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Abstract

This paper describes an identification technique for control-oriented linear time-invariant models of the coupled dy-
namics of the electron temperature and the poloidal magnetic flux for advanced operational tokamak scenarios. The
actuators consist of two neutral beam injectors, an electron cyclotron current drive and the ohmic coil that provides
the loop voltage at the plasma surface. The model is identified using a combination of subspace and output-error
methods for state-space multiple-input and multiple-output system identification. This identification is applied on sets
of simulated data from the METIS tokamak simulator with parameters typical of the DIII-D tokamak, and the results
of the identification are presented.
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1. Introduction

The tokamak is a magnetic confinement device used
to heat and confine a Deuterium-Tritium plasma. The
aim of tokamak research is to build reliable power pro-
duction system using thermonuclear fusion [1]. There
exists a number of currently operational tokamak de-
vices as JET, DIII-D, TCV and JT-60U that are used for
experimental research.
In the past years, one of the main challenges for re-
search in controlled fusion has been the development of
advanced tokamak operational scenarios to design eco-
nomically attractive steady-state reactors. The heating
of the tokamak machine comes from the electric cur-
rents obtained from several sources. The main sources
of current in a tokamak are the ohmic coils and the ex-
ternal heating systems. A schematic of the coils and
the magnetic fields in a tokamak is shown in Fig.1.
There are several plasma parameters, such as the safety
factor, magnetic flux, electron and ion temperatures,
plasma rotational velocity, etc., that define the plasma
state. A key issue for advanced tokamak scenarios is
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the simultaneous control, in real time, of several plasma
parameter profiles. The shape of the safety factor pro-
file is important both for plasma thermal transport and
magnetohydrodynamics (MHD) stability, and the elec-
tron temperature profile determines the plasma resistiv-
ity that governs the evolution of the safety factor pro-
file. Building appropriate control-oriented dynamical
models for the coupled evolution of these profiles is
therefore important to design model-based controllers
for high-performance steady state tokamak scenarios.
The safety factor is related to the poloidal magnetic flux.
The dynamics of the poloidal magnetic flux profile can
be represented by a resistive diffusion, a parabolic equa-
tion with spatially distributed rapidly time-varying coef-
ficients. Model-based methods for feedback control of
the safety factor profile (also called the q-profile) us-
ing Multiple-Input and Multiple-Output (MIMO) finite
dimensional systems are developed in [2, 3, 4, 5], and
using control algorithms based on infinite dimensional
control theory are developed in [6, 7, 8, 9].
The poloidal magnetic flux and the electron tempera-
ture are known to be highly coupled [1]. The heat trans-
port equation can be presented as a one dimensional lin-
ear non-homogeneous partial differential equation with
time-varying distributed diffusion coefficient and source
term. The coefficients in this equation are not well
known and there is no consensus about their mathemati-
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Figure 1: Representation of the coils and magnetic fields in a tokamak.

cal formulation. Only some empirical models are devel-
oped for these coefficients. An estimation of the thermal
diffusion and of the source term of the heat transport
model is presented in [10] and simplified model for the
temperature profile obtained by using neural networks
is presented in [11].

Several works have been dedicated to the integrated
control of the magnetic and kinetic parameters in toka-
mak plasmas. A simple control algorithm based on
the singular value decomposition of the experimentally
deduced linear static response model was used in [4].
Then, in order to cope with fast kinetic dynamics, a
two-time-scale dynamic plasma model was built by per-
forming system identification with experimental data
[12, 13]. Such a dynamic model is based on the the-
ory of singular perturbations and has two components.
First is the slow components that consists of the dynam-
ics of the magnetic parameters (poloidal magnetic flux,
safety factor) and the slow part of the kinetic param-
eters (plasma density, temperature, toroidal velocity).
The fast component consists of the fast dynamics of the
kinetic parameters. This linearized identified model is
used to control advanced tokamak scenarios in [14]. A
method for profile control of the electron temperature
and the safety factor based on a real-time estimation
of linearized static plasma profiles is explored in [15].
First principle model-based control for the current pro-
file and the electron temperature profile is used in [16]
and physics-based control of the plasma safety factor
profile and stored energy is used in [17, 18].

