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Motion estimation of a Rigid Body
with an EKF using Magneto-Inertial Measurements

Charles-Ivan Chesneau∗, Mathieu Hillion∗ and Christophe Prieur†

Abstract— This paper studies the attitude and position es-
timation problem of a rigid body equipped with inertial and
magnetic sensors. First a continuous-time model is provided
linking the motion of the body and sensor measurements, which
depend on the total magnetic field and measurement noise. The
magnetic field may depend both on the space variable (since the
indoor navigation is considered) and on the time variable (since
power-line interference is taken into account). An Extended
Kalman Filter is designed aiming at the minimization of the
drifting error on the estimated position. A numerical simulation
illustrates the motion estimation result. Some indoor tests are
finally performed to confirm the approach and the obtained
convergence on real experiments.

I. INTRODUCTION

Outdoor motion estimation for bodies and vehicles is
often based on position sensors (usually GPS) and inertial
sensors. For such observation problems, there exists a large
literature merging both kinds of measurements, notably by
the means of the Extended Kalman Filter (EKF), as in
[26], nonlinear observers (see e.g., [11], [20], [25]), and
hybrid observers, as in [3], yielding attitude and position
estimations. In contrast to outdoor navigation, GPS signals
cannot be used for indoor navigation, requiring the use of
other sensors and output signals. Therefore indoor navigation
is subject to active research for observer design and various
applications. The reader can refer to several surveys on
techniques that have been developped, mainly relying on
a dedicated or existing infrastructure to varying extent [5],
[14], [15] (WLAN, UWB, RFID tags, LED,...), whereas
some rely on optical or hybrid sensors [16], or consist in
“pedestrian dead-reckoning” [12]. An overview of human
indoor navigation techniques can be found in [9].

Among those which do not require an existing infras-
tructure, two techniques can be mentionned: foot-mounted
dead reckoning, as implemented in [10] or [18], allows posi-
tionning in unknown environment by exploiting the nature
of the movement, namely through Zero-velocity update /
detection (ZUPT). It can achieve a performance level of 1%
of travelled distance and below [13], [17], [23]. Magnetic
fingerprinting/mapping [4], [22], [24] makes use of the
geomagnetic field anomalies in order to compute a position,
but requires the magnetic field to be mapped at some point.
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Previous papers such as [27], [28] already underlined
that by using MEMS1 inertial and magnetic sensors, the
magnitude and nature of magnetic disturbances found in
buildings allow relatively accurate velocity estimates of a
sensor board in a completely unknown environment, with
no need to deploy an infrastructure, and without relying
on hypothesis about the nature of the movement. This then
allows trajectory reconstruction, albeit drifting. The patented
technique [29] was further studied and demonstrated in [6],
[7], [8] for indoor navigation. It was shown that the technique
had potential applications in heavy launchers and space
vehicles [19]. Finally, [2] studied observability issues that
come with this technique.

In a very preliminary work [27], [28], an EKF was used to
obtain experimental results, whose state was composed of 45
variables and measurement vector of more than 30 variables,
combining the data of several off-the-shelf IMUs in order
to compute a trajectory. The large number of parameters
needed to be precisely tuned for each trajectory undermined
its usability.

In [6], [7], [8], an AHRS was combined with a separate
non-linear continuous-time observer to obtain a velocity
estimate using only gyrometer and magnetic measurements.
A theoritical proof of convergence of the latter in absence
of measurement errors was provided, with a few successful
experimental 3D trajectories. Accelerometer measurements
were used only for attitude computation.

In this paper, a miniaturized smartphone-sized integrated
sensor board is presented. A single smaller EKF observer
is described with its underlying discrete-time model, and
used to obtain an attitude and a velocity estimate from
accelerometer, gyrometer and magnetic measurements. The
observer is tuned by accounting for measured sensor uncer-
tainties. Then, its performance is extensively evaluated as is
with the same settings, both on simulated and experimental
data. Experimental results show relative drift-errors under a
maximum of 3.3% of travelled distance on tested closed-
path trajectories, which is comparable with pedestrian dead-
reckoning systems [13], [17], but achieved on completely
free movements.

This paper is organized as follows. First a continuous-
time model is written to describe the dynamics of the rigid
body and magneto-inertial measurements. See Section II
where the observation problem is also stated. Then an EKF
observer is designed in Section III to tackle measurement
noise and to estimate the attitude and the position. Section
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IV contains some numerical simulations, and Section V gives
the results of a large series of indoor tests illustrating the
observer convergence and the obtained performance in terms
of estimation errors.

II. PROBLEM STATEMENT

As in [7], let us consider the tracking of a rigid body
motion, using strapdown MEMS inertial sensors and a mag-
netometer network.

