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Multi-experiment state-space identification of coupled magnetic and kinetic
parameters in tokamak plasmas
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1 Univ. Grenoble Alpes, CNRS, GIPSA-lab, F-38000 Grenobmde
2 CEA, IRFM, F-13108 Saint Paul-Lez-Durance, France

Abstract

This paper describes an identification technique for ctiatriented linear time-invariant models of the coupled dy-
namics of the electron temperature and the poloidal magfiei for advanced operational tokamak scenarios. The
actuators consist of two neutral beam injectors, an eleatyalotron current drive and the ohmic coil that provides
the loop voltage at the plasma surface. The model is idemtiffégng a combination of subspace and output-error
methods for state-space multiple-input and multiple-atgystem identification. This identification is applied efss

of simulated data from the METIS tokamak simulator with pagters typical of the DIII-D tokamak, and the results
of the identification are presented.

Keywords: System identification, MIMO systems, Tokamak plasmas,®éasontrol, Current profile control

1. Introduction the simultaneous control, in real time, of several plasma
parameter profiles. The shape of the safety factor pro-
The tokamak is a magnetic confinement device used file is important both for plasma thermal transport and
to heat and confine a Deuterium-Tritium plasma. The magnetohydrodynamics (MHD) stability, and the elec-
aim of tokamak research is to build reliable power pro- tron temperature profile determines the plasma resistiv-
duction system using thermonuclear fusidf [There ity that governs the evolution of the safety factor pro-
exists a number of currently operational tokamak de- file. Building appropriate control-oriented dynamical
vices as JET, DIII-D, TCV and JT-60U that are used for models for the coupled evolution of these profiles is
experimental research. therefore important to design model-based controllers
In the past years, one of the main challenges for re- for high-performance steady state tokamak scenarios.
search in controlled fusion has been the development of The safety factor is related to the poloidal magnetic flux.
advanced tokamak operational scenarios to design eco-The dynamics of the poloidal magnetic flux profile can
nomically attractive steady-state reactors. The heating be represented by a resistivéfdsion, a parabolic equa-
of the tokamak machine comes from the electric cur- tion with spatially distributed rapidly time-varying coeef
rents obtained from several sources. The main sourcesficients. Model-based methods for feedback control of
of current in a tokamak are the ohmic coils and the ex- the safety factor profile (also called the g-profile) us-
ternal heating systems. A schematic of the coils and ing Multiple-Input and Multiple-Output (MIMO) finite
the magnetic fields in a tokamak is shown in Fig. dimensional systems are developedan3, 4, 5], and
There are several plasma parameters, such as the safetysing control algorithms based on infinite dimensional
factor, magnetic flux, electron and ion temperatures, control theory are developed if,[7, 8, 9].
plasma rotational velocity, etc., that define the plasma The poloidal magnetic flux and the electron tempera-
state. A key issue for advanced tokamak scenarios isture are known to be highly coupleti][ The heat trans-
port equation can be presented as a one dimensional lin-
ear non-homogeneous partiaffdrential equation with
Email addressesbojan. mavkovegipsa-lab.fr (B. time-varying distributed diusion codicient and source
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Approximate nonlinear physics-based models of the
plasma dynamic evolution are being used in several
simulators like CRONOSIP, 20], RAPTOR 21, 22],
ASTRA [23]. These simulators are complex computer
codes that have been developed to model the plasma dy-
’ namics and predict the evolution of the plasma. Some
of the parameters in these simulators are calculated
from first principles, but others like the heafffdiiv-
ity, are empirically or semi-empirically estimated. For
example, in 4] a nonlinear least squares optimization
method is used for automated parameter identification
in RAPTOR, where the model parameters for the elec-
tron heat ditusivity and the electrical conductivity are

= Toroidal field coils :°'°i_‘jja'| mag”Ett‘F ff‘_e'l‘i estimated based on experimental data. In RAPTOR sim-
i —— loroidal magnetic fiel . . . . .
B Tt ol i coils Resulting magnetic field ulator it is also possible to obtain linear models directly
Outer poloidal field coils —> Plasma current from a linearisation of the nonlinear models around a

trajectory or operating points. The linear model is ob-
tained by calculating the Jacobian matrices computed
by complex predictive RAPTOR simulation, while in
this paper identification techniques are used to obtain
the model.
Building a linear model of the coupled evolution of the
cal formulation. Only some empirical models are devel- g-profile and the electron temperature profile that can
oped for these cdicients. An estimation of the thermal  be used in a real-time control algorithm with minimum
diffusion and of the source term of the heat transport CPU time is the main goal of this paper. Using the sys-
model is presented irlp] and simplified model for the  tem identification approach, this model can be obtained
temperature profile obtained by using neural networks using only measurements of the inputs and outputs.
is presented in11]. Thus, an exact knowledge of the physics of the system
Several works have been dedicated to the integratedis not required. In comparison with the nonlinear mod-
control of the magnetic and kinetic parameters in toka- els used in plasma simulators, the model obtained by
mak plasmas. A simple control algorithm based on system identification is linear and fast, and does not re-
the singular value decomposition of the experimentally quire an accurate knowledge of all the parameters that
deduced linear static response model was used]in [ would be required in a first-principle model. The iden-
Then, in order to cope with fast kinetic dynamics, a tified system is obtained in state-space form, the most
two-time-scale dynamic plasma model was built by per- suitable for control design. The simplicity and general-
forming system identification with experimental data ity of the system identification approach makes the tech-
[12, 13]. Such a dynamic model is based on the the- nigue easily adaptable to other tokamak machines with
ory of singular perturbations and has two components. different parameters andfiirent inputs. The identified
First is the slow components that consists of the dynam- model represents the dynamics of the kinetic and the
ics of the magnetic parameters (poloidal magnetic flux, magnetic states of the plasma combined in one system.
safety factor) and the slow part of the kinetic param- The main goal of this kind of representation is to get a
eters (plasma density, temperature, toroidal velocity). system that can be used for the simultaneous control of
The fast component consists of the fast dynamics of the various parameters.
kinetic parameters. This linearized identified model is The linearized model for the evolution of kinetic and
used to control advanced tokamak scenariod . [A magnetic parameters in tokamaks implies a complex
method for profile control of the electron temperature MIMO system. It contains several inputs such as the
and the safety factor based on a real-time estimation heating and current drive actuators (H&CD), and sev-
of linearized static plasma profiles is explored irb|[ eral outputs represented by the Galerkinfiomnts of
First principle model-based control for the current pro- the kinetic and magnetic profiles at discrete points of the
file and the electron temperature profile is usedli [ plasma radius.
and physics-based control of the plasma safety factor In [12, 13, 14], the structure of the identified mod-
profile and stored energy is used ] 18]. els was based on a singular perturbation approxima-

