nBn23

n→∞−−−−→ 0. (5.19)

This will follow from the facts:

1

Πkn

∑
u∈Tkn

|Su|1{|Su|>kn}
n→∞−−−−→ 0 a.s.;

√
n

1

Πkn

∑
u∈Tkn

1{Su|>kn}
n→∞−−−−→ 0 a.s. (5.20)
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In order to prove (5.20), we firstly observe that

E

 ∞∑
n=1

1

Πkn

∑
u∈Tkn

|Su|1{|Su|>kn}


=

∞∑
n=1

E|Ŝkn |1{|Ŝkn |>kn} ≤
∞∑
n=1

k1−η
n E|Ŝkn |η ≤

∞∑
n=1

k
− η2
n

kn−1∑
j=0

E|L̂j |η =

∞∑
n=1

k
1− η2
n E|L̂0|η,

E

 ∞∑
n=1

√
n

1

Πkn

∑
u∈Tkn

1{|Su|>kn}


=

∞∑
n=1

√
nE1{|Ŝkn |>kn} ≤

∞∑
n=1

√
nk−ηn E|Ŝkn |η ≤

∞∑
n=1

√
nk
− η2−1
n

kn−1∑
j=0

E|L̂j |η =

∞∑
n=1

n
1
2 k
− η2
n E|L̂0|η.

The assumptions on β, kn and η ensure that the series in the right hand side of the above two expressions
converge. Hence

∞∑
n=1

1

Πkn

∑
u∈Tkn

|Su|1{|Su|>kn} <∞,
∞∑
n=1

√
n

1

Πkn

∑
u∈Tkn

1{|Su|>kn} <∞ a.s.,

which deduce (5.20), and consequently, (5.19) is proved.
By the Birkhoff ergodic theorem, we have

lim
n→∞

s2
n

n
= Eσ(2)

0 , (5.21)

whence by the choice of β < 1/4 and the conditions on the environment,

√
nBn24 =

√
n

(s2
n − s2

kn
)1/2

s2
kn

sn + (s2
n − s2

kn
)1/2

Wknφ(t)t
n→∞−−−−→ 0. (5.22)

Due to Proposition 2.1 and (5.21), we conclude that
√
nBn25

n→∞−−−−→ −(Eσ(2)
0 )−

1
2φ(t)V1 a.s. (5.23)

From (5.18), (5.19), (5.22) and (5.23), we derive (5.13).
Now we turn to the proof of (5.14).
According to the hypothesis of Theorem 2.3, it follows from the Birkhoff ergodic theorem that

lim
n→∞

√
nκ1,n =

1

6
(Eσ(2)

0 )−3/2Eσ(3)
0 . (5.24)

Notice that ∣∣∣∣∣∣ 1

Πkn

∑
u∈Tkn

(
D1

(
snt− Su

(s2
n − s2

kn
)1/2

)
−D1(t)

)∣∣∣∣∣∣
≤ 2

Πkn

∑
u∈Tkn

1{|Su|>kn} +
1

Πkn

∑
u∈Tkn

∣∣∣∣∣D1

(
snt− Su

(s2
n − s2

kn
)1/2

)
−D1(t)

∣∣∣∣∣1{|Su|≤kn}.
The first term in the last expression above tends to 0 a.s. by (5.20), and the second one tends to 0 a.s.
because the martingale {Wn} converges and

sup
|y|≤kn

∣∣∣∣∣D1

(
snt− y

(s2
n − s2

kn
)1/2

)
−D1(t)

∣∣∣∣∣ n→∞−−−−→ 0.

Combining the above results, we obtain (5.14).
It remains to prove (5.15), which is immediate from (5.24) and the fact Wn

n→∞−−−−→W .
So Lemma 5.2 has been proved.
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Proof of Lemma 5.3. This lemma follows from the following result given in [25].

Proposition 5.6 ( [25] ). Assume the condition (2.1). Then

W −Wn = o(n−λ) a.s.

By the choice of β and kn, we see that
√
n(W −Wkn) = o(n

1
2−λβ)

n→∞−−−−→ 0.

Now Theorem 2.3 follows from the decomposition (5.2) and Lemmas 5.1 – 5.3.

6 Proof of Theorem 2.4
We will follow the similar procedure as in the proof of Theorem 2.3.

We remind that λ, η > 16 in the current setting. Hereafter we will choose max{ 4
λ ,

4
η} < β < 1

4 and let
kn = bnβc (the integral part of nβ).