Approximate nonlinear physics-based models of the
plasma dynamic evolution are being used in several
simulators like CRONOS [19, 20], RAPTOR [21, 22],
ASTRA [23]. These simulators are complex computer
codes that have been developed to model the plasma dy-
namics and predict the evolution of the plasma. Some
of the parameters in these simulators are calculated
from first principles, but others like the heat diffusiv-
ity, are empirically or semi-empirically estimated. For
example, in [24] a nonlinear least squares optimization
method is used for automated parameter identification
in RAPTOR, where the model parameters for the elec-
tron heat diffusivity and the electrical conductivity are
estimated based on experimental data. In RAPTOR sim-
ulator it is also possible to obtain linear models directly
from a linearisation of the nonlinear models around a
trajectory or operating points. The linear model is ob-
tained by calculating the Jacobian matrices computed
by complex predictive RAPTOR simulation, while in
this paper identification techniques are used to obtain
the model.
Building a linear model of the coupled evolution of the
q-profile and the electron temperature profile that can
be used in a real-time control algorithm with minimum
CPU time is the main goal of this paper. Using the sys-
tem identification approach, this model can be obtained
using only measurements of the inputs and outputs.
Thus, an exact knowledge of the physics of the system
is not required. In comparison with the nonlinear mod-
els used in plasma simulators, the model obtained by
system identification is linear and fast, and does not re-
quire an accurate knowledge of all the parameters that
would be required in a first-principle model. The iden-
tified system is obtained in state-space form, the most
suitable for control design. The simplicity and general-
ity of the system identification approach makes the tech-
nique easily adaptable to other tokamak machines with
different parameters and different inputs. The identified
model represents the dynamics of the kinetic and the
magnetic states of the plasma combined in one system.
The main goal of this kind of representation is to get a
system that can be used for the simultaneous control of
various parameters.
The linearized model for the evolution of kinetic and
magnetic parameters in tokamaks implies a complex
MIMO system. It contains several inputs such as the
heating and current drive actuators (H&CD), and sev-
eral outputs represented by the Galerkin coefficients of
the kinetic and magnetic profiles at discrete points of the
plasma radius.
In [12, 13, 14], the structure of the identified mod-
els was based on a singular perturbation approxima-
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tion that took advantage of the large ratio between the
time scales involved in the magnetic and kinetic diffu-
sion processes. Such two-time-scale models consist of a
slow model and a fast model, with their respective sets
of eigenvalues and eigenfunctions that were identified
separately using an output-error identification scheme.
In the present work the two-time-scale approximation is
not used, so the system is more complex and could, in
principle, be more accurate. In order to identify a large
set of eigenfunctions that could lead to improved accu-
racy with respect to the two-time-scale models, a com-
bination of a subspace identification method and output-
error identification methods is used here. The subspace
identification is a powerful method for state-space iden-
tification of MIMO systems [25, 26, 27, 28]. It can be
combined with the least square output-error method to
get a more accurate estimation of the model [29, 30, 31].
This method can also be used for the estimation of the
safety factor, which is closely related to the magnetic
parameters.
The identification is performed using data provided by
the METIS code, a fast integrated tokamak simulation
tool for the CRONOS suite [20]. The METIS code is
designed as a fast tokamak simulator implemented in
MATLAB R©. A multiple experimental data sets can be
generated using the plasma simulator. These data sets
are simulating plasma discharges and the identification
method can be tested. In this work a nonlinear simu-
lator is used to obtain the plasma evolution in DIII-D
tokamak.
The paper is organized as follows. The problem state-
ments and overview of the identification procedure are
elaborated in Section 2. The pre-processing of the data
for the system identification is presented in Section 3.
The subspace identification method is presented in Sec-
tions 4. In Section 5 the output-error method is pre-
sented along with the estimation of the reference state.
Section 6 presents the simulation results of the identifi-
cation method and comparisons between the data sim-
ulated with the identified linear model and the original
data.