Figure 1: Representation of the coils and magnetic fieldsokamak.



tion that took advantage of the large ratio between the where¥ and® are the poloidal and toroidal magnetic
time scales involved in the magnetic and kinetiffdi fluxes, respectively, ang is a normalized spatial vari-
sion processes. Such two-time-scale models consist of aable, 0< x < 1. Another parameter that can be used for
slow model and a fast model, with their respective sets the control is the inverse of the safety faci¢x,t) =
of eigenvalues and eigenfunctions that were identified 1/q(x,t), which can be considered as a more natural
separately using an output-error identification scheme. control variable since it is proportional to the spatial
In the present work the two-time-scale approximation is derivative of the poloidal magnetic flux whose evolution
not used, so the system is more complex and could, inis governed by a parabolic equation. The control model
principle, be more accurate. In order to identify a large of the magnetic flux is given in3p]. In a cylindrically
set of eigenfunctions that could lead to improved accu- symmetric plasma column, the time evolution of the
racy with respect to the two-time-scale models, a com- poloidal magnetic flux is given in normalized cylindri-
bination of a subspace identification method and output- cal coordinates in33]. In tokamaks, the poloidal flux
error identification methods is used here. The subspacedoes not reach a stationary value even when the loop
identification is a powerful method for state-space iden- voltage and the auxiliary power are kept constant. In
tification of MIMO systems 25, 26, 27, 28]. It can be fact, at the plasma edge, we havg: = —0¥(1,1)/0t
combined with the least square output-error method to and this linear flux variation induces the ohmic current
get a more accurate estimation of the mo@8| B0, 31]. in the plasma. Followingl?], therefore introduce the
This method can also be used for the estimation of the transformation:¥,(x,t) = ¥(x,t) — ¥(1,t), so that the
safety factor, which is closely related to the magnetic true statel,(x,t) is the internal poloidal flux that repre-
parameters. sents the dference between the total poloidal magnetic
The identification is performed using data provided by flux and the total poloidal flux at the plasma boundary.
the METIS code, a fast integrated tokamak simulation This variable can indeed be used as a state variable of
tool for the CRONOS suite2]. The METIS code is this system and is even a natural state variable of this
designed as a fast tokamak simulator implemented in system. It is directly related to the safety factor profile
MATLAB ®. A multiple experimental data sets can be (See in Appendix) and can therefore be used for its con-
generated using the plasma simulator. These data setdrol. The state equation for the internal poloidal flux is
are simulating plasma discharges and the identification given by:
method can be tested. In this work a nonlinear simu-
lator is used to obtain the plasma evolution in DIII-D { 9% _ ”_"ZEE(X%) 4 7Rojni + Vext
tokamak. ot pod% Xox\ ox

. . M — —
The paper is organized as follows. The problem state- % 0.0 =0 ¥(11)=0
ments and overview of the identification procedure are
elaborated in Section 2. The pre-processing of the data
for the system identification is presented in Section 3.
The subspace identification method is presented in Sec-
tions 4. In Section 5 the output-error method is pre-
sented along with the estimation of the reference state.
Section 6 presents the simulation results of the identifi-
cation method and comparisons between the data sim-
ulated with the identified linear model and the original

()

whereRy is the major radius of the plasma (assumed
constant in time)yo is the permeability of vacuumny,

is the parallel electrical resistivity of the plasmé,(t)

is the plasma surface loop voltage, apg(x,t) is the
non-inductive current-density. This equation has a sta-
ble dynamics and it can be linearized and used for the
system identification procedure.

The non-inductive current density is obtained by com-
bining the auxiliary heating and current drive sources

data. (neutral beams, radiofrequency or electron cyclotron
waves, etc.) and the bootstrap current:
2. Problem statement and identification procedure jni(% 1) = jaux(% 1) + jos(X. 1) (3)

The dynamics of the magnetic parameters is known to
be coupled with the temperature of the electrdns

2.1. Problem statement

bility and performance is the safety factafx, t), de- both being highly dependent on the temperature. This
fined as: makes the dynamics of this system highly nonlinear and
0D(X, 1) coupled. In the same cylindrical approximation as for

9t =~ 9P (x 1) @) Equation (2), the time evolution of the electron temper-



ature is given by34] appears inZ) and @) could lead to an ill defined central
value due to singularity iR = 0 when spatial discretiza-

