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Abstract

In this paper, we introduce for the first time a Distributional Model for computing semantic com-
plexity, inspired by the general principles of the Memory, Unification and Control framework
(Hagoort, 2013; Hagoort, 2016). We argue that sentence comprehension is an incremental pro-
cess driven by the goal of constructing a coherent representation of the event represented by the
sentence. The composition cost of a sentence depends on the semantic coherence of the event
being constructed and on the activation degree of the linguistic constructions. We also report the
results of a first evaluation of the model on the Bicknell dataset (Bicknell et al., 2010).

1 Introduction

The differences in semantic processing between typical and atypical sentences have recently attracted a
lot of attention in experimental linguistics. Consider the following examples:

(1) a. The musician plays the flute in the theater.
b. The gardener plays the castanets in the cave.
c. * The nominative plays the global map in the pot.

Since the early work of Chomsky (1957) and the introduction of the notion of acceptability, linguistic
theory has mostly focused on the contrast between (1c) and the former two. The last sentence violates
the combinatorial constraints of the lexical items, and that is the reason why, although (1c) is syntac-
tically well-formed, we are not able to build any coherent representation for the situation it expresses.
Investigations on event-related potentials (ERP)1 brought extensive evidence that sentences like (1a) and
(1b), despite being both semantically acceptable, have a different cognitive status: sentences such as
(1b), including possible but unexpected combinations of lexemes, evoke stronger N400 components2 in
the ERP waveform than sentences with non-novel combinations, like (1a)(Baggio and Hagoort, 2011).

Although there are different interpretations of the N400 effect,3 there is general agreement among
researchers that it is a brain signature of semantic complexity, that can be reinforced at the syntactic level
(the syntactic boost effect; see (Hagoort, 2003)): novel and unexpected combinations are more complex
and require larger cognitive efforts for processing. An open question is what are the factors determining
the semantic complexity of sentence comprehension. Baggio et al. (2012) claim that the real issue about
compositionality and open-ended productivity is the balance between storage and computation. Produc-
tivity entails that not everything can be stored. However, the N400 effect suggests that there is a large
amount of stored knowledge in semantic memory about event contingencies and concept combinations.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1An event-related potential is an electrophysiological response of the brain to a stimulus.
2The N400 is a negative-going deflection that peaks around 400 milliseconds after presentation of the stimulus.
3See, for example, Kutas and Federmaier (2000) and Van Berkum et al. (2005) for the ‘feature pre-activation hypothesis’;

and Baggio et al. (2012) for an interpretation of the N400 amplitude as a consequence of the cost of semantic unification. In a
connectionist framework, McClelland (1994) and, more recently, Rabovsky and McRae (2014) have advanced the hypothesis
that N400 amplitudes correlate with implicit prediction error in the semantic memory.
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This knowledge is triggered by words during processing and affects the expectations on the upcoming
input. Consequently, combinations that are new with respect to the already-stored knowledge require
more cognitive efforts to be unified in the semantic memory. Such effect has been shown at the discourse
level by the Dependency Locality Theory (Gibson, 2000), proving that the introduction of new discourse
referents is a complexity parameter.

Hagoort (2013; 2016) has proposed Memory, Unification and Control (MUC) as a general model for
sentence comprehension that aims at accounting for such balance between storage and computation. The
Memory component of the model refers to the linguistic knowledge that is stored in long-term memory.
This includes unification-ready structures corresponding to constructions (Goldberg, 2006) represented
by sets of constraints pertaining to the various levels of linguistic representation (phonology, syntax,
and semantics) for that construction. Each constraint specifies how a given construction can combine
with other constructions at a particular level of linguistic representation, as well as the result of such
unification.4 The Unification component refers to the assembly of pieces stored in memory into larger
structures, with contributions from context. Unification is a constraint-based process, which attempts to
solve the constraints defining the constructions. Unification operations take place in parallel at all the
representation levels. Therefore, syntax is not the only combinatorial component (cf. also Jackendoff
(2002)): constructions are combined into larger structures also at the semantic and phonological levels.