2. Problem statement and identification procedure

2.1. Problem statement

One of the key parameters to analyze the plasma sta-
bility and performance is the safety factorq(x, t), de-
fined as:

q(x, t) = −∂Φ(x, t)
∂Ψ(x, t)

(1)

whereΨ andΦ are the poloidal and toroidal magnetic
fluxes, respectively, andx is a normalized spatial vari-
able, 0≤ x ≤ 1. Another parameter that can be used for
the control is the inverse of the safety factorι(x, t) =
1/q(x, t), which can be considered as a more natural
control variable since it is proportional to the spatial
derivative of the poloidal magnetic flux whose evolution
is governed by a parabolic equation. The control model
of the magnetic flux is given in [32]. In a cylindrically
symmetric plasma column, the time evolution of the
poloidal magnetic flux is given in normalized cylindri-
cal coordinates in [33]. In tokamaks, the poloidal flux
does not reach a stationary value even when the loop
voltage and the auxiliary power are kept constant. In
fact, at the plasma edge, we haveVext = −∂Ψ(1, t)/∂t
and this linear flux variation induces the ohmic current
in the plasma. Following [12], therefore introduce the
transformation:Ψr (x, t) = Ψ(x, t) − Ψ(1, t), so that the
true stateΨr (x, t) is the internal poloidal flux that repre-
sents the difference between the total poloidal magnetic
flux and the total poloidal flux at the plasma boundary.
This variable can indeed be used as a state variable of
this system and is even a natural state variable of this
system. It is directly related to the safety factor profile
(See in Appendix) and can therefore be used for its con-
trol. The state equation for the internal poloidal flux is
given by:



∂Ψr
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η‖
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x
∂
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(
x
∂Ψr

∂x

)
+ η‖R0 jni + Vext

∂Ψr
∂x (0, t) = 0, Ψr (1, t) = 0

(2)

whereR0 is the major radius of the plasma (assumed
constant in time),µ0 is the permeability of vacuum,η‖
is the parallel electrical resistivity of the plasma,Vext(t)
is the plasma surface loop voltage, andjni(x, t) is the
non-inductive current-density. This equation has a sta-
ble dynamics and it can be linearized and used for the
system identification procedure.
The non-inductive current density is obtained by com-
bining the auxiliary heating and current drive sources
(neutral beams, radiofrequency or electron cyclotron
waves, etc.) and the bootstrap current:

jni(x, t) = jaux(x, t) + jbs(x, t) (3)

The dynamics of the magnetic parameters is known to
be coupled with the temperature of the electronsTe

through the plasma resistivity and the bootstrap current,
both being highly dependent on the temperature. This
makes the dynamics of this system highly nonlinear and
coupled. In the same cylindrical approximation as for
Equation (2), the time evolution of the electron temper-
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ature is given by [34]
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∂x

)
+ Qe

∂Te

∂x (0, t) = 0, Te(1,0) = Te,edge

(4)

whereχe is the electron heat diffusivity, ne is the elec-
tron density, andQe is the total electron heating power
density. The electron heating energy source (the alge-
braic difference between the supplied and lost energies)
is calculated as a sum of several contributions. The main
source of the electron heating comes from the auxiliary
heating sources. Transport coefficients depend on many
plasma parameters (temperature, q, etc.) as well as their
radial derivative (e.g. temperature gradients, magnetic
shear, etc.). These dependencies are complex and not
fully known. In most of the cases empirical models
must be used based on experimental data.
The identified model represents the dynamics of the
variations,Ψ̃r (x, t) and T̃e(x, t) of Ψr (x, t) and Te(x, t)
around the reference values,Ψr andTe, subject to vari-
ationsP̃(t) andṼext(t) of P(t) andVext(t) around the ref-
erence valuesP andVext.
The control inputP(t) represents the power of the heat-
ing and current drive systems e.g.:

P(t) =


PNBI1(t)
PNBI2(t)
PECCD(t)

 (5)

The first actuators are two deuterium neutral beam in-
jectors: an off-axis co-current NBI powerPNBI1 and
an on-axis co-current NBI powerPNBI2. The other
two inputs are the power of electron cyclotron current
drive system (ECCD)PECCD and the loop voltage at the
plasma surfaceVext(t).
The output data of METIS simulator are interpolated on
a unique radial grid for each parameter profile through
a cubic-splines Galerkin approximation to represent the
finite developments ( see [12]) as:

Ψr (x, t) =
nΨ∑

k=1

Ψrk(t)ak(x) (6)

Te(x, t) =
nT∑

k=1

Tek(t)bk(x) (7)

whereak andbk are cubic splines for the magnetic pro-
file and for the temperature profile, respectively. For
the spatial discretization ofΨr (x, t), 11 spline func-
tions (nΨ = 11) were used at radial knotsx =

