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Abstract

We prove existence of a solution to the implicit MAC scheme for the compressible Navier-Stokes
equations. We derive error estimates for this scheme on two and three dimensional Cartesian grids.
These estimates are unconditional: They are uniform with respect to the space and time discretization
with coefficient independent on the numerical solution. Error estimates are obtained by using the
discrete version of the relative energy method introduced on the continuous level in [16]. A systematic
use of the theoretical "continuous" analysis of the equations in combination with the numerical tools
is crucial for the result. This is the first proof ever of the inconditional error estimate of the MAC
scheme for the compressible Navier-Stokes equations.

Keywords: Compressible fluids, Navier-Stokes equations, Cartesian grids, Marker and Cell scheme,
Error estimates.
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1 Introduction

The aim of this paper is to derive error estimates for approximate solutions of the compressible barotropic
Navier-Stokes equations obtained by the Marker-and-cell scheme. These equations are posed on the time-
space domain Q7 = (0, T) x Q, where 2 is a bounded domain of R, d = 2,3, adapted to the MAC scheme
(see section 3), and T > 0, and read:

0o + div(pu) = 0, (1.1a)
O¢(ou) + div(ou @ u) + Vp(o) = pAu + (pp+ A)Vdiv u, (1.1b)

supplemented with the initial conditions
0(0,x) = oo(x), ou(0,x) = gouo, (1.2)
where g and ug are given functions from 2 to R’ and R? respectively, and boundary conditions
uj0,7)x00 = 0. (1.3)

In the above equations, the unknown functions are the scalar density field o(¢, ) > 0 and vector velocity
field w = (uy,...,uq)(t,x), where t € (0,7") denotes the time and & € Q is the space variable. The
viscosity coefficients p and A, assumed to be constant, are such that

>0, A+ p>0. (1.4)

*This work was supported by the MODTERCOM project within the APEX programme of the Provence-Alpes-Cote
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In the compressible barotropic Navier-Stokes equations, the pressure is a given function of the density.
Here we assume that the pressure satisfies

p € C([0,00)), p € C*(0,00), p(0) =0, p'(0) >0 for all o >0, (1.5a)
/ /
lim 2 (f? o0, inf PO, (1.5b)
0—00 o7 0€(0,1) ©

where v > 1. We notice that assumptions (1.5) are compatible with the isentropic pressure law p(p) = o7
provided 1 <~ < 2.

The main underlying idea of this paper is to derive the error estimates for approximate solutions of
problem (1.1)—(1.5) obtained by time and space discretization by using the discrete version of the relative
energy method introduced for equations (1.1a), (1.1b) on the continuous level in [16,18,19].

The discrete relative energy method was suggested in [24] in the context of rather academic finite-
volume:finite element scheme proposed in [35]. The method provides unconditional estimate of error
between any numerical solution of the scheme [35] and a classical solution of equations (1.1)—(1.5),
without any additional assumption on the numerical solution. This is highly wanted result, first of its
type in the mathematical literature. The natural question arises whether a similar method can lead to
similar unconditional error estimates for the less academic and more practical numerical schemes.

The main goal of this paper is to get unconditional error estimates for the MAC scheme implicit in
time.

In spite of the fact that we stuck to the [24] methodology, the proofs remain still difficult. Not speaking
on technicalities linked to the approximations, interpolations and projections to the relevant function
spaces related to the MAC discretization, the most involved part is the treatment of transport terms in the
continuity and momentum equations which requires derivation of quite sophisticated formulas involving
primal and dual fluxes. In this part, our approach is reminiscent to the recent work of Therme [30]
devoted to the staggered space approximations to the Euler equations.

Since the very beginning of the introduction of the Marker-and-Cell (MAC) scheme [29], it is claimed
that this discretization is suitable for both incompressible and compressible flow problems (see [27, 28|
for the seminal papers, 2,5,7,31,32,34,40-42,44,45] for subsequent developments and [46] for a review).
The use of the MAC scheme in the incompressible case is now standard, and the proof of convergence
for the MAC scheme in primitive variables has been recently been completed [23].

The paper is organized as follows. After recalling the fundamental setting of the problem and the
relative energy inequality in the continuous case in Section 2, we proceed in Section 3 to the discretization:
we introduce the discrete meshes and functional spaces and the definition of the numerical scheme, and
state a known existence result, along with the main result of the paper, that is the error estimate, which
is stated in Theorem 3.3. The remaining sections are devoted to the proof of Theorem 3.3:

e In Section 4 we derive estimates provided by the scheme.

e In Section 5, we derive the discrete intrinsic version of the relative energy inequality for the solutions
of the numerical scheme (see Theorem 5.1). We then transform this inequality to a more convenient
form, see Lemma 5.1.

e Finally, in Section 6, we investigate the form of the discrete relative energy inequality with the test
functions being strong solutions to the original problem. This investigation is formulated in Lemma
6.1 and finally leads to a Gronwall type estimate formulated in Lemma 7.1. The latter yields the
error estimates and finishes the proof of the main result.

The Theorem 3.3 remains valid for other finite volume schemes with staggered space discretization
as e.g. non conforming Rannacher-Turek finite elements or the lowest degree Crouzeix-Raviart finite
elements on simplical meshes. These results are formulated without proofs, that are similar and simpler
than those for the MAC scheme, in Appendix B.

2 The continuous problem

The aim of this section is to recall some fundamental notions and results for the continuous problem.
We begin by the definition of weak solutions to problem (1.1)- (1.5). Let us introduce the Helmholtz’s



function defined by
1o =o [ Par, p>0 2.1
(0)—@17,9_- (2.1)
Note that H € C(Ry ), H(0) = 0 and that H is a solution on R’ of the ordinary differential equation
oH —H=p (2.2)
with the constant of integration fixed such that (1) = 0. Note also that

(o) = p/ég). (2.3)

and there exists ¢ > 0 only depending on p., and ~ such that

1
~(@+1) <H(o) (e +1), forall o> 1. (2.4)
Definition 2.1 (Weak solutions). Let gp : Q — (0,+00) and ug : Q — R with finite energy £y =

Jo(ooluol® + H(0o)) dx and finite mass 0 < Mo = [, 00 dx. We shall say that the pair (o,uw) is a weak
solution to the problem (1.1)—=(1.5) emanating from the initial data (09, uo) if:

1. 0 € L®(0,T;L7(Q)), 0 >0 a.e. in (0,T) x Q, u € L*0,T; H:(Q)) and olu|> € L>=(0,T; L' (Q)).

2. The continuity equation (1.1a) is satisfied in the following weak sense

T
/ / (g@tgo + ou - Vgo) dedt = —/ 00p(0, ) de, (2.5)
0 Jo Q

for any p € C°([0,T] x Q) such that p(T,-) = 0.

3. The momentum equation (1.1b) is satisfied in the weak sense,

T
/0 /Q (@“"9t¢+ ou®u: Vip+p(o) divw) da dt
~ /OT /Q (V7 Vapda dt+(p -+ Ndivadivg ) dade = - /Q ootto - (0, ) dz, (2.6)

for any v € C([0,T] x Q)? such that (T,-) = 0.

4. The following energy inequality is satisfied a.e in (0,7)
1 T
/ (5 elul® + H(0)) (7) da +/ / (Tl + (u+ N[ divaP) dedi < & (@7)
0 \2 0 Ja

Note that the existence of weak solutions emanating from the finite energy initial data is well-known
on bounded Lipschitz domains under assumptions (1.4) and (1.5) provided v > d/(d — 1), see Lions [36]
for "large" values of ~, Feireisl and coauthors [17] for v > d/(d — 1). More details about this problem
are avaible in monographs [36], [14], [38].

Remark 1. The density o satisfy the conservation of mass that is
/ o(t)de = My a.e in (0,T). (2.8)
Q

Let us now introduce the notion of relative energy. We first introduce the function

E: [0,00) x (0,00) = R,

(0.7) =+ E(alr) = H(o) — H(r) (o —r) — H(r), (29)



where H is defined by (2.1). Since p satisfies the thermodynamic stability condition that is
p’ >0 on R*,
the function # is strictly convex on [0, 00) and we have
E(plr) >0 and E(o|r)=0 < po=r.

More precisely, E satisfy the following algebraic inequality whose straightforward proof is left to the
reader:

Lemma 2.1. Let 0 < a < b < oo. Then there exists a number ¢ = ¢(7, poo, a, b, min, g p, Mingg /2 2] p) >
0 such that for all o € [0,00) and r € [a,b]

E(o|r) > c(a,b) <971R+\[a/2,2b](9) + 1r \[ay2,28(0) + (0 — 7")21[@/2,21)}(9))
> e(a,b,7) (lo = 171, \jaj2 2 (0) + (0= 1)1 (0)) . (2:10)

In order to measure a “distance” between a weak solution (¢, u) of the compressible Navier-Stokes
system and any other state (r,U) of the fluid , we introduce the relative energy functional, defined by

E(o,u

P U) = /Q (%Qm— U + B(o|r)) de. (2.11)

It was proved recently in [16] that, provided assumption (1.5) holds, any weak solution satisfies the
following so-called relative energy inequality

+/

// pVU : V(U = u) + (+ A) div U div(U — u))d:cdt
Q

E(o,ulr,U)(7) — &0,

U)(0)

,u|Vu— )2+ (,u+)\)|div(u—U)|2>dazdt

=)
{O

=]

+/ /QﬁtU (U - u)dwdt—i—/ /Qu VU - (U — u) dzdt
0o Jo

+/ /T_Q' atrda:dt—/ / r)Vr-udexdt
0 Q Qr
/ / )divU dzdt. (2.12)

re CY[0,T] x Q), r>0, U e CH0,T] x Q)3, Ulspa =0.

for a.a. 7 € (0,T), and for any pair of test functions

Moreover if (r,U) is a sufficiently strong solution to problem (1.1)-(1.5) emanating from initial data
(ro, Up), the right member becomes quadratic in difference (9 — r,u — U) and inequality (2.12) reduces

E(o,ulr, UY( / / pIV (u— U + -+ X) div(u — U)P) da dt
< &(g0, uo r(O),U(O))—I—/OTR(Q,ur, U)dt (2.13)
where
R(g,ur,U):/Q(g—r)(BtU—kU‘VU)-(U—u)dm—k/ﬂg(u—U)-VU~(U—u)dw

Vp(r)

(r—0) (u—U)de - /Q (0(0) — /(P (0 — ) — p(r) divU de. (2.14)



In order to obtain a stability result of strong solutions in the class of weak solutions, the goal is to find
an estimate of the left hand side of from below by (2.13) by

r,U)(t)dt +E(o, u|r,U) (1) (2.15)

[ u= Ul de ¢ [ o
0 0
and thanks to lemma 2.1 the right hand side from above by

& (00, uo[r(0), U(0)) + 5/OT [ = U100 da + () /0 a(t) € (o, ulr, U) (1) dt (2.16)

with any § > 0, where ¢ > 0 is independant of §, @ > 0, ¢ = ¢/(§) > 0 and a € L'(0,T). This process
leads to the estimate

E(o,u r, U)(t) dt . (2.17)

r,U) (1) < 5(go,u0‘r(0), U(0) + c/OT a(t) E(o,u

It remains to conclude by using Gronwall Lemma.
The stability of strong solutions in the class of weak solutions is stated in the following proposition
(see [16] for a proof).

Proposition 2.1 (Estimate on the relative energy). Let Q2 be a bounded Lipschitz domain. Assume that
the viscosity coefficients satisfy assumptions (1.4) and that the pressure p satisfy

p'(0)
o1

p € C([0,00)), p € C*(0,00), p(0) =0, p'(e) >0 for all ¢ >0, lim = Poo > 0,
0—00

where v > %. Let (o, u) is a weak solution to problem (1.1)—~(1.5) emanating from initial data (0o > 0,uy),

with finite energy Eg and finite mass My = fQ oodx > 0. Let (r,U) that belongs to the class

O<r<r<7 relL2(0,T)xQ), (2.18a)

U c L*(0,T; H (Q)?), (2.18b)

Vr. VU € L(0,T5 L°(9)), q > max(3, - o o), (2.18¢)
-

be a strong solution of the same equations with initial data (r(0),U(0)) = (ro,Up). Then there exists
¢ = ¢e(T,Q, Mo, E0,7,7, 7, || div U|| 11 0,752 () [| (V7 V2U) | 12(0,7529(012)) > 0

such that for almost all t € (0,T),
E(o,ulr,U)(t) < c&(00,uo|ro, Up). (2.19)

The goal of the present paper is to obtain estimate of type (2.19) for (o, ) being a numerical solution
of Problem (1.1)-(1.5) obtained by the MAC discretization.

3 The numerical scheme

3.1 Space discretization

We assume that the closure of the domain  is a union of closed rectangles (d = 2) or closed orthogonal
parallelepipeds (d = 3) with mutually disjoint interiors, and, without loss of generality, we assume that
the edges (or faces) of these rectangles (or parallelepipeds) are orthogonal to the canonical basis vectors,
denoted by (e(V), ... ,e(d)),

Definition 3.1 (MAC grid). A discretization of Q with MAC grid, denoted by D, is given by D = (M, E),

where:



- The density and pressure (or primal) grid denoted by M, consists of a union of possibly non uniform
(closed) rectangles (d=2) or (closed) parallelpipeds (d = 3), the edges (or faces) of these rectangles
(or parallelepipeds) are orthogonal to the canonical basis vectors; a generic cell of this grid is denoted
by K ( a closed set), and its mass center xy . It is a conforming grid, meaning that

Q = Ugem K, where int(K) Nint(L) = 0 whenever (K,L) € M?, K # L, (3.1)

and if KN L # ( then K N L is a common face or edge or vertex of K and L. A generic face
(or edge in the two-dimensional case) of such a cell is denoted by o € E(K) (a closed set), and its
mass center T, where E(K) denotes the set of all faces of K. We denote by ng, i the unit normal
vector to o outward K. The set of all faces of the mesh is denoted by £; we have € = Epp U Eext,
where Eiy (resp. Eext) are the edges of € that lie in the interior (resp on the boundary) of the
domain. The set offaces that are orthogonal to the it unit vector e of the canonical baszs of R?
is denoted by ED fori=1,...,d. We then have E0) = Sl(nz U Eéx)t, where 51( . (resp. ext) are the

edges of 9 that lze in the mtemor (resp. on the boundary) of the domain. Finally, fori=1,...,d
and K € M, we denote ED(K) = E(K)NED andé'l()( K)=¢&(K )DE()

int "

- For each o € &€, we write that 0 = K|L if 0 = 0K NOL and we write that o = m if, furthermore,
o€ &Y and (xp —xg) - e >0 for somei € [1,d] = {1,...,d}. A primal cell K will be denoted
K = [z?] ifo,0' € EDNEK) for somei=1,...,d are such that (o — ) - € > 0. For a face
o € &, the distance d, is defined by:

dxg,xr) if o = K|L € &y,

dy = { ‘ (3.2)
d(xg,r,) if 0 € Ext NE(K)

where d(-,-) denotes the Buclidean distance in RY.
- A dual cell D, associated to a face o € € is defined as follows:
xif 0 = K|L € &y then Dy = Dy g U Dy 1, where Dy - a closed set (resp. Dy1, -a closed
set) is the half-part of K (resp. L) adjacent to o (see Fig. 1 for the two-dimensional case) ;
x if 0 € Eexy 15 adjacent to the cell K, then Dy = Dy .

