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Fast Filtering in Switching Approximations
of Non-linear Markov Systems

with Applications to Stochastic Volatility
Ivan Gorynin, Stéphane Derrode, Senior Member, IEEE, Emmanuel Monfrini and Wojciech Pieczynski

Abstract—We consider the problem of optimal statistical filtering in
general non-linear non-Gaussian Markov dynamic systems. The novelty
of the proposed approach consists in approximating the non-linear system
by a recent Markov switching process, in which one can perform exact
and optimal filtering with a linear time complexity. All we need to assume
is that the system is stationary (or asymptotically stationary), and that one
can sample its realizations. We evaluate our method using two stochastic
volatility models and results show its efficiency.

Index Terms—Non-linear systems, Stochastic volatility model, Optimal
statistical filter, Conditionally Gaussian linear state-space model, Filtering
in switching systems, Kalman filter.

I. INTRODUCTION

Let us consider two random sequences XN
1 = (X1, . . . ,XN )

and YN
1 = (Y1, . . . ,YN ), taking their values in Rm and Rq ,

respectively. XN
1 is hidden, while YN

1 is observed. In this paper,
we focus on the optimal filtering problem, which consists in the
sequential search of XN

1 from YN
1 . More precisely, we present a

non-stochastic iterative algorithm which computes the expectation of
Xn conditional on Yn

1 .
We present a workable approach for filtering in general stationary

(or asymptotically stationary) Markov dynamic systems, provided that
one can sample a realization of the systems. This approach makes
use of a recent switching model, in which fast exact optimal filtering
is computationally feasible.

The idea is to approximate a given non-linear non-Gaussian system
by a switching Gaussian system. Such ideas are not new, as it
is well known that a wide range of probability distributions can
be approximated by a Gaussian mixture. In the standard switching
models, e.g. in jump Markov linear systems (JMLSs), there is no
known fast exact optimal filtering algorithm [1]–[4], therefore such
approximations are useless in their context. However, there are some
recent switching models, in which fast exact optimal filtering is
computationally feasible, e.g. the conditionally Markov switching
hidden linear model (CMSHLM [5]) and the conditionally Gaussian
observed Markov switching model (CGOMSM [6], [7]). The novelty
of the paper is to use them as an approximation of some given
model, then to apply the corresponding filtering algorithms. Besides,
let us notice that any standard JMLS can be approximated by a
CMSHLM [8], [9].

To be more precise, CMSHLMs are Markov triplet
(XN

1 ,R
N
1 ,Y

N
1 ) models, where RN

1 is a chain of switches,
and where there exists an exact fast filtering algorithm which is
as fast as the standard Kalman filter. The main difference between
CMSHLMs and JMLSs is that in CMSHLMs (RN

1 ,Y
N
1 ) is

Markovian and (XN
1 ,R

N
1 ) is not necessarily Markovian, contrary

to JMLSs where (XN
1 ,R

N
1 ) is Markovian and (RN

1 ,Y
N
1 ) is not

necessarily Markovian.
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The CGOMSM is a sub-model of CMSHLM, in which (XN
1 ,Y

N
1 )

is Gaussian conditional on RN
1 . As the main novelty, deriving from its

prior simplified version introduced in [10], we put forward a method
for approximating any stationary non-linear non-Gaussian Markov
model by a CGOMSM, in order to perform fast filtering in this
approximation. The other main novelty compared with [10] is the
design of a new EM (Expectation-Maximization)-based approxima-
tion algorithm, as well as several new experiments. In particular, we
present consistent results that we obtained for a recent asymmetric
stochastic volatility model.

Our method can be used as an alternative to the particle filter
(PF) based methods, which are widely used in different areas like
finance [11]–[15] and tracking [2]–[4], [16]. Although PFs are
asymptotically optimal, their use may be problematic due to the
particle degeneracy phenomenon, or to the need of a large amount of
particles when the dimension of the hidden space is high. The method
proposed is fundamentally different and is free of these impediments.
Besides, our filtering algorithm is exact and is as fast as the standard
Kalman filter.

Let us mention some other non-linear non-Gaussian filters which
similarly use a mixture model to represent the filtering pdf. Such
examples include the Gaussian Sum Filter (GSF) [17], [18], the
Unscented Kalman Filter (UKF) [19], the Unscented Gaussian Sum
Filter (UGSF) [20], and the Gaussian Sum Unscented Kalman
Filter (GSUKF) with adaptive scaling parameters [21]. The main
difference between these methods and ours is that they rely on a
supplementary approximation to prevent the number of mixands to
growth exponentially with time (this number remains constant in our
representation). We show through some experiments that the GSF
may be disadvantaged due to this additional approximation, whereas
our method attains the optimal accuracy. Moreover, contrary to PF
and GSUKF, our filter is designed for stationary (or asymptotically
stationary) systems only. However, let us notice that the context of
stationary systems is relevant for many applications, and different
efficient approaches have been recently proposed [22], [23].

We provide two series of experiments. The first one is devoted
to filtering for a standard stochastic volatility model (SV) [24]–[27].
The second is dedicated to filtering for the asymmetric stochastic
volatility model (ASV) [28]–[30], which extends the SV model by
incorporating a leverage effect. We conclude from these experiments
that once the approximation is established, our method has the same
performance in terms of the mean squared error that the particle filter,
while being significantly faster.

The rest of the paper is organized as follows. In the next Section,
we describe and justify our approximation setting. In Section three,
we recall some crucial properties of the CGOMSM, and then explain
our approximation algorithm in Section four. Fifth Section contains
experiments and the last Section gives some concluding remarks and
prospects for further works.