In this paper, we present a computational model of semantic complexity in sentence processing, which
is strongly inspired by MUC. Our model integrates various insights from current research in distributional
semantics and recent psycholinguistic findings, which highlight the key role of knowledge about event
structure and participants stored in semantic memory and activated during language processing (McRae
et al., 1998; McRae et al., 2005; McRae and Matsuki, 2009; Bicknell et al., 2010; Matsuki et al., 2011).
Moreover, recent experiments in EEG showed that the activation of the so-called literal’ word meanings is
only carried out when necessary (Rommers et al., 2013). Following such findings, some recent theoretical
proposals argued that words do not really have meaning, they are rather cues to meaning: sentence
comprehenders use them to make inferences about the event or the situation that the speaker wants to
convey (Elman, 2009; Elman, 2011; Kuperberg and Jaeger, 2015; Kuperberg, 2016). In particular, our
model relies on the following assumptions:

• long-term semantic memory stores Generalized Event Knowledge (GEK). GEK includes peo-
ple’s knowledge of typical participants and settings for events (McRae and Matsuki, 2009);

• at least a (substantial) part ofGEK derives from our linguistic experience and can be modeled with
distributional information extracted from large parsed corpora. In this paper, we only focus on this
distributional subset of GEK, which we refer to as GEKD;

• during sentence processing, lexical items (and constructions in general) activate portions ofGEKD,
which are then unified to form a coherent representation of the event expressed by the sentence.

The aim of this research is to propose a novel distributional semantic framework to model online sen-
tence comprehension. Our two-fold goal is i.) to build an incremental distributional representation of
a sentence, and ii.) to associate a compositional cost to such a representation to model the complexity
of semantic processing. In particular, we argue that semantic complexity depends on two factors: a.)
the availability and salience of “ready-to-use” event information already stored in GEKD and cued by
lexical items, and b.) the cost of unifying activated GEKD into a coherent semantic representation, with
the latter depending on the mutual semantic congruence of the events participants. We thus predict that
sentences containing highly familiar lexical combinations like (1a) (musician is in fact a familiar subject
of play) are easier to process than sentences expressing novel ones like (1b). Moreover, the complexity
of novel combinations depends on how easily they fit with stored event knowledge.

4From a neurolinguistic perspective, Pulvermuller et al. (2013) recently proposed a model encoding such set of constraints
at the brain level. The activation of a construction is carried out by means of discrete combinatorial neuronal assemblies
(DCNAs), which encode the combinatorial links between the different objects of the construction itself.
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In the following sections, we will present a global distributional semantic complexity score combining
event activation and unification costs. As a first evaluation of our framework, we will use the semantic
complexity score in a difficulty estimation task on the Bicknell dataset (Bicknell et al., 2010).

2 Related work

Some of the previous works applying Distributional Semantic Models (henceforth DSMs) to sentence
processing focused on the problem of computing a semantic surprisal index for the words of the sentence,
on the basis of what Hale (2001) has proposed for syntax, and defined as the negative logarithm of the
probability of a word given its previous linguistic context. The higher the surprisal of a word, the lower
its predictability, and high surprisal values have been shown to correlate with an increase in processing
difficulty (Frank et al., 2013; Smith and Levy, 2013). Mitchell et al. (2010) proposed a model to compute
surprisal, based on the product of a trigram language model and of a semantic component, based in turn
on the weighted dot product of the semantic vector of a target word and of a history vector, representing
its prior context. The authors interpolated their model with the output of an incremental parser and they
evaluated it on the task of predicting word reading times in a test set extracted from the Dundee Corpus
(Kennedy et al., 2003). Their results showed that the semantic component improves the predictions,
compared to models based only on syntactic information.

Building on the work of Mitchell et al. (2010) and Mitchell (2011), Sayeed et al. (2015) tested a
similar model on a multimodal language corpus (the AMI Meeting corpus; see Carletta (2007)), being
able to predict spoken word pronunciation duration.

