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Abstract. In this paper, we address the exact smoothing problem of
Conditionally Gaussian Observed Markov Switching Model (CGOMSM).
The proposed approach tackles the discontinuity feature in switching
regime models by incorporating fuzzy switches instead of hard jumps.
Fuzzy switched based approach is more adapted to real-world applica-
tion in which regime continuity is an intrinsic property. We define, with
respect to a measure, the local density of the switches and we show
how fast smoothing equations should be adapted to cope with the fuzzy
model. Finally, we show through several experiments the interest of the
fuzzy switches model.

1 Introduction

Let XN
1 = {X1, . . . , XN}, YN

1 = {Y1, . . . , YN} and RN
1 = {R1, . . . , RN} be

three random sequences taking values in Rm, Rq and Ω = 1, . . . ,K. Let XN
1 be

a hidden process and YN
1 be an observed process. We consider a switching regime

model represented by the sequence of switches RN
1 . We address the smoothing

problem consisting in an recursive search of the unobserved process XN
1 and

the switches sequence RN
1 knowing the observed sequence YN

1 . A fast Bayesian
processing can be carried out by assuming that the distribution of (XN

1 ,Y
N
1 ) is

within the framework of hidden Gaussian Markov Model. The non-linearity can
be modeled by a switching regime system. Then, the idea is to approximate a
non-linear non-Gaussian system by a regime switching Gaussian system. Some
recent switching models have been proposed with efficient fast exact filtering
schemes [9] and satisfactiry computation time. These switching Gaussian models
include conditionally Markov switching hidden linear models (CMSHLM) [16]
and the conditionally Gaussian observed Markov switching model (CGOMSM)
which is a sub-model of CMSHLM defined as follows:

– TN1 = (XN
1 , R

N
1 , Y

N
1 ) is Markov chain;
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Fig. 1. Directed graph representing dependencies between random sequences XN
1 YN

1

and RN
1 . Circles represent continuous process and diamond represents discrete process.

– p(rn+1|xn, rn, yn) = p(rn+1|rn) and[
Xn+1

Yn+1

]
=

[
Axxn+1(Rn+1

n ) Axyn+1(Rn+1
n )

0 Ayyn+1(Rn+1
n )

] [
Xn

Yn

]
+[

Bxxn+1(Rn+1
n ) Bxyn+1(Rn+1

n )
Byxn+1(Rn+1

n ) Byyn+1(Rn+1
n )

] [
Un+1

Vn+1

]
+[

MX(Rn+1)−Axxn+1(Rn+1
n )MX(Rn)−Axyn+1(Rn+1

n )MY (Rn)
MY (Rn+1)−Ayyn+1(Rn+1

n )MY (Rn)

]
with UN1 and V N1 a Gaussian unit-variance white noise vector, MX(Rn) and
MY (Rn) are respective means of XN

1 and YN
1 in each state (independently from

n). The CGOMSM is then defined by matrices A(Rn+1
n ), B(Rn+1

n ), transition
matrix denoted as t such that t(i, j) = p(rn+1 = j|rn = i) and vector M =
[M(Rn);M(Rn+1)] such that M(Rn) = [MX(Rn);MY (Rn)]. Figure 1 depicts
the dependence graph of the CGOMSM model.
We assume that RN

1 takes its values in a discrete finite set of K switches Ω =
{1, ...,K}. This hard jumps model has been widely used in several contexts
dealing with switching regime Markov systems. Its success comes from its ability
to represent non-linear dynamic patterns which is an inherent property in several
applications (analysis of economic and finance time series [11], sustainable energy
[6], robotics [12] [7] [8], etc.).
However, this model does not take into account the intrinsic imprecision of the
switches in real-world applications. In fact, hard jumps induce discontinuity in
the dynamic behavior of the studied system. This transitory imprecision can be
modeling fuzzy modeling which consists in allowing each switch to take its value



as a mixture of many components simultaneously. Fuzzy modelling has been
already incorporated in several applications dealing with Markov models [14, 13,
15]. In this paper, we present a new method to approximate non-linear Markov
systems using a new variant of CGOMSM using fuzzy switches (hereafter called
CGOMFSM). The remaining of this paper is organized as follows. In the second
section, we detail the formulation of fuzzy switching model. The third section
describes the adaptation of CGOMSM algorithms for parameters estimation
and for posterior marginal probabilities computation the fuzzy counterpart. The
fourth section presents experimental results, and the last one draws conclusions
and future work.

