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An exact smoother in a fuzzy jump Markov switching model

In this paper, we address the exact smoothing problem of Conditionally Gaussian Observed Markov Switching Model (CGOMSM). The proposed approach tackles the discontinuity feature in switching regime models by incorporating fuzzy switches instead of hard jumps. Fuzzy switched based approach is more adapted to real-world application in which regime continuity is an intrinsic property. We define, with respect to a measure, the local density of the switches and we show how fast smoothing equations should be adapted to cope with the fuzzy model. Finally, we show through several experiments the interest of the fuzzy switches model.

Introduction

Let X N 1 = {X 1 , . . . , X N }, Y N 1 = {Y 1 , . . . , Y N } and R N 1 = {R 1 , . . . , R N } be three random sequences taking values in R m , R q and Ω = 1, . . . , K. Let X N 1 be a hidden process and Y N 1 be an observed process. We consider a switching regime model represented by the sequence of switches R N 1 . We address the smoothing problem consisting in an recursive search of the unobserved process X N 1 and the switches sequence R N 1 knowing the observed sequence Y N 1 . A fast Bayesian processing can be carried out by assuming that the distribution of (X N 1 , Y N 1 ) is within the framework of hidden Gaussian Markov Model. The non-linearity can be modeled by a switching regime system. Then, the idea is to approximate a non-linear non-Gaussian system by a regime switching Gaussian system. Some recent switching models have been proposed with efficient fast exact filtering schemes [START_REF] Gorynin | Fast filtering in switching approximations of non-linear Markov switching systems with application to stochastic volatility[END_REF] and satisfactiry computation time. These switching Gaussian models include conditionally Markov switching hidden linear models (CMSHLM) [START_REF] Pieczynski | Exact filtering in conditionally Markov switching hidden linear models[END_REF] and the conditionally Gaussian observed Markov switching model (CGOMSM) which is a sub-model of CMSHLM defined as follows: p(r n+1 |x n , r n , y n ) = p(r n+1 |r n ) and 1 depicts the dependence graph of the CGOMSM model. We assume that R N 1 takes its values in a discrete finite set of K switches Ω = {1, ..., K}. This hard jumps model has been widely used in several contexts dealing with switching regime Markov systems. Its success comes from its ability to represent non-linear dynamic patterns which is an inherent property in several applications (analysis of economic and finance time series [START_REF] Koko | Application of Markov-Switching Model to Stock Returns Analysis[END_REF], sustainable energy [START_REF] Yang | Support Vector Machine Enhanced Markov Model for Short Term Wind Power Forecast[END_REF], robotics [START_REF] Baltzakis | A Hybrid Framework for Mobile Robot Localization: Formulation Using Switching State-Space Models[END_REF] [7] [START_REF] Le Corff | Online Expectation Maximization algorithm to solve the SLAM problem[END_REF], etc.). However, this model does not take into account the intrinsic imprecision of the switches in real-world applications. In fact, hard jumps induce discontinuity in the dynamic behavior of the studied system. This transitory imprecision can be modeling fuzzy modeling which consists in allowing each switch to take its value as a mixture of many components simultaneously. Fuzzy modelling has been already incorporated in several applications dealing with Markov models [START_REF] Carincotte | Unsupervised image segmentation based on a new fuzzy hidden Markov chain model[END_REF][START_REF] Salzenstein | Parameter estimation in hidden fuzzy Markov random fields and image segmentation[END_REF][START_REF] Carincotte | Unsupervised Change Detection on SAR Images using Fuzzy Hidden Markov Chains[END_REF]. In this paper, we present a new method to approximate non-linear Markov systems using a new variant of CGOMSM using fuzzy switches (hereafter called CGOMFSM). The remaining of this paper is organized as follows. In the second section, we detail the formulation of fuzzy switching model. The third section describes the adaptation of CGOMSM algorithms for parameters estimation and for posterior marginal probabilities computation the fuzzy counterpart. The fourth section presents experimental results, and the last one draws conclusions and future work.
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X n+1 Y n+1 = A xx n+1 (R n+1 n ) A xy n+1 (R n+1 n ) 0 A yy n+1 (R n+1 n ) X n Y n + B xx n+1 (R n+1 n ) B xy n+1 (R n+1 n ) B yx n+1 (R n+1 n ) B yy n+1 (R n+1 n ) U n+1 V n+1 + M X (R n+1 ) -A xx n+1 (R n+1 n )M X (R n ) -A xy n+1 (R n+1 n )M Y (R n ) M Y (R n+1 ) -A yy n+1 (R n+1 n )M Y (R n ) with U N 1 and V N 1 a Gaussian unit-variance white noise vector, M X (R n ) and M Y (R n ) are respective means of X N 1 and Y N 1 in each state (independently from n). The CGOMSM is then defined by matrices A(R n+1 n ), B(R n+1 n ), transition matrix denoted as t such that t(i, j) = p(r n+1 = j|r n = i) and vector M = [M (R n ); M (R n+1 )] such that M (R n ) = [M X (R n ); M Y (R n )]. Figure