A totally different perspective was adopted by Lenci (2011): starting from the method for thematic fit
estimations that was introduced in Baroni and Lenci (2010), the author presented a compositional distri-
butional model for reproducing the expectation update on the filler of the patient slot of a verb, depending
on how the agent slot had been saturated (for example, if the agent of the verb to check is journalist, likely
patients will be things that journalists typically check, such as source, spelling etc.). Lenci tried to model
explicitly the process through which we modify our predictions on upcoming linguistic input on the ba-
sis of our event knowledge: the saturation of an argument slot imposes new semantic constraints on the
other positions yet to be filled, with the consequence that entities typically co-occurring with the agent
become more plausible for the situation described by the sentence.

Coming to related works in experimental psychology, Pynte et al. (2008; 2009) measured vector
proximity between the content words of an eye-tracking corpus by means of Latent Semantic Analy-
sis (Landauer et al., 1998) to show how inspection times of a target word are affected by its semantic
relatedness with the adjacent words in the same sentence.

In a more recent contribution, Johns and Jones (2015) presented a DSM that assumes the storage and
retrieval of linguistic experiences as the fundamental operations of sentence processing, following a long
tradition of exemplar theories of memory starting with Hintzman (1986; 1988). Each sentence in their
model is encoded as a vector obtained by summing its word random vectors with permutations to account
for the word position in the sentence (see Sahlgren et al. (2008)). Vectors that are similar to the one of
the currently processed sentence (the so-called memory traces) are activated and then are summed into an
expectation vector. Finally, the expectation vector is used to make predictions about forthcoming words
and to construct sentence meaning.

3 An incremental model of sentence comprehension

We model the comprehension of a sentence as an incremental process driven by the goal of constructing
a coherent representation of the event the speaker intends to communicate with the sentence. We assume
there is a data structure called situation model (SM ) (Zwaan and Radvansky, 1998) that is incrementally
updated in working memory during language comprehension. Given a sentence s being processed,5 SM
contains a representation of the event es described by s, which is compositionally built from GEKD

retrieved from long-term memory, and activated by the words in s. Similarly to MUC, our model is
5Although in this paper we focus on sentence processing, our model can equally apply at the sub-sentential level, such as

phrases or chunks, as well as at the discourse level.
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formed by a memory component containing lexical information, and a unification component dealing
with the compositional construction of the sentence semantic representation.

4 The memory component: the representation of lexical knowledge

We assume the lexicon to be a repository of constructions (the latter including words along with more
complex structures) stored in long-term memory. Each construction Cxn is defined by a form and a
content. The latter consists of a set of pairs 〈e1, σ1〉, . . . , 〈en, σn〉, such that ei is an event stored in
GEKD and σi is an activation score, expressing the salience of the event with respect to a construction
and the strength with which the event is activated (cued) by the construction. At the moment, we assume
that the activation score of the event e activated by Cxn is the conditional probability of the event given
the construction, P (e|Cxn).

We represent events in GEK with feature structures specifying their participants and roles, much like
frames in Frame Semantics. More specifically, we represent the events in GEKD, the distributional
subset of GEK,6 as feature structures containing information directly extracted from parsed sentences
in corpora: attributes are syntactic dependencies (e.g. NSUBJ, NMOD-IN, etc.),7 and values are distri-
butional vectors of dependent lexemes.8 The latter can be conceived as “out-of-context” distributional
vector encoding of lexical items. Any type of distributional representation can be used to this purpose
(e.g., explicit vectors, low-dimensionality dense embeddings, etc.). The following is a representation of
an event e ∈ GEK, extracted from the sentence The student reads the book.:

(2) [EV ENT NSUBJ:
−−−−−→
student HEAD:

−−→
read DOBJ:

−−→
book]

Unlike previous syntax-based DSMs, we extract from corpora syntactic joint contexts, besides single
dependencies (Chersoni et al., 2016). A syntactic joint context includes the whole set of dependencies
of a given lexical head, which we assume as a surface representation of an event. Each event in GEK
may be cued by several lexical items, as part of their semantic content, albeit with different strength
depending on their statistical distribution. For instance, the event in (2) is cued by the noun student, the
verb read, and the noun book.