3neTe = iz%(ai(xr@(efg;) + Qe @) tion is applied. Spatial discretization methods dealing
(9Te £(0,t) =0, To(L0) = Teedge \[A:gt5h ;é/]stems with that kind of structure can be found in
whereye is the electron heat flusivity, ne is the elec- Based on the structure of this physical systet)(2)

tron density, and) is the total electron heating power and flux-averaged plasma transport equations, a lin-
density. The electron heating energy source (the alge-earized gray-box model of the system can be postu-
braic diference between the supplied and lost energies) lated in the form 12, 13]. This model can be presented
is calculated as a sum of several contributions. The mainin the standard state-space form by definkg) =

source of the electron heating comes from the auxiliary [T (1) TI®]" andU(t) = [PT(t) Vex()]™:

heating sources. Transport ¢beients depend on many
plasma parameters (temperature, g, etc.) as well as their
radial derivative (e.g. temperature gradients, magnetic \yitp:
shear, etc.). These dependencies are complex and not
fully known. In most of the cases empirical models A = [211 ﬁlz andB = [BP Bv] = [S‘I‘»P BB’V]
must be used based on experimental data. 2O Te,P

The identified model represents the dynamics of the - ©)
variations, ¥ (x,t) and Te(x, t) of ¥,(x,t) and Te(X,t) Where\I’r(t) - [Trl(t) \PTZ(t)" ’va(t)] and Te(t) =
around the reference valuég, andTe, subject to vari- [Tea(). Tea(0). .. Ten (O]T are the state vectors repre-
ationsB(t) andVex(t) of P(t) andVey(t) around the ref- senting the sets of _the Galerkin cF’ﬁ)elgnts of W (x, 1) .
erence valueB andV,,. andTe(x, t), respectively. The derivation of the matrix

The control inputP(t) represents the power of the heat- st_ructure of the syst_em _using a Gal_erk_in approaph ap-
ing and current drive systems e.g.: plied on @) and @), is given in details in 12]. This
model is a lumped-parameter state-space mathematical

X(t) = AX(t) + BU(D) (8)

Pneiz(t) model of this physical system, with a set of state vari-
P(t) = | Pnaia(t) (5) ables¥; € R™ andT. € R™ and of inputsP € R* and
Pecco(t) Vext, related by first-order dlierential equations. The

. . _ matricesAy; € R A, € RMXMT Ay ¢ RNy
The first actuators are two deuterium neutral beam in- and Ay, € R™™ are state matrices ariy p < RNX3,

jectors: an @f-axis co-current NBI powePyg1 and Byy € R™ andBr.p € R™3 are input matrices to be
an on-axis co-current NBI powePyei2. The other iqeniified. In fact, the matriBy.y in front of Vex does
two inputs are the power of electron cyclotron current ot need to be identified, since it is known from the def-
drive system (ECCDPecco and the loop voltage atthe  iniion of , in (2) and the derivation of the matrices
plasma surfacWex(t). , _ structure presented iig]. The idea for the control is to
The output dgta of_ METIS simulator are mterpolated ON reach the desired equilibrium values of the safety factor
a unique radial grid for each parameter profile through . sing only a limited number of actuators. Note that
a cubic-splines Galerkin approximation to represent the i chojce of actuators can easily be modified and the

finite developments ( seéZ]) as: identification method holds for any set of known inputs.
Ny Assuming a temporal discretization with time stepat
Y (xt) = Z Yik(tak(X) (6) time stampstf, t, .., ty] wherety = t; + (N — 1)At, with

the corresponding discrete-time ddth,[U,, .., Uy] and
[X3, X2, .., Xn] sampled from the continuous-time dy-

nr
Te(X,1) = Z Te()bk(X) ) namics 8), and applying zero-order hold on the inputs,
the discrete system is then obtained as

whereay andby are cubic splines for the magnetic pro- X(t + 1) = AgX(t) + BqU (t) (10)

file and for the temperature profile, respectively. For

the spatial discretization o¥,(x,t), 11 spline func- where At

tions (w = 11) were used at radial knots = Ag= M By = & Bdr (11)
0,0.1,0.2,...,1, and for the spatial discretization of 0

Te(x, 1), 9 spline functionsry = 9) were used at ra-  The inverse of the safety factor can be considered as an
dial knotsx = 0,0.1,0.2,...,0.8. The factor 1x that output of the system. It depends only on the plasma pa-



rameters and geometry, and not explicitly on the heating determine the order of the system to be identified. The

and current drive power. Its linearized relation with the
states of the system can be represented by:

) =C,- [$;§:;]

The data collected for the identification were obtained
from nonlinear plasma simulations, using the METIS
code. METIS includes an MHD equilibrium and current
diffusion solver, and combines plasma transport nonlin-
earity with 0-D scaling laws and 1.5-D ordinaryffir-
ential equations. Despite its simplicity, it integrates ba
sically all the complex features of real tokamak physics
in a simplified but comprehensive and flexible way. The
complexity of tokamak physics is restored through the

(12)

very large number of possible options and models that

the code ffers for every elementary physical process

(e.g. scaling laws, or fixing some source or parameter

profiles and evolving others, etc.).

The simulation data were divided in two sets: one for
identification and another for the validation of the iden-
tified system. For the evaluation of the MIMO system,

the outputs of the simulated system were compared with ) . :
g Processing operation helps to estimate more accurately

the original data obtained from the non-linear METI
simulator. For each output the normalized root-mean-
square error (NRMSE) fit value is calculated as:

Il yi(®) —¥i(t) II)O

——— 10
RIS
wherey is the original datay'is the estimated outputs of

the modely) represents the mean value of the output
andi represents the index of the output.

fit; (%) = 10((1 - (13)

2.2. Overview of the identification method

Equations 8)-(12) represent a grey-box model where
most of the dynamics of the system is unknown and
only the value of the matriByy is known from the
linearization and the discretization oR)(as shown
in [12]. The identification of the lumped system

OE method initialized with the previously identified
system gives a more accurate identification of the
system dynamics. Before the identification, the data
must be pre-processed by removing the means from the
inputs and the outputs, and the original system must be
transformed, through simple algebra, into a system for
the zero-mean pre-processed data.