FAST FILTERING IN SWITCHING APPROXIMATIONS OF NON-LINEAR MARKOV SYSTEMS 2

II. SWITCHING MODEL APPROXIMATION

Let us consider two random sequences XN
1 and YN

1 as previously
described. The common model for (XN

1 ,Y
N
1 ) is the hidden Markov

model (HMM), where XN
1 is Markovian, Y1, . . . ,YN are indepen-

dent conditional on XN
1 , and the distribution of each Yn depends

only on Xn given XN
1 . We can define the joint pdf p

(
xN1 ,y

N
1

)
via

p (x1,y1) and two recursions:

Xn+1 = F(Xn,Un); (1a)

Yn = G(Xn,Vn), (1b)

where F , G are appropriate mappings representing the
Markov kernel and the observation kernel respectively, and
U1,V1, . . . ,UN ,VN are appropriate independent variables.
Equivalently, any HMM is given by p (x1,y1) and conditional
densities p (xn+1 |xn ) , p (yn |xn ) for each n in {1, . . . , N−1} (in
{2, . . . , N}, respectively). We recall that if, in addition, (XN

1 ,Y
N
1 )

is Gaussian, then we deal with a Gaussian linear model in which
the Kalman filter is statistically optimal.

The HMM can be extended to the “pairwise Markov model”
(PMM), where the recursion

(Xn+1,Yn+1) = H(Xn,Yn,Wn), (2)

replaces (1), H being any mapping, and W1, . . . ,WN being in-
dependent variables. Likewise to the HMM, any PMM is given by
p (x1,y1) and the conditional pdf p

(
xn+1,yn+1 |xn,yn

)
. We note

that

p
(
xn+1,yn+1 |xn,yn

)
=

p (xn+1 |xn,yn ) p
(
yn+1 |xn,yn,xn+1

)
, (3)

and thus (1) is a particular case of (2) where p (xn+1 |xn,yn ) =
p (xn+1 |xn ) and p

(
yn+1 |xn,yn,xn+1

)
= p

(
yn+1 |xn+1

)
.

In our setting, we suppose that XN
1 and YN

1 are stationary
signals, which means that the distributions p

(
xn,yn,xn+1,yn+1

)
do not depend on n, i.e. for any n, (Xn,Yn,Xn+1,Yn+1)
is equal in distribution to (X1,Y1,X2,Y2), what we note by
p
(
xn,yn,xn+1,yn+1

)
= p (x1,y1,x2,y2). However, in practice,

the algorithm that we put forward applies to asymptotically stationary
signals as well, which is detailed in Remark II.1.

The idea proposed in [10] is to approximate p
(
xN1 ,y

N
1

)
with

a CGOMSM marginal distribution. That is to perform an exact
fast filtering afterwards. More precisely, since the model (2) is
stationary, its distribution derives from p (x1,y1,x2,y2), as it pro-
vides p (x1,y1) and p

(
xn+1,yn+1 |xn,yn

)
= p (x2,y2 |x1,y1 )

for each n = 1, . . . , N − 1. Besides, p (x1,y1,x2,y2) can be
approximated using a mixture of K2 components

p (x1,y1,x2,y2) ≈
∑

1≤i,j≤K

αijpij(x1,y1,x2,y2), (4)

where pij(x1,y1,x2,y2) are Gaussian distributions which verify
some further detailed hypotheses. Then, the scalars αij are seen as
a discrete distribution αij = P [R1 = i, R2 = j] of a pair of random
variables (R1, R2) taking their values in Ω = {1, . . . ,K} and the
approximation (4) may be seen as a marginal distribution of

p (x1,y1, r1,x2,y2, r2) = p (r1, r2) p (x1,y1,x2,y2 |r1, r2 ) .
(5)

Then the main idea is to consider the stationary triplet Markov
model TN

1 = (XN
1 ,R

N
1 ,Y

N
1 ), with RN

1 = (R1, . . . , RN ), whose
distribution is defined by (5) and which would belong to the
CGOMSM family. As specified in Remark II.2, such a model
approximates (5) in that for any n in {1, . . . , N − 1} the distri-
bution p

(
xn,yn,xn+1,yn+1

)
in the CGOMSM is as close to the

distribution p
(
xn,yn,xn+1,yn+1

)
in the PMM as the distribution

p (x1,y1,x2,y2) in the CGOMSM is close to the distribution
p (x1,y1,x2,y2) in the PMM.

Let us now specify what are the properties of the Gaussian distri-
butions pij(x1,y1,x2,y2) in (4) needed to make the corresponding
approximating switching triplet model being a CGOMSM. Let us
note Zᵀ

n =
[
Xᵀ
n,Y

ᵀ
n

]
and assume that for each n in {1, . . . , N −1}

p (rn+1 |xn, rn,yn ) = p (rn+1 |rn ) , (6)

which implies the Markovianity of RN
1 . This is equivalent to

p (r2 |x1, r1,y1 ) = p (r2 |r1 ) by the stationarity assumption. Be-
sides, the above equation means that Z1 and R2 are indepen-
dent conditional on R1. Therefore, we obtain p (x1,y1 |r1, r2 ) =
p (x1,y1 |r1 ). Since (X1, R1,Y1) and (X2, R2,Y2) are identi-
cally distributed by the stationarity assumption for TN

1 , it follows
that p (x2,y2 |r1, r2 ) = p (x2,y2 |r2 ). Thus, Gaussian distribu-
tions p (x1,x2,y1,y2 |r1, r2 ) are given by the variance matrices
ΓZ1 (r1), ΓZ2 (r2) (note that the mappings ΓZ1 (.) and ΓZ2 (.) are
equal), and the cross-covariance matrices ΣZ1Z2

(
r2

1

)
.