We assume GEK to be hierarchically structured, according to various levels of event schematicity. In
fact, all events in GEK can be underspecified. Without any need to add in GEK any specific structure,
underspecification makes it possible to virtually generate schematic events, obtained by abstracting over
one or more of its valued-attributes:

(3) a. [EV ENT NSUBJ:
−−−−−→
student HEAD:

−−→
read]

b. [EV ENT NSUBJ:
−−−−−→
student DOBJ:

−−→
book]

The feature structure in (3a) is a representation of a schematic event of a student reading, without any
specification of the object, while (3b) represents an undespecified event involving a student acting on a
book, which could be instantiated by specific events of reading, writing, buying, etc.

5 The unification component: constructing event representations

We assume that sentence comprehension always occurs within an existing SM and results into an update
of this SM . The current SM acts as a constraint on the interpretation of the upcoming constructions,
and it gets updated after the interpretation of every new construction. Sentence comprehension consists
in recovering (reconstructing) the event e that the sentence is most likely to describe. The event e is the
event that best satisfies all the constraints set by the constructions in the sentence and in the active SM .
Let w1, w2, . . . , wn be an input linguistic sequence (e.g., a sentence or a discourse) we have to interpret.

6In this paper we assume that GEK = GEKD . Therefore, we henceforth omit the subscript for simplicity.
7We represent syntactic dependencies according to the Universal Dependencies annotation scheme

(http://universaldependencies.org/).
8At this stage, we stay at the syntactic level, without entering into the mapping problem between syntactic and semantic

arguments as described in (Dowty, 1991). All arguments in the event description correspond to syntactic roles, having in mind
they could be used as a very rough approximation of semantic roles.
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Let SMi be the semantic representation built for the linguistic input until w1, . . . , wi, and let ei be the
event representation in SMi. When we process wi+1:

i.) the GEK associated with wi+1 in the lexicon, GEKwi+1 , is recovered;

ii.) GEKwi+1 is integrated with SMi to produce SMi+1, containing the new event ei+1.

We model semantic composition as an event construction and update function F , whose aim is to
build a coherent SM by integrating the GEK cued by the linguistic elements that are being composed:

F (SMi, GEKwn+1) = SMi+1 (1)

The composition function is responsible for two distinct processes:

1. F unifies two event feature structures into a new event. Given an event ei ∈ SMi and ej ∈
GEKwn+1 , F produces a new event ek ∈ SMi+1:

F (ei, ej) = ek = ei t ej (2)

The unification function produces an output event if the attribute-values features of the input events
are compatible, otherwise it fails. The following is an example of successful unification:

(4) [EV ENT NSUBJ:
−−−−−→
student DOBJ:

−−−−→
thesis] t [EV ENT NSUBJ:

−−−−−→
student HEAD:

−−→
read] = [EV ENT

NSUBJ:
−−−−−→
student HEAD:

−−→
read DOBJ:

−−−−→
thesis]

In this example, the event of a student acting on a thesis and the event of a student reading are
unified into a new event of a student reading a thesis.

2. F weights the unified event ek with a pair of scores 〈θ, σ〉:
• θ is a score measuring the degree of semantic coherence of the unified event ek. We assume

that the semantic coherence (or internal unity) of an event depends on the mutual typicality
of its components. Consider for instance the following sentences:

(5) a. The student reads a book.
b. The surfer reads a papyrus.

The event represented in (5a) has a high degree of internal coherence because all its compo-
nents are mutually very typical: student is a typical subject for the verb read and book has a
strong typicality both as an object of read and as an object related to student. Conversely, the
components in the event expressed by (5b) have a low level of mutual typicality, thereby result-
ing into an event with much lower internal coherence. We model this idea of mutual typicality
by extending the notion of thematic fit, which is normally used to measure the congruence
of a predicate with an argument. In our case, instead, thematic fit is a general measure of the
semantic typicality or congruence among the components of an event. In turn, we measure the
thematic fit with vector cosine in the following way:

Given si:a and sj :b, such as si and sj are two event attributes (e.g., NSUBJ, HEAD,
etc.), the thematic fit of si:a with respect to sj :b, θ(si:a, sj :b), is the cosine between
the vector of a and the prototype vector built out of the k most salient values c1, . . . , ck,
such that si:cz , for 1 ≤ z ≤ k, co-occurs with sj :b in the same event structures.