Along with the identification methods, some constraints
on the eigenvalues of the system can also be introduced
to reflect specific properties of the physical system. An
overview of the identification cycle is presented in Fig.

3. Pre-processing the data for system identification

The data that are used for estimation should be pre-
processed by removing thefsets before the identifi-
cation (e.g. see Chapter 14 i@€]). Processed data
describe the relationship between the change in input
signals and the change in output signals. The pre-

linear models because the linear models identification
methods cannot capture arbitraryffdrences between
the input and output signal levels. One way of removing
the dfsets in the data is by removing from the system
variables the reference values corresponding to steady
state equilibrium around which the system has been lin-
earized. The reference values corresponding to a given
set of steady inputs could be known in the case where
the so-called experimental data is obtained from non-
linear plasma simulators because the simulations could
in principle be extended until the plasma reaches an
equilibrium. This is not the case, however, if one uses
real experimental data because, in most tokamaks, the
plasma does not reach a physical equilibrium state be-
fore the end of the discharge even with steady inputs,
so the measurements that can be used for system iden-

is performed using the outputs represented by the tification consist only of transient data. For the sake

Galerkin codficients. For the identification of this
state-space model a combination of two identification
methods is used. First a Multivariable Output Error
State sPace (MOESP) metho@7] is applied. The
model obtained by the MOESP method is not optimal
for complex systems and when the input signals are
short, but it can be used to initialize the model for
the Output-Error (OE) method. A combination of

of generality, we shall assume that the reference values
are not knowra priori, and use a technique to identify
them. To bring the data near the linearization point, the
data are pre-processed by removing the mean values:

X(t) = X(t) = (X)
P(t) = P(t) - (P)
(Vext(t) = Vext(t) = Mext

(14)

subspace and iterative least-square methods has been
already used in identification of MIMO state-space where(X) = [(¥;)" (Te)']T, (P) and(V)ey are the

models B0]. The MOESP method is also very useful to
5

mean values of the measured vectors. The model corre-



sponding to the model of the zero-mean data is:

X(t) = X(t) = A(X(L) + (X)) + B(U(t) + (U))

(15)

= AX(t) + BU(t) + A X

where
AX = A(X) + B(U)
1 1
A f X(t)dt+ B f U(b)dt
N -1t Jy tn—t Jy
N —
__1 f X(t)dt = X(tn) — X(t1)
tn =11 Jy tn—11

(16)

The termA(X represents anffset that should be con-
sidered when the identification is performed. If the full

state is measured and there is no measurement noise (as

in this case), the values a;X; are known and can be
calculated for each fferent measurement data s§t
represented by, (t) andT(t).

In the black-box subspace based algorithms or in the

case where there is a measurement noise in the data,

this ofset should be estimated considering a constant
input to the system as irBf]. In such identification

procedures as the output-error method, the system can

be presented in a specific form wheg; can be intro-
duced as an additional input of the system.

4. Subspace identification

4.1. MOESP method for system identification

These simulations consist of multiple short in-
putoutput data sets. In theftirent reference sets, the
inputs of the MIMO system are modulated in order to
have a better estimation of the dynamics of the system
for each inpybutput channel.

Thus, linear-multivariable system identification tech-
niques are used where the multi-experiment data are
merged together for one identification cycle. Tech-
niques for the multi-experiment case are explained in
[37, 31]. Here the extension is done in a similar way
for the MOESP method. The subspace method is used
to find an initial system, i.e. approximations for the ele-
ments in thedy, By andC4 matrices, which will be used
as initial values for the recursive output-error identiica
tion. The identified system using the subspace identifi-
cation method is given by the discrete-time LTI system

X(t+1) = AgX(t) + ByoTd(t)
Y(t) = CeX()

whereAq € R™", wheren = ny + nt is the state matrix,
Bde = [Bdap Bav Bdgs] € R™S is the input matrix and

(17)

6

Cq € R% " is the output matrix of the discrete system,
whereny is the number of outputs. In these experiments,

the input data i/(t) = [P"(t) Vex(t) 1] The output

data are combined a3/(t) = [‘I‘rT(t) Tg(t)]T. Here the
matrix Bqs is added to deal with the additional constant
input that should identify theffset that is obtained due
to the pre-processing of the data.

First, the output and input data are stored in Hankel ma-
trices noted ad/1 x n andU1 kN, respectively.

Collect and merge

experiment data from METIS

U, (t) Te(t) U(t)

Pre-processing the data

removing the mean values

Subspace identification

with eigenvalue constraints

and determine the order of the system
X(t+1) = AgX(t) + Bad(t)

Y(t) = CaX(t)

initial model

Output-error identification
X(t + 1) = AdX(t) + Bﬂ/{(f) + Ay X

calculating
Byv, AX

Estimation of the reference

steady-state W, T, T

Validate the identified system

on simulation data

Figure 2: Overview of the method.



