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Output memory-based event-triggered control

Miguel A. Davó, Mirko Fiacchini and Christophe Prieur

Abstract— This work is concerned with the exponential
stability of an output-based control scheme where the measured
output is subjected to event-triggered sampling. We propose a
new event-based sampling criterion based on the memory of the
measured output instead of only the current output. This allows
to prevent accumulation of sampling times. The exponential
stability is analyzed by using a Lyapunov-based approach,
providing a link between the sampling criterion and the decay
rate. Several numerical examples illustrate the effectiveness of
the proposed event-triggered scheme.

I. INTRODUCTION

Sampled-data control for continuous-time dynamical sys-
tems is a very active research subject. Periodic and aperiodic
implementations of nonlinear controllers are now well stud-
ied and very good performances can be obtained in terms
of resource consumption, of number of sampling times and
of the speed of convergence of the closed-loop system, see
e.g. [5]. See [11], [12] for recent tutorials on event-triggered
techniques for control design.

A common approach for the design of sampled-data
control is to first involve a stabilizing feedback controller
(and an associate Lyapunov function) and to add a trigger-
ing mechanism. Most of the approaches are based on the
difference between the current value of the state and the last
used state measure, see e.g. [15], [14], [21], [2], [3] and
references therein. Some of them assume the existence of an
Input-to-State (ISS) Lyapunov function, whereas more recent
approaches require less strong assumptions and ask to update
the measure of the state only when a Lyapunov function has
a sufficiently negative derivative as the solution approaches
to the equilibrium (see [18], [19]). Other techniques are
based on an observer (or a norm-observer) and require
the knowledge of the (sampled) output only, see [22] and
[23] respectively for linear and nonlinear control systems.
The present work deals with event-triggered mechanisms
which depend only on the output (and not on all the state).
This yields to an event-triggered output feedback controller
when this mechanism is combined with an output feedback
controller.

Generalizing event-triggered control techniques, when
only the output is known, is definitively non-trivial, since
keeping the error (between the last sampled output and
the current value of the output) small may lead to Zeno
phenomenon [13]. Such bad behavior occurs when we need

M. A. Davó, M. Fiacchini and C. Prieur are with Gipsa-Lab
(CNRS), Grenoble, France. This work has been partially supported by
the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and by the ANR
project LimICoS contract number 12-BS03-005-01. Corresponding author:
Miguel.Davo-Navarro@gipsa-lab.fr

to send infinite samples in finite-time and hence the event-
triggering mechanism is not feasible for implementation
in practice. There are several approaches to avoid Zeno
solutions in the closed-loop system, for instance: adding
a threshold in the event-triggered mechanisms (leading to
practical stability of the origin in the constant case), see
e.g. [7], [17], combining time-triggered control and event-
triggered control, see e.g. [10], [1], etc.

Asymptotic stability of the equilibrium is obtained in this
paper with an event-triggered controller. More precisely a
sequence of triggering times are computed from only the
knowledge of the output. At these times, it is necessary to
update the output measure used in the controller dynamics.
Using only the output requires an observability property
written in terms of the distinguishability of the equilibrium
of the open-loop control system, as introduced in [20] (see
also [4], [6]). Moreover Zeno solutions are avoided. To do
that the history of the output is used. The asymptotic stability
proof exploits techniques inspired by Lyapunov-Razuminkin
theorem, whereas the exponential stability proof is based on
the Halanay’s inequality (see [9], [8] and references therein,
where such techniques have been used for some classes of
time-delay systems). When our results are particularized to
linear and time-invariant (LTI) control systems, the proposed
exponential stability conditions are written in terms of Linear
Matrix Inequalities, which may be solved efficiently with
Semi-Definite Programming (SDP) solvers.

An important feature of our approach is the possibility of
relating the parameters of the sampling algorithm with the
speed of convergence. This comes directly from the proof
of exponential stability for nonlinear control systems. In
addition, several examples suggest that these parameters are
also related to the inter-event times, what leads to a classical
tradeoff between the speed of convergence and the number
of needed updates to achieve this speed of convergence.

This paper is organized as follows. First the problem under
consideration is introduced and the event-triggered setup
is defined (see Section II). Section III contains the main
results on nonlinear control systems. Results are applied and
improved in Section IV where we focus on LTI systems. The
techniques are applied on a nonlinear control system and a
linear one in Section V.