Let us set

Γ
(
r2

1

)
=

[
ΓZ1 (r1) ΣZ1Z2

(
r2

1

)
Σᵀ

Z1Z2

(
r2

1

)
ΓZ2 (r2)

]
, (7)

then we obtain

Z2 = a(r2
1)Z1 + b(r2

1)W1 + c(r2
1), (8)

where W1 is a standard Gaussian vector, independent of Z1, and

a(r2
1) = Σᵀ

Z1Z2

(
r2

1

)
Γ−1

Z1
(r1) ; (9a)

b(rn+1
n )bᵀ(rn+1

n ) = ΓZ2 (r2)− a(r2
1)ΣZ1Z2

(
r2

1

)
; (9b)

c(r2
1) = E [Z2 |r2 ]− a(r2

1)E [Z1 |r1 ] . (9c)

The matrices ΓZ1 (r1), ΣZ1Z2

(
r2

1

)
, a(r2

1), b(r2
1) and the vector

c(r2
1) may be written in the following block-form:

ΓZ1 (r1) =

[
ΓX1 (r1) ΣX1Y1 (r1)

ΣY1X1 (r1) ΓY1 (r1)

]
;

ΣZ1Z2

(
r2

1

)
=

[
ΣX1X2

(
r2

1

)
ΣX1Y2

(
r2

1

)
ΣY1X2

(
r2

1

)
ΣY1Y2

(
r2

1

)] ;

a(r2
1) =

[
a1(r2

1) a2(r2
1)

a3(r2
1) a4(r2

1)

]
;

b(r2
1) =

[
b1(r2

1) b2(r2
1)

b3(r2
1) b4(r2

1)

]
;

c(r2
1) =

[
c1(r2

1)

c2(r2
1)

]
.

Then, by stationarity, we have for n = 1, . . . , N − 1[
Xn+1

Yn+1

]
=

[
a1(rn+1

n ) a2(rn+1
n )

a3(rn+1
n ) a4(rn+1

n )

][
Xn

Yn

]
+[

b1(rn+1
n ) b2(rn+1

n )

b3(rn+1
n ) b4(rn+1

n )

][
Un+1

Vn+1

]
+

[
c1(rn+1

n )

c2(rn+1
n )

]
, (10)

where U1,V1, . . . ,UN ,VN are independent standard Gaussian
vectors.

Definition II.1. The mixture (4) will be said “Conditionally Gaussian
Observed Markov Switching Model mixture” (CGOMSM mixture) if
it verifies p (r2 |x1, r1,y1 ) = p (r2 |r1 ) and if each Gaussian pdf
pij satisfies one of the two following equivalent properties:

(i) a3(r2
1) = 0 for each r2

1 ∈ Ω2;
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(ii) ΣX1Y2

(
r2

1

)
= ΣX1Y1

(
r2

1

)
Γ−1

Y1
(r1) ΣY1Y2

(
r2

1

)
for each

r2
1 ∈ Ω2.

As explained previously, the above definition also includes the
distribution p

(
xn,yn,xn+1,yn+1

)
of CGOMSM for any n in

{1, . . . , N − 1}. Our filtering algorithm, which runs within the
framework of the CGOMSM, is explained in next Section.

Definition II.2. We call “CGOMSM Approximation Based Filter”
(CGOMSM-ABF) the following algorithm:

(i) generate a realization zM?
1 = (z?1, . . . ,z

?
M ) from the prior

model (2);
(ii) infer the CGOMSM parameters based on the observation zM?

1

assuming that the chain of switches RN?
1 is missing;

(iii) use these parameters to recover the hidden signal xN1 from yN1 .

For the step (ii), we propose to use an Expectation-Maximization-
based method, which we detail in Section four. However, there are
different alternative approaches that may apply as well.

Remark II.1. In practice, the initial pdf p(x1,y1) may be unspeci-
fied. However, if the system has the rapid mixing property, the residual
effect of the starting distribution on p(xn,yn) would be negligible
for moderate and large values of n [31]–[33]. Thus, in order to
generate a realization zM?

1 , it might be possible to begin with some
auxiliary pdf p′(x1,y1). It is also common in practice to drop the
burn-in sample z?1, . . . ,z

?
n′ .

Remark II.2. The approximation (4) can be obtained with an
arbitrary precision. If we denote by p? the pdf of the approximation,
then p?(xn,yn,xn+1,yn+1) approximates p

(
xn,yn,xn+1,yn+1

)
for any n in {1, . . . , N − 1} with exactly the same precision. The
readers interested by further investigations of the switching model
may consult [34] to see that the marginal distribution p

(
xN1 ,y

N
1

)
of a CGOMSM is not necessarily Markovian (it is always not for
the reversible switched linear models in [34]). However, in our use
of CGOMSM its marginal distribution mimics closely the Markov
property.

III. EXACT FAST OPTIMAL FILTERING IN CGOMSM MODELS

We recall in this Section how the fast optimal filter runs in a
stationary CGOMSM. Let TN

1 = (XN
1 ,R

N
1 ,Y

N
1 ) be a CGOMSM.

The aim is to search p
(
rn+1

∣∣yn+1
1

)
, E

[
Xn+1

∣∣rn+1,y
n+1
1

]
and E

[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
from p (rn |yn1 ), E [Xn |rn,yn1 ],

E [XnXᵀ
n |rn,yn1 ] and yn+1. Thus, the estimate of Xn+1 is then

given by

E
[
Xn+1

∣∣yn+1
1

]
=
∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
,

(11)
and its variance is

Var
[
Xn+1

∣∣yn+1
1

]
= E

[
Xn+1X

ᵀ
n+1

∣∣yn+1
1

]
− E

[
Xn+1

∣∣yn+1
1

]
E
[
Xᵀ
n+1

∣∣yn+1
1

]
,

with

E
[
Xn+1X

ᵀ
n+1

∣∣yn+1
1

]
=∑

rn+1

p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
. (12)

A. Some CGOMSM properties

The main property of CGOMSM is

p
(
rn+1,yn+1 |xn, rn,yn

)
= p

(
rn+1,yn+1 |rn,yn

)
, (13)

which is straightforward from (i) in Definition II.1. There are some
consequences which may be drawn from the equation above and (6).
First, (RN

1 ,Y
N
1 ) with latent RN

1 is a hidden Markov chain (with
correlated noise). Thus,

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn ) p

(
yn+1

∣∣rn+1
n ,yn

)
. (14)

Second, (13) is equivalent to

p
(
xn
∣∣rn+1
n ,yn+1

n

)
= p (xn |rn,yn ) , (15)

which is fundamental for the conception of our fast filter. Finally,
since the distribution p