The dual grid {Dﬂ}aes(“ of Q (sometimes called the i-th velocity component grid) verifies for each
fized i € {1,...,d}

Q=U, Dy, int(Dy)Nint(Dyr) =0, 0,0 € EWD o #0' (3.3)

- A dual face separating t_wg) neighboring dual cells D, and D, is denoted by € = o|o’ or e = DU\Z&;

(a closed set) or € = olo’ when specifying its orientation: more precisely we write that € = olo’
if (Tor — o) - €9 > 0 for some j € [1,d]. The set of all faces of D, is denoted E(Dy);
it is decomposed to the set of external faces Eoxi(Dy) = {€ € E(Dy)|e € N} and the set of
internal faces Eni(Dy) = {e € E(D,)|inty_1e C Q}, where inty_; denote the interior in the
topology of R¥~1. The set of all dual faces of the dual grid {D, }aes(“ 1s decomposed into the

internal and boundary edges: E1 = 8() U 5<§x)t; where 51(;) {e = olo’|o,0" € ED} and

i(i)t = {e = 0D, NN o € ED 0D, NN # 0}. We denote by N p, the unit normal vector
to e € D, outward D .

We denote for further convenience ne and n, a normal unit vector to face € and o, respectively.
We write € L o resp. o0 iff ne -n, = 0 resp. n, -ny, = 0. Similarly we write € L el
resp. o L e iff n, and €Y resp. n, and €9 are parallel. We also denote by ab the segment
{a+t(b—a)|t € [0,1]}, where (a,b) € R* and by x. resp. Tone the mass centers of the face e
resp. of the set o Ne (provided it is not empty).

- In order to define bi-dual grid, we introduce the set 5 ={ee 5 ]6 1 el } of dual faces of the
i-th component velocity grid that are orthogonal to e(]) A bi-dual cell D¢ associated to a face € € E
is defined as follows:



T el L a@) . . , ~ / (i)
xIfe=oclo’ € £ NE,, then D = € X Tyx, (see Figure 2). (We notice that, if 0,0’ € €
with K = [o0'] € M and ¢ = oo’ then D. = K.)

x If e € é’(i’j méfj()t with € € g(DU) and i # j then D, = € X TyTone.
In the list above we did not consider the sitution € € g(i’i) N éf;)t with € € £(Dgy). In this case
e =0 C 09, and we set for completeness D, = ).

It is to be noticed that, for each fived couple (i,j) € {1,...,d}?

Ueegig) De =Q, int(De) Nint(Der) =0, e # €, €,€' € £G), (3.4)

To any dual face € € g(i), we associate a distance d

d(xs,xy) if € € g(i’j) N gl(fl)t,

de = ¢ d(xo,Tone) if € € g(i’j) N éiﬁf with € € g(Dg) and i # 7, (3.5)
d, if c € &MY

N ngt with € € £(Dy).

(We notice that the last line in the above definition is irrelevant and pure convention, since in that
case D =10).)

- We also define the size of the mesh by
hap = max{hg, K € M} (3.6)

— .
where hy stands for the diameter of K. Moreover if K = [00’] where 0,0’ € £0) NE(K) for some
i=1,...,d we will denote

) _ K] K]
po = BT _ K] (3.7)
Kol el
We mesure the regularity of the mesh through the positive real number naq defined by
e T e g® D) (i el 2 it 38
nM—max{|a/|,a€ , 0 € ,(i,9) € {1,...,d}*, i £ 5} (3.8)

Finally, we denote by h, the diameter of the face o € £.

- Some geometric notions introduced in this definition are exposed in the figures 1 and 2:

de,
>
/
K Ty g
€1 =olo’
de, -
D,
€2
g = K|L o'”
Zs Ty
L
o

Figure 1: Notations for control volumes and dual cells



M , N
g
D,
e=alo’
~
K = L
I
ol D,

Figure 2: Notations for bi-dual cells

Definition 3.2 (Discrete spaces). Let D = (M,E) be a MAC grid in the sense of Definition 3.1. The
discrete density and pressure space Lag is defined as the set of piecewise constant functions over each of
the grid cells K of M, and the discrete i —th velocity space Héz) as the set of piecewise constant functions
over each of the grid cells Dy ;o € ED. As in the continuous case, the Dirichlet boundary conditions
(1.3) are (partly) incorporated in the definition of the velocity spaces, and, to this purpose, we introduce

HSZ) - Hé’),i =1,...,d, defined as follows:

ayi) — {v eHY, vx)=0VzeD,, 0 €&l i= 1,...,d}.
We then set Hg g = Hle ng) Since we are dealing with piecewise constant functions, it is useful to
introduce the characteristic functions X, K € M and Xp_,0 € £ of the density (or pressure) and
velocity cells, defined by

lifexeK, 1ifx e D,,
Xk (x) = ) Xp, (x) = ) y
0ifx ¢ K, 0ifax e D,.
We can then write a function v € Hgg as v = (v1,...,vq) with v; = Z veXp,, 1 € [1,d] and a
‘7651(52
function q € Ly as g = Z g XK .
KeM
3.2 Time discretization
Let us now turn to the time discretization of Problem 1.1. We consider a partition 0 = t* < t! < ... <

tN = T of the time interval (0,7, and, for the sake of simplicity, a constant time step ot = t* — ¢t"~1;

hence t" = ndét for n € {0,--- ,N}. We denote respectively by {ul,o € 51(;,2,1' e {1,---,d},n €
{0,---,N}}, and {0}, K € M,n € {1,---,N}) the sets of discrete i-th component of velocity and
density unknowns. For o € 51(12,2, i €{1,---,d} the value v} is an expected approximation of the mean
value over (t"~1 ") x D, of the i-th component of the velocity of a weak solution, while for K € M the
value g% is an expected approximation of the mean value over (t"1,¢") x K of the density of a weak
solution. To the discrete unknowns, we associate piecewise constant functions on time intervals and on
primal or dual meshes, which are expected approximation of weak solutions, For the velocities, these
constant functions are of the form:

N
wit, ) => Y ul Xp, () Xgn-1,4n)(t),

n=1 ocel

int

where X{4n-1ny is the characteristic function of the interval (t"=1,¢"). We denote by X; ¢ 5 the set of

such piecewise constant functions on time intervals and dual cells, and we set X¢ 51 = H;'i:1 X e st For
the density, the constant function is of the form:

o(t,x) = o for x € K and t € (t" 1 "),



and we denote by Y5 the space of such piecewise constant functions.

For a given u € X¢ 5 associated to the set of discrete velocity unknowns {uy}, o € e i e {1,---,d},n €

nt’
{1,---,N}}, and for n € {1,---, N}, we denote by ul’ € Hé% the piecewise constant function defined
by ul'(x) = u)} for ¢ € D,,0 € 51(3, and set u” = (uf,...,u})" € Hep. We sometimes write uf’,

instead of uy in order to avoid all confusion. Notice that '  may be non zero for o € Si(ég while it

is zero whenever o € Ee(i)t In the same way, given o € Y6 associated to the discrete density un-
knowns {0}, K € M,n € {1,--- ,N}} we denote by ¢ € L the piecewise constant function defined
by 0" (x) = o} forx € K, K € M.

Finally, the discrete initial condition (0", u’) € L x Hg g is such that ¢ > 0 and the discrete initial

total mass and energy are respectively defined by
1
Moy = / 0" de, Eom = / —0°|u’)? da +/ H(o%) d. (3.9)
Q Q2 Q

3.3 The numerical scheme

We consider an implicit-in-time scheme, which reads in its fully discrete form, for 1 < n < N and
1<i<d:

1

5 (0" ="+ divig(e"u") =0, (3.10a)
&(Qn( )U? — o) + le(g)(Qnunuz‘ ) — MA(g)Uz‘

— (p+ A)9;divagu”™ + 9;ip(0") =0, (3.10b)

where the terms introduced for each discrete equation are defined hereafter.

3.3.1 Mass balance equation

Equation (3.10a) is a finite volume discretization of the mass balance (1.1a) over the primal mesh. The
discrete "upwind" divergence is defined by

divj/pl: LMXH570—>LM

. u 1
(Qa ’U,) — le‘/\E(Q’u,) = Z m Z Fa‘,K(Qa u) XK’
KeM c€e€(K)

(3.11)

where F, g (0,u) stands for the mass flux across o outward K, which, because of the Dirichlet
boundary conditions, vanishes on external faces and is given on the internal faces by:

Vo = K|L € Emy  Foxlow) = o] o uox, (3.12)
where u, i is an approximation of the normal velocity to the face o outward K, defined by:
U K = Ug e® Ny i for o € EW N E(K). (3.13)

Thanks to the boundary conditions, u, x vanishes for any external face o. The density at the internal
face 0 = K|L is obtained by an upwind technique:

0K if ug x>0,
ob = (3.14)
or otherwise.

Note that any solution (¢, u") € Ly x Heg to (3.10a) satisfy % > 0, VK € M provided o ' >
0, VK € M and in particular p(o") makes sense. The positivity of the density o™ in (3.10a) is not
enforced in the scheme but results from the above upwind choice. Indeed, for a given velocity field, the
discrete mass balance (3.10a) is a linear system for " the matrix of which is an invertible matrix with a
non negative inverse [20, Lemma C.3].



Note also that, with this definition, we have the usual finite volume property of local conservativity
of the flux through a primal face 0 = K|L i.e.

For(ou) = —Frr(ou). (3.15)

Consequently, summing (3.10a) over K € M immediately yields the total conservation of mass, which
reads:

Vn=1,...N, /Qndm:/godm, (3.16)
Q Q

which is nothing than a discrete version of (2.8).

3.3.2 The momentum equation

We now turn to the discrete momentum balances (3.10b), which are obtained by discretizing the momen-
tum balance equation (1.1b) on the dual cells associated to the faces of the mesh.

The discrete convective operator - The discrete divergence of the convective term ou ® u is
defined by

divzp : LM X Hg70 — Hg70 (3 17)
(0,u) — dive’(ou @ u) = (divg)(guul), s div(gd)(guud)), .
where for any 1 < i < d, the i** component of the above operator reads:
div Ly x H ad
£ v M X Heo = Hegy
. @ 1
(0.w) — divi(ouws) = 37 pr 37 Feolosw) e Xp,, (3.18)
aegi(:])t e€&(Dy)

where the quantity Fi, = F¢ (0, u) stands for a mass flux through the dual faces of the mesh and wu.

stands for an approximation of i*” component of the velocity over e are defined hereafter (see (3.19),
(3.20), (3.26).
Let o € €@ (without loss of generality). The dual flux F, ,(o,u) is defined as follows

- If € € gt then Fes(0,u) =0.
Otherwise:

- First case — The vector e is normal to €, so € is included in a primal cell K, and we denote by o’
the second face of K which, in addition to o, is normal to e(?. We thus have € = D,|Dyr. Then
the mass flux through € is given by:

[Fox(0,%) nep, Mok + For i (0,u) Nep, - Mo i (3.19)

N =

Fe,o(@: u) =

where n, p_ stands for the unit normal vector to e outward D,,.

- Second case — The vector e(?) is tangent to €, and € is the union of the halves of two primal faces
7 and 7’ such that 7 € £(K) and 7" € £(L). The mass flux through € is then given by:

Fe,a(97 u) = [FT,K<97 u) +FT’,L(Q7u)]' (320)

N |

- Third case — The vector e is tangent to ¢, and € is the halve of a primal face 7 such that 7 € £(K).
(%)

ext*

In particular o € £ The mass flux through € is then given by:

1
FQO‘(Q)“‘) = §FT,K(Q7U‘)‘ (321)

10



eC K
o =K|L
h

D,

Figure 3: Notations for the dual fluxes of the first component of the velocity.

We notice that the sum over € € £(D,) in formula (3.18) can be replaced by the sum over € € i (D, ).
Note that, with this definition, we have the usual finite volume property of local conservativity of the
flux through a dual face € = D, | Dy i.e.

Fe,o‘(g’ u) = _FE,U’(Qv ’U,) (322)
In what follows we shall often use the abbreviated notation

Fok(0"u") =Flg, Feqo(o" u")=F.,. (3.23)

o, €,0

The density on a dual cell is given by:

for o € &g, 0 = K|L |-Do" Op, = |DU,K| oK + ’DG,L| oL,

(3.24)
for o € Eext, 0 € E(K), 0p, = OK-

and we denote ‘
for1<i<d, 3= > op,Xp,.
oce&l)

These definitions of the dual mass fluxes and the dual densities ensures that a finite volume discretiza-
tion of the mass balance equation over the diamond cells holds:

; 1 1
. () trn _ n-1 - n _
Vi<i<d Voe,  —(dph, —op,')+ D Z Fr, =0. (3.25)
EGS(DU)
This is a necessary condition to be able to derive a discrete kinetic energy balance (see Theorem 4.1).

Since the flux across a dual face lying on the boundary is zero, the values u. are only needed at the

)

internal dual faces, and we make the centered choice for their discretization, i.e., for €e = D, |D, € gi(flt,

Ue = Uje = Yo _; Uo’ = Yio _; ULOJ . (326)

Discrete divergence and gradient - The discrete divergence operator div, is defined by:

divag : He — Ly
1
u+— divyu = Z 77l Z lo|ue, k Xk, (3.27)
KeM K] oc&(K)
where u, i is defined in (3.13).
The discrete divergence of u = (uy,...,uq) € Hg o may also be written as

d
divpu = Z Z (05u;) k Xk, (3.28)

i=1 KeM
where the discrete derivative (0;u;)x of u; on K is defined by

_ ol

— .
=K (Uyr — ) with K = [00"],0,0" € EW. (3.29)

(O4uq) K

11



The gradient in the discrete momentum balance equation is defined as follows:

Vg : LM — H&O
pr— Vgp (3.30)
Vep(x) = (O1p(), . .., 0qp(x))",

where 0;p € H é% is the discrete derivative of p in the i-th direction, defined by:

H .
(b —pr) Ve eD,, foro=K|Lec&Y i=1,....d (3.31)

5210(:13) = int>
Note that in fact, the discrete gradient of a function of L4 should only defined on the internal faces,
and does not need to be defined on the external faces; we set it here in Hg ¢ (that is zero on the external
faces) for the sake of simplicity.