Notation: The sets Sn, and Sn+ denote the set of symmetric
matrices of dimension n × n, and the set of symmetric
positive definite matrices of dimension n × n, respectively.
The notation ‖x‖ is the Euclidean norm for x ∈ Rn. The
notation P > 0 for P ∈ Sn means that P is positive definite
(P < 0 means negative definite). For a matrix A ∈ Rn×n,
the notation He(A) refers to A+A>. For a symmetric matrix



A ∈ Rn×n, λm(A) and λM (A) stand for the minimum
and maximum eigenvalue, respectively. For a function f :
[a, b] → Rn, a norm is defined as ‖f‖ = sups∈[a,b] ‖f(s)‖.
A function f : R+ → R+ is of class K if it is continuous,
strictly increasing, and f(0) = 0. The function f is of class
K∞ if f ∈ K, and in addition lims→∞ f(s) =∞.

II. PROBLEM STATEMENT

Consider an output-based control system formed by a plant
given by

P :

{
ẋp(t) = fp(xp(t), up(t)),
yp(t) = gp(xp(t)),

(1)

where xp ∈ Rnp , up ∈ Rnu , and yp ∈ Rny and a feedback
controller

C :

{
ẋc(t) = fc(xc(t), uc(t)),
yc(t) = gc(xc(t)).

(2)

where xc ∈ Rnc , uc ∈ Rny , and yc ∈ Rnu . The open-
loop connection between the controller and the plant with
zero input will be denoted by (C,P), and is defined by
up(t) = yc(t) and uc(t) = 0. In addition, assume that the
feedback interconnection between the plant and the controller
is affected by an exogenous signal e(t) ∈ Rny , such that
the interconnection is given by up(t) = yc(t) and uc(t) =
yp(t)+e(t). Considering the state x = [x>p x>c ]> ∈ Rn with
n = np + nc, the closed-loop system is described by{

ẋ(t) = f(x(t), e(t)),
y(t) = g(x(t))

(3)

with g(x(t)) = gp(xp(t)) ∈ Rny and

f(x(t), e(t)) =

[
fp(xp(t), gc(xc(t)))
fc(xc(t), gp(xp(t)) + e(t))

]
. (4)

The function f is assumed to be locally Lipschitz continuous
in both arguments and f(x, e) = 0 if and only if x = 0 and
e = 0. The function g(x) is assumed to be locally Lipschitz
continuous, and in addition, there exists a function ξ ∈ K
such that ‖g(x)‖ ≤ ξ(‖x‖).
In order to derive the results in this work, the following
assumptions are considered:

Assumption 1: Any pair of states (0, x) is distinguishable
for the open-loop (C,P), which means that for any ε > 0
if g(x(t)) = 0 for all t ∈ [0, ε) where x(t) is a solution to
(C,P), then x(0) = 0.

Assumption 2: There exists a smooth function V : Rn →
R+ and functions α, α, α, β ∈ K∞ such that, for all x ∈ Rn

α(‖x‖) ≤ V (x) ≤ α(‖x‖), (5)

∇V (x) · f(x, e) ≤ −α(‖x‖) + β(‖e‖). (6)

Assumption 2 is an Input-to-State property of (3), whereas
Assumption 1 is an observability property which requires the
state to be zero if the output is zero as well in a time interval.

Consider the closed-loop system formed by the plant (1)
and the controller (2), where now the interconnection from
the plant to the controller is made through a sensor, that is
supposed to have continuous access to the plant. The sensor

samples the plant output at some instants tk, k ∈ N, referred
to as sampling times (or triggering times in the context of
event-triggered control), and keeps the input of the controller
constant until the next sampling time. In this way, the
interconnection is given by up(t) = yc(t) and uc(t) = yp(tk)
for all t ∈ [tk, tk+1), k ∈ N. The sampling times can be
generated in a number of ways. In event-triggered control
the sampling times are governed by an event-triggered mech-
anism, that continuously monitors the behavior of the plant
and generates events when some condition is satisfied. This
work focuses on the emulation-based approach, where first
the controller is designed to get some desired behavior for the
continuous loop, and second, an event-triggered mechanism
is developed to provide a bounded deviation of the event-
triggered implementation from the continuous one, under
Assumptions 1 and 2. Therefore, the problem is to design
the sampling algorithm, i.e. the computation of the sequence
(tk), k ∈ N, in order to guarantee the exponential/asymptotic
stability of the system and at the same time to prevent Zeno
solutions.