Fuzzy switching model with K hard classes

In the fuzzy switches system we assume that each jump r n in the random process

R N 1 is a mixture of the K classes. Let ε i n be the contribution of the i th hard component ω i such that ε i n ∈ [0, 1].
Then each switch r n is given by the vector ε n :

r n = ε n = (ε 1 n , ε 2 n , ..., ε K n ), (1) 
The normalization condition yields:

K k=1 ε k = 1 (2) 
In the remainder, for the sake of simplicity, we refer to each hard component by its index in the discrete set i.e. class i corresponds to the hard component ω i .

Measure of local density

The distribution of each switch is defined by a density h r with respect to a Lebesgue measure υ. This measure includes K discrete components represented by K Dirac functions {δ k, 1≤k≤K } as well as the continuous components representing the combination of the hard switches.

Let S be a subset of 0 < l ≤ K hard components in Ω. If a switch r n is a mixture of the hard components in S ⊂ Ω then r n belongs to the hyperplane of dimension l corresponding to

l i=1 ε i n = 1 such that ε i n > 0, ∀1 ≤ i ≤ l.
The corresponding measure υ is given by : 

υ = K k=1 δ k + S⊆Ω,S =∅ µ S (3) 

Example

In this example we consider the particular case K = 3 to illustrate the local density measure. The three dimensional space corresponding to the three hard components is depicted in figure 2.1. The hyperplane corresponding to the normalization condition (eq. ( 2)) coincides with the shaded triangle ∆. The edges of ∆ represent the mixture of two hard classes while the vertices of ∆ correspond to the three hard components. When K = 3, eq. ( 3) becomes:

υ = δ ω1 + δ ω2 + δ ω3 + µ ω1ω2 + µ ω1ω3 + µ ω2ω3 + µ ω1ω2ω3

Joint densities

Let H be the hyperplane of dimension K -1 and f (r n , r n+1 ) be the joint density of the pair (r n , r n+1 ) ∈ H × H. The joint density f is defined as follows:

f (r n , r n+1 ) = α ij if both switches are hard βφ(r n , r n+1 ) + θ otherwise . ( 4 
) We choose φ(r n , r n+1 ) = 1 -rn+1-rn √ 2 r
, r ∈ R with r n+1 -r n is the distance between two consecutive switches given by the quadratic norm. Then:

φ(r n , r n+1 ) =       1 -     K i=1 (ε i n -ε i n+1 ) 2 2     1 2       r , r ∈ R (5) 
The normalization condition yields:

K i=1 α ii + H H θ + βφ(r n , r n+1 )(ν, µ)dνdµ = 1 (6) 
Example:

When the number of hard switches equals 3, the expression of normalization condition gives:

3 i=1 α ii + (β a + β b + β c ) 1 0 1 0 (1 -|u -v|) r dudv + 2(β a + β b + β c ) 1 0 (1 -|ε|) r + (1 -|1 -ε|) r dε = 1 (7)

Parameters interpolation

The model matrices of the fuzzy switching model can be calculated by linear interpolation using the following formula:

A(ε 1 , ε 2 ) = 1≤i,j≤K ε i 1 ε j 2 A(i, j), B(ε 1 , ε 2 ) = 1≤i,j≤K ε i 1 ε j 2 B(i, j), M (ε 1 , ε 2 ) = 1≤i,j≤K ε i 1 ε j 2 M (i, j),
where A(i, j) and B(i, j) are the model matrices corresponding to the hard components i and j. M (i, j) is means model vector for hard switches i and j.

The implementation of the fuzzy switching model can be performed by adequate quantification of the interval [0, 1] into F discrete fuzzy levels. The larger F is, the more accurate the representation of data would be. However, choosing a large number of fuzzy levels will lead to high computation time. For example, when the number of crisp components equals three, setting F = 3 yields 15 switches and setting F = 4 gives 21 switches.