The gradient in the discrete momentum balance equation is built as the dual operator of the discrete
divergence which means:

Lemma 3.1 (Discrete div — V duality). Let ¢ € Ly and v € Hg o then we have:

/ g divpmvde + / Veq-vdx =0. (3.32)
Q Q
Discrete Laplace operator - For ¢ = 1...,d, we classically define the discrete Laplace operator on
the i-th velocity grid by:
i i %)
N HY) — H),
U —> —Ag)u@
i 1 i
— AWy () = TN %} )¢E,,,(u,~), Va € Dy, for o e &Y (3.33)
€c o

where €(D,) denotes the set of faces of Dy, and

L(ug —u,) ife=odo’ € G0

d int?
€

d)e,cr(ui) = (334)
—u if e € £ N E(Dy)

o
de ext

where d. is defined by (3.5). Note that we have the usual finite volume property of local conservativity
of the flux through an interface e = o |0’

e (tti) = —Geor(u), Ve=olo' € EW. (3.35)
Then the discrete Laplace operator of the full velocity vector is defined by

—Ag : Hgyo — H&O

3.36
u— —Agu = (—Ag)ul, ey —Aéd)ud)t. (3:36)

Let us now recall the definition of the discrete H{ inner product [12]; it is obtained by multiplying
the discrete Laplace operator scalarly by a test function v € Hg o and integrating over the computational
domain. A simple reordering of the sums (which may be seen as a discrete integration by parts) yields,
thanks to the conservativity of the diffusion flux (3.35):

d

V('UJ, ’U) € HS,OZ) / _Ag’u' -vdx = [U,U]l,é’,o = Z[ula Ui]l,f@)@v
Q i=1
. € € 3.37
with [Uivvih,g(i),o = Z: |J (ua - UU’) (UU - Ua’) + Z: |d€| Ug Vo ( )
cell ecEn
e=olo’ GEg(Da)

12



HY) x HY) — R Heo x Hep — R

The bilinear forms are inner products on H é(:% and

(u,v) = [Uz‘,vih,gm,o (u,v) = [u,v]160
Hg¢ o respectively, which induce the following discrete H} norms:

HuiHigu),o = [Ui,ui]l,g(i)70 = Z |(;| (ue — uaz)2 + Z |;| u?, for i=1,..,d, (3.38a)
ceBly et
i cc&(Do)
d
lellfeo = [wulieo =D lulfeo o (3.38b)
i=1

Since we are working on Cartesian grids, this inner product may be formulated as the L? inner product

u u
> € -
D,
Uy — U
5 U — (oa (oa
(01u1) D, i
U_g_)
D,
€ €
ia, Detial H ia,
€
€
Uy — Ug —Uy Ug
(O2u1)p, = — (O2u1)p, = y (O2u1)p, = 7
€ € €

Figure 4: Notations for the definition of the partial space derivatives of the first component of the velocity,
in two space dimensions.

of discrete gradients. Indeed, consider the following discrete gradient of each velocity component u;.

Vg(i)ul' = (51ui, - ,5du¢) with 5jui = Z (5jui)pe Xp,, (3.39)
ec€®
elel®
where the elements D, of the bi-dual grid are defined in (3.4) (see also Figure 2) and

Ug! —

de
(6]‘%’)[)6 = (3.40)
—Z—Ue(j) - M p, With € € 5‘(5}({ NE(D,),

€

Us . /
with € = oo,

where n. p, stands for the unit normal vector to e outward D,, see Figure 4. This definition is
compatible with the definition of the discrete derivative (0;u;)x given by (3.29), since, if ¢ C K then

13



D, = K. Note that the second line in (3.40) is zero provide i = j, or provided o € Eéx)t, e 1L eU) with
1 # j. With this definition, it is easily seen that

/ Vewyu-Vepvde = [u,v]l,g(i)jo,Vu,U € Hg%,Vi =1,...,d. (3.41)
Q K

where [u, v]; g o is the discrete H{} inner product defined by (3.37). We may then define
Vgu = (Vg(l)ul, ey Vg(dmd),
so that
/ Veu: Vevda = [u, v ¢ .
Q

We will need discrete Sobolev inequalites for the discrete approximations. The following Theorem is
proved in [12].

Theorem 3.1 (Discrete Sobolev inequalities). Let Q be a bounded domain of R?, d = 2 or d = 3,
adapted to the MAC-scheme (that is any finite union of rectangles in 2D or rectangular in 3D ), and
let D = (M,E) be a MAC grid of Q. Let ¢ < +oo ifd = 2 and ¢ = 6 if d = 3.Then there exists
c=c(q,|Q,nm) depending on naq in @ nondecreasing way such that, for all u € Hg g,

[ellza) < cllullieo

3.4 Projection operators

In this section we introduce several projection operators. We first define the mean-value interpolator over
IVE

AV L%OC(Q) — Lnpm
v = Pme= ) ¢k Xk, (3.42)
KeM
with
YK = \K|/ x)dx, VK € M. (3.43)

This operator satisfies for any 1 < p < co and for any r € LP(£2),
| Prrliee) < lIrllie)- (3.44)

We also define over H é% the following interpolation operator PS):

P . HNQ) — HY)
0 s PP =3 g, A, (3.45)
Jegig
with
Po = 1o / x), Vo e €Y, (3.46)

where dy(x) is the d — 1-Lebesgue measure on o and we denote
Pe = (P, ... PY) € L(HY ()%, He ) (3.47)

the vector valued extension. This operator preserves the divergence in the following sense:
Yo € Hi(Q)%,Vq e LM,/ q divy Psvde = / q divvde. (3.48)
Q Q

This operator satisfies for any 1 < p < oo and for any U € Wol’p(Q)d,
[ PeUllraye < VUl Loyaxa- (3.49)

where the constant ¢ depends on d and p and on ||
In the following Lemma we recall some classical mean value inequalities. These inequalities are used
to obtain estimates involving the projector operators P and Pg previously defined.

14



Lemma 3.2. [Mean value inequalities| Let D = H?Zl(ai,bi) be a bounded open square of R, d > 1.
Let 0 C 0D be a face of D. Let 1 < p < oo. There exists ¢ only depending on d and p such that
Vv € WhP(D),

v = vo||Lp(p) < ¢ diam(D)||Vol|p(pya, (3.50)

lv = wpllrp) < ¢ diam(D)|[Vo| Lo p)a, (3.51)

where vp = ﬁ Jpvdx and v, = W favd’y(w) (d~y(x) is the d — 1-Lebesgue measure on o). Moreover
if v € C%(D) then
’UD — ’U(a)D)| < HVQ’UHLoo(D)dxd diam(D)Q, (352)

where xp stands for the center of mass of D and

r+y
2

1 1 —
Kl ) = 5 (@) +u(y))] < g\lVZUHLw(Q)dxdlw —y[*,Va,y € D. (3.53)
Let D = (M, &) be a MAC grid of the computational domain 2, let 1 < p < oo. Then there exsits ¢
only depending on p and on d such that for any (r,U) € WHP(Q) x Wol’p(Q)d,

Ir = Pamrllr) < chamll Vol poa)e, (3.54)

WU = PeUl|p)e < chml||VU]| poqyaxas (3.55)

There exists ¢ only depending on d and p and || and on naq in a nondecreasing way such that for any
U e Wy"(Q)°,
Ve Pe Ul|p(yaxa < cl|VU || pp(qyaxas (3.56)

Moreover if U € C%(Q)¢,
10;PeU; — 0;U| oo () < ChMHV2Ui||L°°(Q)dxd~ (3.57)

Proof. Let us prove (3.51). Let us define the reference square D= (0,1)4 and let ¢ = (¢;)1<i<a defined
by
(,D@(ZL'Z) = (1 — l‘i)(ll' + x;b;.

One has for any v € W1P(D)

1 Di
[ollao) = DB 100 @lley  100lino) = o000 @)oo (3.58)

Since WL (ﬁ) is compactly embedded in LP(D) there exists ¢ only depending on d and p such that for
any v € WP(D)

Hv - UbHLP(f)) < CHVUHLp(ﬁy

If p = +00 one has
v =vpllree(py = lv —vo@pllLepy = lvop —voppllwp) < cllV(vo @)l wp
Using (3.58) we infer that
V(v o @)l oo py < cdiam(D)[[(Vo) 0 @] oo py < cdiam(D)|[ Vo[ (p)

which gives (3.51). If 1 < p < oo one has for any v € W1P(D)
lv=0bllsipy = [ lo=voPdz = [ [o=voppprda = DI [ [oop—voryl dz < DIV wogl,
Using (3.58) we infer that

IV(wo@)l?, 5 < cdiam(DP(Ve)o o2, o < ediam(D) = [[Voll;,

\DI
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which also gives (3.51). The proof of (3.50) is similar. Let us prove (3.52). We have
1
vp —v(xp) = / (V2u(c(x))(x — xp)) - (& — xp) de.
2|D| Jp
where c(x) € D wich gives
lvp —v(xp)| < HV2UHL0<>(D)d><d1/ |z — xp|* da.
1Dl Jp

Consequently
lvp —v(xp)| < HVszLm(D)dxd diam(D)?. (3.59)

Let us prove (3.53). A Taylor expansion of the function ¢t — v(tx + (1 — t)y) gives

o(@) = o2 4 VT2 Y) T L (@)@ - ) - (= - y).
o) =T ) + vu(TEY) LT (@)@ - ) (= - p).

where &,€ € [x,y]. The expected result follows from the summation of the two previous identity. The
proof of (3.54) and (3.55) are trivial consequences of (3.50) and (3.51). The proof of (3.56) can be found
in [22]. Let us prove (3.57). By virtue of (3.4) one has

18;PeUi = 0;Uill () < max [8;PeUi — O;Uill = (p,)-
ecE’

(4)

— ~ .
Moreover by virtue of (3.52) and (3.53) we can write for € = a|o’ € &, € L e, @ € D,

DOy~ 9 gy Lep@ sy, pD gy 9
6](735 Ui)D. aijZ(‘D) = dG((Pg Ui)or — ( < Ui)os) 8SU]'UZ($)
1 0
= E(UZ(ma’) Ui(z,)) %Ul(m) + R.
€ J
9 9 n
axj UZ (wU,O'/) axj UZ(CC) + Re

where z, 5 € [X,, x| and where the remainder R satisfies

|R| < cha
where ¢ depends on 1y and on ||v2'U||Loo(Q)d><d. Note that the case € € éf;)t
way. Consequently we have inequality

can be treated in the same

()

Hﬁjlngl - 8jU’i“L°°(D€) < chp, V<Zaj) € {17273}27VE € élnt: el e(j)a

where the constant ¢ depends on [|V2U || () and we obtain the expected result.

In the following defintion, we introduce two velocity interpolators.

Definition 3.3 (Velocity interpolators). For a given MAC gris D = (M, E), we define, fori,j =1,...,d,
the full grid velocity reconstruction operator with respect to (i,7) by

RED B~ )
v REDw = S (BE0), a0, (3.60)

ceed)

int
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oc=KI|L

o3 04
K

Figure 5: Set N, = {01, 02,03,04} with o € E(J)( K), j # i in two dimensions (i =1, j = 2)

int

where
i\j 1 .
(R(gvj)v)g =, ifo € 5&2, (Ré J)U)U = card (V) U;/ vy otherwise, (3.61)
where, for any o € Eng \ 5mt, L ={c"€€&Y D,no +0}. (3.62)

For any i =1,...d, we also define a projector from Hg) into Lag by

R - HY — Ly

ver RGo= 3" (R0 kA, (3.63)
KeM
where )
(1) _
(Ryv)k = B Z Ve (3.64)
ceEW(K)

We then define
R - He — LS,
v = (v1,..v4) = Ruv = (R 01,0, R ). (3.65)
Lemma 3.3. Then there exists ¢ > 0, depending only on d,p and on naq in a nondecreasing way such
that for any 1 < p < oo, for any i,j =1,...,d and for any v € Hé%7
IRE0 = vl o) < chal Ve vllioo): (3.66)

Then there exists ¢ > 0 such that for any i =1,...d, for any v € Hé% and for any 1 < p < 0o one has

1RG0 — ol oy < chadllBiel oy (3.67)
Proof. Let us prove (3.67). From the definition of 7353 (see (3.63)) we have for 1 < p < oo

IRG v —= vl ey = 2 IRGv =0l = 3 (IR = vl o + IR =0l )
KeM KZ[O?]
o,0'eE®
< oot S 80l ) < ety B0l
KeM
which gives the expected result. For p = 4+00 we have
IR0 = vl < max | RG v—vll gy = max, (I R v=vllioe(n, 0+ R v =0l )

K=[o0o’]
0,0 €@

MY B pee iy < chadllBiv]| ooy
KeM

N | =
>
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Figure 6: Full grid velocity interpolate.

which gives the expected result.

Let us now prove (3.66). For the sake of simplicity we assume that d = 2, ¢ = 1 and j = 2. Other
cases are similar. First we write

R(W) U—Ré’])v R(Z)erRsav—v

The second term in the right hand side of the previous equality is estimated uisng (3.67). Now using the
decomposition of D, established in figure 7 we can write

IRE 0 = RG vl = Y IREDw = RG 0l

ocgl)
= Y IR =RE I p, o+ IRET = RGO, )
o=K|LeeY)
+ S IR RGP,
aesgjt
< Y IDekll(REV)y — (R 0)KI + Dot l(RED0)6 — (RIG 0) Ll

o=K|LeeW)

int

+ Y DRG0

cee) nE(K)

ext

<chly Y (050l ) + 11050l 0) + el > 1Dell(@5ui)p, P

rech) e
oc=K|L

< chh, 1195017,
This finishes the proof of Lemma 3.3.

L
g1 02
D,
l r
= r
ma g = IL|L o
Dyr
g3 04
K

Figure 7: Decomposition of D,
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The following algebraic identity is used to transform some terms involving the dual fluxes into terms
involving primal fluxes for which the expression is easier to manipulate.

Lemma 3.4. Let p € Ly and w € Heg. Leti € {1,...,d} Let o = degu) Yo XD, € H(% be a discrete
int ’

scalar function. Let the primal fluzes be given by (3.12) and let the dual ﬂunxes F. » be given by (3.19) or
(3.20) (depending on the direction of n. with respect to ). Then we have:

d
SN N Fougo=Y RUOKY. > FoxRE ui)e + Ri(ui, )

oeell) ee€(Dy) KeM 7=1 5eel) (K)

int

where

o) =3 Y« VK Fo i (1 — (R i) )

KeM 0'65( >(K)

int

+ Z Z R() Z Z Z (UZg—i—uw (R%ui);{).