For instance, the thematic fit of student as a subject of read is given by the cosine between the
vector of student and the prototype vector built out of the k most salient subjects of read. Sim-
ilarly, we also measure the typicality of book as an object related to student (i.e., the object of
events involving student as subject) as the cosine between the vector of book and the prototype
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vector built out of the k most salient objects related to student. Then we define the score θ of
an event e as follows:

θe =
∏
a,b∈e

θ(si:a, sj :b) (3)

Therefore, the semantic coherence of an event is given by the product of the mutual thematic
fit between its components. The higher is the mutual typicality between the elements of an
event, the higher is its internal semantic coherence.
• σ weights the salience of the unified event ek by combining the weights of ei and ej into a new

weight assigned to ek. In this paper, we combine the σ weights with the logistic function:

F (σi, σj) = σk =
1

1 + e−(σi+σj)
(4)

The score σ of the unified event thus measures the strength with which it is activated (cued) by
the composed linguistic expressions. This entails that events that are cued by more linguistic
constructions in a sentence should incrementally increase their salience.

To sum up, we conceive composition as event unification. Unified events are weighted along two
dimensions: internal semantic coherence (θ), and degree of activation by linguistic expressions (σ).
These two dimensions also determine the composition cost of the unification process. We argue that the
semantic complexity of a sentence s is inversely related to the sum of θ and σ:

SemComps =
1

θs + σs
(5)

The less internally coherent is the event represented by the sentence and the less strong is its activation
by the lexical items, the more the unification is cognitively expensive and the sentence semantically
complex. This is consistent with the MUC model of sentence comprehension: the harder is to build an
integrated semantic representation through unification, the harder the processing effort, as reflected by a
larger N400 amplitude.

6 Evaluation

As a first test for our framework, we measure the semantic complexity of the sentences in the Bicknell
dataset (Bicknell et al., 2010). The Bicknell dataset was prepared to verify the hypothesis that the typi-
cality of a verb direct object depends on the subject argument. For this purpose, the authors selected 50
verbs, each paired with two agent nouns that altered the scenario evoked by the subject-verb combina-
tion. Plausible patients for each agent-verb pair were obtained by means of production norms, in order
to generate triples where the patient was congruent with the agent and with the verb. For each congruent
triple, they also generated an incongruent triple, by combining each verb-congruent patient pair with the
other agent noun, in order to have items describing atypical situations.

The final dataset included 100 pairs subject-verb-object triples, that were used to build the sentences
for a self-paced reading and for an ERP experiment.9 To give an example, experimental subjects were
presented with sentence pairs such as:

(6) a. The journalist checked the spelling of his latest report. (congruent condition)
b. The mechanic checked the spelling of his latest report. (incongruent condition)

The sentences of each pair contain the same verb and the same object, differing for the subject. Given
the subject, the object is a preferred argument of the verb in the congruent condition, whereas it is an im-
plausible filler in the incongruent condition. Bicknell et al. (2010) reported that the congruent condition
produced shorter reading times and smaller N400 signatures. Their conclusion was that verb argument
expectations are dynamically updated during sentence processing, by integrating some kind of general

9Actually, Bicknell et al. (2010) used only a subset of 64 pairs, after removing the items that were potentially problematic
for their experiments. In the present study, we use the original dataset.
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knowledge about events and their typical participants. Lenci (2011) evaluated his model on the ability
to assign a higher thematic fit score to the congruent triples than to the incongruent ones. We interpret
Bicknell’s experimental data as suggesting that congruent sentences are less semantically complex than
incongruent sentences. Consistently, we predict that our model will assign a higher semantic complexity
score to incongruent sentences than to congruent ones.

6.1 Modeling the GEK
Following the procedure described in Chersoni et al. (2016), we extracted from parsed corpora the syn-
tactic joint contexts for all the words of the Bicknell triples. For our extraction, we used a concatenation
of four different corpora: the British National Corpus (BNC; Leech (1992)); the Reuters Corpus vol.1
(RCV1; Lewis et al. (2004)); the ukWaC and the Wackypedia Corpus (Baroni et al., 2009).