2 Fuzzy switching model with K hard classes

In the fuzzy switches system we assume that each jump rn in the random process
RN1 is a mixture of the K classes. Let εin be the contribution of the ith hard
component ωi such that εin ∈ [0, 1]. Then each switch rn is given by the vector
εn :

rn = εn = (ε1n, ε
2
n, ..., ε

K
n ), (1)

The normalization condition yields:

K∑
k=1

εk = 1 (2)

In the remainder, for the sake of simplicity, we refer to each hard component by
its index in the discrete set i.e. class i corresponds to the hard component ωi.

2.1 Measure of local density

The distribution of each switch is defined by a density hr with respect to a
Lebesgue measure υ. This measure includes K discrete components represented
by K Dirac functions {δk, 1≤k≤K} as well as the continuous components repre-
senting the combination of the hard switches.
Let S be a subset of 0 < l ≤ K hard components in Ω. If a switch rn is a
mixture of the hard components in S ⊂ Ω then rn belongs to the hyperplane

of dimension l corresponding to
l∑
i=1

εin = 1 such that εin > 0, ∀1 ≤ i ≤ l. The

corresponding measure υ is given by :

υ =

K∑
k=1

δk +
∑

S⊆Ω,S 6=∅

µS (3)

where µS are Lebesgue measures on [0, 1]l.
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Fig. 2. Example of measure density for a fuzzy model with 3 discrete classes.

Example
In this example we consider the particular case K = 3 to illustrate the local

density measure. The three dimensional space corresponding to the three hard
components is depicted in figure 2.1. The hyperplane corresponding to the nor-
malization condition (eq. (2)) coincides with the shaded triangle ∆. The edges of
∆ represent the mixture of two hard classes while the vertices of ∆ correspond
to the three hard components. When K = 3, eq. (3) becomes:

υ = δω1 + δω2 + δω3 + µω1ω2 + µω1ω3 + µω2ω3 + µω1ω2ω3

2.2 Joint densities

Let H be the hyperplane of dimension K − 1 and f(rn, rn+1) be the joint density
of the pair (rn, rn+1) ∈ H ×H. The joint density f is defined as follows:

f(rn, rn+1) =

{
αij if both switches are hard

βφ(rn, rn+1) + θ otherwise
. (4)

We choose φ(rn, rn+1) =
(

1− ‖rn+1−rn‖√
2

)r
, r ∈ R with ‖rn+1 − rn‖ is the

distance between two consecutive switches given by the quadratic norm. Then:

φ(rn, rn+1) =

1−


K∑
i=1

(εin − εin+1)2

2


1
2


r

, r ∈ R (5)



The normalization condition yields:

K∑
i=1

αii +

∮
H

∮
H

θ + βφ(rn, rn+1)(ν, µ)dνdµ = 1 (6)

Example:
When the number of hard switches equals 3, the expression of normalization

condition gives:

3∑
i=1

αii + (βa + βb + βc)

∫ 1

0

∫ 1

0

(1− |u− v|)rdudv

+ 2(βa + βb + βc)

∫ 1

0

(1− |ε|)r + (1− |1− ε|)rdε = 1 (7)

2.3 Parameters interpolation

The model matrices of the fuzzy switching model can be calculated by linear
interpolation using the following formula:

A(ε1, ε2) =
∑

1≤i,j≤K

εi1ε
j
2A(i, j),

B(ε1, ε2) =
∑

1≤i,j≤K

εi1ε
j
2B(i, j),

M(ε1, ε2) =
∑

1≤i,j≤K

εi1ε
j
2M(i, j),

where A(i, j) and B(i, j) are the model matrices corresponding to the hard
components i and j. M(i, j) is means model vector for hard switches i and j.

The implementation of the fuzzy switching model can be performed by ade-
quate quantification of the interval [0, 1] into F discrete fuzzy levels. The larger
F is, the more accurate the representation of data would be. However, choosing
a large number of fuzzy levels will lead to high computation time. For example,
when the number of crisp components equals three, setting F = 3 yields 15
switches and setting F = 4 gives 21 switches.

3 Fuzzy switching model with two hard components

In this remaining of the paper, we consider the case of two hard switches Ω =
{0, 1}. To model fuzzy switches, we consider that each random variable Rn in
RN

1 takes its values in the continuous interval [0, 1], instead of the set {0, 1}.
Let us denote the pair (ε0n, ε

1
n) ∈ [0, 1], in which εin represents the contribution

of the hard component i to the switch rn. Without loss of generality, let εn =
ε1n = 1− ε0n. Then we have Rn = εn:



– εn = 0 if the switch is the hard component 0.
– εn ∈]0, 1[ if the switch is fuzzy.
– εn = 1 if the switch is the hard component 1.