The subscript 1 is the index of the first data sample We thus restricted, for the sake of simplicity and for the
andk denotes the number of rows in the matrix.rep- needs of the control application, the order of the system
resents the last data sample of the experiment. The dataand the number of controlled outputs to a maximum of
equation in this work is extended to deal with multiple n = n, = 8. The sum of the first 8 singular values is
data sets that are merged together. Techniques dealindl3.23, and it higher than 95% of the sum of all singu-
with multiple data sets in subspace identification meth- lar values inX. Thus, for the outputs of the system, 4
ods are presented 37, 31]. The LQ decomposition  outputs were taken for the poloidal magnetic flux and 4
(where L is a lower triangular matrix) of the data matrix outputs for the electron temperature in particular radii
using the MOESP method for multi-experiment data is that are important for profile control. This reduction of

obtained as: the number of outputs used for the identification simpli-
fies the identification process and reduces the number of
.. T
glvk"“l :glvk"\‘z || l';llk’NK} = tll LO ] 8%] parameters that need to be estimated.
LNy T FLkN, kN 21 2]1%2 Once the order of the system has been selected, an es-

(18)

The calculation of o is fully explained in p5]. lt;r?eagzglf the extended observability matfix is calcu-

= _ 1/2
4.2. Determining the order of the system T = WhZ,

The identification data is extracted using the METIS
code and measurement noise is not present in the data
Thus, the order of the system is estimated using the
technique used for MOESP method for noise-free data
[25]. W

By performing a singular value decomposition (SVD)
on Ly, we get

Log of singular values
o
5

L22 = WZVT =~ [W]_ Wz]

5 0|V T
;-

where,X is a diagonal matrix with singular values of

Lo, on its diagonal, the columns &¥ are the left sin-
gular vectors and/™ has rows that are the right singu-

lar vectors obtained by SVD. Examining the elements

of the rectangular diagonal matrk a decision can be

made about the choice of the order of the system. The Figure 3: First 10 singular values &fthat indicate the order of the
order of the system can in principle be obtained by re- model.

ducing X to the firstn elements with highest values,

%, = diagoi, o2, .. 0], whereoy > o2 2 . > 4.3. Eigenvalues constraints in subspace identification

on >0~ 0pp1 ® 0neo... N . ~ )
In the case of this systerli,was calculated by taking as . T_he initial estimate ofy using the_MOESP method
is given by minimizing the cost function

outputs all the 20 available measured output&fdi, t)
andTe(x,t) at 11 and 9 radial points, respectively. The Jr(Ag) =l ToAq — T1 |l (19)
decision about the order of the system using subspace L o

methods is heuristic. The order of the systemshould ~ Wherel'p = Tk(1 : ny(k-1),:) andl'; = Ti(ny+1 : nyk, ).

be taken such that the values of the eliminated eIementsHerefk(i : j;7) stands for the submatrix df, which

of X are zero or close to zero. The first 10 singular val- contains the columns from i-th to j-th columni.- ||¢

ues ofX are presented in Fi@.From the singular values  denotes the Frobenius matrix norm. The solution of this
it can be concluded that the system can be well repre- linear least-squares problem with the analytic minimum
sented if the order is taken to lbe> 4. Another crite- is Ag = F51F1. Some of the poles oy obtained from
rion that limits the order of the system is that the char- (19) may be complex-conjugate, which may cause os-
acteristic times of all the identified eigenmodes should cillations in the identified system response. This phys-
be larger than the sampling time. In addition, the con- ical system is dtusive and the dierential operator of
trolled system has only a few degrees of freedom be- the difusion equation with diusion codficient is Her-
cause there are only 4 available actuators. mitian [38], thus with real eigenvalues. Moreover the

4 8 9 10

5 6 7
Model order



experimental observation does not show oscillations in with:

the data. For these reasons we have chosen to constrain 10 1
the eigenvalues in an arbitrary small band close to the B= [—1 0}
real axis. As we shall see later, the systems identified . L , )
within this constraint yield satisfactory simulations of Wherée = 2 is a small number that limits the imagi-

the original data, so there was no real need for introduc- N1y partof the polep e C of the identified system into
ing complex-conjugate eigenvalues. an arbitrary small band around the real axis in the com-

The technique of eigenvalue constraints for system Plex plane represented by the get {p € C : [Im(p)| <
identification that is used in this work is elaborated in & ¢ = O} . .
[39. Using this method, the eigenvalues can be con- OnceM andN have been found, the new estimate is cal-
. y A _ 1 .. .

strained by defining Linear Matrix Inequalities (LMI) ~ culated asAq = MN™". The convex optimization prob-
regions and incorporating them into the subspace iden- €M iS solved using the YALMIP toolbox for MATLAB
tification problem. The LMI-regions define convex re- [41]- The matriceCq andBq. were obtained using the
gions of the complex plane as LMIs. standard MOESP metho@. .

An LMI region is a convex regiotD of the complex This identification method is not alwaysfRaient for

plane, defined in terms of a symmetric matixand a large MIMO system. As will be seen in Section 5, the
square matrig, as: model obtained by the MOESP for the problem dis-

cussed in this paper yields to some fitting errors when

(25)

D=1{zeC: fp(2) =0} (20) comparing the simulated outputs with the original data.
However, this method provides a good guess for initial-

where izing the system. We have therefore used this model as a
(@) =a+pz+p2 1) starting point for an iterative process in which the order

of the system is fixed and the model matrices are op-
wherez is complex conjugate af. The concept of us-  timized in each iteration by performing an output-error
ing LMI regions for LMI-based synthesis is first intro-  identification.
duced in f0]. Here we present the central theorem that
is given in 0]
5. Output-error identification
Theorem 1. The eigenvalues of a matrid € R™" lie
within an LMI region given byZ0) if and only if there 5.1. Estimation of the state-space matrices
exists a matrix Ne R™" such that:
The output-error method is an iterative meth@d|[
N=N">0, a®N+8a(AN)+B &(AN)" >0 (22) and requires initial values of the parameters that are es-
timated. The subspace identification method presented
The concept of constraints based on LMI regions is in- iy Section 4 provides an initial model of the system.
corporated in the subspace identification problems with The model identified with the subspace method can be
the methods based on the extended observability matrixeas”y transformed in a form such that the output matrix
proposed by39]. Cq is an identity matrixCq = I,. This representation of
In order to get a modified model that consists of the state space model is called an observable canonical
eigenvalues close to the real axis, the cost functi® ( form. It can be used when direct measurement of the
is modified as: statesY = X are available and pre-process the data
— — — — as explained in Section 3. Also the known values of
Jr(M,N) =[| ToA4N = T'1N [[e=[| ToM —T1N [ (23) the matriceByy andA X at this stage are introduced.
Representing the system in this form avoids the need to

where N is a right-hand weighting matrix ati= AqN. identify the output matrixC, which reduces the number

