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PARAMETRIC ESTIMATION OF SPECTRUM DRIVEN BY AN EXOGENOUS SIGNAL

Tom Dupré la Tour, Yves Grenier, Alexandre Gramfort

Télécom ParisTech, LTCI, CNRS, Université Paris-Saclay, Paris, France

ABSTRACT

In this paper, we introduce new parametric generative driven
auto-regressive (DAR) models. DAR models provide a non-
linear and non-stationary spectral estimation of a signal, condi-
tionally to another exogenous signal. We detail how inference
can be done efficiently while guaranteeing model stability. We
show how model comparison and hyper-parameter selection
can be done using likelihood estimates. We also point out the
limits of DAR models when the exogenous signal contains
too high frequencies. Finally, we illustrate how DAR models
can be applied on neuro-physiologic signals to characterize
phase-amplitude coupling.

Index Terms— non-linear auto-regressive models, non-
stationary, spectrum estimation, electrophysiology, phase-
amplitude coupling

1. INTRODUCTION

Auto-regressive (AR) models are stochastic signal models
that have proved their usefulness in many applications: from
speech and audio applications, econometrics or even physiol-
ogy and biological signal processing. One of their advantages
is the existence of fast inference algorithms [1] and to provide
a compact representation of the spectral content of a signal
(e.g. using 10 to 16 parameters for coding 32 ms of speech).

Standard AR models are so-called stationary, meaning that
the statistics of the signal are assumed to be stable over time.
When working with such models, the spectrum is therefore
not a function of time. In many applications, this modeling
assumption is not adapted to describe the interesting dynamics
of the physical system observed. This is for example the case
in the field of econometrics [2] where time-varying or non-
linear AR models were first studied, but it is also the case
for physiological signals as it will be illustrated below with a
phenomena known as phase-amplitude coupling [3]. The type
of signal we propose to study here is illustrated in Fig. 1.

Related non-linear auto-regressive models Various non-
linear auto-regressive models have been proposed in audio
signal processing or econometrics. Models with a conditional
heteroskedasticity (ARCH [4], GARCH [5]) are extremely
popular in econometrics, since they are able to model a vary-
ing amplitude for the entire spectrum. However, these models
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Fig. 1. Simulated signal with time-varying spectrum driven by
exogenous signal.

do not model variations in the spectrum itself. To do so, a
simple way is to define several regimes: at each time, the in-
stantaneous model is a simple linear AR model, yet the AR
coefficients change depending on a non-linear function of the
past of the signal. The first models based on this idea are
the SETAR models [2], which estimate several AR models
depending on the amplitude of the signal with respect to some
thresholds. To get a smoother transition between regimes, SE-
TAR models have inspired other models like EXPAR [6] or
STAR [7], in which the AR coefficients change continuously
depending on a non-linear function of the past of the signal.
FAR models [8] are even more general, since they estimate
the different regimes independently from each other. Motiva-
tions behind these models are shared with the DAR models
presented in this paper. However, DAR models do not require
to infer the driving behavior from the signal itself but rely on
the prior knowledge of an exogenous driving signal. As we
demonstrate below, this increases both speed and robustness
of the estimation, while we guarantee the local stability of the
models thanks to a parametrization using parcor coefficients.

2. DRIVEN AUTO REGRESSIVE MODELS

2.1. Models definition

An auto-regressive (AR) model specifies that a signal y de-
pends linearly on its own p past values, where p is the order
of the model:

∀t ∈ [p+ 1, T ] y(t) +

p∑
i=1

aiy(t− i) = ε(t) (1)

where T is the length of the signal and ε is the innovation
(or residual), modeled with a Gaussian white noise: ε(t) ∼



N (0, σ(t)2). To extend this AR model to a non-stationary
model, one can assume [9, 10] that the AR coefficients ai are
driven by a polynomial function of a given exogenous signal
x, here called the driver:

∀i ∈ [1, p] ai(t) =

m∑
j=0

aijx(t)j = A>i X(t) (2)

where x(t)j is x(t) to the power j. The choice of the polyno-
mial basis is discussed in section 3.2. Note that Ai is a vector,
as the upper-case letter suggests, composed of the scalars aij .
We note Âi the estimated value, and A>i the transpose.