So this model able to represent signals with both discrete (hard) and continuous
(fuzzy) components. Let ν define the measure associated to random variable Rn
(ν is defined by 2 diracs and a Lebesgue measure).

Let us now precisely define the joint a priori density p
(
Rn+1
n

)
, where notation

Rn+1
n represents the couple (Rn, Rn+1). p

(
Rn+1
n

)
is defined with respect to the

measure product ν ⊗ ν, under normalisation condition∫∫
[0,1]2

p (u, v) d(ν ⊗ ν)(u, v) = 1. (8)

This distribution can be represented by a density h1 which involves three
types of components:

– Hard components when both Rn and Rn+1 are in {0, 1};
– Composite components when either Rn and Rn+1 is in {0, 1} and the other

is in ]0, 1[;
– Fuzzy components when both switches are in fuzzy area ]0, 1[2.

Let assume that the density h is uniform in each of its components. It is so
possible to define the density h by a set of 9 parameters explicitly expressing
h(rn, rn+1) = p

(
Rn+1
n = rn+1

n

)
= πij . But since we have

π0F = h(0, u) = h(u, 0), (9)

π1F = h(1, u) = h(u, 1), (10)

with u ∈]0, 1[, only 7 parameters are required to entirely define h : π00, π01,
π10, π11, π0F , π1F and πF (see Fig. 3). With these notations, the normalisation
eq. (8) writes

π00 + π01 + π10 + π11 + 2π0F + 2π1F + πF =

π00 + π01 + π10 + π11 + 2
∫
]0,1[

p(0, u)du+

2
∫
]0,1[

p(1, u)du+
∫∫

]0,1[2
p(u, v)dudv = 1 (11)

Let now assume that the shape of h is defined according to the simple fol-
lowing shape

h(ε1, ε2) = aΦ(ε1, ε2) + b, (12)

whatever ε1, ε2 ∈ [0, 1], with (a, b) ∈ R2 and

Φ(ε1, ε2) = (1− |ε1 − ε2|)r, (13)

1 Density h does not depend on index n since the model we consider in this paper is
assumed stationary.
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Fig. 3. Density of p
(
Rn+1

n

)
with respect to measure ν ⊗ ν.

with r ∈ R. Hence, this model for h relies 3 parameters: a, b, and r. Analytic
computation of the joint prior densities can be worked out by quantifying the
interval [0, 1] into F equal-length sub-intervals

[
i
F ,

i+1
F

]
as described in Figure

3. Using this scheme, the normalization condition in eq. (11) yields:

π00 + π01 + π10 + π11 +

1

2F

F−1∑
i=0

(a(1− εi)r + b) +
1

2F

F−1∑
i=0

(aεri + b) +

1

2F 2

F−1∑
i=0

F−1∑
j=0

(a (1− |εi − εj |)r + b) = 1. (14)

Each sub-interval can be represented by its medium value 2i+1
2F . So, in this

discrete approximate scheme, the joint a priori density can be defined by a
(2 + F )× (2 + F ) matrix.
Under the assumptions of fuzzy switches, we can define the matrices of the

incorporated model using a bi-linear function as follows:

A(ε1, ε2) = [(1− ε1)A(0, 0) + ε1A(1, 0)](1− ε2)

+[(1− ε1)A(0, 1) + ε1A(1, 1)]ε2 (15)

B(ε1, ε2) = [(1− ε1)B(0, 0) + ε1B(1, 0)](1− ε2)

+[(1− ε1)B(0, 1) + ε1B(1, 1)]ε2 (16)

The means vectors of the fuzzy model are calculated using the following
equations:

M(εi) = [(1− εi)M(0) + εiM(1)] (17)

(18)
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Fig. 4. Subdivision of the interval [0, 1] into F = 5 equal-length fuzzy sub-intervals.

Hence, the CGOMFSM is entirely defined by

– the parameters of the corresponding deterministic hard switching model,

– the number of fuzzy levels F , and

– parameters a, b and r.

The parameter r specifies the homogeneity of the switching model. The larger r
is, the larger the probability of having two similar consecutive switches is.
Figure 5 represents and example of simulation of (X,Y,R) using the set of param-
eters of a fuzzy switching model defined in table 1. Simulations were performed
using the following transition matrix:

t =



0.99 0.01 0 0 0 0 0
0 0.99 0.01 0 0 0 0
0 0 0.99 0.01 0 0 0
0 0 0 0.99 0.01 0 0
0 0 0 0 0.99 0.01 0
0 0 0 0 0 0.99 0.01
0 0 0 0 0 0 1.00


This simulation shows the imprecision between hard switches 0 and 1 as pre-
sented in the trajectory of YN

1 . The choice of the transition matrix allow a
progressive regime switching from parameters set corresponding to hard switch
0 to hard switch 1.
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Table 1. Example of fuzzy switching model with 5 fuzzy switches.