0,0.1,0.2, . . . ,1, and for the spatial discretization of
Te(x, t), 9 spline functions (nT = 9) were used at ra-
dial knotsx = 0,0.1,0.2, . . . ,0.8. The factor 1/x that

appears in (2) and (4) could lead to an ill defined central
value due to singularity inx = 0 when spatial discretiza-
tion is applied. Spatial discretization methods dealing
with systems with that kind of structure can be found in
[35, 33].
Based on the structure of this physical system (4),(2)
and flux-averaged plasma transport equations, a lin-
earized gray-box model of the system can be postu-
lated in the form [12, 13]. This model can be presented
in the standard state-space form by definingX̃(t) =
[Ψ̃T

r (t) T̃T
e (t)]T andŨ(t) = [P̃T(t) Ṽext(t)]T :

˙̃X(t) = AX̃(t) + BŨ(t) (8)

with:

A =

[
A11 A12

A21 A22

]
andB =

[
BP BV

]
=

[
BΨ,P BΨ,V
BTe,P 0

]

(9)
whereΨ̃r (t) = [Ψ̃r1(t), Ψ̃r2(t), .., Ψ̃rnΨ(t)]

T and T̃e(t) =
[T̃e1(t), T̃e2(t), .., T̃enT (t)]T are the state vectors repre-
senting the sets of the Galerkin coefficients ofΨr (x, t)
andTe(x, t), respectively. The derivation of the matrix
structure of the system using a Galerkin approach ap-
plied on (2) and (4), is given in details in [12]. This
model is a lumped-parameter state-space mathematical
model of this physical system, with a set of state vari-
ablesΨ̃r ∈ RnΨ andT̃e ∈ RnT and of inputsP̃ ∈ R3 and
Vext, related by first-order differential equations. The
matricesA11 ∈ R

nΨ×nΨ , A12 ∈ R
nΨ×nT , A21 ∈ R

nT×nΨ

andA22 ∈ R
nT×nT are state matrices andBΨ,P ∈ R

nΨ×3,
BΨ,V ∈ R

nΨ andBTe,P ∈ R
nT×3 are input matrices to be

identified. In fact, the matrixBΨ,V in front of Vext does
not need to be identified, since it is known from the def-
inition of Ψr in (2) and the derivation of the matrices
structure presented in [12]. The idea for the control is to
reach the desired equilibrium values of the safety factor
by using only a limited number of actuators. Note that
this choice of actuators can easily be modified and the
identification method holds for any set of known inputs.
Assuming a temporal discretization with time step∆t, at
time stamps [t1, t2, ..., tN] wheretN = t1+ (N−1)∆t, with
the corresponding discrete-time data [U1,U2, ...,UN] and
[X1,X2, ...,XN] sampled from the continuous-time dy-
namics (8), and applying zero-order hold on the inputs,
the discrete system is then obtained as

X̃(t + 1) = AdX̃(t) + BdŨ(t) (10)

where

Ad = eA∆t, Bd =

∫ ∆t

0
eAτBdτ (11)

The inverse of the safety factor can be considered as an
output of the system. It depends only on the plasma pa-
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rameters and geometry, and not explicitly on the heating
and current drive power. Its linearized relation with the
states of the system can be represented by:

ι̃(t) = Cι ·
[
Ψ̃r (t)
T̃e(t)

]
(12)

The data collected for the identification were obtained
from nonlinear plasma simulations, using the METIS
code. METIS includes an MHD equilibrium and current
diffusion solver, and combines plasma transport nonlin-
earity with 0-D scaling laws and 1.5-D ordinary differ-
ential equations. Despite its simplicity, it integrates ba-
sically all the complex features of real tokamak physics
in a simplified but comprehensive and flexible way. The
complexity of tokamak physics is restored through the
very large number of possible options and models that
the code offers for every elementary physical process
(e.g. scaling laws, or fixing some source or parameter
profiles and evolving others, etc.).
The simulation data were divided in two sets: one for
identification and another for the validation of the iden-
tified system. For the evaluation of the MIMO system,
the outputs of the simulated system were compared with
the original data obtained from the non-linear METIS
simulator. For each output the normalized root-mean-
square error (NRMSE) fit value is calculated as:

f it i(%) = 100
(
1− ‖ yi(t) − ŷi(t) ‖
‖ yi(t) − 〈y〉i ‖

)
% (13)

wherey is the original data,̂y is the estimated outputs of
the model,〈y〉 represents the mean value of the output
andi represents the index of the output.