As we parametrize the AR coefficients, the estimated mod-
els are not guaranteed to be stable. To examine stability, the
standard technique is to consider the parcor coefficients ki,
introduced in the fast Levinson-Durbin algorithm [1] that esti-
mates the ai coefficients recursively from previous orders: the
ai at order p (noted a(p)

i in Eq. 3) can be computed from kp

and the AR coefficients at previous order a(p−1)
i :

a(p)
p = kp; ∀i ∈ [1, p−1], a

(p)
i = a

(p−1)
i +kpa

(p−1)
p−i (3)

From this so-called lattice representation, we can define a
second non-stationary parametrization, where the ki(t) are
directly driven by the exogenous signal x, instead of the ai(t):

∀i ∈ [1, p] ki(t) =

m∑
j=0

kijx(t)j = K>i X(t) (4)

This parametrization is used as an intermediate step dur-
ing model estimation. The lattice representation brings
a simple condition (necessary and sufficient) for stability:
−1 < ki < 1 [11]. To enforce this condition, we use the
log-area ratios (LAR) γi [12], as suggested in [13]:

γi = log

(
1 + ki
1− ki

)
⇐⇒ ki =

eγi − 1

eγi + 1
(5)

We use the LAR coefficients γi(t) in order to force the ki(t)
to be within ] − 1, 1[, which enforces the stability of the in-
stantaneous model for all t. Our third and final non-stationary
parametrization is:

∀i ∈ [1, p] γi(t) =

m∑
j=0

γijx(t)j = Γ>i X(t) (6)

We call this model a driven auto-regressive (DAR) model.

2.2. Model estimation

For DAR models, as the innovation is assumed to be Gaussian
white noise, the likelihood L is obtained via:

L =

T∏
t=p+1

1√
2πσ(t)2

exp

(
− ε(t)2

2σ(t)2

)
(7)

−2 log(L) = T log(2π) +

T∑
t=p+1

ε(t)2

σ(t)2
+ 2

T∑
t=p+1

log(σ(t))

To estimate a DAR model, we maximize the likelihood itera-
tively from order 1 to order p, by adding each time a lattice
cell. First, we assume that the innovation variance is constant
σ(t)2 = σ2 and equal to the signal’s empirical variance. So
for each lattice cell i from i = 1 to p, we estimate the DAR
coefficients Γi ∈ Rm+1 by minimizing a least square criterion
over the forward residual:

J1(Γi) =

T∑
t=i+1

ε+
i (t)2

σ(t)2
(8)

where the forward and backward residuals at the output of the
i-th lattice cell are given by:

∀i ∈ [1, p]
∀t ∈ [i+ 1, T ]

{
ε+
i (t) = ε+

i−1(t) + ki(t)ε
−
i−1(t− 1)

ε−i (t) = ε−i−1(t− 1) + ki(t)ε
+
i−1(t)

(9)

and where we initialize with ε+
0 (t) = ε−0 (t) = y(t). We

minimize J1(Γi) with a Newton-Raphson procedure since the
gradient and Hessian can be computed easily. To start with a
good initialization, we approximate the problem with a two-
step algorithm. In the first step, we solve the linear problem
argminKi

J1(Ki) using (4), which leads to a normal equation:(
T∑

t=i+1

ε−i−1(t− 1)2

σ(t)2
X(t)X(t)>

)
K̂i =

−
T∑

t=i+1

1

σ(t)2
ε+
i−1(t)ε−i−1(t− 1)X(t) (10)

In the second step, we estimate Γi with a regression over the
trajectories γi(t) and k̂i(t): After clipping k̂i(t) = K̂>i X(t)
inside [−1+η, 1−η] (e.g. η = 10−6), we measure the quality
of the approximation with a second least-squares criterion:

J2(Γi) =

T∑
t=i+1

(
Γ>i X(t)− log

(
1 + k̂i(t)

1− k̂i(t)

))2

(11)

Again this leads to a normal equation:(
T∑

t=i+1

X(t)X(t)>

)
Γ̂i =

T∑
t=i+1

X(t) log

(
1 + k̂i(t)

1− k̂i(t)

)
These two steps are used to initialize the Newton-Raphson
procedure, and largely speed-up the optimization. We iterate
this over each lattice cell i: For i > 1, the residuals ε+

i (t)

and ε−i (t) are obtained with (9) using the k̃i(t) derived from
γ̂i(t) = Γ̂>i X(t) using (5). We then obtain the DAR coeffi-
cients Γi for every order i from 1 to p.

2.3. Innovation variance estimation

During inference of the DAR coefficients Γi, we first assumed
a fixed innovation variance σ2. We propose to model it as



driven by x, as in [9]:

∀t ∈ [p+ 1, T ] log(σ(t)) =

m∑
j=0

bjx(t)j = B>X(t)

(12)

The vector B ∈ Rm+1 is estimated from the residual ε+
p (t) by

maximum likelihood also using a Newton-Raphson procedure.
We then iterate between the estimation of the Γi and of B. We
observed in our experiments that two iterations are generally
sufficient.