The optimization. problem with convex constraints is ¢ parameters that needs to be estimated.
stated as follows: B _ Using an iterative method the vectof, =
Given the estimate of the extended observability matrix L

2 T " : )
I" and the LMI region described by parameterandg, vedAq) Ve_((Bd’P) ] thf'"t cqntams all _the_ un
nown matricesA and By, is estimated by minimizing

min J-(M, N) the squared error between the measured stitesd
subjectto: 0 @N+BeM+pT@MT >0; (24)  (heestimated _
N=NT>0 min Jg (61) (26)



0.05 T
ok i
—measured value
——MOESP (Fit = 72.5 %)

-0.05 - q
——Prediction error (Fit = 90.5 %)

181 & . 2
W) =1 )~ 2, i) = & o)
i=1 =1

= =

(27)

/- (W) (0.9) [Whb]

p

v
<)
e

L I I I I I I
2 4 6 8 10 12 14 16
T T T T T T

= % Ex (61)" Ex (61)

where:

T 2
Ex(0) = [EL, 00 B, (07 - 5 0)"]  (28) ﬂ°~ﬂwﬂxﬁﬂvfﬁ;:4
—  -1F ——MOESP (Fit = 59.9 %) T

—Prediction error (Fit = 83 %)
and >, ‘ ‘ ‘ ‘ ‘ ‘

2 4 6 8 10 12 14 16
time (s)

(0.3) [keV]

e

T

e

T-

. 1 . . ) T

BN = 7 [T €@ - )| (29)
1

Figure 4: Comparison between the measured values of the sedulat

is the error vector Wheré(j) =X (t].) — /?i (t].’ 61). system and the outputs of the_ ident‘ified system for the MOER®P a
As in the subspace identification approach (see Section!"® outut-error methods for simulation # 22 (see Tahle

4), the output-error method is set for a multi-experiment

data set, where experiments witfffdrent modulations 52 Estimation of the reference steady-state

of the inputs are merged for a better estimation of the
dynamics of the MIMO system. In this application, the
multiple-cost approachi, 26] for the definition of the
cost function 26) is used. For the identification, there
are the measured values of the $@#;;, X} with j =
1,2,....Nandi = 1,2,...,K (K denotes the number
of experiments andl; is the number of data samples in
thei-th experiment).

The estimated state and initial condition are given by:

Once the best fitting model is obtained and the opti-
mal discrete representation of the system is transformed
into a continuous-time linear time invariant (LT1) model
[A, B, CJ], the reference equilibrium values of the states
as in [L2] could be estimated. Considering a constant
input applied for a sfficiently long time,U(t) = U, the
steady state valueg, and T, are obtained. At steady
state the plasma is in equilibrium, aﬁdcan be calcu-
lated using the steady state solutidq(t) = 0) of (15),
&-(t +1,61) = Ag(B) /\;j(t, fr) + Bd,e(él)(ue(t) (30) and estimating theftset by (6) as:

X;(0) = X;(0) X=-A1B-(U-(U)+AX+(X) (31)

where the mpu#s are combined in one fomr(t) = The reference equilibrium point for the inverse of the
[PT(I) (Vext(t) 1] and the matriXBd’e = L eATBedT Safety factor is then:

whereB. = [B, B, AXj|. The estimate30) is pre- _

sented in a discrete form with a discretization time equal t=CX (32)

to the sampling time of the experimentg,= 5ms

Using the estimate in3Q), the minimization of 27)
can be performed by using a iterative gradient searc
method. In this application we use the Levenberg-
Marquardt method. The initial value af; for the
optimization is the one obtained previously with the
MOESP method. In Fig4 the comparison between
the outputs of the identified systems with MOESP an
output error methods are presented for a particular ex-

periment. From the plots it can be easily noticed that g. |dentification results

the results, obtained using only the MOESP subspace

method, are not satisfactory due to the low NRMSE  For the identification of the model, 22 data sets from
fit value of the compared outputs. Applying an addi- the METIS tokamak simulator were provided. The
tional optimization to the model, using the output-error plasma parameters were those of a typical DIII-D steady
method, improves the performance of the identified sys- state scenario that is described with more detaild4h
tem. The toroidal field is 1.8 T, the central plasma density is

With this approximate estimation of the reference states,
h the reduced state% around the reference point can be
found. The error of the approximation can only intro-
duce a constantffset both on the controlled variables
and their target values. It should therefore have no ef-
fect on the control action, which depends only on their
d difference.



sim. number Vex(V) Pnein(MW) | Pngiz(MW) | Pecco(MW)
1 0.02 15 2.5 5
2-6 -0.030-0.120 1.5 2.5 5
7-8 0.02 15 0-5 5
9-10 0.02 1.5 2.5 25-75
11-12 0.02 0-5 2.5 5
13 0.02 1.5 0-5 25-75
14 0.02 0-4 2.5 25-75
15-18 0.02 0-4 0-5 25-7
19-20 -0.23-0.27 0-4 0-5 25-75
21 -0.030-0.120 0-4 2.5 25-75
22 -0.030-0.120 15 0-5 25-75

Table 1: Table of the nonlinear METIS simulations used fordpgtem identification showing the minimum and maximum values®fguare-
wave modulated inputs (simulation numbers used for the ideati6in: # 1, 2, 3, 4, 11, 14, 16, 17, 18, 21, 22).
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Figure 5: Plot of¥, (t) vs time for the simulation # 22 (see Tallg
The black dashed traces represent the outputs of the sioulafi
the identified system and the red traces represent the suppahe
original METIS simulation. The fit parameter defined in Eg3)(is
indicated in each frame.