(Rn, Rn+1) (0, 0) (1, 1)

(MX,MY ) (1, 10) (−1,−10)

A
0.550000 0.350000
0.000000 0.830000

0.400000 0.200000
0.000000 0.460000

B
0.516720 0.000000
0.279261 0.482818

0.867179 0.000000
0.176203 0.870260

4 Fast smoothing in a CGOMFSM

Let us denote by TN
1 the triplet (XN

1 ,R
N
1 ,Y

N
1 ). The smoothing problem consists

in computing :

E
[
Xn+1

∣∣yN1 ] =

∫
[0,1]

p
(
rn+1 = ν

∣∣yN1 )E [Xn+1

∣∣rn+1 = ν,yn+1
1

]
dν, (19)

from p
(
rn+1

∣∣yN1 ) and E
[
Xn+1

∣∣rn+1,y
n+1
1

]
.

The optimal smoother computes recursively p
(
rn+1

∣∣yN1 ) and E
[
Xn+1

∣∣rn+1,y
n+1
1

]
from p

(
rn
∣∣yN1 ) and E [Xn |rn,yn1 ] and the model parameters using the proce-

dure detailed in [9]. The main difference between CGOMSM and CGOMFSM is
that in the case of fuzzy switches we involve continuous integration, requiring to
be quantified with respect to the number of discrete fuzzy levels F .



Since (RN
1 ,Y

N
1 ) is a pairwise Markov chain in the model, we get

p
(
rn+1

∣∣yn+1
1

)
=

∫
[0,1]

p
(
rn+1,yn+1 |rn = ν,yn

)
p (rn = ν |yn

1 )dν∫
[0,1]

∫
[0,1]

p(r∗n+1 = υ,yn+1|rn = ν,yn)p (rn = ν |yn
1 )dνdυ

, (20)

and

p
(
rn
∣∣rn+1,y

n+1
1

)
=

∫
[0,1]

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 ) dν∫
[0,1]

p
(
rn+1,yn+1 |r∗n,yn

)
p (r∗n |yn

1 )dυ
. (21)

Since
E
[
Xn

∣∣rn+1
n ,yn+1

1

]
= E [Xn |rn,yn1 ] , (22)

and from (19), we can derive the following recursive equation:

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=

∫
[0,1]

p
(
rn
∣∣rn+1,y

n+1
1

)
×

Fn+1(rn+1
n ,yn+1

n )E [Xn |rn,yn1 ] +Hn+1(rn+1
n ,yn+1

n )dν, (23)

with Fn+1(rn+1
n ,yn+1

n ) and Hn+1(rn+1
n ,yn+1

n ) are adequate matrices. Proba-
bilities p(rn|yn1 ) and p(rn, y

N
1 ) are recursively calculated in linear time using

forward and backward probabilities in the Markov chain (Y N1 , RN1 ) such that
αn(rn) = p(rn, y

n
1 ) and βn(rn) = p(yNn+1|rn, yn).

α1(r1) = p(r1, y1)

αn+1(rn+1) =

∫
[0,1]

αn(υ)p(rn+1,yn+1|rn,yn)dυ (24)

and

βN (rN ) = 1

βn(rn) =

∫
[0,1]

βn+1(υ)p(rn+1,yn+1|rn,yn)dυ (25)

Using forward-backward probabilities, we can compute the smoothed and the
filtered probabilities as follows::

p(rn|yN1 ) =
αn(rn)βn(rn)∫

[0,1]
αn(υ)βn(υ)dυ

(26)

p(rn|yn1 ) =
αn(rn)∫

[0,1]
αn(υ)dυ

(27)

Posterior marginal probabilities are calculated using the normalized Baum-
Welch algorithm. The algorithm computes recursively the forward and backward
probabilities. In the case of fuzzy switches, these probabilities are defined as
follows:

αn+1(δ) =

∫
[0,1]

αn(θ)p (tn+1(δ) |tn(θ) ) dθ (28)

βn(δ) =

∫
[0,1]

βn+1(θ)p (tn+1(δ) |tn(θ) ) dθ, (29)



with tn(θ) = (xn,yn, rn = θ).
Then:

p(rn, rn+1|xN1 ,yN1 ) =
αn(rn)p(tn+1|tn)βn+1(rn+1)∫

[0,1]

∫
[0,1]

αn(δ)p(tn+1|tn)βn+1(θ)dδdθ
(30)