2.4. Power spectral density

After model estimation, we can compute the conditional power
spectral density (PSD) of the model Sy: For a given driver’s
value x0, we compute the AR coefficients ai(x0) from the
DAR coefficients Γi using (6), (5) and (3), along with the
innovation’s standard deviation σ(x0) using (12). Since AR
models with time-varying coefficients are locally stationary
[14], we can compute the PSD for this driver’s value :

Sy(x0)(f) =

∣∣∣∣∣
p∑
i=0

ai(x0)

σ(x0)
e−j2πfi

∣∣∣∣∣
−2

(13)

where j2 = −1 and a0(x0) = 1. Fig. 2 shows an example
of Sy(x) for the observed range of value of the driver x (for
robustness, we only use the value of x between the 5 and 95
percentiles of all x values) (the signal used in this estimation
will be detailed in section 4). Using the fast Fourier transform
(FFT) in (13), we estimate the PSD for a range of frequency
f ∈ [0, fs/2]. As model estimation is also very fast, we obtain
the PSD very quickly: With (p,m) = (10, 2), on a signal with
T = 106 time points, the entire DAR estimation lasts 0.22 s.

3. MODEL AND HYPER-PARAMETER SELECTION

3.1. BIC selection

DAR models are probabilistic, thus we can define a likelihood
function L (7), and perform model and hyper-parameter se-
lection by maximizing it. To compare models with different
number of hyper-parameters (i.e. degrees of freedom), we
can also use the well known bayesian information criterion
(BIC) [15], which readsBIC = −2 log(L)+d log(T ), where
d is the number of degrees of freedom. In DAR models, we
have d = (p+ 1)(m+ 1) . As model estimation is very fast,
we can easily estimate on a full grid of hyper-parameters (p
and m) and keep the model that leads to the lowest BIC.

Simulations Using simulated data, we tested the hyper-
parameters selection based on the BIC. We generated a driving
signal x for T = 104 time points, by re-sampling a Gaussian
white noise of length Tfx/fs (where fs = 103 Hz is the
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Fig. 2. Power spectral density (PSD) evaluated through a DAR
model, for different driver’s values x. In dashed black, we plot
the PSD estimated with a Welch method over the entire signal.
Note that the PSD is mostly flat since the signal was globally
whitened as preprocessing, cf. 4 .

sampling frequency). We then drew a set of LAR coeffi-
cients γi(t) using random walks: starting from a real number
γi(0) ∈]− 1, 1[, we computed γi(t+ 1) = γi(t) + εi(t) with
εi(t) ∼ N (0, 0.3). Note that the LAR coefficients do not need
to be in ] − 1, 1[ to make the system stable (cf. section 2.1).
However, to avoid having very large coefficients during a long
period of time, we rescaled the trajectory to be inside [−4, 4].
To make the LAR coefficients dependent of the driver x, we
projected them on the basis X(t) = [1 x(t) ... x(t)m]> :

Γ̂i = argmin
Γi∈Rm+1

T∑
t=1

(Γ>i X(t)− γi(t))2 (14)

With the obtained DAR coefficients Γ̂i, we computed the in-
stantaneous LAR coefficients γ̃i(t), and generated a signal
y(t) by feeding the corresponding lattice filters defined by
k̃i(t) with a Gaussian white noise. To focus on the spectral
fluctuations, we used a constant innovation gain: σ(t) = σ.

We then fitted several DAR models on y, with p ∈ [1, 20]
and m ∈ [0, 3], and compared the BIC of each fit. We tested if
the BIC selects the correct hyper-parameters, and we tested it
for different driver’s frequency fx. The results are presented
in Fig. 3 : Interestingly, the BIC selection of m is correct in
most cases, provided that the driver’s frequency is not too high
(fx < 50 Hz). When the driver’s frequency is too low, the BIC
sometimes overestimate m since the time length is too short
to see many driver’s oscillations. The BIC selects p correctly
in most cases at ±2 (not shown), for all driver’s frequencies.