Fuzzy switching model with two hard components

In this remaining of the paper, we consider the case of two hard switches Ω = {0, 1}. To model fuzzy switches, we consider that each random variable R n in R N

1 takes its values in the continuous interval [0, 1], instead of the set {0, 1}. Let us denote the pair (ε 0 n , ε 1 n ) ∈ [0, 1], in which ε i n represents the contribution of the hard component i to the switch r n . Without loss of generality, let , where notation R n+1 n represents the couple (R n , R n+1 ). p R n+1 n is defined with respect to the measure product ν ⊗ ν, under normalisation condition

ε n = ε 1 n = 1 -ε 0 n . Then we have R n = ε n : -ε n = 0 if the switch is the hard component 0. -ε n ∈]0, 1[ if the switch is fuzzy. -ε n = 1 if
[0,1] 2 p (u, v) d(ν ⊗ ν)(u, v) = 1. ( 8 
)
This distribution can be represented by a density h1 which involves three types of components:

-Hard components when both R n and R n+1 are in {0, 1}; -Composite components when either R n and R n+1 is in {0, 1} and the other is in ]0, 1[; -Fuzzy components when both switches are in fuzzy area ]0, 1[ 2 .

Let assume that the density h is uniform in each of its components. It is so possible to define the density h by a set of 9 parameters explicitly expressing

h(r n , r n+1 ) = p R n+1 n = r n+1 n = π ij . But since we have π 0F = h(0, u) = h(u, 0), (9) 
π 1F = h(1, u) = h(u, 1), (10) 
with u ∈]0, 1[, only 7 parameters are required to entirely define h : π 00 , π 01 , π 10 , π 11 , π 0F , π 1F and π F (see Fig. 3). With these notations, the normalisation eq. ( 8) writes

π 00 + π 01 + π 10 + π 11 + 2π 0F + 2π 1F + π F = π 00 + π 01 + π 10 + π 11 + 2 ]0,1[ p(0, u)du + 2 ]0,1[ p(1, u)du + ]0,1[ 2 p(u, v)dudv = 1 (11) 
Let now assume that the shape of h is defined according to the simple following shape

h(ε 1 , ε 2 ) = aΦ(ε 1 , ε 2 ) + b, (12) 
whatever with r ∈ R. Hence, this model for h relies 3 parameters: a, b, and r. Analytic computation of the joint prior densities can be worked out by quantifying the interval [0, 1] into F equal-length sub-intervals i F , i+1 F as described in Figure 3. Using this scheme, the normalization condition in eq. ( 11) yields:

ε 1 , ε 2 ∈ [0, 1], with (a, b) ∈ R 2 and Φ(ε 1 , ε 2 ) = (1 -|ε 1 -ε 2 |) r , (13) 
π 00 + π 01 + π 10 + π 11 + 1 2F F -1 i=0 (a(1 -ε i ) r + b) + 1 2F F -1 i=0 (aε r i + b) + 1 2F 2 F -1 i=0 F -1 j=0 (a (1 -|ε i -ε j |) r + b) = 1. ( 14 
)
Each sub-interval can be represented by its medium value 2i+1 2F . So, in this discrete approximate scheme, the joint a priori density can be defined by a (2 + F ) × (2 + F ) matrix. Under the assumptions of fuzzy switches, we can define the matrices of the incorporated model using a bi-linear function as follows:

A(ε 1 , ε 2 ) = [(1 -ε 1 )A(0, 0) + ε 1 A(1, 0)](1 -ε 2 ) +[(1 -ε 1 )A(0, 1) + ε 1 A(1, 1)]ε 2 (15) 
B(ε 1 , ε 2 ) = [(1 -ε 1 )B(0, 0) + ε 1 B(1, 0)](1 -ε 2 ) +[(1 -ε 1 )B(0, 1) + ε 1 B(1, 1)]ε 2 (16) 
The means vectors of the fuzzy model are calculated using the following equations: Hence, the CGOMFSM is entirely defined by the parameters of the corresponding deterministic hard switching model, the number of fuzzy levels F , and parameters a, b and r.