(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
is Gaussian, Xn+1

is Gaussian conditional on the pair (Rn, Rn+1) and on a linear
combination of Xn, Yn and Yn+1. A similar reasoning holds for
p
(
yn+1

∣∣yn, rn+1
n

)
and summarizing, we have

Yn+1 = D(rn+1
n )Yn +H(rn+1

n ) + Λ(rn+1
n )Vn+1; (16a)

Xn+1 = A(rn+1
n )Xn +B(rn+1

n )Yn +C(rn+1
n )Yn+1

+ F (rn+1
n ) + Π(rn+1

n )Un+1, (16b)

for some parameters D(rn+1
n ), H(rn+1

n ), Λ(rn+1
n ), A(rn+1

n ),
B(rn+1

n ), C(rn+1
n ), F (rn+1

n ), Π(rn+1
n ) and standard Gaussian

vectors U1,V1, . . . ,UN ,VN . These parameters may be derived as
follows.

Let us set MX
rn = E [Xn |rn ] and MY

rn = E [Yn |rn ]. It follows
from (10) that

[
Xn+1,Yn+1

]ᵀ is normally distributed conditional
on
[
Xn,Yn

]ᵀ and Rn+1
n . From (10), we find that the conditional

mean of
[
Xn+1,Yn+1

]ᵀ is[
MX

rn+1

MY
rn+1

]
+

[
a1(rn+1

n ) a2(rn+1
n )

a3(rn+1
n ) a4(rn+1

n )

][
xn −MX

rn

yn −MY
rn

]

=

[
MX

rn+1
+ a1(rn+1

n )(xn −MX
rn) + a2(rn+1

n )(yn −MY
rn)

MY
rn+1

+ a3(rn+1
n )(xn −MX

rn) + a4(rn+1
n )(yn −MY

rn)

]
,

(17)

and that the conditional variance matrix of
[
Xn+1,Yn+1

]ᵀ is
b(rn+1

n )bᵀ(rn+1
n ), written in block-form as

b(rn+1
n )bᵀ(rn+1

n ) =

[
γ1(rn+1

n ) γ2(rn+1
n )

γᵀ
2(rn+1

n ) γ4(rn+1
n )

]
. (18)

Since a3(r2
1) = 0 for each r2

1 in Ω2, equation (16a) holds for

D(rn+1
n ) = a4(rn+1

n ),

H(rn+1
n ) = −a4(rn+1

n )MY
rn +MY

rn+1

and for some matrix Λ(rn+1
n ) such that

Λ(rn+1
n )Λᵀ(rn+1

n ) = γ4(rn+1
n ). (19)

Likewise, Xn+1 is also normally distributed conditional on Xn,
Rn+1
n and Yn+1

n . The conditional variance of Xn+1 is γ1(rn+1
n )−

γ2(rn+1
n )γ−1

4 (rn+1
n )γᵀ

2(rn+1
n ), and its conditional mean is

MX
rn+1

+ a1(rn+1
n )(xn −MX

rn) + a2(rn+1
n )(yn −M

Y
rn)

+ γ2(rn+1
n )γ−1

4 (rn+1
n )

{
yn+1−

(MY
rn+1

+ a3(rn+1
n )(xn −MX

rn)

+ a4(rn+1
n )(yn −M

Y
rn))

}
.

Term-by-term identification of (16b) with the equation above gives

C(rn+1
n ) = γ2(rn+1

n )γ−1
4 (rn+1

n )

A(rn+1
n ) = a1(rn+1

n )−C(rn+1
n )a3(rn+1

n )

B(rn+1
n ) = a2(rn+1

n )−C(rn+1
n )a4(rn+1

n )

F (rn+1
n ) = MX

rn+1
−A(rn+1

n )MX
rn −B(rn+1

n )MY
rn

−C(rn+1
n )MY

rn+1
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and Π(rn+1
n ) is a matrix such that

Π(rn+1
n )Πᵀ(rn+1

n ) = γ1(rn+1
n )−C(rn+1

n )γᵀ
2(rn+1

n ). (20)

B. Filtering in the CGOMSM

Let us recall how fast filter runs in a stationary CGOMSM.
We sequentially compute p

(
rn+1

∣∣yn+1
1

)
, E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and E

[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
using p (rn |yn1 ), E [Xn |rn,yn1 ],

E [XnXᵀ
n |rn,yn1 ] and parameters D(rn+1

n ), H(rn+1
n ), Λ(rn+1

n ),
A(rn+1

n ), B(rn+1
n ), C(rn+1

n ), F (rn+1
n ), Π(rn+1

n ) as follows.
Since (RN

1 ,Y
N
1 ) is a pairwise Markov model,

p
(
rn+1

∣∣yn+1
1

)
=

∑
rn

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn1 )∑

rn,r
?
n+1

p
(
r?n+1,yn+1 |rn,yn

)
p (rn |yn1 )

;

(21)

p
(
rn
∣∣rn+1,y

n+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn1 )∑

r?n

p
(
rn+1,yn+1 |r

?
n,yn

)
p (r?n |yn1 )

.

(22)
Then,

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
(
A(rn+1

n )E [Xn |rn,yn1 ] +L(rn+1
n ,yn+1

n )
)
, (23)

with L(rn+1
n ,yn+1

n ) = B(rn+1
n )yn + C(rn+1

n )yn+1 + F (rn+1
n ).

We obtain the equation above by taking the conditional expectation
of (16b) and this result is mainly due to (15) and, consequently, to
the fact that

E
[
Xn

∣∣rn+1
n ,yn+1

1

]
= E [Xn |rn,yn1 ] . (24)

A similar approach applies to the computation of
E
[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
. It may be shown that

E
[
Xn+1X

ᵀ
n+1

∣∣rn+1
n ,yn+1

1

]
= A(rn+1

n )E [XnXᵀ
n |rn,yn1 ]Aᵀ(rn+1

n )

+A(rn+1
n )E [Xn |rn,yn1 ]Lᵀ(rn+1

n ,yn+1
n )

+L(rn+1
n ,yn+1

n )E [Xᵀ
n |rn,yn1 ]Aᵀ(rn+1

n )

+L(rn+1
n ,yn+1

n )Lᵀ(rn+1
n ,yn+1

n ) + Π(rn+1
n )Πᵀ(rn+1

n )
(25)

Then

E
[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
=∑

rn

p
(
rn
∣∣rn+1,y

n+1
1

)
E
[
Xn+1X

ᵀ
n+1

∣∣rn+1
n ,yn+1

1

]
. (26)

Finally, our fast optimal filter is:
Algorithm III.1.