Defining the error signal

e(t) = y(tk)− y(t) (7)

for all t ∈ [tk, tk+1) and k ∈ N, the dynamics of the event-
triggered closed-loop system can be described by (3) and (4)
with this particular choice of the error signal e.

Due to the space limitation, the proofs are omitted, and
are available upon request from the authors.

III. MAIN RESULTS

A. Memory-based event-triggered mechanism

Let us first extend the initial condition of the system
(3) on the interval [−h, 0] as follows: x(t) = x(0), t ∈
[−h, 0], where h > 0 is a design parameter of the event-
triggered mechanism. In addition, we define the function
yt : [−h, 0] → Rn, which is given by yt(s) = y(t + s),
s ∈ [−h, 0], where y(t) is the output of the system (3).
Beside the parameter h, consider two design parameters: a
function σ ∈ K and a time t0 > 0 (it is not a triggering
time), then we propose the following sampling algorithm for
all k ∈ N

tk+1 = inf{t : ‖e(t)‖ ≥ σ(‖yt‖) ∧ t > tk}. (8)

The three design parameters play important roles in the se-
lection of the samples. The parameter t0 specifies the amount
of time in which the sampling mechanism is disabled at the
beginning of the execution. This guarantees that σ(‖yt‖) > 0
immediately after t0, which assures the existence of the first
sampling time. Note that small values of t0 can lead to small
inter-event times at the beginning of the execution, since the
output of the system may be still small at t0. The parameter
h also prevents the system from having Zeno phenomenon
as it will be proved in this section.



B. Stability analysis of nonlinear systems

Definition 1: The event-triggered control system (3) with
(7) and (8) is
• stable if ∀ε > 0, there exists a δ = δ(ε) > 0 such that
‖x(0)‖ ≤ δ implies ‖x(t)‖ ≤ ε for all t ≥ 0;

• asymptotically stable if it is stable and there exists a
δa > 0 such that for any ηa > 0 there exists a T =
T (δa, ηa) such that ‖x(0)‖ ≤ δa implies ‖x(t)‖ ≤ ηa
for all t ≥ T ;

• exponentially stable with decay rate γ if there exist δe >
0 and ηe > 0 such that ‖x(0)‖ ≤ δe implies ‖x(t)‖ ≤
ηee
−γt‖x(0)‖ for all t ≥ 0;

• globally asymptotically (respectively exponentially) sta-
ble if δa (respectively δe, where ηe is independent of δe)
can be an arbitrarily large, finite number.

Proposition 1: If there exists a continuous, nondecreas-
ing function ρ(s) > s such that the function w defined by

w : s 7→ α(s)− β(σ(ξ(α−1(ρ(α(s)))))) (9)

is of K-class, then the event-triggered control system (3) with
(7) and (8) is globally asymptotically stable for any finite
parameters h > 0 and t0 > 0.
Roughly speaking, the K-class property of function (9)
means that the continuous control system is stable enough
(represented by the first term in (9)) such that the effect of
samplings (the second term) does not destabilize the system.

Proposition 2: For a given δ > 0, assume there exist
scalars λ1 > λ2 > 0 such that

λ1s ≤ α(α−1(s)),

λ2s ≥ β(σ(ξ(α−1(s))))
(10)

for all 0 ≤ s ≤ δ, then the event-triggered control system
(3) with (7) and (8) is exponentially stable with decay rate
γ > 0 given as the unique solution of

γ = λ1 − λ2eγh. (11)

In addition, if (10) holds for all s ∈ [0,∞), then the system
is globally exponentially stable.

Remark 1: Note that big values of δ in Proposition 2 may
lead to small values of λ1 and big values of λ2, in order to
satisfy (10), which implies small values of the decay rate. On
the other hand, from a simple inspection of Equation (11),
it follows that the decay rate decreases when the parameter
h increases. In addition, λ1 is the supremum of γ, that is
limh→0 γ(h) = λ1 − λ2, where γ(h) is the solution of (11)
as a function of h. ◦

It is well-known that if the event-triggered mechanism
is not selected appropriately then it may cause Zeno phe-
nomenon in which the system generates an infinite number
of samplings in a finite time. The next result guarantees
that the control system provided with the proposed sampling
algorithm is free of accumulations points, that is, Zeno
solutions are not possible.