2.2. Overview of the identification method

Equations (8)-(12) represent a grey-box model where
most of the dynamics of the system is unknown and
only the value of the matrixBΨ,V is known from the
linearization and the discretization of (2) as shown
in [12]. The identification of the lumped system
is performed using the outputs represented by the
Galerkin coefficients. For the identification of this
state-space model a combination of two identification
methods is used. First a Multivariable Output Error
State sPace (MOESP) method [27] is applied. The
model obtained by the MOESP method is not optimal
for complex systems and when the input signals are
short, but it can be used to initialize the model for
the Output-Error (OE) method. A combination of
subspace and iterative least-square methods has been
already used in identification of MIMO state-space
models [30]. The MOESP method is also very useful to

determine the order of the system to be identified. The
OE method initialized with the previously identified
system gives a more accurate identification of the
system dynamics. Before the identification, the data
must be pre-processed by removing the means from the
inputs and the outputs, and the original system must be
transformed, through simple algebra, into a system for
the zero-mean pre-processed data.
Along with the identification methods, some constraints
on the eigenvalues of the system can also be introduced
to reflect specific properties of the physical system. An
overview of the identification cycle is presented in Fig.
2.

3. Pre-processing the data for system identification

The data that are used for estimation should be pre-
processed by removing the offsets before the identifi-
cation (e.g. see Chapter 14 in [26]). Processed data
describe the relationship between the change in input
signals and the change in output signals. The pre-
processing operation helps to estimate more accurately
linear models because the linear models identification
methods cannot capture arbitrary differences between
the input and output signal levels. One way of removing
the offsets in the data is by removing from the system
variables the reference values corresponding to steady
state equilibrium around which the system has been lin-
earized. The reference values corresponding to a given
set of steady inputs could be known in the case where
the so-called experimental data is obtained from non-
linear plasma simulators because the simulations could
in principle be extended until the plasma reaches an
equilibrium. This is not the case, however, if one uses
real experimental data because, in most tokamaks, the
plasma does not reach a physical equilibrium state be-
fore the end of the discharge even with steady inputs,
so the measurements that can be used for system iden-
tification consist only of transient data. For the sake
of generality, we shall assume that the reference values
are not knowna priori, and use a technique to identify
them. To bring the data near the linearization point, the
data are pre-processed by removing the mean values:

X(t) = X(t) − 〈X〉
P(t) = P(t) − 〈P〉
Vext(t) = Vext(t) − 〈V〉ext

(14)

where 〈X〉 = [〈Ψr〉T 〈Te〉T ]T , 〈P〉 and 〈V〉ext are the
mean values of the measured vectors. The model corre-
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sponding to the model of the zero-mean data is:

Ẋ(t) = Ẋ(t) = A(X(t) + 〈X〉) + B(U(t) + 〈U〉)
= AX(t) + BU(t) + ∆tX

(15)

where

∆tX = A 〈X〉 + B〈U〉

= A
1

tN − t1

∫ tN

t1

X(t)dt+ B
1

tN − t1

∫ tN

t1

U(t)dt

=
1

tN − t1

∫ tN

t1

Ẋ(t)dt =
X(tN) − X(t1)

tN − t1
(16)

The term∆tX represents an offset that should be con-
sidered when the identification is performed. If the full
state is measured and there is no measurement noise (as
in this case), the values of∆tX j are known and can be
calculated for each different measurement data setX j

represented byΨr (t) andTe(t).
In the black-box subspace based algorithms or in the
case where there is a measurement noise in the data,
this offset should be estimated considering a constant
input to the system as in [36]. In such identification
procedures as the output-error method, the system can
be presented in a specific form where∆tX j can be intro-
duced as an additional input of the system.

4. Subspace identification

4.1. MOESP method for system identification

These simulations consist of multiple short in-
put/output data sets. In the different reference sets, the
inputs of the MIMO system are modulated in order to
have a better estimation of the dynamics of the system
for each input/output channel.