5 Experiments

In this section, we present two series of experiments to illustrate the smoother, in
the case of scalar data (m = q = 1). In the first series we assess the performance
of the fuzzy model with synthetic fuzzy signals; in the second series we apply
our algorithm to smooth simulated Stochastic Volatility (SV) data. In both
experiments, parameters estimation is carried out using EM algorithm using
training samples denoted by (xT1 ,y

T
1 ) of size T . Then we repeatedly generate,

according to the considered model, synthetic sequences of size S denoted by
(xS1 ,y

S
1 ). Smoothing algorithm is then performed using estimated parameters

to generate x̂S1 from the observed sequence yS1 . The criterion used to assess the
efficiency of smoothing algorithms is the mean squared error (MSE) defined as
follows:

MSE =

S∑
n=1

(xn − x̂n)
2

(31)

5.1 Smoothing synthetic fuzzy signals

We generate a fuzzy signal with 5 discrete fuzzy switches. Then we estimate the
model considering different values of F ranging from 1 to 5. For each set of data,
we consider 3 cases for the value of r ∈ {2, 5, 20}. For each value of r, we perform
10 independent experiments with generated signals of size S = 1000. For each
experiment, we perform 100 EM iterations on independently generated samples
(XT

1 ,Y
T
1 ) of size T = 20000. Figure 6 depicts an example of simulated data

and the optimal (but approximated) smoothing output, and Table 2 reports the
MSE results for different cases of fuzzy models and different values of r. The
chief finding of this series of experiments is that when the number of fuzzy levels
increases, the smoothed signal is closer to the “ground-truth” hidden signal: e.g.
in case 3, for r = 20, the MSE decreases from 0.741 for F = 0 to 0.577 for F = 5.

5.2 Experiments on stochastic volatility models

Stochastic volatility (SV) models are widely used to highlight the variance of
stochastic processes [10]. Several variants of SV models have been studied (Hen-
ston, CEV, GARCH, Chen, etc.). In this paper, we consider standard SV models
defined as follows:

X1 = µ+ U1 (32)

Xn+1 = µ+ φ(Xn − µ) + σUn+1 (33)

Yn = β exp

(
Xn

2

)
Vn, (34)



Fig. 6. A (xN
1 ,R

N
1 ,Y

N
1 ) CGOMFSM trajectory, together with the automatically re-

stored states in magenta (dashed).

Table 2. MSE results for different fuzzy signals with 5 discrete fuzzy levels and different
values of r.

F r Case 1 Case 2 Case 3 Case 4 Case 5

0 2 1.395 1.155 0.854 1.009 1.291

5 1.179 1.007 0.795 0.929 0.924

20 0.688 0.72 0.741 0.954 0.565

1 2 1.264 1.029 0.797 0.93 1.146

5 1.082 0.812 0.69 0.841 0.841

20 0.574 0.697 0.654 0.812 0.518

2 2 1.197 0.977 0.767 0.888 1.098

5 0.985 0.775 0.673 0.797 0.775

20 0.552 0.613 0.623 0.722 0.484

3 2 1.138 0.931 0.745 0.845 1.093

5 0.953 0.743 0.666 0.785 0.765

20 0.542 0.58 0.579 0.72 0.468

5 2 1.121 0.913 0.738 0.838 1.064

5 0.902 0.728 0.656 0.746 0.727

20 0.519 0.489 0.577 0.698 0.404

where Ui, Vi are independent standard Gaussian vectors. The SV models is
defined by the set of parameters σ, µ, and α. The main conclusion is that when



the number of discrete fuzzy states increase, the model approaches the results
of the optimal (but time consuming) particle smoother.

Table 3. MSE for SV models with µ = 0.5, β = 0.5. To insure stationarity of models,
φ2 = 1− σ2. PS column is the result from the particle smoother.

F
φ σ 0 1 3 5 PS

Case 1 0.99 0.141 0.395 0.233 0.144 0.124 0.12

Case 2 0.9 0.435 0.480 0.387 0.350 0.339 0.33

Case 3 0.8 0.6 0.557 0.496 0.474 0.467 0.46

Case 4 0.5 0.866 0.701 0.672 0.661 0.661 0.66

6 Conclusion

In this paper, we presented a novel approach to approximate non-linear Markov
system using Conditionally Gaussian Observed Markov Fuzzy Switching Model
(CGOMFSM). The chief novelty of this work is the introduction of fuzzy jumps
instead of classical crisp states. This model still allows exact (up to required
quantification) and fast smoothing equations. The fuzzy jumps allows transient
modification of parameters, which is more appropriate for real-world applica-
tions. Future work includes the evaluation of the model for real data.
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