A. Continuous-time model

Let R be an inertial frame of reference. Let Bi be
an orthonormal basis fixed with respect to R, and Bb an
orthonormal basis moving with the rigid body. Let R be the
rotation matrix such that its columns represent coordinates
of the basis Bb expressed in Bi. Coordinates of a vector
are denoted using the i (resp. b) subscript if expressed in
Bi (resp. Bb), such that �i = R�b. Let q be its associated
quaternion such that q ∗� ∗ q−1 ≡ R�, with ∗ denoting the
quaternion multiplication.

Rigid-body motion can be modelled by the continuous-
time differential equations (1) and (2):

dq

dt
=

1

2
q ∗ ωb (1)

dvb

dt
= −ωb × vb + γb + gb (2)

where
• q stands for the attitude quaternion,
• v the velocity vector in R of the accelerometer point

of percussion (denoted MP ) ,
• ω the Rb/Ri angular velocity vector (or its associated

quaternion)
• γ the non-gravitational acceleration of the 3-axis ac-

celerometer point of percussion
• g the gravitational acceleration vector.
Let us denote x the relative position of MP from an

arbitrary fixed point in R. Then, denoting dx
dt the time

derivative of x in R:
dx

dt
= v (3)

Let us denote B(t) the total magnetic field at a fixed point
MB of the rigid body. Assuming enough regularity of the
vector field with respect to time and space, straightforward
derivation yields the following equation:

dB
(t)
b

dt
=− ω ×B

(t)
b

+ (∇B(t)
b )(vb + ωb ×

−−−−−→
MPMB) +

(
∂B(t)

∂t

)
b
(4)

where ∇B(t) is the (3x3) Jacobian of the magnetic field
at MB . If B(t) is time-invariant in the inertial frame, and
if ∇B(t) is available and non-singular, it can be expected
that the velocity vector v is observable through appropriate
tracking of the magnetic field and its spatial variations [6].

However in urban environment, the magnetic field is per-
turbed by power-line interference. Such periodic interference
can be rather strong (up to ∼ 10mG in amplitude near a train
station). This perturbation violates any working assumption
that the magnetic field be time-invariant in the inertial frame.

In the following, we assume that B(t) is the sum of two
vector fields B(t) = B + B(pl) with:

• B the time-invariant component of the magnetic field,
i.e. ∂B

∂t = 0 ;
• B(pl) such that ∇B(pl) ≈ 0, modelling the periodic

power line interference, implying ∇B(t) ≈ ∇B.
It follows

dBb

dt
=− ωb ×Bb + (∇B(t)

b )(vb + ωb ×
−−−−−→
MPMB) (5)

B. Hardware description

1) Sensor board: The sensor board consists in an IMU
with MEMS sensors, coupled with a network of magnetic
sensors. The magnetic field gradient is estimated using a
finite-differences algorithm from the magnetic sensor net-
work measurements and known positions of sensitive ele-
ments. In the following, it is assumed that sensors provide
sampled measurements.

2) Measurement sampling model: Inertial and magnetic
measurements are synchronously sampled by Σ−∆ analog
to digital converters at a frequency 1/T , with T = 3.072ms.
The effect of analog to digital conversion can be modelled as
a weighted integration or a convolution. Let us denote mIMU
and mMAG two convolution fonctions. The relationship be-
tween sampled measurements provided by the sensor board
and continuous-time variables can then be modelled by:

• ωb[k] = (mIMU ? ωb)(kT )
• γb[k] = (mIMU ? γb)(kT )
• Bb[k] = (mMAG ?Bb)(kT )

where ? stands for convolution. In previous lines, mIMU
and mMAG are functions of the time variable, that depend
on ADC settings and on the programmation of an onboard
microcontroller.

C. Performance criteria

Contrary to fingerprinting approaches, no assumption is
made in our model regarding the relationship between the
magnetic field and location. Therefore we can only estimate
a translation vector, whose estimation is subject to drifting.
Our performance criteria will then represent the drifting error
relative to the estimated travelled distance.

If x̂[k] is the estimate of the translation vector x[k] at time
kT , denoting d[k] the estimated travelled distance at time kT
recursively defined as

d[k + 1] , d[k] + ‖x̂[k + 1]− x̂[k]‖

with d[0] , 0, we define the drifting error at time-step k
with respect to time-step k0 as:

ε[k, k0] =
‖(x̂[k]− x̂[k0])− (x[k]− x[k0])‖

d[k]− d[k0]
(6)



This drifting error can be expressed as a percentage of
estimated travelled distance. Whenever it is known that
x[k] − x[k0] = 0, that is to say the trajectory from k0 to
k is a closed path, ε[k, k0] expresses a relative error which
depends only on estimated outputs:

ε[k, k0] =
‖(x̂[k]− x̂[k0])‖
d[k]− d[k0]

(7)

This closed path criteria will be used whenever no external
position reference is available.