By (5.1), we have

√
2πsnΠ−1

n Zn(A)−W
∫
A

exp{− x2

2s2
n

}dx = Λ1,n + Λ2,n + Λ3,n, (6.1)

with Λ1,n =
√

2πsnΠ−1
kn

∑
u∈Tkn

(
Wn−kn(u,A− Su)− Eξ,knWn−kn(u,A− Su)

)
;

Λ2,n = Π−1
kn

∑
u∈Tkn

(√
2πsnEξ,knWn−kn(u,A− Su)−

∫
A

exp{− x2

2s2
n

}dx
)

;

Λ3,n = (Wkn −W )

∫
A

exp{− x2

2s2
n

}dx.

On basis of this decomposition, we shall divide the proof of Theorem 2.4 into the following lemmas.

Lemma 6.1. Under the hypothesis of Theorem 2.4, a.s.

nΛ1,n
n→∞−−−−→ 0. (6.2)

Lemma 6.2. Under the hypothesis of Theorem 2.4, a.s.

nΛ2,n
n→∞−−−−→ (Eσ(2)

0 )−1(−1

2
V2 + xAV1)|A|+ 1

2
Eσ(3)

0 (Eσ(2)
0 )−2(V1 − xAW )|A|

+
1

8
(Eσ(2)

0 )−2E(σ
(4)
0 − 3(σ

(2)
0 )2)W |A| − 5

24
(Eσ(2)

0 )−3(Eσ(3)
0 )2W |A|. (6.3)

Lemma 6.3. Under the hypothesis of Theorem 2.4, a.s.

nΛ3,n
n→∞−−−−→ 0. (6.4)

Now we go to prove the lemmas subsequently.

Proof of Lemma 6.1. The proof of Lemma 6.1 follows the same procedure as that of Lemma 5.1 with minor
changes in scaling. We omit the details.

Proof of Lemma 6.2. We start the proof by introducing some notation: set

κ1,n =
1

6
(s2
n − s2

kn)−3/2(s(3)
n − s

(3)
kn

), κ2,n =
1

72
(s2
n − s2

kn)−3(s(3)
n − s

(3)
kn

)2,

κ3,n =
1

24
(s2
n − s2

kn)−2
n−1∑
j=kn

(
σ

(4)
j − 3

(
σ

(2)
j

)2)
.
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Define for x ∈ R,

D1(x) =−H2(x)φ(x), D2(x) = −H5(x)φ(x), D3(x) = −H3(x)φ(x),

Rn(x) =−

(
s

(3)
n − s(3)

kn

)3

1296(s2
n − s2

kn
)9/2

H8(x)φ(x)−

∑n−1
j=kn

(
σ

(5)
j − 10σ

(3)
j σ

(2)
j

)
120(s2

n − s2
kn

)5/2
H4(x)φ(x)

−

(
s

(3)
n − s(3)

kn

)∑n−1
j=kn

(
σ

(4)
j − 3

(
σ

(2)
j

)2)
144(s2

n − s2
kn

)7/2
H6(x)φ(x),

where Hm are Chebyshev-Hermite polynomials defined in (3.1). We decompose Λ2,n into 7 terms:

Λ2,n =Λ2,n1 + Λ2,n2 + Λ2,n3 + Λ2,n4 + Λ2,n5 + Λ2,n6 + Λ2,n7, (6.5)

where

Λ2,n1 =
√

2πsnΠ−1
kn

∑
u∈Tkn

[
Eξ,knWn−kn(u,A− Su)−

∫
A

(
φ

(
x− Su

(s2
n − s2

kn
)1/2

)

+

3∑
ν=1

κν,nD
′
ν

(
x− Su

(s2
n − s2

kn
)1/2

)
+R′n

(
x− Su

(s2
n − s2

kn
)1/2

))
dx

(s2
n − s2

kn
)1/2

]
,

Λ2,n2 = Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

[
sn

(s2
n − s2

kn
)1/2

exp{− (x− Su)2

2(s2
n − s2

kn
)
} − exp{− x2

2s2
n

}
]
dx,

Λ2,n3 =

√
2πκ1,nsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

D′1

(
x− Su

(s2
n − s2

kn
)1/2

)
dx,

Λ2,n4 =

√
2πκ2,nsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

D′2

(
x− Su

(s2
n − s2

kn
)1/2

)
dx,

Λ2,n5 =

√
2πκ3,nsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

D′3

(
x− Su

(s2
n − s2

kn
)1/2

)
dx,

Λ2,n6 =

√
2πsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

R′n

(
x− Su

(s2
n − s2

kn
)1/2

)
dx,

Λ2,n7 =

√
2πsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

(∫
A

(
φ

(
x− Su

(s2
n − s2

kn
)1/2

)
+Rn

(
x− Su

(s2
n − s2

kn
)1/2

)

+

3∑
ν=1

κν,nD
′
ν

(
x− Su

(s2
n − s2

kn
)1/2

)
−
(

1−
s2
kn

s2
n

)1/2

φ(x/sn)

)
dx

)
1{|Su|>kn}.