(i) Use p (rn |yn1 ) and yn+1 to obtain p
(
rn+1

∣∣yn+1
1

)
and

p
(
rn
∣∣rn+1,y

n+1
1

)
by (21), (22);

(ii) Use E [Xn |rn,yn1 ], p
(
rn
∣∣rn+1,y

n+1
1

)
and yn+1 to obtain

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
by (23);

(iii) Use E [XnXᵀ
n |rn,yn1 ], E [Xn |rn,yn1 ] and yn+1 to

compute E
[
Xn+1X

ᵀ
n+1

∣∣rn+1
n ,yn+1

1

]
by (25). Then use

E
[
Xn+1X

ᵀ
n+1

∣∣rn+1
n ,yn+1

1

]
and p

(
rn
∣∣rn+1,y

n+1
1

)
to

obtain E
[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
by (26).

IV. APPROXIMATING A NON-LINEAR NON-GAUSSIAN SYSTEM

WITH THE CGOMSM

We recall that according to our CGOMSM-ABF principle, we
contemplate estimation of the CGOMSM parameters through a signal
(xM?

1 ,yM?
1 ) which we sample by using (1), (2) or any other time-

invariant system cf. Remark IV.1.
To this end, we use a common algorithm

known as “Expectation-Maximization” [35] (EM).
Let us then parametrize the CGOMSM by Θ ={
µi,Γi,pij ,Aij ,Bij ,Cij ,Dij ,F ij ,Hij ,Πij ,Λij

∣∣(i, j) ∈ Ω2
}

,
where:

• for each i in Ω, µi and Γi define the pdf p (x1,y1 |r1 );
• for each i, j in Ω, pij = P (r1 = i, r2 = j) and Aij , Bij , Cij ,
Dij , F ij , Hij , Πij , Λij are described in (16).

To make the text easier to read, we will denote the artificial signal
by (xM1 ,yM1 ) instead of (xM?

1 ,yM?
1 ). Thus, yM1 stands for the pre-

sampled data and should not be confused with yN1 , which is the noisy
input signal.

The crux point is that Xn+1 and Yn+1 are Gaussian conditional
on the pair (Rn, Rn+1) and on a linear combination of Xn, Yn so
an appropriate linear regression per each pair (Rn, Rn+1) enables to
determines the coefficients of the combination and to solve the M-
step of the EM algorithm. We detail below the EM algorithm suited
to our context (cf. section II).

Algorithm IV.1. EM estimation

(a) Make an initial guess Θ0 ={
µ0
i ,Γ

0
i ,p

0
ij ,A

0
ij ,B

0
ij ,C

0
ij ,D

0
ij ,F

0
ij ,H

0
ij ,Π

0
ij ,Λ

0
ij

∣∣(i, j) ∈ Ω2
}

as follows:

(i) Apply the K-means clustering method to xM1 . We will denote
by κn(i) the function which assigns 1 if xn is within
the ith cluster, and 0 otherwise. We also note δn(i, j) =
κn(i)κn+1(j);

(ii) For each i in Ω, µ0
i and Γ0

i are given by

µ0
i =

M∑
n=1

znκn(i)

M∑
n=1

κn(i)

; (27a)

Γ0
i =

M∑
n=1

(
zn − µ0

i

) (
zn − µ0

i

)ᵀ
κn(i)

M∑
n=1

κn(i)

, (27b)

where zᵀ
n = [xᵀ

n,y
ᵀ
n], and for each (i, j) in Ω2, p0

ij is given
by

p0
ij =

1

M − 1

M−1∑
n=1

δn(i, j). (28)

(iii) Compute intermediate matrices E0
ij , S

0
ij , χ

0
ij , Φ0

ij , G
0
ij ,

P 0
ij , ξ

0
ij and T 0

ij as follows:

E0
ij =

1

p0
ij

M−1∑
n=1

[
zn

yn+1

]
δn(i, j); (29a)

S0
ij =

1

p0
ij

M−1∑
n=1

[
znzᵀ

n znyᵀ
n+1

yn+1z
ᵀ
n yn+1y

ᵀ
n+1

]
δn(i, j); (29b)

χ0
ij =

1

p0
ij

M−1∑
n=1

[
xn+1z

ᵀ
n xn+1y

ᵀ
n+1

]
δn(i, j); (29c)
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Φ0
ij =

1

p0
ij

M−1∑
n=1

xn+1δn(i, j); (29d)

G0
ij =

1

p0
ij

M−1∑
n=1

ynδn(i, j); (29e)

P 0
ij =

1

p0
ij

M−1∑
n=1

ynyᵀ
nδn(i, j); (29f)

ξ0
ij =

1

p0
ij

M−1∑
n=1

yn+1y
ᵀ
nδn(i, j); (29g)

T 0
ij =

1

p0
ij

M−1∑
n=1

yn+1δn(i, j). (29h)

(iv) For each i, j in Ω, A0
ij , B

0
ij , C

0
ij , D

0
ij , F

0
ij , H

0
ij , Π0

ij

and Λ0
ij are given by

[
F 0
ij A

0
ij B

0
ij C

0
ij

]
=
[
Φ0
ij χ

0
ij

] [M − 1
(
E0
ij

)ᵀ
E0
ij S0

ij

]−1

;

(30a)[
H0
ij D

0
ij

]
=
[
T 0
ij ξ

0
ij

] [M − 1
(
G0
ij

)ᵀ
G0
ij P 0

ij

]−1

; (30b)

(M − 1)Λ0
ij

(
Λ0
ij

)ᵀ
=

1

p0
ij

M−1∑
n=1

yn+1y
ᵀ
n+1δn(i, j)−

H0
ij

(
T 0
ij

)ᵀ −D0
ij

(
ξ0
ij

)ᵀ
; (30c)

(M − 1)Π0
ij

(
Π0
ij

)ᵀ
=

1

p0
ij

M−1∑
n=1

xn+1x
ᵀ
n+1δn(i, j)−

F 0
ij

(
Φ0
ij

)ᵀ − [A0
ij B0

ij C0
ij

] (
χ0
ij

)ᵀ
.