Thus, linear-multivariable system identification tech-
niques are used where the multi-experiment data are
merged together for one identification cycle. Tech-
niques for the multi-experiment case are explained in
[37, 31]. Here the extension is done in a similar way
for the MOESP method. The subspace method is used
to find an initial system, i.e. approximations for the ele-
ments in theAd, Bd andCd matrices, which will be used
as initial values for the recursive output-error identifica-
tion. The identified system using the subspace identifi-
cation method is given by the discrete-time LTI system

X(t + 1) = AdX(t) + Bd,eU(t)
Y(t) = CdX(t)

(17)

whereAd ∈ Rn×n, wheren = nΨ + nT is the state matrix,
Bd,e = [Bd,P Bd,V Bd,δ] ∈ R

n×5 is the input matrix and

Cd ∈ R
ny×n is the output matrix of the discrete system,

whereny is the number of outputs. In these experiments,

the input data isU(t) =
[
PT(t) Vext(t) 1

]T
. The output

data are combined as:Y(t) =
[
ΨT

r (t) TT
e (t)
]T

. Here the
matrix Bd,δ is added to deal with the additional constant
input that should identify the offset that is obtained due
to the pre-processing of the data.
First, the output and input data are stored in Hankel ma-
trices noted asY1,k,N andU1,k,N, respectively.

experiment data from METIS

Collect and merge

Subspace identification

and determine the order of the system

X (t+ 1) = AdX (t) +BdU(t)

Y(t) = CdX (t)

Validate the identified system

on simulation data

Output-error identification

calculating

BΨ,V , ∆tX

X (t+ 1) = AdX (t) +BdU(t) + ∆tX

Estimation of the reference

steady-state Ψ,T e, ι

Pre-processing the data

Ψr(t) Te(t) U(t)

initial model

removing the mean values

with eigenvalue constraints

Figure 2: Overview of the method.
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The subscript 1 is the index of the first data sample
andk denotes the number of rows in the matrix.N rep-
resents the last data sample of the experiment. The data
equation in this work is extended to deal with multiple
data sets that are merged together. Techniques dealing
with multiple data sets in subspace identification meth-
ods are presented in [37, 31]. The LQ decomposition
(where L is a lower triangular matrix) of the data matrix
using the MOESP method for multi-experiment data is
obtained as:
[
U1,k,N1 | U1,k,N2 | · · · | U1,k,NK

Y1,k,N1 | Y1,k,N2 | · · · | Y1,k,NK

]
=

[
L11 0
L21 L22

] [
QT

1
QT

2

]

(18)
The calculation ofL22 is fully explained in [25].

4.2. Determining the order of the system

The identification data is extracted using the METIS
code and measurement noise is not present in the data.
Thus, the order of the system is estimated using the
technique used for MOESP method for noise-free data
[25].

By performing a singular value decomposition (SVD)
on L22, we get

L22 =WΣVT ≃
[
W1 W2

] [Σ1 0
0 0

] [
VT

1
VT

2

]
=W1Σ1VT

1

where,Σ is a diagonal matrix with singular values of
L22 on its diagonal, the columns ofW are the left sin-
gular vectors andVT has rows that are the right singu-
lar vectors obtained by SVD. Examining the elements
of the rectangular diagonal matrixΣ, a decision can be
made about the choice of the order of the system. The
order of the system can in principle be obtained by re-
ducing Σ to the first n elements with highest values,
Σ1 = diag[σ1, σ2, ... , σn], whereσ1 ≥ σ2 ≥ ... ≥
σn > 0 ≈ σn+1 ≈ σn+2...

In the case of this system,Σ was calculated by taking as
outputs all the 20 available measured outputs forΨr (x, t)
andTe(x, t) at 11 and 9 radial points, respectively. The
decision about the order of the system using subspace
methods is heuristic. The order of the system,n should
be taken such that the values of the eliminated elements
of Σ are zero or close to zero. The first 10 singular val-
ues ofΣ are presented in Fig.3.From the singular values
it can be concluded that the system can be well repre-
sented if the order is taken to ben ≥ 4. Another crite-
rion that limits the order of the system is that the char-
acteristic times of all the identified eigenmodes should
be larger than the sampling time. In addition, the con-
trolled system has only a few degrees of freedom be-
cause there are only 4 available actuators.