Figure 6: Plot ofTe(t) vs time for the simulation # 22 (see Taldlg
The black dashed traces represent the outputs of the siowlafi
the identified system and the red traces represent the supthe
original METIS simulation. The fit parameter defined in Eg3)(is
indicated in each frame.

5. 10 m 2 and the plasma current varies between 0.6 command. However, the response model we are seeking
MA and 1.2 MA depending on the values of the heating here is to provide the response of the plasma to changes
and current drive actuators. The simulations were di- in the actuator commands, rather than the response to
vided into several groups presented on Tdblén each the actual input powers and surface voltage.

group, either a single input was modulated dfetent Half of the data set is merged to identify the model and
inputs were modulated in order to have a better estima- the other half is used for the validation stage. The sim-
tion of the response of the system when the various in- ulation time for each data set is Xzand only the data
puts are simultaneously varying. The inputs were mod- after 25 swere used, i.e when the system outputs reach
ulated using pseudorandom binary sequences in ordervalues close to the reference values around which the
to excite all the relevant frequencies which provides an linear model is sought. The measurements are taken
accurate model that is valid in a large frequency range. with a sampling time of @05 s. The four actuators of

In a real tokamak, such square wave excitation of the the systemPng:, Png2, Peccp and Vey have allowed
actuators, and in particular &, may not be possible  ranges of variation between-05 MW, 2.5 - 10 MW,

due to the finite response time of the actuators to their 0 — 4 MW and -02 — 0.5 V, respectively.
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Figure 7: Plot of¥(t) vs time for the simulation # 19 (see Tallg
The black dashed traces represent the outputs of the sipnlati

the identified system and the red traces represent the suppthe Figure 8: Plot ofTe(t) vs time for the simulation # 19 (see Takl
original METIS simulation. The fit parameter defined in Eq3)(is The black dashed traces represent the outputs of the sionilefi
indicated in each frame. the identified system and the red traces represent the suppdhe

original METIS simulation. The fit parameter defined in Eg3)(is
indicated in each frame.

For the outputs of the system, 4 Galerkin fiméents s ; , , . ; ;

were chosen from the poloidal magnetic flux proflle ol ’/ ’—H( ]
and the safety factar at knotsx = [0, 0.4, 0.7, 0.9] s .
and 4 Galerkin coicients were chosen for the electron & | _J — P |
temperatureT, at knotsx = [0, 0.2, 0.3, 0.5]. Thus i Pecco 1
the identified system is of order 8. % i I s W © “ ®

The characteristic time constants of the estimated sys-S Ll ‘ : :
tem are: B9s, 1.0s, 0.75s, 0.62s, 013 s, 0.11 s, 5 il |

0.07 s, 0.01 s. The estimated satisfies the eigenvalue S : s : " ke ” "

constraints described in Sections 4.2. Simulations were £ 1+ \//\/\//

. . o

included where only specific actuators were modulated = °; n s s ime ( )1'0 ® " 1s
ime (s

while the others are fixed for a better estimation of the
columns ofBp that are related to these inputs. The cal-
culated value oBy.y, which is known from the physics  rgyre 9: Piot of the four inputsi{and Vex) and the total plasma

of the problem, provides the response of the poloidal current ;) vs time for simulation # 22 (see Takil}.

magnetic flux to the most powerful actuator in the sys-

tem, Vexe.

Note that this system is a linearized model that repre- of the identified system can be calculated. Calculat-
sents the dynamics of the kinetic and magnetic profiles ing the reference states f8 and T using 31), we

in a tokamak in a relatively broad vicinity of the lin- get: ¥, = [2, 143 061 0.18]" WbandT, =
earization point, since the reference data set has a largg5.56, 5.31, 5.03, 3.94]" keV.

variation of the actuators. Despite the highly nonlin-  The results of the system identification can be evalu-
ear dynamics of the physical system, this model can be ated by comparing the data predicted by the identified
used only if the states of the system are in this broad model with the original data. The inputs waveforms
vicinity, and therefore it is restricted to profile control used in the simulation # 22 that is included in the iden-
applications in a particular tokamak and plasma sce- tification data are presented in Figgand the identifica-
nario (toroidal magnetic field, plasma shape and av- tion results in Fig5 and Fig.6. The results for simula-
erage density) but with relatively large power varia- tion # 19, which is not used for identification but only
tions (several megawatts). By taking the mean value for validation, are also presented. The input waveforms
of all the inputs used for the identificatiorPyg1 = are presented in Fig0and the evaluation results in Fig.
2.3 MW, Pygiz = 4.8 MW, Pgcep = 1.1 MW and 7 and Fig. 8. In both simulations all the inputs were
Vext = 0.028V as reference inputs, the reference states modulated and the plots of the reference data (METIS

11



_____ o flux and when the temperature states are out of the va-
§ 5k J{H—L [ [-‘“_ “ “ ——rPwqd  lidity domain, this implies a bad estimation of the mag-