III. PROPOSED EKF OBSERVER

In the following, we describe an Extended Kalman Filter
(EKF) providing a motion estimate.

A. Partial discrete-time uncertain model

Let us denote q[k] = q(kT ), vb[k] = vb(kT ) and xi[k] =
xi(kT ). Let us denote the discrete-time partial state vector
including the stationary component of the magnetic field:

x(s)[k] = (q[k],vb[k],xi[k],Bb[k])

Let û[k] be an m dimensional real vector of known sampled
noisy inertial and magnetic measurements, and u[k] their
unknown denoised counterpart, with Qu = Cov(u−û, u−û).
In the following, we assume that at each time step, we know
f (s) and g(s)k such that:

x(s)[k + 1] =f (s)(x(s)[k], u[k]) + ν
(s)
k

=f (s)(x(s)[k], û[k])

+ g
(s)
k (x(s)[k])(u[k]− û[k]) + ν

(s)
k

(8)

where

g
(s)
k (x(s)[k])(α) ,

(
∂f

(s)
k (x(s)[k], û[k])

∂α

)
α

, Gkα

and ν
(s)
k is a zero mean gaussian variable. Equation (8)

represents the discrete-time version of equations (1-3,5).

B. Power-line interference model

Power-line interference (denoted B(pl)) violates the as-
sumption that the total magnetic field be time-invariant in
the inertial frame. It creates an oscillating velocity estimation
error, and hinders filter tuning. Therefore, we include the
discrete-time power-line perturbation model described in [21]
into our discrete-time model. In Ri, denoting B

(pl)
i [k] =

(mB ? B
(pl)
i )(kT ), B(pl)

i [k] can be modelled with the fol-
lowing recursion:

B
(pl)
i [k + 1] + B

(pl)
i [k − 1]

= 2 cos(ω0)B
(pl)
i [k] + ν

(pl)
k

(9)

with ω0 = 2πf0/fs, where f0 and fs , 1/T are the power
line interference and sampling frequencies respectively.

This leads us to add the following linear dynamic into our
model:

x(pl)[k + 1] = F (pl)x(pl)[k] +

(
ν
(pl)
k

0

)
(10)

where

F (pl) ,

(
2 cos(ω0)I3 −I3

I3 0

)
with I3 denoting the (3x3) identity matrix, so that:

x(pl)[k + 1] =

(
B

(pl)
i [k + 1]

B
(pl)
i [k]

)
(11)

Neglecting the effect of movement on the measurement
of power-line interference while sampling, the measurement
model of the magnetic field at step k becomes a sum of B[k]
(time-invariant in Ri) and B(pl)[k] (space-invariant in Ri).

Our uncertain discrete model reads now:

x[k + 1] ,

(
x(s)[k + 1]
x(pl)[k + 1]

)
, fk (x[k], u[k]) + gk(x[k])(u[k]− û[k]) + νk

(12)

with νk a zero mean gaussian variable of covariance matrix
Q.

C. EKF Implementation

The EKF consists in several classic steps [1, Sec. 8.2]:
State prediction. Evaluates the approximate discrete-time

model (12), from Sec. III-B. Denoting x̂+ the state estimate
and x̂− the predicted state before state and covariance
update:

x̂−[k + 1] = fk(x̂+[k], û[k])

State covariance prediction. Denoting x̃− , x̂− − x the
prediction error where x is the actual state, denoting F the
Jacobian matrix of fk(�, û[k]), state covariance is predicted
using the linearized error model:

x̃−[k + 1] ≈ Fkx̃
+[k]

+ gk(x[k])(u[k]− û[k]) + νk

Denoting P− and P+ state-covariance matrices respectively
before and after update, with Qu and Rk chosen so as to
represent known or hypothesized uncertainties about sensor
measurements2, while Q is a covariance matrix modeling
uncertainties about the uncertain discrete-time model itself3,
we have:

P−[k + 1] = FkP
+[k]FT

k +GkQuG
T
k +Q (13)

Measurement prediction. The following magnetic mea-
surement model is used:

zBb
[k] , hk(x[k]) + νzBb

= Bb[k] + q[k]−1 ∗B(pl)
i [k] ∗ q[k] + νzBb

2these are essentially measurement noise covariances.
3chosen as zero except for power line interference filtering
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Fig. 1. Simulation: comparison between simulated and estimated positions
in cartesian coordinates. 3-σ limits estimated by the filter are drawn in red.
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Fig. 2. Simulation: drifting error relative to the travelled distance.