KEMUGg(z)( K) ji= l,J#zTeg(y)( )gej\/,rd

int

In the last sum we have denoted
= {0’ € €V |inty_17 Ninty_i(Dy|Dyr) # 0},

where o € 51(12 (K), 7€ 51(33( K), j # i, intq_, means interior in the topology of R4~

€
= S
K U | L
% I
T ol D,
\b D/
a

Figure 8: Set N;, = {0’} with 7 € 5(])( K), 0 € ED(K), j #i in two dimensions (i = 1, j = 2)

int

Proof. We split the sum at the left hand side of the identity in Lemma 3.4 to two sums, first one over
faces € parallel to faces o and second one over faces € orthogonal to sigma:

Z Po Z Fs,aui,e = Z Po Z Fs,aui,e

O'Egi(r’fz GEg(Do) O’Egi(r’fz 6egirﬂ:(l)o')

Y Y ow Y Awr Y XYY

KeM 5eeld) (i) e€€int(Do),c€K 7=Li#i regld) (K) e€N o

|

where we have used definition (3.20) of F, , and denoted for fixed o € &, (i )(K ) and 7 € Eipg (K) \Smt( ).

int
Nyo={c€&(Dy)|e Lo, 0 #enK C T}
For further calculation we notice that
Nr = Uep o Nro UEN(K), Nrg ={Ds|Dyr 0" € Nr o}, (3.68)

where N is defined in (3.62).
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=
e C K
o =K|L
b‘

Figure 9:  Set Nr,a = {e} with 7 € 51(53 (K), o€ 5(i)(K), J # i in two dimnsions (i =1, j = 2)

Realizing that the set {e € £(Dy)|e € K} contains exactly one face denoted e (see Figure 8), we
rewrite the above expression using definitions (3.26), (3.68) as follows

Z Po Z Fe,aui,e Z Z SOO'|: ex,0 Wieg + Z Z Z TKU’LU +uzo’ :|

oeell) e€€(Ds) KeM seeld) (k) =151 1 ce) (k) ' ENT0

Z Z SOU'[ GK,JuzeK+FgKUZJ+ Z Z Z TKuZU+uzai|

KeMoeell) (k) J=Li# gV (i) o' ENT o
LY Y RUk[Fruet > Y3 Fotie o]
KGM g(zz(K) J= 1,j;ﬁz f,'(])( )O’ENq—g
_ R(Z) F r KUZU+Uza
+ Po ( M(‘P)) €,0 Wi e + o, KUic + .
KeMoeell (k) J=1i#i regld) (k) o' ENTo

In the above we have used the conservation (3.15) of primal fluxes (which gives in particular -z v > e (k) Vo Fy
ICCint ’

0) to pass from the first to the second expression, and the conservation of (3.22) of dual fluxes (in par-

ticular ) g Zaeé‘iﬂfg(K) (RE\Z/)[(QD))KFeK,an,EK = 0). Consequently,

S N | Y Foue| = Y RO)KIE+ Y JE, (3.69)

KeM UGS.(Q eeg(Dg) KeM KeM
where
TKUO'—i_ua'
B ¥ hrut ¥ OY ¥y Bt
reel) (K) i=Li# regld) (K) oeell) (k) 7' €N
and
: Ku +u(,
Bom X oo RG] [Pt + P+ 3 ¥ 3 Tantie i)
"651(52( K) Jj= 1"77&1765(”([{)0 ENr o

Employing (3.68) together with (3.61) (see also Figures 5 and 8) we easily find that

d .o
=3 > xR w)), (3.70)

j=1 O'EE,'(J)( K)

int

In order to transform JX, we first remark with help of (3.19) the identity

Foxc + Feyeo + Z Z Z Z Fo i (3.71)

j= ljyéz,,_eg(])( )UGNTU €&t (K)
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consequently,

d
Z (¢o — R\ @)K) | o + Feer + ooy Y F;K -

Ueglnt (K) ]:17];&1 Tegigt) (K) OJENT,O'
> Fax || X |- (Riek| =0
0€&mnt(K) ceEW(K)

where, we have used (3.64). Next we write

TE= 3 [er = Rk [P (w0 = RU@DK) + Fepeo (110 = (R ()i
e (K)

+ Z Z Z (uw ; tid (R(ﬁ (W))Kﬂ

] 17]7£ZT€€(J) (K)O'ENTU

+ Y |er - RUIK| [P + Foc + zd: >y %}(R(j)(ui))m

Z Ny - ,
0'68<)( K) J 1:]761T€gi(gt)(K)U€N-r,o

int

where

(due to (3.64) and (3.26)) and

> e = RUG@)K] [P + Foc + D S S

oeell) (K) =17 reeli) () o' ENTo

int

} O () =0

due to (3.71). Consequently,

o)=Y JE=3 3 §0)K) Fo i (o — (R ui) k)
KeM KeM eg(lg( K)
i Uj,o + Uj,o' i
EY Y e /e Y Y n F 5 ( ~ (RO ) (3.72)
KeM Uegl(ng(K) ji= 1,j7$z7_€g(1)( K)° "eNF. o
Putting together formulas (3.69), (3.70) and (3.72) concludes the proof of Lemma 3.4. O

3.5 Main result: error estimates

Now, we are ready to state the main result of this paper. For the sake of clarity, we shall state the
theorem and perform the proofs only in the most interesting three dimensional case. The modifications
to be done for the two dimensional case, which is in fact more simple, are mostly due to the different
Sobolev embedings and are left to the interested reader.

Let us introduce the following functional space:

F= {(n U)e CH0,T] x D% 0<r= inf r(t,z), V2U € C([0,T] x Q)3, 82r € L}0,T; L7 (),
(t,$)€QT
8,V € L*(0,T; L9/ 7-9(Q)3), (92U, 8,VU) € L*(0, T; L6/5(Q)12)}, (3.73)

endowed with the following norm

[, O)llF = 1 Ul e o 1y xys + HVZUHC([O,T]XQ)S + ||81527””L1(0,T;m’(9)) + 07| 20,1169/ 576) ()3
H 107U 2. 1:r005n2y + 10V U || 20 pos ey (3.74)
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Let (r,U) € F such that U = 0 on 09Q. Let us consider a MAC grid D = (M, ) of size hyg and
regularity n14 of the computational domain 2 , a partition 0 = t° < t! < ... < t¥ = T of the time interval
[0, T, which, for the sake of simplicity, we suppose uniform (where §t stands for the constant time step)
and (o, u) € Y5t X X¢ 5 a solution of the discrete problem (3.10). Inspired by (2.11), we introduce the
discrete relative energy functional

1
S| V) = [ (52— U2 + Bl do (3.75)

3
1
=D > 5lDoleb, lug — U+ > [K|E(kIrk)
i=1 jegli) KeM

int

where

r=r",), U"=U{",), ry =Pm0"), U =Pe(U"), (3.76)
where P and Pg are respectively defined in (3.42) and (3.47). Finally we denote

O<r= min r, 7= max 1, [Opr]™ = Oyr(t",-). (3.77)
X

Let us now state that the discrete problem (3.10) admits at least one solution. This existence result
follows from standard arguments of the topological degree theory (see [9] for the theory, [11] for the first
application to a nonlinear scheme). We refer to Appendix A for a proof.

Theorem 3.2. Let (¢°,u’) € Ly x Heg such that ¢° > 0 (that is ¢% > 0 for any K € M). There
ezists a solution (u, ) € Hg o X Ly of Problem (3.10). Moreover any solution is such that o > 0 a.e in
Q (meaning that g% > 0 for any n =1,...,N and for any K € M).

The following Theorem is the main result of the paper. It can be seen as a discrete version of inequality
(2.19).

Theorem 3.3 (Error estimate). Let  C R3 be a domain which is a union of orthogonal closed par-
allelepipeds with mutually disjoint interiors, and, without loss of generality, such that the faces of these
parallelepipeds are orthogonal to the canonical basis vectors. Assume that the viscosity coefficients satisfy
assumptions (1.4) and that the pressure p satisfy (1.5). Let D = (M, E) be a MAC grid of Q0 (see Defi-
nition 3.1 in Section 3), with step size hay (see (3.6)) and regqularity na where naq is defined in (3.8).
Let us consider a partition 0 = t° < t' < ... <tV =T of the time interval [0, T), which, for the sake of
simplicity, we suppose uniform, where 6t stands for the constant time step. Let (o,u) € Y5 X Xe st
be a solution of the discrete problem (3.10) emanating from (0°,u®) € Ly x He g such that ¢° > 0 (the
existence of which granted by Theorem 3.2), and (r,U) € F be a (strong) solution of problem (1.1). Then
there exists a constant ¢ > 0 only depending on T',|Q, po, Poos i1, A, Y, T, Miny,. 7 p, ming. /2 o7 2, [Pl 02 (7))
on ||(r,U)||F in a non decreasing way, on Ey m in a nondecreasing way and on naq in a nondecreasing
way such that

max E(o",u"|r’y, Ug) < c<5(90,u0‘r9\4, U?) + h//\‘,l + \/E), (3.78)
0<n<N
where 5 31
A = min( 7 ) 5) (3.79)
Remark 2.

1. As mentioned previously, Theorem 3.3 holds also in dimension 2 under the assumption that ~v > 1.
The value of A in the error estimate (3.78) can be chosen such that

{A<nmmﬂfJ)ﬁyeuJL

A=1ify>2. (3.80)
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2. Suppose that the discrete initial data (0°,u®) coincides with the projection (Paqro, Peug) of the
initial data determining the strong solution. Then formula (3.78), combined with Lemma 2.1,
provides in terms of classical Lebesgue spaces the following bounds:

o™ = ™12 (g2 on<omyy + 18" = UM (/22 m<om)) < C(hﬁ + \/E)

for the "essential part"” of the solution (where the numerical density remains bounded from above
and from below outside zero), and

" < r/2}|+ He" 2 2} + 110" [oangorsaryy + 107107~ UM Pllusgrsamy < e(hidy + V)

for the "residual part” of the solution, where the numerical density can be "close" to zero or infinity.
(In the above formula, for B C Q, |B| denotes the Lebesque measure of B.) In particular, we obtain

lo = 7l Z2(rs2<osary) T 1t = UllZz (rj2<<2r)) < C(hﬁ + ‘@)

Moreover, in the particular case of p(0) = 0* (that however represents a non physical situation)
E(olr) = (0 —1)? and the error estimate (3.78) gives

lo— TH%OO(QT;LQ(Q)) + [loju — U|2”L°°(0,T;L1(Q)) < C<\/EM + \/(%)

3. If we assume that the discrete density o is bounded from above uniformly with respect to (hag, 0t),
the growth condition at infinity in (1.5) becomes irrelevant. In this case, following step by step proof
of Theorem 3.3 we obtain error estimate (3.78) with A = % for any~y > 1. Compare with [15], where
the similar problem is treated for a Finite volume/Finite element method. This is qualitatively better
result than any other conditional error estimate in the mathematical literature dealing with finite
volume or mized finite volume/finite element methods for compressible fluids (see [4], [11], [33],
[43], [47]), where the authors need to assume other bounds for the numerical solution, in addition
to the upper bound for the density.

4. Theorem 3.3 can be viewed as a discrete version of Proposition 2.1. It is to be noticed that the
assumptions on the constitutive law for pressure guaranteeing the error estimates for the scheme
(3.10) are somewhat stronger (y > 3/2) than the assumptions needed for the stability in the con-
tinuous case (y > g) In particular the asymptotic behaviour of the pressure for small densities is
not needed in the continuous case. The threshold value v = 3/2 is however in accordance with the
existence theory of weak solutions. The assumptions on the regularity of the strong solution to be
compared with the discrete solution in the scheme are slightly stronger than those needed to establish
the stability estimates in the continuous case.

5. The assumption on the asymptotic behaviour of the pressure for small densities in (1.5) can be
relazed for v > 2, see [2/]. In particular Theorem 3.3 also holds for the isentropic pressure law
p(0) = 0" where v > 2.

The rest of the paper is devoted to the proof of Theorem 3.3. We employ the methodology inspired
by that one suggested in [16] in the continuous case. It can be summarized as follows

1. We establish the energy inequality for discrete solutions of the numerical scheme - see Theorem 4.1,
formula (4.1). This correspond to energy inequality (2.7) in the continuous case.

2. Knowing (4.1) we establish the discrete relative energy inequality for the discrete solution of the
numerical scheme with test functions taken in the discrete spaces introduced in Definition 3.2 -
see formula (5.1) in Proposition 5.1. This is a numerical counterpart of relative energy inequality
(2.12) in the continuous case.

3. We take in the discrete relative energy inequality as test functions We derive a consistency error for
the strong solution above, see equality (6.1) in Lemma 6.1. Combining Lemma 5.1 and Lemma 6.1
we obtain inequality (7.1). This inequality is a numerical counterpart of relative energy inequality
(2.13) in the continuous case.

4. We estimate conveniently the right hand side of inequality (7.1) in order to get the Gronwall type
estimate, see Lemma 7.1. The rather Lemma implies the result.
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4 Mesh independent estimates

4.1 Energy Inequality

Our analysis starts with an energy equality (which can be seen as a discrete differential version of (2.7)),
which is crucial both in the convergence analysis and in the error analysis.

Theorem 4.1 (Energy estimate). Let (o,u) € Ya5 X Xg st be a solution of (3.10). Then for any
n = 1,..,N, there exists o" 1" € Laq such that min(g" 1, o") < 0" 1" < max(o" !, ") and o2 €
[min(e%, 0}), max(0'%, 07)], 0 = K|L € Einy such that

l AN n—1 i ni,,n2 __ n—1, n—1|2
5 [ e e da gz [ = o e de

. 1 _ _
+ pl[u"|[F g0+ (1 + )] diva UnH%?(Q)JFz&/QQn Hu" —u" " de

1 _ 3 1 -
_|_/ 2Tst/H//(Qn l,n)(gn_gn I)Qdm—{—§ Z |0_’H”(QZ)(Q7IZ(_Q?,)2|UZ7K| —0 (4.1)
. UEEim,U:K\L

Proof. Multiplying (3.10a) by H'(0") and using a Taylor expansion we obtain the existence of g" 1" €

L a such that min(e" 71, 0") < 0"~ 1" < max(o" !, o") and

ny __ / n—1
[T gy [ @ [ o (e de =0, (12)

Using again a Taylor expansion (see for instance [21]) one has

s U n, 1 ‘2 7 : n 1 ‘2 n T n
[ 1@ de = [ pedivaurde g S oW gk~ el (43
Uegjnt,U=K|L

where o7 € [min(oY, 0}), max(o%, 07 )]. Consequently

H(o") — /H/ n—1 1
/ (Q ) 5 (Q ) dx + / - H//(Qn—l,n)(gn _ Qn—1)2 dx
Q Q

26t

. 1
[ pedivautde g 3 (ol W)k - o Plut =0 (4.)
Q Uegint 7U:K‘L

Mutliplying (3.10b) by u, summing over o € 9 and i = 1,2,3 and using (3.32) we infer that

int

Qnun o gn—lun—l )
/Q @+ e + (0 N divagu 20

ot
3
+3 Y Frulun - / p(0") divpyudz = 0. (4.5)
i=1 geel) ceB(Dy) “
By virtue of the centered choice for u} (see (3.26)) we have

3 3 u™ 2
DD D Fluup=30 Y Y FZ;,( ;) . (4.6)

=1 5eg(l) e€€(Do) =1 5eg(l) €€ (Dy)

Multiplying (3.25) by # and summing over g € Sl(l)t and i = 1,2, 3 we infer that

3
w5 @ = Pae Y Y Y R

1=1 Uegi(yil)t EEE(D(;)

(“5)2 =0 (4.7)
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Subtracting (4.7) to (4.5) gives

1 ni, ni2 n—1), n—1(2 n
— u — u dx u
26t/ A e A N

et (pt+N)] diva UHH%Q(Q) /QP(QH) divypu"de = 0. (4.8)

Consequently adding (4.4) to (4.8) and using (4.3) gives (4.1).
O

Remark 3. The above computation shows that this numerical scheme is unconditionaly stable meaning
that the discrete energy inequality holds without any estra assumptions on the discrete solution.