We thus restricted, for the sake of simplicity and for the
needs of the control application, the order of the system
and the number of controlled outputs to a maximum of
n = ny = 8. The sum of the first 8 singular values is
13.23, and it higher than 95% of the sum of all singu-
lar values inΣ. Thus, for the outputs of the system, 4
outputs were taken for the poloidal magnetic flux and 4
outputs for the electron temperature in particular radii
that are important for profile control. This reduction of
the number of outputs used for the identification simpli-
fies the identification process and reduces the number of
parameters that need to be estimated.
Once the order of the system has been selected, an es-
timate of the extended observability matrixΓk is calcu-
lated as:

Γ̂k =W1Σ
1/2
1
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Figure 3: First 10 singular values ofΣ that indicate the order of the
model.

4.3. Eigenvalues constraints in subspace identification

The initial estimate ofÂd using the MOESP method
is given by minimizing the cost function

JΓ(Ad) =‖ Γ̂0Ad − Γ̂1 ‖F (19)

wherêΓ0 = Γ̂k(1 : ny(k−1), :) and̂Γ1 = Γ̂k(ny+1 : nyk, :).
Here Γ̂k(i : j; :) stands for the submatrix of̂Γk which
contains the columns from i-th to j-th columns.‖ · ‖F
denotes the Frobenius matrix norm. The solution of this
linear least-squares problem with the analytic minimum
is Âd = Γ̂

−1
0 Γ̂1. Some of the poles of̂Ad obtained from

(19) may be complex-conjugate, which may cause os-
cillations in the identified system response. This phys-
ical system is diffusive and the differential operator of
the diffusion equation with diffusion coefficient is Her-
mitian [38], thus with real eigenvalues. Moreover the
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experimental observation does not show oscillations in
the data. For these reasons we have chosen to constrain
the eigenvalues in an arbitrary small band close to the
real axis. As we shall see later, the systems identified
within this constraint yield satisfactory simulations of
the original data, so there was no real need for introduc-
ing complex-conjugate eigenvalues.
The technique of eigenvalue constraints for system
identification that is used in this work is elaborated in
[39]. Using this method, the eigenvalues can be con-
strained by defining Linear Matrix Inequalities (LMI)
regions and incorporating them into the subspace iden-
tification problem. The LMI-regions define convex re-
gions of the complex plane as LMIs.

An LMI region is a convex regionD of the complex
plane, defined in terms of a symmetric matrixα and a
square matrixβ, as:

D = {z ∈ C : fD(z) ≥ 0} (20)

where
fD(z) = α + βz+ βTz (21)

wherez is complex conjugate ofz. The concept of us-
ing LMI regions for LMI-based synthesis is first intro-
duced in [40]. Here we present the central theorem that
is given in [40]:

Theorem 1. The eigenvalues of a matrixA ∈ R
n×n lie

within an LMI region given by (20) if and only if there
exists a matrix N∈ Rn×n such that:

N = NT > 0, α⊗N+β⊗(AN)+βT⊗(AN)T ≥ 0 (22)

The concept of constraints based on LMI regions is in-
corporated in the subspace identification problems with
the methods based on the extended observability matrix
proposed by [39].

In order to get a modified model that consists of
eigenvalues close to the real axis, the cost function (19)
is modified as:

JΓ(M,N) =‖ Γ̂0AdN − Γ̂1N ‖F=‖ Γ̂0M − Γ̂1N ‖F (23)

where N is a right-hand weighting matrix andM = AdN.
The optimization problem with convex constraints is
stated as follows:
Given the estimate of the extended observability matrix
Γ̂ and the LMI region described by parametersα andβ,

min JΓ(M,N)
subject to : α ⊗ N + β ⊗ M + βT ⊗ MT ≥ 0 ;

N = NT > 0
(24)

with:

β =

[
0 1
−1 0

]
(25)

whereα = 2δ is a small number that limits the imagi-
nary part of the polesp ∈ C of the identified system into
an arbitrary small band around the real axis in the com-
plex plane represented by the setR = {p ∈ C : |Im(p)| ≤
δ, δ ≥ 0}.
OnceM andN have been found, the new estimate is cal-
culated as:Âd = MN−1. The convex optimization prob-
lem is solved using the YALMIP toolbox for MATLAB
[41]. The matricesCd andBd,e were obtained using the
standard MOESP method [25].
This identification method is not always sufficient for
large MIMO system. As will be seen in Section 5, the
model obtained by the MOESP for the problem dis-
cussed in this paper yields to some fitting errors when
comparing the simulated outputs with the original data.
However, this method provides a good guess for initial-
izing the system. We have therefore used this model as a
starting point for an iterative process in which the order
of the system is fixed and the model matrices are op-
timized in each iteration by performing an output-error
identification.