The lemma will follow once we prove that a.s.

nΛ2,n1
n→∞−−−−→ 0, (6.6)

nΛ2,n2
n→∞−−−−→ (Eσ(2)

0 )−1(−1

2
V2 + xAV1)|A|, (6.7)

nΛ2,n3
n→∞−−−−→ 1

2
Eσ(3)

0 (Eσ(2)
0 )−2(V1 − xAW )|A|, (6.8)

nΛ2,n4
n→∞−−−−→ − 5
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(Eσ(2)

0 )−3(Eσ(3)
0 )2W |A|, (6.9)

nΛ2,n5
n→∞−−−−→ 1

8
(Eσ(2)

0 )−2E(σ
(4)
0 − 3(σ

(2)
0 )2)W |A|, (6.10)

nΛ2,n6
n→∞−−−−→ 0, (6.11)

nΛ2,n7
n→∞−−−−→ 0. (6.12)

The proof of (6.6) is based on the following result on the asymptotic expansion of the distribution of the
sum of independent random variables:
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Proposition 6.4. Under the hypothesis of Theorem 2.4, for a.e. ξ,

εn = n3/2 sup
x∈R

∣∣∣∣∣Pξ
( ∑n−1

k=kn
L̂k

(s2
n − s2

kn
)1/2

≤ x

)
− Φ(x)−

3∑
ν=1

κν,nDν(x)−Rn(x)

∣∣∣∣∣ n→∞−−−−→ 0.

Proof. Let Xk = 0 for 0 ≤ k ≤ kn − 1 and Xk = L̂k for kn ≤ k ≤ n − 1. Then the random variables
{Xk} are independent under Pξ. By Markov’s inequality and Lemma 3.2 we obtain the following result:

sup
x∈R

∣∣∣∣∣Pξ
( ∑n−1

k=kn
L̂k

(s2
n − s2

kn
)1/2

≤ x
)
− Φ(x)−

3∑
ν=1

κν,nDν(x)−Rn(x)

∣∣∣∣∣
≤Kξ

(s2
n − s2

kn)−3
n−1∑
j=kn

Eξ|Lj |6 + n15

 sup
|t|>T

1

n

kn +

n−1∑
j=kn

|vj(t)|

+
1

2n

n .

By our conditions on the environment, we know that

lim
n→∞

n2(s2
n − s2

kn)−3
n−1∑
j=kn

Eξ|L̂k|6 = E|L̂0|6/(Eσ(2)
0 )3. (6.13)

The required proposition concludes from (6.13) and (5.17).

Using Proposition 6.4, we deduce that

|nΛ2,n1| ≤
√

2πsnn
− 1

2Wknεn
n→∞−−−−→ 0,

and (6.6) is proved.
Next we turn to the proof of (6.7). Using Taylor’s expansion and the boundedness of the set A, together

with the choice of β and kn, we get that

sn
(s2
n − s2

kn
)1/2

exp{− (x− y)2

2(s2
n − s2

kn
)
} − exp{− x2

2s2
n

} =
1

2(s2
n − s2

kn
)

(
s2
kn − y

2 + 2xy + o(1)
)
,

uniformly for all |y| ≤ kn and x ∈ A as n→∞. By the same arguments as in the proof of (5.20), we can
show that for η > 16, with β, kn chosen above,

nΠ−1
kn

∑
u∈Tkn

1{|Su|>kn}
n→∞−−−−→ 0 and Π−1

kn

∑
u∈Tkn

S2
u1{|Su|>kn}

n→∞−−−−→ 0 a.s. (6.14)

Therefore as n tends to infinity, we have a.s.

nΛ2,n2 = n
1

2(s2
n − s2

kn
)