Proposition 3: For every δ > 0 and T > 0, for any
solution of the event-triggered control system (3) with (7)
and (8), starting from an initial condition x(0) 6= 0 with

‖x(0)‖ ≤ δ, there is a finite sequence of triggering times in
the interval [0, T ].

IV. APPLYING AND IMPROVING THE RESULTS

A. Application of previous results to LTI systems

In this section, the closed-loop system under study is
formed by an LTI plant given by

P :

{
ẋp(t) = Apxp(t) +Bpup(t),
yp(t) = Cpxp(t),

(12)

and an LTI controller described as follows:

C :

{
ẋc(t) = Acxc(t) +Bcuc(t),
yc(t) = Ccxc(t),

(13)

where Ap, Bp, Cp, Ac, Bc, and Cc are matrices of appropri-
ate dimension. The dynamics of the event-triggered closed-
loop system can be described as{

ẋ(t) = (A+BC)x(t) +Be(t),
y(t) = Cx(t)

(14)

for all t ∈ [tk, tk+1) where e(t) = y(tk)− y(t) and

A =

[
Ap BpCc
0 Ac

]
, B =

[
0
Bc

]
, C =

[
Cp 0

]
.

(15)
For the analysis of the above system, the general Assump-
tions 1 and 2 are replaced by their counterparts for LTI
systems

Assumption 3: The pair (A,C) is observable.
Assumption 4: The controller C renders the system (14)

with e(t) = 0 for all t ≥ 0 asymptotically stable, and thus,
for every matrix Q ∈ Sn+ there exists a matrix P ∈ Sn+ such
that

(A+BC)>P + P (A+BC) = −Q. (16)
Henceforth, the function σ ∈ K for the sampling algorithm

(8) will be given by σ(s) = σcs with σc > 0.
Proposition 4: Consider matrices Q ∈ Sn+ and P ∈ Sn+

satisfying (16) and Q − I > 0. In addition, let σc in the
sampling algorithm (8) satisfy

0 < σc <

√
λm(Q− I)λm(P )

‖B>PPB‖‖C‖2λM (P )
, (17)

then the event-triggered control system (14) with (7) and (8)
is globally exponentially stable with decay rate γ > 0 given
as the unique solution of

γ =
λm(Q− I)

λM (P )
− ‖B

>PPB‖‖C‖2σ2
c

λm(P )
eγh. (18)

B. Improving the results

The previous result gives a bound on the parameter σc in
such way that exponential stability of the event-triggering
implementation of an asymptotic stable control system is
guaranteed. In addition, it provides information on the decay
rate as a function of the parameter h. However, the equations
for both σc and γ are coupled, and also nonlinear with
respect to the matrix P . This makes it difficult to run an
optimization problem, and in addition, to check whether the



system is exponentially stable for a given setup of the design
parameters σc and h. The next result aims at overcoming
these problems.

Proposition 5: For given scalars γ, h, σc > 0, if there
exist matrices P ∈ Sn+, X ∈ Sn, Y ∈ Rn×ny , Z ∈ Sny×ny ,
and U ∈ Sny×ny

+ such that

C>C − P < 0, (19)[
X Y
? Z

]
≥ 0, (20)

Ψ :=

[
X −Q Y − PB
? Z − U

]
< −

[
(γ + σ2

c‖U‖eγh)P 0
0 0

]
(21)

hold, where Q is given by (16), then the event-triggered
control system given by (14), (7), and (8) is globally ex-
ponentially stable with decay rate γ.

Remark 2: Note that for a given γ, σc, and h, condition
(21) is in the form of bilinear matrix inequality (BMI), for
which it is usually hard to get a global solution. However,
since λ1 = γ + σ2

c‖U‖eγh condition (21) can be rewritten
as follows:

Ψ < −
[
λ1P 0

0 0

]
, (22)

which is an LMI for a given λ1 and it can be solved by some
LMI Toolbox. In addition, the convexity with respect to λ1
guarantees that if (22) holds for some λ̂1 then it also hold for
all λ1 ∈ [0, λ̂1]. Therefore, it is possible to find the maximum
λ1 by a simple line search, with stop condition defined by
the feasibility of the LMIs. Finally, by minimizing ‖U‖ for
every λ1, we maximize the allowed σc for this value of λ1.
This indirectly increases the interval between two samples.