The following estimates are obtained thanks to the identity (4.1) together (2.4) and Theorem 3.1. In
particular the numerical diffusion (4.16) is due to the upwinding and assumptions (1.5), as is classical in
the framework of hyperbolic conservation laws, see e.g. [12].

Corollary 4.1. Let (0,u) € Y5 X Xe 5t be a solution of (3.10). Then we have

1. There ezists ¢ > 0 only depending on Eg pm in a nondecreasing way (independent of haq and 6t)

such that
w2070 o () < €5 (4.9)
el z20,7520(0)3) < € (4.10)
HQ|U|2”L°<>(0,T;L1(Q)) <c¢ (4.11)
HQHLOO(O,T;M(Q)) <eg, (4.12)
<ec. 4.13
1O ooizsa s o) = € (4.13)
2. If (r,U) € L=((0,T) x Q) x L>=((0,T) x Q)3, then
11<1}La<XN8(Q",u" " Ug) <, (4.14)
where ¢ depends on T, |U|| oo ((0,7)x0)3 E0.Mm in @ nondecreasing way.
3. There exists ¢ only depending on Eg pm in a nondecreasing way such that for any m =1,..., N
m 3
D20 D 1Dl up —uy P < (4.15)
n=1i=1 _g(i)

int

4. The following dissipation estimate due to the upwinding of the density in (3.10a) and (1.5) holds

n)2

N
(QTIL(_QL
5t E E |O" 1 s> |u1’LK|
okl max(el gp)JeT T

N
+0tY > ollek — of) lgpary lup x| < e (4.16)
n=1o=K|LEEint

where ¢ depends on Eg pm in a nondecreasing way and where the quantity oy is defined in Theorem

4.1.
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5 Relative energy inequality for the discrete problem

5.1 Exact relative energy inequality for the discrete problem

The goal of this section is to prove the discrete (differential) version of the relative energy inequality
(2.12).

Proposition 5.1 (Exact discrete relative energy). Any solution (0,u) € Y5 x Xg st of the discrete
problem (3.10) satisfy

1

n ny _ n—1 , n—
= (& U — £ u

U= U )l = U} e o+ (4 V] divag(u” = U™ g

() __ /(M
< /(7’" — Q”)H () = H (") dx —i—/ divﬁ(g”u")?—['(r"fl)dw
Q ot Q

U = U™ e + (14 ) / div g (U™ — u™) divpg U™ dr
Q

n—1_ rrn 1
- / p(0") divp U™ dee +/ anu : (u"il - f(U"*1 + U")) dx
Q

o 5t
+§3: 3 Frur ( n_ Ug) (5.1)

i=1 5 ceE(Dy)
for any 0 <r € Yy s, U € Xg 4.

We notice, comparing the terms in the “discrete” formula (5.1) with the terms in the “continuous”
formula (2.12), that Theorem 5.1 represents a discrete counterpart of the “continuous” relative energy
inequality (2.12). The rest of this section is devoted to its proof. To this end, we shall follow the proof
of the “continuous” relative energy inequality (see [16] and [19]) and adapt it to the discrete case.

Proof. We proceed in several steps.
Investigation of the momentum equation (3.10b) : Multiplying (3.100) by U™ and integrating
over () we obtain

[ e = U”dw+z S Y ELur
Q

oeel) ec€(Dy)
+pufu”, U1 g0+ (L + A) / divypu" divay U" dxe — / p"divp U™ dx = 0
Q Q

We observe that
(Qnun _ Qn—lun—l) Un = Qnun Un — Qn—lun—l . Un—l + Qn—lun—l . (Un—l _ Un)
Consequently
1 nnnnlnl n—1 1 n—ln—l n—1 n 2 n o U
—5 | QU U dm_& u (U UM de+ ) D > Y FRLutU;
“ =1 seell) e (Do)
+ pufu, U 10+ (1 + )\)/ divyu" divap, U™ dxe — / p"divap U de.  (5.2)
Q Q
|2

Investigation of the dual continuity equation (3.25) : Multiplying (3.25) by £|UZ|?> we obtain

3
1 g n— n 1 Jald n
e KU TR D S DD SIPvAvI) 653

i= 10’65()665(1) )

int
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Moreover due to (3.22)

We observe that
/(Qn _ Qn—l)‘Un|2 de = / Qn|Un|2 _ Qn—1|Un—1|2 dx +/ Qn—l(Un—l + Un) . (Un—l _ Un) de.
Q Q Q
which gives

/ 21%( n’U”P n—l‘Un 1’ > de = —— —1(Un_1 v Un) . (Un—l B Un) e
3
%Z > YRR (55)

Investigation of the primal continuity equation (3.10a) : Multiplying the continuity equation by
H'(r"~1) and integrating over Q we obtain

1 1
—/(Q"H'(r”)—Qn_l”H'(rn_l))dw:—/ Q"(H'(T”)—H'(r”_l)) dw—i—/ dlvjl/)l( ™Y H (r" )d:c.
5.6)
Finally, thanks to the the convexity of the function H, we have
i nagli.ny _ ny\ _ n—1q4//.n—1\ n—1 _1/n I _ qql(,.n—1
&/Q[(r ) = #0m) = (16 = 1) de = 5 [ (307 - 16 do
_i ny _ (,.n _ ,n—1 r(n—1 n—1
= (O™ = 07 =Y HE) = HE" ) de
il n 1(,.n /(,n—1
g&/Qr (#em) — o)) dz. (5.7)
Conclusion : Summing (4.1), (5.2), (5.4), (5.5), (5.6) and (5.7) we obtain (5.1). O

5.2 Approximate relative energy inequality for the discrete problem

The exact relative energy inequality as stated in Section 5.1 is a general inequality for the given numerical
scheme, however it does not immediately provide a comparison of the approximate solution with the
strong solution of the compressible Navier-Stokes equations. Its right hand side has to be conveniently
transformed (modulo the possible appearance of residual terms vanishing as the space and time steps
tend to 0) to provide such comparison tool via a Gronwall type argument.

The goal of this section is to derive a version of the discrete relative energy inequality, still with
arbitrary (sufficiently regular) test functions (r,U), that will be convenient for the comparison of the
discrete solution with the strong solution.

Let us introduce some notations useful for the rest of the paper. Considering a solution (o, u) of
Problem 3.10, and (r,U) € F we define for 0 = K|L € Eint:

- T if uy g >0,
rotP = (5.8)
rr otherwise,

where 77 and u, g are respectively defined in (3.43) and (3.13). Note that ro"" will be not prescribe for
0 € Eext (it will be a consequence of the fact uq i that vanishes for o € E(K) N Eext). Similarly to (3.24)

we define
for o € Eng, 0 = K|L |Ds| vy, = |Do. x| % + |Do,r| 77, (5.9)
for 0 € Eext, 0 € E(K), Th, = TK- |
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Fori=1,...,d and € = D,| D, 65(1wedeﬁne

n — (PE U + (P UM
¢ 2

(5.10)

where PY) is defined in (3.45).

Starting from now, we shall use the following convention for the constants in estimates: We shall
denote by ¢ a positive number which can take different values even in the same formula. It always
depend tacitly on the geometric and structural coefficients

Ta‘Q|7p07poo’,Ua)\:% (511)

and if not stated explicitly otherwise, on the characteristics of the strong solution

U 5.12
r.pinp, min 2 lelos ey, 1 D)l (512

and on
Eo,Mm in a non decreasing way, 7 in a nondecreasing way. (5.13)

It is always independent of the size of the discretisation ét and hay.

Lemma 5.1 (Approximate discrete relative energy). Let (o,u) € Yas5 X Xg st be a solution of the
discrete problem (3.10) and (r,U) € F such that U‘dQ = 0. Then there exists ¢ only depending on
parameters (5.11-5.13) such that for allm =1,...,N:

E(g™ u™ |y, UE) = E(o" |15, UP)

+0t > (ullw" = UZIR 0+ (0 + Nl divas(w” — UZ) o) )

n=1

m
<oy (WU — " Ugluco + (e 3) [ divar(UF ") divn, U de)

+6tZ/ " 1(U5 Ue 1) (Ug - ") +5tZ/ iy~ o") nm[atr]”dm

T m
m 3
+5tZZZZ o Joler P UMD ng
n=1i=1 KeM j=1 50 (K)

x (RE? (@ = PE UD)o)(RIG(PE Ui = (P UT)o)

7

m Qn . .
5752/9%19’(%) m(uh) -Vt dm&tZ/ " divU" de + Ry 5 +Ghse  (5.14)
n=1

for any pair (r,U) belonging to the class (3.73) such that Ujpq = 0, where

m c % m m m m % n n
Gl < 508D E(Q™ ™ |ri, UE) + 00ty [l = UZIR e 0 (5.15)
n=1 =
with any 6 > 0,
| Rst | < e(Vot + hiy), (5.16)

and where A is given by (3.79).
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Proof. The right hand side of the relative energy inequality (5.1), after a summation over n and a
multiplication by dt, is a sum Zle T;, where

T1—5tz< [Ug,Ug —u ]150+(M+)\)/diVMUgdiVM(Ug—Un)d$)>
Q

. Un_Unfl Un71_|_Un o
0 e e

ngétiiz > R (ur-ur)

n=1 i=1 51() EEE(DU)
€= DU|D /

= 5t Z / ") div U™ d,

r¢,.n—1
T5_(5t2/ TM_Q TM) /H(TM )da:,

—5152/ divi§ (o"u™) H' (' 1) de
n=1 Q

The term 77 and Ty will be kept as they are; all the other terms T; will be transformed to a more
convenient form, as described in the following steps.
Step 1: Term Tp. We have Tb =T 1 + Ra 1 with

Ton =0ty "y Jo 0" 1<U671tjnl> (U” ! u"‘1> dex,

(5.17)
Ro1 =311 g %anl‘Ug - U;_1‘2d"13-

)

Thanks to the mass conservation (3.16), (4.12) and the Taylor formula applied to the function t — U (¢, x)

between t"~! and t" we easily get
|Ra 1| < cot (5.18)

where ¢ depends on HB,:UHLOO([O )% and on £p r. Let us now decompose the term 751 as

m n __grn—1
T2,1 = T272 + R272, with T272 = 5tz /Q Qn_l <%) . ([](Z:1 - u”> dx (5.19)
n=1

and Roo =0ty ", RY 5 where

= [0 (BT (o opae [ o (TSI (e

By the same token as above, and using estimate (4.15) we may estimate the residual term as follows
|Ryo| < Vit (5.20)

where ¢ depends on ||0:U || ((0,1)x0)3 and on Eg am-

Step 2: Term T3. Using Lemma 3.4 we can write

r-i3 Y Y RAEPPUNRY. Y el R~ PO,

n=1i=1 KeM j= 10’65(J>(K)

int

m 3
+ot Z Z( 511, T R512:) =151+ Rs1 (5.21)

n=1 i=1
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where the reminder R% , , and RY,, are respectively given by

= > (PR UM =R POWDK ) Fa (w — (PO UPs = R = PE UK ),
KEMUGgl(Ilt( )

and

Riini= > > (POUN. —ROPOUNK)

KGMU€8< )(K)

int

—PYum), — PP UM,

Y Yy Dt ] R - P ).

J= 17j7ﬁZT€g(J)( )OENTO-

From the definition of R(ﬁ and Pg) we infer that

1|K|? D) rom "
Buni= ¥ % G 0PY Und = P U
KeM 65(2)(1()

int

From (3.50) and the defintion the discrete derivative (3.29), we infer that for any i € {1,2,3} and K € M
[0:(P Ukl < e
where ¢ depends on na and on [[VU || e ((0,1)x0)3x3. Using the Hélder’s inequality we infer that

IRiyal<e S Vhgloleh, 18w} — PE UM 2oy

oeel) o= K|L

int>

_ 246 n % n n, n
<c Y VholollDo| T [8iu} = P UM 2acon o e

L7¥5 (Do)
UGSIM,U KI|L

(4)

where ¢ depends on [|[VU ||z ((0,1)x0)3xs and on nag. We can write for all o € En,

c1hd < |Dy| < eoh3, c3h? < |o| < esh2
where ¢; and c3 depend on 7,4 in a nondecreasing way and cz and ¢4 depend on 754 in a nondecreasing

way, which gives
_ 46 A
Vhelo||Ds|” 67 < chiy.

where ¢ depends on 7 and where A is given by (3.79). Consequently

Biapal Schile 30 I0if = PE W lcon el ag; -
o€ o=K|L 7

int?

3=
Q=

[R5 114l < Chﬁxt( Z 105 (uz” — Pé (Un))HL? KUL )
0'65()

int?

(X e, )

o=K|L oceeW o=K|L 7

int?

wherel<p,q<+ooand];+é:1.

If%§7§3andthen%22wetakep:5$—z6andq:%andweobtain

Ry 14l < chiyloi(ul — PO (Ur ’
’ 3,1,1,1‘ < chi||0i (v 5( z))HL2 HQ Uy HL 5 ()

Now if v > 3 and then 5 = 2 we take p =2 and g = 2 and we obtain

n | < ep4 (0T _ () n n
Rs il < chiulOi(ui’ =P (U@l e
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where the constant ¢ depends on [[VU || ((0,1)x0)3 and on ny. Finally from the estimates (3.56), (4.9)
and (4.13) we deduce that

N 3
5tzz R34l < Ch/f\l/l'

n=1i=1
where ¢ depends on [|[VU]| Lo ((0,1)x )3 £0,m and on maq. Let us now estimate the remainder B3, ;. Let
K € M and let us consider o € £?(K). Without loss of generality we assume that o = K|L € & ()

5 int*

e € £(Dy,) such that € # ex and eN K C o’ € EY) for j # i that is € € N,/ o - Since the primal ﬂuxes
vanish on external faces we can assume that € € g'l(fl)t saying € = o|o” where o’ € £ @ Let K € M such
that o/ = K|K. We define 0" € £ such that K = [¢"0"] and ¢ € €% such that K [0 o]. Finally

let L be the primal cell such that o = K |]~L We summarize the above notations in the figure 10.