- ‘P- MI—'_ ' \ at we | petic flux states because of their strong coupling. Note
2 4 6 . 10 2 m « that when we have short temperature drops, the estimate
s ‘ ‘ ‘ ‘ ‘ ‘ remains reasonably accurate. The identification results
g oF ‘ 1 have shown that a linearized multivariable model of the
z ‘ ‘ ‘ ‘ ‘ ‘ coupled dynamics using a limited number of actuators
05, 4 6 8 10 12 14 s can be obtained and that the model fits the original data
satisfactorily when the power remains in the range of

- ‘ ‘ ‘ ‘ ‘ ‘
=l W 1 25-165MW.

time (s)

7. Conclusion

Figure 10: Plot of the four inputd?(and Veyy) and the total plasma

current () vs time for simulation # 19 (see Taki This identified LTI model can be used in future work

for the control of the coupled parameters in tokamaks.
‘ The identification scheme can be easily adapted to dif-
”r — | ferent tokamaks and in fierent conditions where the
| P inputs are dferent than those used in this study.
N e The actuator variations used in METIS to obtain the
identificationivalidation data are quite large (several
s 1 2 i s megawatts, fractions of a volt) and typical of the vari-
\—‘] ' | ations that will be allowed during control experiments,
‘ ‘ . with plasma current varying between60 MA and
2 4 6 8 1 2 " ' 1.2 MA. As long as the toroidal field and plasma shape
1 do not change, the identified model should then be ap-
12 14 ©  propriate for control applications. Otherwise, if a non-
linear model is not available, the only way to use the
present approach is to perform series of linear model
Figure 11: Plot of the inputdXandVex) and the total plasma current  identifications around @ierent plasma reference pro-
(1p) vs time and the plasma for simulation # 20 (see Table files. Previous approachek] 13, 14] to the simultane-
ous control of magnetic and kinetic variables in a toka-
mak based on the same postulated linear system struc-
simulation) are compared with the output data predicted ture used singular perturbation methods (a two-time-
by the identified system. For each output of the system, scale approximation) to divide the system into a slow
the fit parameter values varied from about-AB % for and a fast system that were identified separately. In con-
W (x, t) outputs and 66 88 % forTe(x,t). The quality trast, the linear model obtained here contains the whole
of the fit is varying within these ranges for allfidir- coupled dynamics of the electron temperature and the
ent simulation data except for simulations # 15 and # poloidal magnetic flux, which may be more adequate
20. The fit parameters for simulations # 15 and # 20 for some tokamak machines, depending on théedi
were also in the same range if the data is restricted to ence of the kinetic and magnetic time scales in a particu-
t < 11.6 s, but they become poor at the end of the simu- lar machine. The identification method presented in this
lation (11s< t < 15 9), yielding fit parameters around  paper is faster than the one presented in the previous ap-
24 — 45 % for¥,(x,t) and 55— 58 % for Te(x,t). The proaches. The execution time of the subspace identifica-
results for simulation # 20 are presented in Rig.and tion takes about 10 seconds, while the iterative output-
Fig. 13 and the inputs in Figll. This is explained by  error methods execution time takes about 180 seconds.

P (MW)

o

‘?h.)

' Vext v)

= o
N

- o

Ip (MA)

05! L
2

IS
ok

the fact that the total power dropped down t& 2AW This combination of subspace and output-error methods
between 156 sand 15s, which results in a low tem-  could also be used within the two time scale estimation.
perature plasmalg(0,t) < 2.3 keV, T¢(0.2,t) < 2 keV, It can provide a better estimate of the respective order of

Te(0.3,t) < 1.8 keV, T¢(0.5,1) < 1.24 keV) where non- the slow and the fast models based on the information
linearities become more important. The dynamics of contained in the low frequency and high frequency data
the temperature is faster than the dynamics of magnetic set, respectively.
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Figure 12: Plot of¥,(t) vs time for the simulation # 20 (see Tallg
The black dashed traces represent the outputs of the sipnlati
the identified system and the red traces represent the suppahe
original METIS simulation. The fit parameter defined in Eg3)(is
indicated in each frame. In this simulation at 11.6 s, the totsder
drops down to 2.5 MW.
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Appendix A. Estimation of the safety factor profile

While the poloidal magnetic fluX¥, is a natural

choice to describe the plasma state, control objectives

are generally formulated in terms of the safety factor
[6, 43] or its inverse [L4]. A change of variable is then
necessary to convett, into the controlled variable. For
example, the relation betweefx, t) and¥,(x,t) can be
written as in L3]:

s ) ' (aqji, )

ox
( } 0P (X, t))

1
20mat)\ X OX

where the normalized radius is defined as =
(®/Pmax™’? and Omay(t) = @(L,t) is the toroidal flux
inside the magnetic separatrix. The inverse of the safety
factor can be presented by finite expansions orffardi

ent set of basis functiond4]. The approximation of

with the basis functionr(x) = (1/x)(dac/dx), where

ax are the cubic splines foP, defined in Section 2, is

13

L% 1) )

(A.1)

=0.5
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Figure 13: Plot ofT(t) vs time for the simulation # 20 (see Tallg
The black dashed traces represent the outputs of the siowlafi
the identified system and the red traces represent the suhpthe
original METIS simulation. The fit parameter defined in Eg3)(is
indicated in each frame. In this simulation at 11.6 s, the totsder
drops down to 2.5 MW.

obtained as

1 n
)= ——— Wt A.2
(D =~z ; a(¥rt)  (A2)
If ®dmaxis assumed to be constant, which is a good
approximation when the toroidal field and the plasma
shape are fixed, a matr, for the relation betweert)

and¥(t) can be found as:

P (t)
[Cur, 0] |74

Once the model for the dynamics &, and T is
identified, the relation between and the states is
approximated by A.3) using the expressiorA(2) to
define the matrixC, y, .

M=cC X (A.3)
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