(30d)

(b) Find the new set of parameters Θq+1 as follows:

(i) For each i in Ω, compute the posterior probabilities
φqn(i) = p

(
rn = i

∣∣xM1 ,yM1 ,Θq
)
, and for each i, j in

Ω compute ψqn(i, j) = p
(
rn = i, rn+1 = j

∣∣xM1 ,yM1 ,Θq
)

(computational details are provided below);
(ii) For each i in Ω, compute µq+1

i and Γq+1
i by substitution

φqn(i) for κn(i) in (27);
(iii) For each i, j in Ω, pq+1

ij is given by

pq+1
ij =

1

M − 1

M−1∑
n=1

ψqn(i, j). (31)

Then compute intermediate matrices Eq+1
ij , Sq+1

ij , χq+1
ij ,

Φq+1
ij , Gq+1

ij , P q+1
ij , ξq+1

ij and T q+1
ij by substituting

ψqn(i, j), pq+1
ij with δn(i, j), p0

ij in (29). Finally, compute
Aq+1
ij , Bq+1

ij , Cq+1
ij , Dq+1

ij , F q+1
ij , Hq+1

ij , Πq+1
ij and

Λq+1
ij by substituting Eq+1

ij , Sq+1
ij , χq+1

ij , Φq+1
ij , Gq+1

ij ,
P q+1
ij , ξq+1

ij , T q+1
ij with E0

ij , S
0
ij , χ

0
ij , Φ0

ij , G
0
ij , P

0
ij ,

ξ0
ij , T

0
ij in (30).

Details on the derivation of Algorithm IV.1 will be made available
upon request to the corresponding author.

Let us recall the formulas for φqn(i) and ψqn(i, j). Let us set tn =
(xn, rn,yn), αn(rn) = p (rn, z

n
1 ) and βn(rn) = p

(
zNn+1 |tn

)
.

Then, the forward-backward algorithm computes recursively αn(rn)
and βn(rn) as follows:

• α1(r1) = p (t1), αn+1(rn+1) =
∑
rn∈Ω αn(rn)p (tn+1 |tn )

for 1 ≤ n ≤M − 1;
• βM (rM ) = 1, βn(rn) =

∑
rn+1∈Ω βn+1(rn+1)p (tn+1 |tn )

for 1 ≤ n ≤M − 1,
where

p (t1) = p (r1) p (z1 |r1 )

p (tn+1 |tn ) = p (rn+1 |rn ) p
(
xn+1,yn+1

∣∣xn,yn, rn+1
n

)
p (r1 = i |Θq ) =

∑
j∈Ω

pqij

p (z1 |r1 = i,Θq ) = N (z1;µqi ,Γ
q
i )

p (rn+1 = j |rn = i,Θq ) =
pqij

p (r1 = i,Θq)

p
(
yn+1

∣∣yn, rn+1
n = (i, j),Θq ) =

N
(
yn+1;Dq

ijyn +Hq
ij ,Λ

q
ij

(
Λq
ij

)ᵀ)
p
(
xn+1

∣∣xn,yn+1
n , rn+1

n = (i, j),Θq ) =

N
(
xn+1;Aq

ijxn +Bq
ijyn +Cq

ijyn+1 + F qij ,Π
q
ij

(
Πq
ij

)ᵀ )
.

Thus,

ψqn(rn+1
n ) =

αn(rn)p (tn+1 |tn )βn+1(rn+1)∑
r?n,r

?
n+1

αn(r?n)p
(
t?n+1 |t?n

)
βn+1(r?n+1)

, (32)

with t?n = (xn, r
?
n,yn).

Finally, the CGOMSM-ABF implementation, which we use in
experiments, runs as follows:

Algorithm IV.2. (a) Generate an artificial sample (xM?
1 ,yM?

1 ) ac-
cording to the model considered;

(b) Since (xM?
1 ,yM?

1 ) may be seen as a realization of some
CGOMSM (XM?

1 ,RM?
1 ,YM?

1 ) with missing RM?
1 , estimate Θ

with Algorithm IV.1;
(c) Filtering: when a new measurement yn+1 is received,

compute p
(
rn+1

∣∣yn+1
1

)
, E

[
Xn+1

∣∣rn+1,y
n+1
1

]
and

E
[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
using Algorithm III.1, then

E
[
Xn+1

∣∣yn+1
1

]
and E

[
Xn+1X

ᵀ
n+1

∣∣yn+1
1

]
are given by (11)

and (12).

Remark IV.1. A given switching model can have different meanings.
Here we use one to approximate a non-linear non-Gaussian system.
Another possible situation is that the system is linear Gaussian, and
there are random switches. Although quite different, these contexts
can be dealt with using the same model, as the CGOMSM used
in this paper. Of course, there also exists non-Gaussian switching
systems [36], [37].