For each sentence, we generated a joint context by extracting the verb and its direct dependencies.
Our dependency relations of interest are subject (NSUBJ), direct object (DOBJ), indirect object (IOBJ)
and a generic prepositional complement relation (PREPCOMP), on which we mapped the complements
introduced by a preposition. We discarded all the modifiers and we just keep the nominal heads. Here
is an example of extracted syntactic joint context: athlete-n-nsubj win-v-head medal-n-dobj at-
p+olympics-n-prepcomp. For each joint context, we also generated all its dependency subsets to obtain
the underspecified schematic events. In total, we have extracted 4,204,940 syntactic joint contexts (in-
cluding schematic events).

The collection of syntactic joint contexts were used to define the feature structures of the events in
GEK, and cued by the target words of the Bicknell dataset. As described in section 4, each verb and
noun occurring in these event structures was represented with a distributional vector in a syntax-based
DSM using as contexts the dependencies extracted from the above corpora (e.g., enemy-n:obj).10

6.2 Computing the semantic complexity scores for the test sentences
The sentences in the original Bicknell dataset were first turned into S(subject)-V(erb)-O(bject) triples
(e.g. NSUBJ:journalist HEAD:check DOBJ:spelling). For each test sentence s we computed σs and θs in
the following way:

σs We take the activation strength of the joint context formed by the test triple given S (i.e., σS), V (i.e.,
σV ) and O (i.e., σO). For instance, σS is the activation strength of the joint context NSUBJ:journalist
HEAD:check DOBJ:spelling, given journalist. Then σs is obtained by applying equation (4) to the
sum of σS , σV and σO.

θs This score represents the semantic coherence of the event represented by s and is obtained by
measuring the mutual typicality of its components. Following equation (3), we compute θs as the
product of the thematic fit of S given V, θS,V , O given V, θO,V , and the thematic fit of O given S,
θO,S . In particular, θS,V is the cosine between the vector of S and the centroid vector built out of the
k most salient subjects of V (e.g., the cosine between the vector of journalist and the centroid vector
of the most salient subjects of check), θO,V is the cosine between the vector of O and the centroid
vector built out of the k most salient direct objects of V (e.g., the cosine between the vector of
spelling and the centroid vector of the most salient objects of check), and θO,S is the cosine between
the vector of O and the centroid vector built out of the k most salient direct objects occurring in
events whose subject is S (e.g., the cosine between the vector of spelling and the prototype vector of
the most salient objects of events whose subject is journalist). Following Baroni and Lenci (2010),
we measured argument salience with LMI (Evert, 2005) and we fixed k = 20.

The final semantic complexity score SemComps is the inverse of the sum of the σ and θ scores (see
equation (5)). Notice that if the event corresponding to the sentence is not stored in GEK, its activation
score is 0, and therefore the σs component will be null. In this case, the only relevant factor for semantic
complexity is the event coherence measured by θs. This is consistent with the model we presented in

10We also use inverse dependencies (see Baroni and Lenci (2010)) in order to represent the relation of a target noun with its
verb head: for example, given the sentence The dog runs., the context of the target dog-n for this sentence will be run-v:sbj-1.
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section 1 and based on the assumption that sentence processing is the result of a balance between retrieval
of stored information and the building of new events through unification. If s describes a familiar event
already stored in long-term memory as modelled withGEK, the complexity of s depends on how strong
such event is cued by the lexical items in s and by the mutual typicality of its components. On the other
hand, if the sentence describes a new event, its complexity only depends on the internal coherence of the
event produced through unification.

7 Results and conclusions

For 16 pairs of triples of the Bicknell dataset we were not able to compute thematic fit scores, so we had
to discard them.11 Therefore, we are left with 84 pairs of triples (168 triples in total): in each triple, the
patient is either typical (congruent) or atypical (incongruent) with respect to the agent.

First of all, the SemComp scores assigned to sentences in the congruent condition are significantly
lower than the scores assigned to sentences in the incongruent conditions, according to the Wilcoxon
test (W = 4791, p-value < 0.001). Our semantic complexity score is therefore able to model the higher
processing difficulty of the incongruent sentences, as shown in the EEG experiments by Bicknell et al.
(2010). We also evaluated the model accuracy, as the percentage of congruent sentences to which the
model assigns a semantic complexity lower than score assigned to the incongruent sentence in the same
pair. The model performance is compared with the random accuracy baseline, as in Lenci (2011).