" | K o L
D..| D,
6/ . O.////!O./// €=d O,//
d /!
0./// K O./ L

Figure 10: Decomposition of the dual grid

In accordance with the defintion of " and U* we can write

FgL/K n n n n % n %) 11
= (= U7 — (uf = U2 = R} = P UP))|

§C|J’|Q%0/|u2,|(|’ i Ol + ey, )
< ev/horlo e el (18:Cu = P U2, + 1850 = PE U 20, )
< ehildl "l sy (1906 = PE UM e, ) + 1036 = PE U aao, )
We deduce from the previous computation that
RS 10l < ey g 3 el e, it = PEUN w2,y + 105667 = PE U aao, )
J7F o'elV

where the constant ¢ depends on 7. Finally from the estimates (3.56), (4.9) and (4.13) and thanks
to computation established to estimate R31,1,; we deduce that

N 3
57&22 ‘Rg,1,2,i| < Chf\l/lv

n=1 i=1

where ¢ depends on [|[VU ||z ((0,1)x0)3, Eo,m and on nag. Consequently we have

N 3
5752 Z(|R 3114 TR 24]) < Chﬁ/t- (5.22)

n=1 i=1

Evidently, for each face o = K|L € Einy, ul} jr + ulr ; = 0 ; whence,

3 3
L=t 3 Y (ol unet) - my
n=11

=li=1 KeM j=1 5e£()(K)

x (RED =P UM RG(PY UMk — (PE U,

1
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Consequently

m 3 3
ELODIDIDS oles " (P U} )€ 1

n=l1i=1 KeM j=1 ;e£l)(K)

x (R (wp — PO UMNRYPY UMk — (P UM,) + Ry (5.23)

7 K3 (2

3 3
where R3 2 = 0t Z?:l > i ZKGM ijl Zaeg(j)(K)ﬁé’int Rg,Q,i,K,j,a

Ry xio = ool — (PY UMW) - ng g (RED (uff — P UMNRGPY UMk — (P UM),)

7 7 7

Using (3.50) we infer that for any (4, ) € {1,2,3}2, K € M,0 € EV(K) N Ein,
RGP UMk = (PE UM < cho,

where ¢ depends on ||VU || e ((0,1)xq)3x3 and on na. Consequently we can estimate the general term of
R3 5 as follows

R k0l = [lo1a " (ul— (P UM )eD) -ng o (RED (uf = PE UM (RY(PE UPY  — (PY U,
< ¢| D[0P |(u — (PL UM [(RED (uf — PY U,

< ¢|Do| (gl + o) (ul — (P UM(RED (wt — P UM),)]

<c /D 't — PO WD) RED (wr — PO (UP))] dar,

where 0 = K|L € £Y(K) N Eiy. Consequently using (3.66) and Holder’s inequality and then Young’s
inequality, we infer that

m 3 3
Raaal et 333 [ o'y = PEOIIRE = PP W) de
7=1

n=1 i=1

m 3 3
_&ZZD@ Iz ( (0"
n=1i=1 j=1

nl,.n n 1/2 n ) n
P UE)) = PO g0 g

thEQ,

where ¢ depends on ||[VU || 1 ((0,1)x0)s Eo,m and on my.

MG UE) + 66t lu -
n=1

Step 3: Term T5. Using the Taylor formula since p € C%(R% ) we get

1
H () = H ) = H'05) 0k = i) = 5 HTR) 0k = i %,

where 7% € [min(r% !, r%), max(riy !, r%)]. Consequently T = Tk 1 + Rj1 with

T1—(5t2/ M)TM_%ld (5.24)
5 ot '
and
n, K 1 " —n ( K T?( 1) n n
R51—5tz Z R51 » Rs)y :§|K’H (TK)T(QK_TK)‘

n=1 KeM

By the first order Taylor formula applied to function  + (¢, 2) on the interval ("1 ¢*), thanks to the
relation (2.3), to the mass conservation (3.16) and (4.12) we have

|Rs1| < cdt (5.25)
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where ¢ depends on 0,7 || (@) and on Eg ag-
Let us now decompose T5 1 as follows: T5 1 = T5 2 + R52 with

Tso = 5t2 > / i — o) )[8t7“] (5.26)

n=1 KeM

and
n—1

- ' =T
R572 = 5tz /Q(r?\/[ _ Qn)p n./\/l) ( M = M [8,57‘]") dx
n=1 M

Using twice the Taylor formula, the Fubini Theorem and Holder’s inequality (see [24]) we can obtain

‘R572’ S Cét, (5.27)

where ¢ depends on r, T, H8t2r||L1(0 7.1 () and on Eg .-

Step 4: Term Tg. Using the local conservativity of the flux through a primal face, we may write

TG—T61+R61, R61—5tz Z Z RngK, with
n=1 KeMoe&(K)

=ty Y ook (M (i) = H () Yt and (5.28)

n= 10—65 K)mgmt
Ry = Jol (a5 = o ) (H (05 = H 2™ Ju e, 0 € E(K) N Eim.

Motivated by (4.16), we may write for 0 = K|L € Ejpy
R7X| < ev/halo
‘Qn ,up

B QTIL(‘ n 2
X U lsns1v/ hk + »* 1/
<Inax(QK, 07)EN"/2 | U’K| o=l (0 + i) ’
+ o5 — okl ‘%K lgn<ivh \/’%K) (5.29)

where ¢ depends on 7, [[V7| 10 ((0,7)x0)? and where the numbers gy are defined in Theorem 4.1. Here we

have used the first order Taylor formula applied to function H’ between endpoints r%_l, rn—l

quently the Holder and Young inequalities gives

m nup _ n )2 /
o<V [(X X el I i)

max
n=1  KeMo=K|LeE(K) (QK’

(%, 3 el i) o))

KeMoe&(K

_|_< Z Z lohg (05" — K)2|“Z,K|1??<1> < Z Z lolhe |u"K|> ]

KeMo=K|Le&(K) KeMoe&(K)

<ev/h 5t2[<z S ol (o5™ — of)” g1
M 7}(’02)(277)4“ o, K|1ox>1

m
n=1 KeMo=K|LeE(K) ax(g

(3 Kl e ) (Zrom g cl?)

KeM
/
£ Jolhaler - K>2|uz,K|1@;(<1+|Q|5/6(Z\a|ha|u2,K|6)16}

KEM o=K|LeE(K) oel
<cvhum

~*. Conse-

(5.30)

33



where ¢ depends on 1,7, || V7| oo ((0,7)x02)35 E0,m Provided v > 12/11. Here we have used estimate (4.16),
estimate (4.10), (4.12) of Corollary 4.1.

Let us now decompose the term 751 as Tg1 = 152 + Rg2 with

Toa=0tY" Y Y lolek M i (5:31)
n=1KeMoe&(K)NEint
where m
R6,2 = 5t Z Z Z Rg:g’K’
n=1 KeM oe&(K)NEint
and

Beg™ = Joloi (M i) = W n™) = WG 0 = ra7h) Jul i

Therefore, by virtue of the second order Taylor formula applied to function H’', Holder’s inequality,
(3.50), (3.51), (4.9), (4.13) in Corollary 4.1 we have,

’R672| S ChM (5.32)

where ¢ depends on 1, 7, [| V7| oo ((0,1)x )3, E0.m and on nay.

Let us now deal with the term Tg 2. First of all, let us remark that / Vet e = Z o] (r 1 —

K o€E(K)
% 1)n07 k. Therefore we may write
Ts2 =163+ Re 3,
with
Te3 = —5tZ/ " H' (o H Rm(u™) - Ve de, (5.33)

where R vy is defined in (3.65) and where the remainder Rg 3 is given by
Re3 = 5tz > Z > \0]9%7-["(7"}1(_1)(7""}(_1 — Yl — (R u) i )e? - n, i,
n=1 KeM j=1 geg(a)

Now in accordance with the proof of the remainder Rg 3 in Lemma 6.1 of [24] and by virtue of the Holder’s
inequality, (3.50), (3.51), and (4.9), (4.12) in Corollary 4.1,

’R6’3| < Chﬁ/l (5.34)

where ¢ depends on 1,7, || V7| oo (Q,r3), E0,m and where A is defined in (3.79).
Finally we write T3 = T4 + R 4, with

T6,4:—5t2/g — L Rpm(u") - V' de,
n=1 Q TM

m (5.35)
Re 4 = 5t2/ Q”(H"(T%)Vr” — H"(rﬁ]l)Vr”_l) - Rm(u”)de,
n=17%
where by the same token as above the remainder Rg 4 satisfies
’R674| S cot. (5.36)

Here the constant ¢ depends on 7,7, | V7, 97| Loo(g,)75 |]8tV7"||L2(O’T;L53_L§(Q)3 and on Eo .

We are now in position to conclude the proof of Lemma 5.1: we obtain the inequality (5.14) by gathering
the principal terms (5.19), (5.23), (5.26), (5.35) and the residual terms estimated in (5.18), (5.20), (5.22),
(5.25), (5.27), (5.30), (5.32), (5.34), (5.36) at the right hand side S°°_, T} of the discrete relative energy
inequality (5.1).

0
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6 A consistency error

This section is devoted to the derivation of a discrete identity satisfied by any strong solution. This
identity is stated in Lemma 6.1 below. It will be used in combination with the approximate relative
energy inequality stated in Lemma 5.1 to deduce the convenient form of the relative energy inequality
verified by any function being a strong solution to the compressible Navier-Stokes system. This last step
is performed in the next section.

Lemma 6.1 (Consistency error). Let (0,u) € Y5 X Xg st be a solution of the discrete problem (3.10).
Let (r,U) belonging to the class (3.73) such that U|o rxa0 = 0 and satisfying (1.1). Then there exists ¢
only depending on parameters (5.11-5.13) such that for any m =1,..., N, the following identity holds:

5ty (M[Ug, u" — Ulreo+ (n+\) /Q div U™ div y (u” — UD) dm)
n=1

i Ur —-Urt
+5t2/ﬁr7\415 5 (- Ug)da
n=1

m 3 3

oSS S S [l P Up)ee? ng i RED (i — PY UT),

n=li=1 KeM j=1 5c£0)(K)
R rrny (@) P(i) U
x ((Rg i )o MmPe Ui)k)
+5t2/p(r}(,l)divU”dm—i—étZ/p'(r}‘\,l)RM(u”)-Vr"dm+lCTA75t —0, (61)
n=1"% n=1"%

where the remainder Kﬂﬁt satisfies

IK¥5el < C(h/\/l + 5t>.

Proof. Since (r,U) satisfies (1.1) and belongs to the class (3.73), Equation (1.1b) can be rewritten in the
form
roU +rU - VU + Vp(r) = pAU + (p+ A\)Vdivu in (0,7") x Q. (6.2)

We write equation (6.2) at ¢ = ", multiply scalarly by u" — UZ, and integrate over Q2. We get, after
summation from n =1 to m, Z?:1 Q; where

Q1= 5ti/ﬁr"6tU" (u" = UZ) de,
n=1

Q> =5ti/gr"U"-VU“-<u"U£>dx,
n=1

Q3 = 5t§: /Q Vp(r"™) - (u" —U¢)dx
n=1

Q1= —5t§: /Q pAU™ - (u" — UP) da,

n=1

Q5 = —5tz / (p+NVdivu" - (u" — UZ) de.
n=1 Q

An adaptation of the proof of Lemma 7.1 in [24] gives

m Ur — Un—l m
Qi1+ Q3= 6t2/ rﬁ;l%(u” —UP)dz + (5tZ/ p(riy) div U™ da
Tl*l Q nfl Q

—|—5t2/ﬁp’(r7\4)72/\4(u") Ve dz 4 Ry (6.3)
n=1

35



where the remainder R Mot satisfies
[R50l < C(h/\/l + 6t).

and where the constant ¢ depends on 7, |p|c2(irm)s V7l Loo (0,1 x )5 10U || Lo (0.17)x )5 VU || oo (0,7 x02)
and on [|6; UHL?(O,T;LS 10V HL2 0,715 ()’ »Eom

By virtue of the Stoke’s formula we transform the term 7y as follows, using (3.39), (3.41) and dc|e| =
| De|,

m 3
:—5tZ/MAU" u" —UP)d _—WZZZ Z/ —U” (u — (PP UM)) da

n=1i=1 j=1 ecEM)
eleld

m 3 3
—otn S S defefour — (PY UMb |/U”

n=114i=1 j=1 g

elel
m 3
2DIDIY

n=1 i=1

3" deleld;(uf — (P UM)p,8;(PY UP)p, + Ry s

1 ecgl®
eleld

WMM

m
=0ty pUE,u" — Uflieo + Riy s
n=1

where the remainder R'{, 5, is given by

m 3
75353 3 DRAT IO C LTI (RGN LM

n=114i=1 j=1 £
eleld

Moreover by virtue of (3.52) and (3.53) in Lemma 3.2 we can write for e = a]a € Sl(n)t, e L el
3,(PY U™ p /U”d —l(U-(x )= Us(as)) — 20U (@) + R
£ i ) De | | 81:] 7 e ) o (3 o 837j ) € €
a n a n n
= 7@3{7 Uz (mO—p— ) 7833] Uz (me) + RE

where z, 5 € [, x| and where the remainder R} satisfies
|R?| < ch.

Note that the case € € Egc)t can be treated in the same way. Consequently we have inequality

/U”d —9,;(PY UZ-”)DE‘ < cha, Y(i,j) € {1,2,3)2, Ve € ED, ¢ 1 W),

where the constant ¢ depends on ||V2U|| Lo ((0,7)x Q) Lherefore

m 3 3
Rl < chaadt 323030 3 IDAG 04 = (P U)o < chuidt Y [u” - Ul
=1i=1 j=1 .c3(i) n=1
elel
where ¢ depends on ||V2U || e ((0,1)x0)- Consequently by virtue of (3.56) and (4.9) we have
Qi=0t) plUF, " —Uglieo+ R (6:4)

n=1
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where the remainder R Mot satisfies
[R50l < chm

and where ¢ depends on [|[VU]| 1 ((0.7)x9), | V2U|| Lo ((0.7)x)> 7m and on Eg .
The term @5 can be treated exactly in the same way as Q4 in order to obtain

Qs = —0t> (u+ /\)/ div U™ divaq(u” — U) dz + RTy 51 (6.5)
_ Q

where the remainder RT/\”,I s satisfies
m
‘RM,6t| < chpm.

where the constant ¢ depends on ||[VU || ((0,7)x0)> ||V2U||Loo((07T)XQ), nam and on Eg p.
Let us deal with the term Q2. We have

—6tZZ/ U VUMl — PY(UF)) da
n=1 =1
3

m 3 ‘
=335 3 [ RGP Uk, R - POk de+ R

n=11i=1 j=1 KeM

where the remainder R'{, 5, is given by

RM&_&Z/ = P (r)U™ - VU™ - (u™ — Pe(U™)) dae
+5tZ/Q77M(r")(U”—RMPgU”)~VU"-(u"—Pg(U”))dw
+5tZ/QPM(r")RM PeU"-VU" - (u" — Pe(U™) — Ryq(u” — Pe(U™))) dz.