V. EXPERIMENTS ON STOCHASTIC VOLATILITY MODELS

A stochastic volatility model describes the variance of a stochastic
process. Examples of stochastic volatility models include the Heston
model, the GARCH model and many more [15], [38], [39]. In this
Section, we provide two series of Monte-Carlo experiments and an
example of estimating the volatility of a series of stock returns. In
the first series, we focus on a standard Stochastic Volatility (SV)
model [24]–[27], that is usually presented as follows:

X1 = µ+ U1; (33a)

Xn+1 = µ+ φ(Xn − µ) + σUn+1; (33b)

Yn = β exp

(
Xn
2

)
Vn, (33c)

where U1, V1, . . . , UN , VN are independent standard Gaussian vec-
tors and µ, φ, β, σ are fixed. Since this model is of the form (1), it
is an HMM. The second series of experiments is devoted to a recent
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TABLE I
MEAN MSE RESULTS FOR DIFFERENT SV MODELS DEFINED BY φ AND σ (µ = 0.5, β = 0.5).

Cases φ σ2 CGOMSM-ABF PF GSF
K = 2 K = 3 K = 5 K = 7

1 0.99 0.0199 0.41 0.27 0.20 0.19 0.18 0.21
2 0.90 0.1900 0.55 0.49 0.47 0.46 0.46 0.50
3 0.80 0.3600 0.63 0.59 0.58 0.57 0.57 0.60
4 0.50 0.7500 0.72 0.71 0.70 0.70 0.70 0.72

extension, known as the asymmetric SV (ASV) model [28]–[30],
which may be presented as follows:

X1 = µ+ U1; (34a)

Xn+1 = µ+ φ(Xn − µ) + σ

(
ρYn

β exp (Xn
2

)
+ λUn+1

)
; (34b)

Yn = β exp

(
Xn
2

)
Vn. (34c)

Since both SV and ASV are generative models, they fit well to our
CGOMSM-ABF approach.

If x̂(yn1 ) is a filtered signal obtained from yN1 , and xN1 is the
“ground-truth”, then the mean squared error (MSE) of the filter can
be estimated by

MSE =

N∑
n=1

(xn − x̂n(yn1 ))2, (35)

which is a useful performance criterion for comparing filtering
effectiveness. All the results presented below are means of 100
equivalent independent experiments, each of them being computed
using N = 1000 simulated data points.

A. SV model

Here we compare the performance of our method with respect to
the Particle Filtering (PF) and the Gaussian Sum Filtering (GSF),
using data simulated by different stationary SV models. We set µ =
0.5, β = 0.5, and consider four different cases for φ and σ such
that φ2 + σ2 = 1 (that is to ensure that the common variance of the
variables Xn is unitary). The results are reported in Table I.

Here are the details of each filtering method used in the experi-
ments
• For our method, we try out different values of K (cf. Re-

mark V.1) and we infer the CGOMSM from some independently
generated sample (xM?

1 ,yM?
1 ) of size M = 20000, performing

100 EM iterations. See Figure 1 for an example of trajectories.
• The PF implementation uses 1500 particles. We found out

empirically that PF behaves asymptotically for this particle
number.

• In order to use the GSF, let us linearise the SV model by taking
the log of both sides of eq. (33c), to get

X1 = µ+ U1; (36a)

Xn+1 = µ+ φ(Xn − µ) + σUn+1; (36b)

Y ′n = Xn + V ′n, (36c)

where Y ′n = log (Y 2
n )−2 log β and V ′1 , . . . , V ′n are independent,

non-Gaussian variables, such that exp
(
V ′1
2

)
, . . . , exp

(
V ′n
2

)
are standard Gaussians. Then, the common pdf of V ′n is
p (v) = exp

(
v
2

)
N
(
exp

(
v
2

)
; 0, 1

)
, which we approximate by

a Gaussian mixture of r components using the EM algorithm:
p (v′n) ≈

∑r
m=1 γnN (v′n; v̂′m, Rm). We found that when

r ≥ 5, the approximation is accurate enough to achieve a

Fig. 1. Up: simulated log-volatility trajectory with a SV model (red, plain),
simulated log-returns (black, dotted). Down: log-volatility estimates computed
using K = 2 classes (blue, dotted), and K = 5 classes (green, dashed).

negligible residual effect. Since the number ξn of mixands
in the filtering pdf p (xn |yn1 ) =

∑ξn
j=1 αnjN (xn; x̂nj , Pnj)

exponentially grows with time, a reduction technique is imple-
mented to keep computational demands of the algorithm within
reasonable bounds [40].
For our experiments, we decided to reduce the number of
terms as follows: when ξn becomes greater than r, we keep
the r mixands in

∑ξn
j=1 αnjN (xn; x̂nj , Pnj) which have the

greatest weight coefficients αnj , and we discard the remaining.
Therefore, we impose the constraint that ξn = r. We found out
empirically that GSF behaves asymptotically for r ≥ 3, but does
not attain the optimal MSE.
We note that since the model (36) is linear, there is no reason
for considering the extensions of the GSF for non-linear sys-
tems, such as Gaussian Sum Unscented Kalman Filter [20] or
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TABLE II
MEAN MSE RESULTS FOR DIFFERENT ASV MODELS DEFINED BY ρ AND λ

(µ = 0.5, β = 0.5, AND σ2 = 0.75), FOR φ = 0.5.

Cases ρ λ2 CGOMSM-ABF PF
K = 2 K = 3 K = 5

1 -0.9 0.19 0.23 0.22 0.20 0.20
2 -0.8 0.36 0.36 0.35 0.34 0.33
3 -0.5 0.75 0.59 0.58 0.58 0.57
4 -0.3 0.91 0.68 0.67 0.66 0.65
5 0.0 1.00 0.72 0.71 0.70 0.70

TABLE III
MEAN MSE RESULTS FOR DIFFERENT ASV MODELS DEFINED BY ρ AND λ

(µ = 0.5, β = 0.5, AND σ2 = 0.75), FOR φ = 0.8.

Cases ρ λ2 CGOMSM-ABF PF
K = 2 K = 3 K = 5

1 -0.9 0.19 0.22 0.21 0.19 0.18
2 -0.8 0.36 0.33 0.31 0.29 0.29
3 -0.5 0.75 0.52 0.49 0.48 0.47
4 -0.3 0.91 0.59 0.55 0.54 0.54
5 0.0 1.00 0.63 0.59 0.58 0.57

Gaussian Sum Unscented Kalman Filter with adaptive scaling
parameters [21].