State and covariance update in this case using solely
magnetic field measurements, with classic Kalman filter
formulas:

x̂+[k + 1] = x̂−[k] + Lk

[
z[k]− hk(x̂−[k])

]
Lk = P−[k]HkΩ−1

k

Ωk = HT
k P

−[k]Hk +Rk

P+[k] = P−[k]

− P−[k]Hk

[
HT

k P
−[k]Hk +Rk

]−1
HT

k P
−[k]

with Hk being the Jacobian of the measurement function hk,
Rk the measurement covariance matrix at step k, Lk is the
Kalman gain and Ωk the innovation covariance.

IV. SIMULATION

The Extended Kalman Filter described above is imple-
mented in MATLAB. For testing purposes, we generate a
trajectory, and simulate corresponding sensor measurements.
The magnetic field is simulated to best fit the earth mag-
netic field in SYSNAV (Vernon, FRANCE), with typical
perturbations found in an office building, and power-line
interference typically observed near the Vernon train station.
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Fig. 3. Simulation: stationnary component of the magnetic field as
estimated by the EKF at initialisation (blue). Red lines represent 3-σ limits.
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Fig. 4. Simulation: 50Hz component of the magnetic field as estimated by
the EKF at initalisation (blue). Red lines represent 3-σ limits.

It is modelled as the sum of a constant field, a set of random
magnetic dipoles, and a 50Hz periodic oscillation (amplitude
∼14mG).

The simulated trajectory consists in 8 mouvements along
the edges of a 50cm cube in various orientations. The whole
sequence is repeated 10 times. The estimated trajectory is
shown (Fig. 1), and the criteria (Fig. 2) evaluated with respect
to the initial position.

In this example, after an initial drift due to the power-line
interference being filtered, the drifing error remains under
1% of estimated travelled distance (Fig. 2). The final 3-
σ confidence intervals are x1 ∈ [−0.22m, 0.56m], x2 ∈
[−0.12m, 0.08m], x3 ∈ [−0.16m, 0.10m] (Fig. 1), while
the final position is zero, within each interval. In practice,
the observed drift increases with the magnitude of the state
derivatives. Power-line is cancelled in few time-steps after
initialisation (Fig. 4), leaving undisturbed the estimate of the
stationnary component of the magnetic field (Fig. 3).

The designed EKF works as expected on simulated data,
effectively cancelling power-line interference while yielding
a small drifting error.



Fig. 5. Experimental setup: the sensor board is carried by hand in
SYSNAV’s office
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Fig. 6. Experimental: Indoor trajectory between 3 landmarks on different
floors, reconstructed from experimental data

V. EXPERIMENTAL RESULTS

The proposed navigation solution is tested in SYSNAV’s
office, with the sensor board carried by hand as shown in
Fig. 5. From there, 3 landmarks are chosen in the building
on different floors, and the prototype is layed on top of
each 3 times. The reconstructed path is shown in Fig. 6.
All 9 computable closed path relative drift errors (7) in
this test lay between 0.57 and 0.79%. In another test, 2
landmarks are chosen ∼1.2m apart on the same desk, and
the prototype is layed on top of each 8 times, with one
loop on the floor below. The reconstructed path is shown
in Fig. 7. All 56 computable closed path drift errors in this
test lay between 0.28 and 2.84%. In a third test, the system is
moved around and layed on top of 2 landmarks 3 times each.
The reconstructed path is shown in Fig. 8. All 6 computable
closed path drift errors in this test lay between 0.89% and
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Fig. 7. Experimental: Indoor trajectory between 2 landmarks on a desk,
from experimental data
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Fig. 8. Experimental: Indoor trajectory between 2 landmarks, from
experimental data

1.79%.
The system is given to different users who do not know

the system. They are asked to chose at least 2 landmarks,
and travel in a closed path repeatedly between them as many
times as they want. They are free to chose any path they want
in between their chosen landmarks. Closed path relative drift
errors are made on the 14 additional different trajectories
thereby obtained. The resulting distribution of computed
errors over all these tests is reported in an histogram in Fig. 9:
computable relative drift errors all lay between 0.13% and
3.3% of travelled distance, the majority laying under 2%,
which is a level of performance comparable with pedestrian
dead-reckoning systems’ [13], [17].

CONCLUSION

The motion of a rigid body equipped with inertial and
magnetic sensors has been modeled. A reduced EKF observer
has been designed to estimate the attitude and the position
of the rigid body in presence of measurement noise. Some
numerical simulations have been carried out to illustrate the
obtained convergence. Finally a large series of experiments
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has been performed to show how effective this approach is
on real applications. To be more specific, on the considered
indoor navigation experiments, using distributed magnetom-
etry with inertial sensors yields a closed path drift error of
the designed observer smaller than a maximum of 3.3% of
travelled distance.

This work lets open some questions. Further research is
needed in order to extend experimental results in various
building environments, and improve high dynamic perfor-
mance. Other performance criteria may be considered to
focus on the observer transient response, and on the accuracy
of attitude estimates.
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