M (ε i ) = [(1 -ε i )M (0) + ε i M (1)] (17) 
The parameter r specifies the homogeneity of the switching model. The larger r is, the larger the probability of having two similar consecutive switches is. Figure 5 represents and example of simulation of (X,Y,R) using the set of parameters of a fuzzy switching model defined in table 1. Simulations were performed using the following transition matrix:

t =          
0.99 0.01 0 0 0 0 0 0 0.99 0.01 0 0 0 0 0 0 0.99 0.01 0 0 0 0 0 0 0.99 0.01 0 0 0 0 0 0 0.99 0.01 0 0 0 0 0 0 0.99 0.01 0 0 0 0 0 0 1.00

         
This simulation shows the imprecision between hard switches 0 and 1 as presented in the trajectory of Y N 1 . The choice of the transition matrix allow a progressive regime switching from parameters set corresponding to hard switch 0 to hard switch 1. 1 ] and the model parameters using the procedure detailed in [START_REF] Gorynin | Fast filtering in switching approximations of non-linear Markov switching systems with application to stochastic volatility[END_REF]. The main difference between CGOMSM and CGOMFSM is that in the case of fuzzy switches we involve continuous integration, requiring to be quantified with respect to the number of discrete fuzzy levels F .
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  the switch is the hard component 1.

	So this model able to represent signals with both discrete (hard) and continuous
	(fuzzy) components. Let ν define the measure associated to random variable R n
	(ν is defined by 2 diracs and a Lebesgue measure).
	Let us now precisely define the joint a priori density p R n+1 n

Density h does not depend on index n since the model we consider in this paper is assumed stationary.

Since E X n r n+1 n , y n+1

and from (19), we can derive the following recursive equation:

with F n+1 (r 

and

βn+1(υ)p(rn+1, y n+1 |rn, y n )dυ (25)

Using forward-backward probabilities, we can compute the smoothed and the filtered probabilities as follows::

Posterior marginal probabilities are calculated using the normalized Baum-Welch algorithm. The algorithm computes recursively the forward and backward probabilities. In the case of fuzzy switches, these probabilities are defined as follows:

with t n (θ) = (x n , y n , r n = θ). Then:

Experiments

In this section, we present two series of experiments to illustrate the smoother, in the case of scalar data (m = q = 1). In the first series we assess the performance of the fuzzy model with synthetic fuzzy signals; in the second series we apply our algorithm to smooth simulated Stochastic Volatility (SV) data. In both experiments, parameters estimation is carried out using EM algorithm using training samples denoted by (x T 1 , y T 1 ) of size T . Then we repeatedly generate, according to the considered model, synthetic sequences of size S denoted by (x S 1 , y S 1 ). Smoothing algorithm is then performed using estimated parameters to generate xS 1 from the observed sequence y S 1 . The criterion used to assess the efficiency of smoothing algorithms is the mean squared error (MSE) defined as follows:

Smoothing synthetic fuzzy signals

We generate a fuzzy signal with 5 discrete fuzzy switches. Then we estimate the model considering different values of F ranging from 1 to 5. For each set of data, we consider 3 cases for the value of r ∈ {2, 5, 20}. For each value of r, we perform 10 independent experiments with generated signals of size S = 1000. For each experiment, we perform 100 EM iterations on independently generated samples (X T 1 , Y T 1 ) of size T = 20000. Figure 6 depicts an example of simulated data and the optimal (but approximated) smoothing output, and Table 2 reports the MSE results for different cases of fuzzy models and different values of r. The chief finding of this series of experiments is that when the number of fuzzy levels increases, the smoothed signal is closer to the "ground-truth" hidden signal: e.g. in case 3, for r = 20, the MSE decreases from 0.741 for F = 0 to 0.577 for F = 5.

Experiments on stochastic volatility models

Stochastic volatility (SV) models are widely used to highlight the variance of stochastic processes [START_REF] Ghysels | Stochastic volatility[END_REF]. Several variants of SV models have been studied (Henston, CEV, GARCH, Chen, etc.). In this paper, we consider standard SV models defined as follows:

CGOMFSM trajectory, together with the automatically restored states in magenta (dashed). where U i , V i are independent standard Gaussian vectors. The SV models is defined by the set of parameters σ, µ, and α. The main conclusion is that when the number of discrete fuzzy states increase, the model approaches the results of the optimal (but time consuming) particle smoother. 

Conclusion

In this paper, we presented a novel approach to approximate non-linear Markov system using Conditionally Gaussian Observed Markov Fuzzy Switching Model (CGOMFSM). The chief novelty of this work is the introduction of fuzzy jumps instead of classical crisp states. This model still allows exact (up to required quantification) and fast smoothing equations. The fuzzy jumps allows transient modification of parameters, which is more appropriate for real-world applications. Future work includes the evaluation of the model for real data.