Model Hits Accuracy Significance
σs + θs 62 73.8% p < .05
θs 59 70.2% p < .05

Baseline 42 50%

Table 1: Number of hits and accuracy with or without σ scores. p-values computed with the χ2 test.

Since the σ component is an element of novelty with respect to thematic fit-only models, we decided to
test the algorithm also without it, that is to say to assign the complexity score only on the basis of the event
semantic coherence. Although the difference is not huge, it is noteworthy that the σ component improves
the accuracy score, supporting our hypothesis that semantic complexity depends both on retrieval and on
unification costs.

Our model achieves exactly the same accuracy as the Expectation Composition and Update Model
(ECU) in Lenci (2011) when evaluated on the same 84 triples (73.8%). However, it should be pointed
out that ECU was tailored on the structure the Distributional Memory tensor (Baroni and Lenci, 2010)
and on the Bicknell dataset. Indeed, the ranking function for the typical fillers of a slot depends on the
availability in the tensor of syntactic relations (in this case, the OBJ and the VERB relation) that can be
used as simultaneous constraints on a candidate. In other words, given a patient p, an agent AG and verb
v, p has to have a high association score both in the triple {p, OBJ, v} and in the triple {AG, VERB, p}.
These relations work well for representing constraints on the agent and on the patient slot, but it is not
clear how ECU could estimate expectations on other slots, say the instrument and/or the location one.
Moreover, it does not take into account the Memory component.

Our results are obtained with a much more general model of semantic complexity that can be applied
to any type of syntactic structure (the set of syntactic relations that we consider in the extraction of
the joint contexts is a parameter) and is based on a less ad hoc and more sophisticated distributional
representation of GEK. Concerning the σ component, we should also mention that a joint context for
the full event was retrieved for only 22 of the 168 triples. As expected, an implementation of the memory
component based only on textual corpora suffer from data sparsity, and the future developments of this
model will have to take this factor into account. The introduction of a robust generalization component,
which could generate new joint contexts by making inferences on new potential event participants, could
help to mitigate such problem.

11We discarded from the syntax-based DSM words with a frequency below 100 in the training corpus. Consequently, for
some triples one or more words did not have any vector representation in the DSM, so that we could not compute the thematic
fit scores that are required by our model.
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The semantic complexity model we have proposed in this paper is strongly inspired by the general
cognitive principles of the MUC architecture. In particular, we rely on two components to assign seman-
tic complexity scores: i) a memory component, consisting of a distributional subset of GEK, such that
the more an event is strongly activated by linguistic cues, the easier will be its retrieval from the semantic
memory; ii) a unification component, consisting of a composition and update function which unifies the
GEK activated by linguistic cues into new structures. The more the unified components are mutually
typical, the more semantically coherent will be the event. Our assumption is that linguistic constructions
that are strongly activated by the previous context and with high values of semantic coherence are easier
to process. In the future, we plan to extend our experimentations to a wider range of psycholinguistic
datasets, in order to see how the model can deal with a larger number of complexity sources and linguistic
structures.

Hopefully, future extensions of this model will also present a more global notion of complexity and
will integrate information coming from different linguistic domains. It would be interesting, for example,
to combine the predictions of our model of semantic complexity with constraint-based frameworks for
the estimation of syntactic difficulty, such as Blache’s Property Grammars (Blache, 2011; Blache, 2013),
and to see how they correlate with experimental data.

There are many other aspects in language processing that, at the moment, our model leaves aside. Fu-
ture extensions, in our view, should also account for the role played by attention,12 since several linguistic
devices (prosodic cues, non-canonical syntactic structures etc.) can be used to signal informationally rel-
evant parts of the message to the listeners/readers, helping them in the allocation of processing resources
and thus influencing complexity (Hagoort, 2016). At the best of our knowledge, such issues have still to
be convincingly addressed by current models.
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