◦
V. EXAMPLES

A. Nonlinear example
Consider an output feedback control system (3) where the

plant is defined by the following functions

fp(xp) =

 −x1 − x2x3 + x2 + up
x1x3 − 10x2 − x3
x1x2 + x2 − x33

 , gp(xp) = x1

(23)
with xp = [x1 x2 x3]>, and the controller by

fc(xc) = −10xc − uc, gc(xc) = xc. (24)

The distinguishability Assumption 1 of the open-loop sys-
tem (C,P) can be checked by computing the Lie derivative
up to third-order (see [20]).

An ISS Lyapunov function for the closed-loop system can
be found by using SOStools [16]. The function V with three
significant digits is given by

V (x) = 0.706x41 + 0.1429x42 + 0.118x43 + 0.9781x4c

+ 0.117x31x2 + 0.372x21x
2
2 + 0.437x21x

2
3 + 0.975x21x

2
c

− 0.05x1x
3
c + 0.214x22x

2
3 + 0.1598x22x

2
c − 0.002x2x

3
3

− 0.005x2x
3
c + 0.202x23x

2
c + 0.37x3x

3
c + 0.176x1x2x

2
c

+ 0.004x2x3x
2
c

(25)
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Fig. 1. Decay rate γ vs. h for several values of the parameter σc for the
Example V-A.

σc
h 0.1 0.5 1 10

0.05 0.0027 (0.20) 0.0086 (0.27) 0.0086 (0.34) 0.0090 (1.04)

0.1 0.0054 (0.39) 0.0223 (0.53) 0.0223 (0.67) 0.0230 (1.96)

0.2 0.0106 (0.75) 0.0341 (1.01) 0.0884 (1.27) 0.1290 (3.63)

TABLE I
MINIMUM INTER-EVENT TIME (AVERAGE OF THE INTER-EVENT TIME IN

BRACKETS) FOR 100 RANDOM EXECUTIONS OF EXAMPLE V-A FOR A

SIMULATION TIME OF 40S.

for all x = [x1 x2 x3 xc]
> ∈ R4. The K-class functions of

Assumption 2 are also found by SOStools, and are given by

α(s) = 0.0768s4, α(s) = 1.1667s4,
α(s) = 0.28716s4, β(s) = 1.0067s4

(26)

for all s ≥ 0. The function σ of the sampling algorithm
(8) is simply defined by σ(s) = σcs with σc > 0, then the
selection of λ1 = 0.246 and λ2 = 148.04σ4

c guarantees that
condition (10) holds. Therefore, if σc ≤ 0.201, the global
exponential stability of the event-triggered implementation
of the control system follows from Proposition 2. The decay
rate γ is obtained by solving the equation γ = λ1−λ2eγh for
a given h > 0. Fig. 1 shows how the parameter h affects the
decay rate γ of the system for several values of σc. Note that
big values of h and σc lead to a small decay rate. Moreover, it
can be seen that the parameter σc has the greatest impact on
γ. Table I provides the minimum and the average of the inter-
event times of the 100 executions of the system with random
initial conditions, a simulation time of 40s, and several values
of the design parameters (the parameter t0 = 0.1 has been
used). It can be observed that an increment on both σc and
h leads to an increment of the inter-event times. This effect
is more evident in the average of the inter-event times.



B. LTI example

In this example, we consider the control system studied in
[7], where the plant and the controller are given by

P :

 ẋp(t) =

[
0 1
−2 3

]
xp(t) +

[
0
1

]
up(t),

y(t) =
[
−1 4

]
xp(t).

(27)

C :

 ẋc(t) =

[
0 1
0 −5

]
xc(t) +

[
0
1

]
uc(t),

uc(t) =
[

1 −4
]
xc(t).

(28)

Assumptions 3 and 4 hold for the closed-loop system, and
thus Propositions 4 and 5 can be applied. Following Remark
2, a set of values of λ1 and U has been computed by
Proposition 5. From these data, it follows that the event-
triggered implementation is exponentially stable if σc ≤
0.0351. In addition, the supremum of the decay rate is 0.97.
In Fig. 2, the effects of the parameters σc and h on the
decay rate γ are shown. The results show that the decay rate
decreases to zero as σc approaches its maximum. In addition,
the decay rate is also decreased by increasing h. Note that
for small values of h (approximately h ≤ 1) the changes on
the decay rate are small.