3.2. Comparison with STAR models

The choice of a polynomial basis in (6) and (12) is motivated
by simplicity, and practice also shows that a low order (≤
3) is enough as stated by a BIC selection. For the sake of
comparison, we also estimated a multi-regime LSTAR [16]:

∀i ∈ [1, p] ai(t) =

m∑
j=0

aijFj(x(t)) (15)
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Fig. 3. Selection of hyper-parameter m in simulated data with
respect to the driver’s frequency. We simulated 100 signals
from 100 DAR models with p = 10 and m = 0 (left), m = 1
(middle),m = 2 (right). We then estimated some DAR models
on these signals, and we selected p̂ and m̂ that minimized the
BIC. The graphs show the proportion of each m̂ selected. The
hyper-parameter m is correctly estimated in most cases if the
driver’s frequency is not too high (fx < 50 Hz).

which is parametrized with sigmoid functions:

∀j ∈ [1,m] Fj(x(t)) = (1 + e−γj(x(t)−cj))−1 (16)

and with F0(x(t)) = 1. Note that to fairly compare the models,
we use the same exogenous signal x to drive the AR coeffi-
cients, when standard LSTAR models use the delayed signal
y(t − d), which results in a worse fit (cf. Fig 4). We also
extended them to model the innovation variance σ(t)2 with
sigmoids:

∀t ∈ [p+ 1, T ] log(σ(t)) =

m∑
j=0

bjFj(x(t)) (17)

The results are presented in Fig. 4, and show that the poly-
nomial and the sigmoid parametrizations achieve comparable
performances. However, the optimization of the LSTAR is
much slower, since there is no good initialization procedure
for the transitions parameters γj and cj : the non-linear opti-
mization is slow and may contain several local minima, and
the cost of an initial grid-search is large, or even prohibitive as
soon as m ≥ 2. On the contrary, the DAR models estimation
is very fast and does not suffer from multiple minima.

AR LSTAR(x) DAR(x) LSTAR(y2) DAR(y2)
2.78
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 /
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Fig. 4. BIC by time point for different models and drivers
(lower is better), using signals of section 4. The signal x is a
better driver than the best delayed raw signal z2(t) = z(t− 2).
The hyper-parameters (p,m), chosen through a BIC selection,
are respectively: (18,∅), (10, 1), (10, 2), (14, 2), (10, 2).
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Fig. 5. The driver x is extracted from the raw signal z with a
band-pass filter. The remaining high frequencies are whitened
to form the modeled signal y.

4. APPLICATION TO NEUROSCIENCE

In neuroscience, phase-amplitude coupling (PAC) refers to the
interaction between the phase of a slow neural oscillation and
the amplitude of high frequencies within the same signal or at a
distinct brain location. High frequencies driven by slow signal
fluctuations have been observed in animal [17] and human [3]
studies and have been reported as a key element for neural
communication during complex cognitive processes [18, 19].
Yet, PAC is usually measured through empirical and somehow
ad hoc metrics [3, 20]. To give a proper model to PAC, we
applied DAR models on a human electro-corticogram (ECoG)
channel from [3] (730 seconds at 333 Hz).

After decimation and removal of the electrical network
noise, we extracted the driver x with a zero-phase bandpass
filter (fx = 3.8 Hz, ∆fx = 1 Hz). We removed a wider
bandpass signal around it (∆f = 4 Hz) to prevent spurious
correlations between x and y, and we filled the gap with white
noise filtered with the same filter. We then whitened y with
a simple AR model, by applying the inverse AR filter to the
signal. This whitening step is not necessary, yet it reduces
the need of a high order p in DAR, which reduces both the
computational cost and the variance of the model. After an
exhaustive grid search with p ∈ [1, 50] and m ∈ [0, 4], the
hyper-parameters (p,m) = (10, 2) are selected by BIC, hence
revealing the phase-amplitude coupling present in the data.

Fig. 5 shows a portion of the signals, while Fig. 2 shows
the PSD (in dB) depending on the driver’s value, estimated
through a DAR model. PAC can be identified in the difference
of Sy(x) as the driver x varies: the PSD has more power for
negative driver’s values than for positive driver’s values, and
PSD shapes are also different.

5. CONCLUSION

In this paper, we introduced driven auto-regressive (DAR)
models, to provide a parametric spectrum estimation of a sig-
nal, conditionally to another exogenous driving signal. The
chosen parametrization guarantees local stability, and allows
fast inference and easy hyper-parameter selection. We also
showed how DAR models can be used to characterize phase-
amplitude coupling on neuro-physiologic signals.
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[16] Dick van Dijk, Timo Teräsvirta, and Philip Hans Franses,
“Smooth transition autoregressive models—a survey of
recent developments,” Econometric reviews, vol. 21, no.
1, pp. 1–47, 2002.
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