Contrary to our filtering method, which makes use of a single
global approximation, the GSUKF relies on multiple approximations:
• an approximation of the noise terms with a Gaussian mixture;
• some reduction technique to keep the number of mixands of the

filtering pdf within reasonable bounds.
Additionally, when the model is non-linear, the GSUKF uses the
Unscented Transform (UT) for computing the approximate means
and covariances. And the UT relies, in turn, on its scaling parameters.
Our experiments show that computing a single global approximation
may be advantageous and helps to avoid the residual cumulative
effects. However, unlike our method, the GSUKF may be used for
non-stationary systems.

B. Asymmetric SV model

Regarding the ASV model, we compare the performance between
our method and PF only, since the GSF and GSUKF ignore the
impact of the volatility asymmetry coefficient ρ and therefore are not
suitable for this model (recalling that the ASV is not an HMM). The
experimental configuration is identical to the previous one. For the
sake of consistency with the asymmetric volatility phenomenon [41],
ρ should be assumed negative.

We set µ = 0.5, β = 0.5, σ2 = 0.75, and consider five different
cases for ρ and λ such that ρ2 +λ2 = 1 (to ensure that the common
variance of the variables Xn is unitary). The results are reported
in Table II for φ = 0.5 and in Table III for φ = 0.8. Figure 2
shows an ASV trajectory, and its restoration with the CGOMSM-
ABF algorithm for K = 2 and K = 5 classes.

According to our results, the approach we propose is efficient
for both SV and ASV models, and attains the same asymptotic
performances as the PF. Regarding the processing time, we find that:
• after having it adjusted to the SV model, our filter is nearly five

times faster than the PF;
• the model approximation algorithm may take time depending on

the system complexity.

Remark V.1. At the moment, we have no computational technique to
select the minimum number of classes allowing to obtain asymptotic
performances. We note only the trade-off between the computational

Fig. 2. Up: simulated log-volatility trajectory with an ASV model (red, plain),
simulated log-returns (black, dotted). Down: log-volatility estimates computed
using K = 2 classes (blue, dotted), and K = 5 classes (green, dashed).

cost and the variance of the resulting estimates. Indeed, with a greater
number of classes the former increases, while the latter decreases.
In practice, five classes would be enough for most situations.

C. Recovering volatility from stock market data

Let us remind that if Pn−1 denotes the stock price at the beginning
of the previous trading day and if Pn denotes the stock price at the
beginning of the current trading day, then :
• Rn =

Pn−Pn−1

Pn−1
is the current daily return on the stock

investment;
• un = log (1 +Rn) = log

(
Pn
Pn−1

)
is the continuously com-

pounded daily return. It is also often called the log-return.
To see why un is called the continuously compounded return, take

the exponential of both sides to get exp (un) = Pn
Pn−1

. Rearranging,
we get Pn = Pn−1 exp (un) so that un is the continuously com-
pounded growth rate in prices between the beginning of the previous
and the current trading days. This has to be contrasted with Rn,
which is the simple growth rate in prices Pn−1 and Pn without any
compounding.

Following [42]–[45] to examine the performance of our method
on the stock market data, we compute the log-returns un over daily
SPX index data from Jun. 23, 1980 to Aug. 30, 2002 (N = 5604),
then we calculate yn = u?n − µr , where µr is given in [45] and u?n
denotes pre-processed log-return with an ARMA(2,1) model [44]–
[46]. Next, we use our algorithm to compute the filtered volatility
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Fig. 3. Trajectories of the SPX index log-returns (down) and log-volatility
estimates (up). The x-axis represents the dates for both trajectories, the y-axis
labelling on the left concerns the log-volatility values, and the y-axis labelling
on the right is related to the log-return values.

TABLE IV
THE PARAMETERS OF THE ASV MODEL FOR THE STOCK MARKET DATA.

Param. µr µ φ σ ρ β
Value 7 · 10−5 −9.54 0.98 0.17 −0.43 1.00

estimates within the ASV model, whose parameters are given in [45]
and reported in Table IV. Our result is shown in Figure 3.

We find that the volatility estimates produced by our algorithm are
consistent with the log-return process: as we can see in Figure 3, the
intervals where the fluctuation of log-returns are low (e.g. between
1991 and 1995) match the intervals where the log-volatility is low,
and vice versa. Moreover, we calculated the mean squared distance
between our volatility estimates and those of the particle filter, and
we find that this distance is negligible compared to the variance of the
log-volatility process. Furthermore, when the number K of classes in
our algorithm increases, this distance decreases as shown in Table V.

VI. CONCLUSION

We proposed a method to estimate the latent variables in non-linear
and non-Gaussian systems, called CGOMSM-ABF for ‘conditionally
Gaussian observed Markov switching model - Approximation Based
Filter’. It makes use of a single global approximation of the system.
Our method is very general and has several advantages over existing
techniques. Its performance has been examined on synthetic samples
of the standard and asymmetric stochastic volatility, as well as on real
data (SPX index returns). Indeed, we found that our method attains
the asymptotic performances of the particle filter, what could not be
obtained with the Gaussian Sum Filter [17], [18].

The filtering procedure, which is the object of the paper, is
applicable in general stationary (or asymptotically stationary) Markov
dynamic systems, provided that one can sample its realizations. It
is as fast as the standard Kalman filter, however, one has to adjust
the filter to a particular model by using, for instance, the EM-based
algorithm that we have supplied.

TABLE V
MEAN SQUARE DISTANCES BETWEEN OUR VOLATILITY ESTIMATES AND

THOSE FROM THE PF, WITH DIFFERENT NUMBER OF CLASSES.

K = 5 K = 7 K = 9 V ar[X]
0.0022 0.0017 0.0015 0.6145

Our future prospects include filtering for various stochastic volatil-
ity models, including those with high dimension of the state space,
i.e. multifactor volatility models. Another important topic would be
the unsupervised estimation of parameters of the initial PMM model
in eq. (2) [47], [48].
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