By virtue of (3.54), (3.55), (3.67) and (4.9) the remainder R, 5, satisfies
|R§\n/l,(5t| < Ch./\/lv

where the constant ¢ depends on 7, | V7| Leo ((0,7)x0), U | oo ((0,7)x2)3, VU || Lo (0,1)x ) and on Eg -
Using the Stoke’s formula we infer that

m 3

5tzzz 3 / i RU(PY U ;U R (uf — POUI) i dae
n=1i=1 j=1 KeM
m 3 3 )
=t S > Y ek RGP Uk

n=Li=1 j=1 KeM 5ec£l)(K)

< (P UM = RGP UM ic)eD) - mgie R (uf = PE(UF)) i

where we have used the identity

/(‘)U"dx—/a(U ~ROPY UM ) da.
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Finally keeping in mind the definition of the quantity ry""" (see (5.8)) we obtain

m 3 3 ' ' ' ' 4
Y33 Y [k RUPY UP(PE U = RPE U )

n=11i=1 j= lKEMo—eg(j)(K)

x Rig(uf = PP Uk ]

)

m 3 3
=otY 30> Y |l PP UNG(PE Ue - RGP UP)k)e - noe

n=1i=1 j=1 KeM €5<])( K)

int
x R\ (uf — POUM) k| + Riys

where by virtue of (3.50), (3.51) the remainder R 5, satisfies

R sl <ty /Q | Pe U™ Ra(w” — Pe(U™)]| deo

where ¢ depends on || V7| e ((0,1)x0) and on ||U || e (0,1)x0)3- Consequently by virtue of (3.67) and (4.9)
‘R%,M < chpm.

Now we write

m 3 3 . .
(515222 Z Z [‘O_‘T,nup(’])(]) ) ((7)(]) Uln) _R'(/;L/)l(fp((g) Uzn)K> () . No K

n=11i=1 j=1 KeM 65(])(1()

int

< R (! = PEU)x |

m 3
=6tZZZZ > [l E et - no

1:=1 j= 1K€MU€S(J)( K)

< RED (up =P UML(PE U)o = RIG(PE U i)| + R s
where by virtue of (3.50), (3.66), (3.67) and (4.9) the remainder R 5, satisfies

m 3 3
LMD IPINDY (ol (P U7)e) - mg i (PE) U)o = REG(PE UF)i)

n=11i=1 j=1 KeM UEg(J)(K)

int
x (R (uf —PEUM) k= RED (it = PE UP),)|

7

Consequently

m 3 3 ) ) ]

Ryl <t S35 S joll(PY U, — RO(PY Ukl
n=1i=1 j=1 KeM UGg(J)(K)
x | R (p = PPUM) Kk = RED (i = PE U,
From (3.50) we infer that for any (i,j) € {1,2,3}2, K e M ,0 € El(nz( K),
(P UM, = RG(PY UM k| < ch,

which gives

m 3 3
Rl <ot 33 S ST lolhe RG (- PY W)k — RED (@ — P UP),|

n=1i=1 j=1 KeM Eg(J)( K)

int

m 3 3
Schadty DN D0 D0 Il =P U o,

n=1i=1 j= 1K€MU€€(J)(K)

int
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which gives by virtue of (4.9) and (3.56),
[Risel < cha

where ¢ depends on T, [|U|| oo ((0,1)x0)3s V7| Lo (0,7) x5 IVU || Lo ((0,7) x0)s Eo,m and on . Conse-
quently

m 3 3
2= Y % (lolrz(PE U )re) - mg e RED (it = PYUF),

< (P U, = RGPE UMK)) + iz (66)

where the remainder R% 5t satisfies
m
| RV sel < chp

Summing (6.3) to (6.6) we obtain the expected result that is (6.1).

7 End of the proof of the error estimate Theorem 3.3

In this Section we put together the relative energy inequality (5.14) and the identity (6.1) derived in the
previous section to obtain a discrete version of inequality (2.17). The final inequality resulting from this
manipulation is formulated in the following lemma.

Lemma 7.1. Under assumptions of Theorem 3.3 there exists ¢ depending on parameters (5.11-5.13)
such that for allm =1,... N, there holds:

E(o™, u |y, UF") + ot Zuu ~ Ul e

< c|hfy + \/(ﬁ+5(go,u0‘r9\,{,Ug)] +c5t25(gn,u” ', U ),
n=1

where A is defined in (3.79).

Proof. Gathering the formulae (5.14) and (6.1), one gets

E(e" w™|rit, U = E(" w1l UR) + bt Y " —UE|R e <P+ Pa+Pa+Q  (7.)
n=1

m n n—1
P = 5tZ/Q(g"1 - T%l)% (U —u") da,

m 3 3
ZEEDIIDIDY (Iol(ez® = rz) (P U)o - mo i

n=1i=1 KeM j=1 Ueg(a)([(

x (REDPOUF) = u)o) RG(PE UM ke — (PY UP),) ),
—6t2/ )) divU" dz

TR _Q n n n "™ — @ n n
+5t2/§;< er/l p/(rM)RM(’U, )Vr +Mp/<7’/\4)[at7"] )d.’B,

,
M
— m m m
Q=R+ Grse + Kiaoes
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and where the remainders RN st gﬂ; s5; and KTA s¢ are explicited in Lemma 5.1 and Lemma 6.1.
Step 1: Term P;. Writing Py = 6t> -, P}', an application of the Taylor formula and of Lemma
2.1 gives, since v > g:

Pyl < c/Qra“ — e — UE| da
<e / WE@,7Y) + (B iy )P o)l — U2 de
Q
n—1 ,.n—1\3/5 n—1 n—1 5/6 n n
<e( [ Blo ,rM> + B ri ) de) | ut — U s

c n—1 mn— n— n )
< 5[(/Q(E(Q Ly /E Ml))dm} +0l|lu” — U276 (0 e

C _
< Ze(0" L wn i UE Y + St — U e

with any § > 0, where ¢ depends on 1,7, [O;U]|| oo ((0,7)x0)3- Here we have used Theorem 3.1 to get a
bound on [lu™ —UZ |3 ()3 by |lu"—U, QH% ¢,0> the Jensen inequality and the Young inequality to perform
the before last inequality. Consequently

C S V23 n mn n . n n
|P| < g(ﬁ(go,r%’uo,Ug)—i—étZE(g U rM,U5)> +55tZHu —UgHigp. (7.2)
n=1 n=1

Step 2: Term Po. We write P, =6t Y " | Py where Lemma 2.1, the Hélder inequality yield, since

l\’)\w

2

3 3 o )
PE <SS ST hkloller — 2| RED (u — PE (U)o

i=1 j=1 KeM 5e£) (K)NEins

<[(Z X lohe(Eemim)

KeMoe&(K)NEint

(Z > !olth(Qg,up‘rg,uP)y/s}

KeMaoe&( K)mE,nt

(ZZ Z Z he |g’|7g »J)( P((S)(Uzn)) | )1/6

i=1 j= 1K€M0€S(]t)( K)
where ¢ depends on HU”LOO( 0,1)x)3 [IVU || Lo (0,1)x )0 and on nag. Next, we observe that the con-
tribution of the face o = K|L to the sums ZKGM > oes(k) |o1he E(oy p|rn "P) is less or equal than
2lo|he (E(0 %) + E(0}|r})). Moreover using (3.60) and (3.66) we have

3 3
%,] % /
(XY 5 ol R @ = PO " < llu” — U oy < clu” ~ Ulleo

i=1 j= lKEMJeg(J)( K)

int

where the constant ¢ depends on x4 in a nondecreasing way.
Consequently, we get by the same reasoning as in the previous step, under assumption vy > 3/2,

P UE) + 06t [l — (7.3)

n=1

c m
|Pa| < 551&25@”,1/1
n=1

where ¢ depends on 7,7 ||U || (( (0.7)x€)3 WIVU]| Loo 0,7y x0)2 and naq in a nondecreasing way.
Step 3: Term Ps. Since the pair (r, U) satlsﬁes continuity equation (1.1a) in the classical sense, we
have foralln=1,..., N,
[Or]" + U™ - Vr" = —r"divU",
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where we recall that [0,7]"(z) = 0y (", z) in accordance with (3.77). Using this identity we write

Ps=Ps1+Ps2+Pss, Psi=0t Z Psis

n=1
with Py = —/Q (P(Qn) —p' (") (" = 7) —p(T%)) divU" d=x
P
Py = [ L) Raw) - U™ - Vit e,

and Pg 3 = / ML () (73 — ) div U™ da
Q

From the asympototic behaviour (1.5) for large values of the pressure and Lemma 2.1 we easily deduce
that

P3| < ety E(e",u" |y, UE). (7.4)
n=1

where ¢ depends on 7,7, miny, 7 p, ming, /2 o7 P’ and [|VU || o (0,1)x)- From the total mass conservation
(3.16) and (3.51) we deduce
|Pa.3| < cham (7.5)

where ¢ depends on 7,7, [[V7|| Lo ((0,1)x02)35 [|VU || ((0,1)x )3 and on Eg ag-
Last but not least, the same reasoning as in Step 2 leads to the estimate

c m m
Psa < 5(hM n 5t25(gn,u”\rx4, Ug)) +656t 3 Ju — U3 - (7.6)
n=1 n=1

with any ¢ > 0, where ¢ depends on 1,7, |[V7[| oo (0,7)x0)3: VU |l ((0,1)x0)3 and on Eg a¢ in a non
increasing way. Gathering the formulae (7.1)-(7.6) with ¢ sufficiently small (with respect to u), we
conclude the proof of Lemma 7.1. O

Finally, Lemma 7.1 in combination with the bound (4.14) yields

i, Ug)

m—1
E(o™ u |y, UE) < o+ ot + E(o°ul |y, UR) ) + ot Y E(o"u"
n=1

whence Theorem 3.3 is a direct consequence of the standard discrete version of Gronwall’s lemma. The-
orem 3.3 is thus proved.

A Existence of a discrete solution

This section is devoted to the proof of Theorem 3.2. More precisely we are going to prove the following
Proposition

Proposition A.1. Consider a MAC grid D = (M,E) of Q of size hag. Let 6t > 0. Let p : R — R
such that p € Cl(Ri). Let (o*,u*) € Ly x Hgg such that o* > 0 a.e in Q. Then there exists
(0,u) € Lapg x Hg g such that o > 0 a.e in Q which satisfies

1

&(@ — 0*) 4+ div)} (ou) = 0, (A.1a)

e

&(@ﬁ)ui — ,g/)\*(i)ui*) + div(;)(guui) — MAg)ui

— (1 + N; divagu+ diplo) =0, Vi=1,..d. (A.1b)

Proof. Let us state the abstract theorem which will be used hereafter.
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Theorem A.1. Let N and M be two positive integers and V' be defined as follows:
V={(z,y) e RN xRY, y >0},

where, for any real number c, the notation y > ¢ means that each component of y is greater than c. Let
F be a continuous function from V x [0,1] to RN x RM satisfying:

1. ¥¢ € 10,1], if v € V is such that F(v,{) =0 then v € W where W is defined as follows:
W = {(z,y) e RY xR, [|z|| < C1, and e <y < Co},
with Cy , Cy and € three positive constants and || - | a norm defined over RN ;
2. the topological degree of F(-,0) with respect to 0 and W is equal to dy # 0.

Then the topological degree of F(-,1) with respect to 0 and W is also equal to dy # 0; consequently, there
ezists at least a solution v € W such that F(v,1) = 0.

We shall now prove the existence of a solution to (3.10). Let us define
V ={(u,0) € Hgo X Ly, ox >0VK € M}.
and consider the mapping

F:Vx [0,1] —)HgVOXLM
(U, QvC) — F(ua 0, C) = (ﬁ'v @)7

~
?

where (@, 9) € He g X L is such that

k%
/'&-vda::/w-vdcc—i—u[u,v]lf,o—i—(u%—/\)/diVMudiVMwa
Q Q

ot Q
+¢ [ diveousw) vde ¢ [ plo) diva vde, Vo Heo  (A20
Q Q
~ _ 0— Q* . up
0 gdx = gdz + ¢ [ divyy(ou) gdz, Vq € L. (A.2b)
Q o Ot Q

Any solution of F(u, p,1) = 0 is a solution of Problem A.1. Note also that in (A.2a) the fluxes F¢ ,(o,u)
which determine dive(ou ® w) are constructed from the fluxes Fy, x (0, u) which determine div}(ou) as
in (3.19) and (3.20).

It is easily checked that F' is indeed a one to one mapping, since the values of 4;;7 = 1,--- ,d, and
0 are readily obtained by setting in this system v; = 1p_, v; = 0,7 # 7 in (A.2a) and ¢ = 1x in (A.2b).
Moreover, the mapping F' is clearly continuous.

Let (u,0) € Heg X Ly and ¢ € [0,1] such that F(u,p,¢) = (0,0) (in particular o > 0). Then for
any (v,q) € Hgo X L,

/@“—@“.vdm+g/dng(gu®u)-'vdm+u[u”vh,&0
Q Q

ot
—i—(,u+)\)/divMudiVMvdaz—(/p(g) divpvde =0 (A.3a)
Q Q
/Q_Q qd:l:—i—C/diVﬁ (ou) gdx = 0. (A.3b)
o Ot Q

Taking ¢ = 1 as a test function in (A.3b), and using the conservativity of the fluxes we obtain

/ odzx = |0 ;1) = / o*dx > 0. (A4)
Q Q

This relation provides a bound for ¢ in the L' norm, and therefore in all norms since the problem is of
finite dimension.
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Taking u as a test function in (A.3a) and following the proof of Theorem 4.1 gives

[

Le0 < Cq (A.5)

where the constant C'; depends only on the data of the problem. Now a straightforward computation
gives
ok mingepm K| mingeam 0f
Q0 Y e, omkL [Uo K]

Consequently by virtue of (A.5) there exists € > 0 such that

oK > €, VK € M, (A.6)

where the constant ¢ depends only on the data of the problem. Clearly from (A.4) one has also

*dx
0K < fggi =Cy, VK e M. (A.7)
ming e | K|
Moreover ¢ = 0 the system F'(u, 0,0) = 0 reads:
ou — o*u* . .
/ 5 vde + plu, v g0+ (L + A) / divpmudivpvde =0, Yo € He o, (A.8a)
Q Q
0K = 0%, VK € M. (A.8b)

which has clearly one and only one solution. Let W defined by
W = {(u, 0) € Hg o X Ly such that ||ul]| < Cy, € < px < Cs}

It is quite easy to see that the determinant of the Jacobian matrix does not vanish for the solution of the
system (A.8). Therefore the topological degree dy of F'(-,-,0) with respect to 0 and W is not zero. Since
the topological degree of F(-,-,0) with respect to 0 and W does not vanish and by virtue of inequalities
(A.5), (A.6), (A.7), Theorem A.1 applies, which concludes the proof.

O

B Error estimates for a class of staggered schemes

In this section we present some alternative numerical schemes for the approximation of problem (1.1)-
(1.5), called staggered schemes. The space discretization in these schemes is staggered using noncon-
forming low-order finite element approximations, namely the Rannacher and Turek element (RT) [37] for
quadrilateral or hexahedric meshes, or the lowest degree Crouzeix-Raviart element (CR) [8] for simplicial
meshes. By the approach presented in this paper, it is possible to establish for these schemes similar
error estimates as those established in Theorem 3.3 for the MAC scheme. The exact result is stated in
Theorem B.1. We invite the reader wishing to read more about the discretizations of compressible flows
via the staggered schemes to consult [21], [13], [20], [26].