(
− |A|Π−1

kn

∑
u∈Tkn

(S2
u − s2

kn)1{|Su|≤kn}

+ 2

∫
A

xdxΠ−1
kn

∑
u∈Tkn

Su1{|Su|≤kn} + o(1)

)
=

n

2(s2
n − s2

kn
)

(
−N2,kn |A|+ 2|A|xAN1,kn + o(1)

)
= (2Eσ(2)

0 )−1(−V2 + 2xAV1)|A|+ o(1),

which proves (6.7).
To prove (6.8), we observe that

Λ2,n3 =
κ1,nsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

(
(x− Su)3

(s2
n − s2

kn
)3/2
− 3(x− Su)

(s2
n − s2

kn
)1/2

)
e
− (x−Su)2

2(s2n−s
2
kn

) dx

= Λ2,n31 + Λ2,n32 + Λ2,n33 + Λ2,n34,
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with

Λ2,n31 =
κ1,nsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

(x− Su)3

(s2
n − s2

kn
)3/2

e
− (x−Su)2

2(s2n−s
2
kn

) dx;

Λ2,n32 =
κ1,nsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|≤kn}

∫
A

3(x− Su)

(s2
n − s2

kn
)1/2

(
1− e

− (x−Su)2

2(s2n−s
2
kn

)

)
dx;

Λ2,n33 = − κ1,nsn
(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

∫
A

3(x− Su)

(s2
n − s2

kn
)1/2

dx;

Λ2,n34 =
κ1,nsn

(s2
n − s2

kn
)1/2

Π−1
kn

∑
u∈Tkn

1{|Su|>kn}

∫
A

3(x− Su)

(s2
n − s2

kn
)1/2

dx.

It is clear that

n|Λ2,n31| ≤
nκ1,nsn

(s2
n − s2

kn
)2

∫
A

(|x|+ kn)3dxWkn
n→∞−−−−→ 0 a.s.,

n|Λ2,n32| ≤
nκ1,nsn

(s2
n − s2

kn
)2

∫
A

3

2
(|x|+ kn)3dxWkn

n→∞−−−−→ 0 a.s. (1− e−x ≤ x, for x > 0),

nΛ2,n33 =
n(s

(3)
n − s(3)

kn
)sn

6(s2
n − s2

kn
)5/2

· 3|A|(N1,kn − xAWkn)

n→∞−−−−→ 1

2
Eσ(3)

0 (Eσ0)−2(V1 − xAW )|A| a.s.,

n|Λ2,n34| ≤
3nκ1,nsn

(s2
n − s2

kn
)

(∫
A

|x|dxΠ−1
kn

∑
u∈Tkn

1{|Su|>kn} + |A|Π−1
kn

∑
u∈Tkn

|Su|1{|Su|>kn}
)

n→∞−−−−→ 0 a.s. ( by (5.20)),

whence (6.8) follows.
By the Birkhoff ergodic theorem, we see that

lim
n→∞

nκ2,nsn
(s2
n − s2

kn
)1/2

=
(Eσ(3)

0 )2

72(Eσ(2)
0 )3

, lim
n→∞

nκ3,nsn
(s2
n − s2

kn
)1/2

=
E(σ

(3)
0 − 3(σ

(2)
0 )2)

24(Eσ(2)
0 )2

. (6.15)

Elementary calculus shows that, uniformly for |y| ≤ kn

if ν ≥ 1,

∫
A

(
x− y

(s2
n − s2

kn
)1/2

)ν
exp

(
− (x− y)2

2(s2
n − s2

kn
)

)
dx

n→∞−−−−→ 0 a.s. , (6.16)

and
∫
A

exp

(
− (x− y)2

2(s2
n − s2

kn
)

)
dx

n→∞−−−−→ 1 a.s. (6.17)

Combining (6.14),(6.15), (6.16) and (6.17), we deduce (6.9) and (6.10).
By the Birkhoff ergodic theorem and the definition of Hm(x) and φ(x), we see that

sup
x∈R
|R′n(x)| = O(

1

n3/2
),

whence (6.11) follows.
Finally because |Λ2,n7| is bounded by Kξ ·Π−1

kn

∑
u∈Tkn

1{|Su|>kn}, (6.14) implies (6.12).
So the required result (6.3) follows from (6.6) – (6.12).

Proof of Lemma 6.3. By Proposition 5.6 , under our assumption, we have

W −Wn = o(n−λ) a.s.

By the choice of β and kn, we see that

n
3
2 (W −Wkn) = o(n

3
2−λβ)

n→∞−−−−→ 0.
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