In addition, 100 executions of the system have been run
with random initial conditions, a simulation time of 20s,
σc = 0.035 (close to its maximum) and t0 = 0.1. Table
II shows the minimum and the average of the inter-event
times for several values of h. As in the previous example, it
can be observed that both σc and h lead to an increase of
the inter-event times.

On the other hand, the results in [7] show that practical
stability can be guaranteed by considering the sampling
algorithm

tk+1 = inf{t : ‖e(t)‖2 ≥ σp‖y(t)‖2 + ε ∧ t > tk}. (29)

The solutions converge to a set that depends on the parameter
ε > 0. In addition, by adding the term ε the existence of Zeno
solutions is avoided as proved in [7]. In order to compare
the proposed algorithm with (29), we consider the execution
of the system with both algorithms and the initial condition
x(0) = [12.5 −12.5 −12.5 12.5]>. The parameters for the
sampling algorithm (29) are ε = 0.001 and σp = 0.001,
and for the proposed algorithm (8) we set the parameters as
follows: t0 = 0.1, σc = 0.035, and h = 3. Note that σc
is almost the square root of σp. Thus the algorithms (29)
and (8) are comparable on this aspect. Fig. 3 shows the
norm of the state x as a function of the time. It can be seen
that both algorithms provide a similar decay rate. However,
the proposed algorithm guarantees the asymptotic stability
while only practical stability is guaranteed by algorithm (29).
The inter-event times are shown in Fig. 4. Note how the
proposed algorithm increases the inter-event time during the
transient state. However, the inter-event times are slightly
smaller during the steady state. Finally, Fig. 5 shows the
density of the inter-event time. It can be observed that the
inter-event times are condensed around 0.1s for the proposed
algorithm.
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Fig. 2. Decay rate γ vs. σc for several values of the parameter h for the
Example V-B.
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Fig. 3. Norm of the state x of the system in Example V-B with initial
condition x(0) = [12.5,−12.5,−12.5, 12.5]>: sampling algorithm (29)
with ε = 0.001 and σp = 0.001 (grey line), proposed sampling algorithm
(8) with t0 = 0.1, σc = 0.035, and h = 3 (black line). Close-up of the
norm at t ∈ [26, 30] (inserted figure).
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Fig. 4. Inter-event times for Example V-B with initial condition x(0) =
[12.5,−12.5,−12.5, 12.5]>: sampling algorithm (29) with ε = 0.001 and
σp = 0.001 (grey points), proposed sampling algorithm (8) with t0 = 0.1,
σc = 0.035, and h = 3 (black points).



σc
h 0.1 1 5

0.02 0.8·10-3 (0.012) 0.8·10-3 (0.0304) 0.8·10-3 (0.0495)

0.035 0.6·10-3 (0.0198) 1·10-3 (0.0450) 1·10-3 (0.0729)

TABLE II
MINIMUM INTER-EVENT TIME (AVERAGE OF THE INTER-EVENT TIME IN

BRACKETS) FOR 100 RANDOM EXECUTIONS OF EXAMPLE V-B FOR A

SIMULATION TIME OF 20S.
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Fig. 5. Density function of the inter-event time for Example V-B with initial
condition x(0) = [12.5,−12.5,−12.5, 12.5]> and a simulation time of
30s: sampling algorithm (29) with ε = 0.001 and σp = 0.001 (top figure),
proposed sampling algorithm (8) with t0 = 0.1, σc = 0.035, and h = 3
(bottom figure).

VI. CONCLUSIONS

An event-triggering algorithm has been proposed to guar-
antee the asymptotic and exponential stability of the event-
triggered implementation of an output-based control system.
The novelty of the algorithm comes from the use of a sam-
pling condition based on the history of the output. Under this
event-triggering scheme, it is proved that Zeno solutions are
avoided. Both nonlinear and linear systems were considered.
For LTI systems a criterion for exponential stability has been
provided in the form of LMI. Several simulation examples
show how the inter-event times can be increased by a suitable
design parameters, but at the price of reducing the decay
rate of convergence of the trajectories. For the future work,
it could be interesting to consider a sampling mechanism

for the controller output, as well as to extend the results to
the tracking control problem, for instance considering known
references and analyzing the system in the error space.
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