B.1 Space and time discretization

From now, let  C R3 be a bounded polyhedral domain. Let M be a decomposition of the domain
in simplices, wich we call hereafter a triangulation of 2, regardless of the space dimension. By £(K), we
denote the set of the edges (d=2) or faces (d=3) o of the element K € M; for short, each edge or face
will be caled an edge hereafter. The set of all edges of the mesh is denoted by &; the set of edges included
in the boundary of © is denoted by eyt and the set of internal edges (i.e £\ Eext) is denoted by Eing. The
triangulation M verifies the following assumption: Q = UgepmK; if K,L € M, then KNL =0, KNLis
a vertex or K N L is a common edge of K and L , wich is denoted by K|L. For each internal edge of the
mesh 0 = K|L, ngy, stands for the normal vector of o, oriented form K to L (so that nxy = —npg).
By |K| and |o| we denote the (d and d — 1 dimensional) measure, respectively, of an element K and of
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an edge o, and hx and h, stand for the diameter of K and o, respectively. As in the MAC case, we
measure the size of the mesh through the parameter h defined by

hap = max{hg, K € M}, (B.1)

where hy stands for the diameter of K. We measure the regularity of the mesh through the parameter
O defined by

= min{fb—K, K e M}, (B.2)
K

where £ stands for the diameter of the largest ball included in K.

Let us briefly describe the Crouzeix-Raviart element for simplicial meshes (see [8] for the seminal
paper and, for instance, [10, p. 83-85], for a synthetic presentation), and the so-called 'rotated bilinear
element’ introduced by Rannacher and Turek for quadrilateral or hexahedric meshes [37]|. The reference
element for the Crouzeix-Raviart element is the unit d-simplex and the discrete function space is the
space Py of affine polynomials. The reference element K for the rotated bilinear element is the unit
d-cube (with edges parallel to the coordinate axes); the discrete function space on K is @ﬂf( ), where
Q1(K) is defined as follows

@1(K) = span{l, (z;)i=1,....ds (3012 - x?—l—l)i:l,...,d—l}-

For both velocity elements used here, the degrees of freedom are determined by the following set of nodal
functionals:

1
{mei, c € E(K), i=1,..d}, mgyi(v)= M/w de, v = (v1,...,v4) } (B.3)

The mapping from the reference element to the actual one is, for the Rannacher-Turek element, the
standard )1 mapping and, for the Crouzeix-Raviart element, the standard affine mapping. Finally, in
both cases, the continuity of the average value of discrete velocities (i.e., for a discrete velocity field v,
mgi(v), 1 <i < d) across each edge of the mesh is required, thus the discrete space We (€2) is defined
as follows:

Weo(Q) = [Weo(Q)]? = {v € L*Q)%, VK € M, vjix € W(K)" and Vo = K|L € &,

Mei(V| ) = Mo i(V)L), VO € Eext, Mo i(v) = 0}

where W(K) is the space of functions on K generated by @ﬂf( ) through the @; mapping from K to
K for the Rannacher-Turek element and the space of affine functions on K for the Crouzeix-Raviart
element.

From the definition (B.3), each velocity degree of freedom can be uniquely associated to an element
edge. More precisely the degrees of freedom for the velocity components are located at the center of
the faces of the mesh. Hence, the velocity degrees of freedom may be indexed by the number of the
component and the associated edge, and the set of velocity degrees of freedom reads:

{u,, 0 €&}

Finally, we need to deal with the Dirichlet boundary condition. Since the velocity unknowns lie on
the boundary (and not inside the cells), these conditions are taken into account in the definition of the
discrete spaces by setting zero to the velocity unknows that lie on the boundary

Yo € gexta u, = 0. (B4)

Since only the continuity of the integral over each edge of the mesh is imposed, the functions of Wg o(€2)

are discontinous through each edge; the discretization is thus nonconforming in H'(Q)?.

We denote by ¢, the function of Wg ¢(§2) such that
/ 0o dy = 10|84 for any o,0’ € Eipg - (B.5)
0—/
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The degrees of freedom for the density (i.e. the discrete density unknowns) are associated to the cells
of the mesh M, and are denoted by:
{Q[(, K e M}

We now introduce a dual mesh, which will be used for the finite volume approximation of the time

derivative and convection terms in the momentum balance equation. In contrast with the MAC scheme,
the dual mesh is the same for all velocity components. When K € M is a simplex, a rectangle or a
cuboid, for o € £(K), we define D, i as the cone with basis o and with vertex the mass center of K
(see Figure 1). We thus obtain a partition of K in m sub-volumes, where m is the number of faces of the
mesh, each sub-volume having the same measure | D, x| = |K|/m. We extend this definition to general
quadrangles and hexahedra, by supposing that we have built a partition still of equal-volume sub-cells,
and with the same connectivities. Note that this is of course always possible, but that such a volume
D, g may be no longer a cone; indeed, if K is far from a parallelogram, it may not be possible to build a
cone having o as basis, the opposite vertex lying in K and a volume equal to |K|/m. The volume D, g
is referred to as the half-diamond cell associated to K and o.
For 0 € &y, 0 = K|L, we now define the diamond cell D, associated to o by Dy = Dy i U D, 1; for
an external face o € Eo NE(K), Dy is just the same volume as Dy . We define the space Sg(2) of
vector valued functions constant on every Dy, 0 € £. We denote by Sg o(£2) the subspace of functions
from Sg(€2) that are zero on every Dy, 0 € Eext. We then introduce the following operator

Pe: | Wepo(Q2) — Se ()
u+— Pgu= Z u, Xp,(x), (B.6)

Uegint
which is clearly a one to one mapping.

The density on a dual cell is given by:

for o € &ny, 0 = K|L |Do| 0p, = |Do,i| 0K + |Do,L| 0L,

(B.7)
for o € Eext, 0 € E(K), 0p, = OK-

and we denote

0= op,Xp, ().

For the the time discretization of problem (1.1)-(1.5), we consider a partition 0 = t° < t! < ... <
tN = T of the time interval (0,7, and, for the sake of simplicity, a constant time step ot = t"* — ¢t"~1;
hence t" = nét for n € {0,---,N}. We denote respectively by {uy,o € &ni,n € {0,---,N}}, and
{0}, K e M,n € {1,---,N}) the sets of discrete velocity and density unknowns. For o € &y, the value
u” is an expected approximation of the mean value over ("1, ") x D, of the velocity of a weak solution,
while for K € M the value g% is an expected approximation of the mean value over ("1 ") x K of
the density of a weak solution. To the discrete unknowns, we associate piecewise constant functions on
time intervals and on primal or dual meshes, which are expected approximation of weak solutions, For

the velocity, this constant function is of the form:

N

ut,@) =) Y uy Xp, () Xgn-1.m(t),

n=1 Uegint

where X{yn-1ny is the characteristic function of the interval (t"=1,¢"). We denote by X¢ 5 the set of
such piecewise constant functions on time intervals and dual cells. For the density, the constant function
is of the form:

o(t,x) = o for x € K and t € (t"" 1, "),

and we denote by Y, s the space of such piecewise constant functions.

For a given u € Xg s associated to the set of discrete velocity unknowns {u},o € &n,n €
{1,---,N}}, and for n € {1,---,N}, we denote by u" € Sgo(€2) the piecewise constant function
defined by u"(x) = u} for € € Dy,0 € &t In a same way, given o € Y5 associated to the discrete
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density unknows {¢%, K € M,n € {1,---,N}} we denote by " € L the piecewise constant function
defined by ¢"(x) = ¢, for x € K, K € M.

We consider an implicit-in-time scheme, which reads in its fully discrete form, for 1 < n < N and
1<i<d:

1
5" ) +divif(e"u") =0, (B.8a)
— (@ — o) + dive(o"u" @ u”) — pAgu”

— (p+ AN Vedivpyu" + Vep(o™) =0, (B.8b)

where the terms introduced for each discrete equation are defined hereafter.

B.1.1 Mass balance equation

As for the MAC scheme, equation (3.10a) is a finite volume discretization of the mass balance (1.1a) over
the primal mesh. The discrete "upwind" divergence is defined by

divﬁ : SM(Q) X Sg}o(Q) — SM(Q)
(g, ) — leM Q’ll, Z Z Fo‘K Qa XK? (Bg)
KEM 065

where F, g (0,u) stands for the mass flux across o outward K, which, because of the Dirichlet
boundary conditions, vanishes on external faces and is given on the internal faces by:

VU = K’L € ginta Fjo’7 (Qa u) = ’U| QEP uO',K7 (Blo)
where u, i is an approximation of the normal velocity to the face o outward K, defined by:
Up K = Uy - Ny i for o € E(K). (B.11)

Thanks to the boundary conditions, u, x vanishes for any external face o. The density at the internal
face 0 = K|L is obtained by an upwind technique:

| 0K if ug i >0,
05" = _ (B.12)
or, otherwise.

B.1.2 The momentum equation

We now turn to the discrete momentum balances (3.10b), which are obtained by discretizing the momen-
tum balance equation (1.1b) on the dual cells associated to the faces of the mesh.

The discrete convective operator - The discrete divergence of the convective term ou ® u is
defined by

dive : Sm(Q) x Sg () — Se ()
. 1
(0,u) — dive(pu ® u) = Z D] Z F.,(0,u) uc Xp,, (B.13)
0€Eint 7 eeg(Da)

where for o € i and € € £(D,) the quantity Fe , = Fe ,(p,u) stands for a mass flux through the
dual faces of the mesh and are defined hereafter while u. stands for an approximation of i*" component of
the velocity over € in the case of 0 € £ @) First of all by virtue of the Dirichlet boundary condition, that
the flux through a dual face included in the boundary is taken equal to zero. For K € M and o € £(K),
let £%- be given by:

‘DUK|
% = — B.14
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With the definition of the dual mesh adopted here, the value of the coefficients {7 is independant of the
cell and the face. For the Rannacher-Turek elements, we have {7 = 1/(2d) and, for the Crouzeix-Raviart
elements, £7- = 1/(d + 1). We suppose first that the flux through the external dual faces, which are also
faces of the primal mesh, is equal to zero.

Then the mass fluxes through the inner dual faces are supposed to satisfy the following properties.

Definition B.1 (Definition of the dual fluxes from the primal ones). The fluzes through the faces of the
dual mesh are defined so as to satisfy the following three constraints:

(H1) The discrete mass balance over the half-diamond cells is satisfied, in the following sense. For all
primal cell K in M, the set (Fe o )cck of dual fluzes included in K solves the following linear system

Fox+ Y. Fo=¢& Y Fug, o0€&(K). (B.15)
e€€(Dy), eCK o' €E(K)

/
o’

(H2) The dual fluxes are conservative, i.e. for any dual face € = Dy|D,,, we have F, , = —F, ;.

(H3) The dual fluzes are bounded with respect to the primal fluves (Fy i )sce(i), in the sense that there
exists a constant real number C such that:

F.y| <C max {|Frx|, 0 €E(K)}, KeM, oc&(K), ec&(Dy), €C K. (B.16)

In fact, definition B.1 is not complete, since the system of equations (B.15) has an infinite number
of solutions, which makes necessary to impose in addition the constraint (B.16); however, assumptions
(H1)-(H3) are sufficient for the subsequent developments of this paper. A detailed process of the dual
fluxes construction can be found in [1,25].

Since the flux across a dual face lying on the boundary is zero, the values u, are only needed at the
internal dual faces, and we make the centered choice for their discretization, i.e. for € = Dy |Dy € Eipg,

b, = Yo Tl (B.17)
2
The discrete divergence and gradient - The discrete divergence divag € L(Sg0(£2), Sm(Q2)) of

the velocity (or more generally of a function S¢ (£2)) has a natural approximation:

1
for K € M, (divpmu)g = K| Z o] e, K (B.18)
cel(K)

The term (Vep), stands for the discrete pressure gradient at the face 0. This gradient operator, which
belongs to L(Sam(2), Sg,0(£2)) is built as the transpose of the discrete operator for the divergence of the
velocity, i.e. in such a way that the following duality relation with respect to the L? inner product holds:

> K| pk (divamu)g + Y Dol to - (Vep)o = 0. (B.19)
KeM o€&int
This yields to the following expression:

g
for o = K‘L S ginty (Vgp)a = |’D | (pL — pK) No K- (BQO)

Note that, because of the Dirichlet boundary conditions, the discrete gradient is not defined at the
external faces.

Discrete Laplace operator - The discrete Laplace operator Ag € L(Sg 0(£2), Se0(Q2)) reads for
u € Sg () and 0 € Eine :

(-cw)s = [ VP us Ve da,
Q

where @5 = (Pg, ..., Po) € We 0(Q), where the shape function ¢, is introduced in (B.5) and where Pg is
defined in (B.6). In the above formula and for a function v € Wg (), the quantity Vo is equal to the
gradient of the function v almost everywhere in €.
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Here again let us introduce the discrete relative energy functional

T n n n 1 n n n mn n
E(" M UE) = > §‘DU‘QDU|U’U_UU|2+ > IK|E(ok|r) (B.21)
O'Egjnt KEM
where . .
r"=r",.), U"=U{","), rg = K| /Kr” de, U? = M/U" dy. (B.22)

Now, we are ready to state the result about the error estimate for these alternative discretizations.

Theorem B.1 (Error estimate). Let Q C R3 be a bounded polyhedral domain. Assume that the viscosity
coefficients satisfy assumptions (1.4) and that the pressure p satisfy (1.5). Let M be a decomposition of
the domain § in simplices, with step size haq (see (B.1)) and reqularity O aq where Qa4 is defined in (B.2).
Let us consider a partition 0 = t° < t* < ... <tV =T of the time interval [0, T), which, for the sake of
simplicity, we suppose uniform where 0t stands for the constant time step. Let (0,u) € Y5t X Xe 5t be a
solution of the discrete problem (B.8) emanating from (0°,u®) € Sp(Q) x Sg0(Q) such that o° > 0 and
(r,U) € F (see (3.73)) be a (strong) solution of problem (1.1)-(1.5). Then there exists a constant ¢ > 0
only depending on T, €2, po, Poos I, Y, ¢, T, MiNf, 7 P, Ming, /9 o5 P, on|| (7, U)|| 7 in a nondecreasing way, on
Eo,Mm 1 a nondecreasing way and on Oxq in a nonincreasing way such that

Oina<XN5(Q”,u” ', Ug) < c<5(90, uo‘r%, U2) + hay + \/E), (B.23)

where A is given by
2y—-3 1

A = min( '3

). (B.24)

Remark 4. 1. The discrete problem (B.8) admits a solution. As for the MAC case, the proof is based
on a topological degree argument.

2. Note that the exponent A is the same for all discretizations investigated in this paper.

does not differ from the discretization used. It is a consequence of the used for the continuity
equation which is the same for each discretization.

3. The items listed in Remark 2 remain valid also for discretizations described in this section.
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