5. Output-error identification

5.1. Estimation of the state-space matrices

The output-error method is an iterative method [30]
and requires initial values of the parameters that are es-
timated. The subspace identification method presented
in Section 4 provides an initial model of the system.
The model identified with the subspace method can be
easily transformed in a form such that the output matrix
Cd is an identity matrixCd = Iny. This representation of
the state space model is called an observable canonical
form. It can be used when direct measurement of the
statesY = X are available and pre-process the data
as explained in Section 3. Also the known values of
the matricesBΨ,V and∆tX at this stage are introduced.
Representing the system in this form avoids the need to
identify the output matrixC, which reduces the number
of parameters that needs to be estimated.
Using an iterative method the vectorθ1 =[
vec(Ad)T vec(Bd,P)T

]T
that contains all the un-

known matricesA and Bp is estimated by minimizing
the squared error between the measured statesX and
the estimatedX̂

min JK(θ1) (26)

8



JK(θ1) =
1
K

K∑

i=1

1
Ni

Ni∑

j=1

∥∥∥Xi(t j) − X̂i(t j , θ1)
∥∥∥2

2

=
1
K

EK(θ1)T EK(θ1)

(27)

where:

EK(θ1) =
[
E1

N1
(θ1)T E2

N2
(θ1)T · · · EK

NK
(θ1)T

]T
(28)

and

Ei
Ni

(θ1) =
1
√

Ni

[
ei(1)T ei(2)T · · · ei(Ni)T

]T
(29)

is the error vector whereei( j) = Xi(t j) − X̂i(t j , θ1).
As in the subspace identification approach (see Section
4), the output-error method is set for a multi-experiment
data set, where experiments with different modulations
of the inputs are merged for a better estimation of the
dynamics of the MIMO system. In this application, the
multiple-cost approach [42, 26] for the definition of the
cost function (26) is used. For the identification, there
are the measured values of the set:{U j,i ,X j,i} with j =
1,2, . . . ,Ni andi = 1,2, . . . ,K (K denotes the number
of experiments andNi is the number of data samples in
the i-th experiment).
The estimated state and initial condition are given by:

X̂ j(t + 1, θ̂1) = Ad(θ̂1)X̂ j(t, θ̂1) + Bd,e(θ̂1)Ue(t)
X̂ j(0) = X j(0)

(30)

where the inputs are combined in one vectorUe(t) =[
PT(t) Vext(t) 1

]T
and the matrixBd,e =

∫ ∆t

0
eAτBedτ

where Be =
[
Bp Bv ∆tX j

]
. The estimate (30) is pre-

sented in a discrete form with a discretization time equal
to the sampling time of the experiments,∆t = 5ms.
Using the estimate in (30), the minimization of (27)
can be performed by using a iterative gradient search
method. In this application we use the Levenberg-
Marquardt method. The initial value ofθ1 for the
optimization is the one obtained previously with the
MOESP method. In Fig.4 the comparison between
the outputs of the identified systems with MOESP and
output error methods are presented for a particular ex-
periment. From the plots it can be easily noticed that
the results, obtained using only the MOESP subspace
method, are not satisfactory due to the low NRMSE
fit value of the compared outputs. Applying an addi-
tional optimization to the model, using the output-error
method, improves the performance of the identified sys-
tem.

2 4 6 8 10 12 14 16

Ψ
r- 

 〈
Ψ

r 〉
 (

0.
9)

 [
W

b
]

-0.1

-0.05

0

0.05

measured value
MOESP (Fit = 72.5 %)
Prediction error (Fit = 90.5 %)

time (s)
2 4 6 8 10 12 14 16

T
e- 

〈 
T

e 〉
 (

0.
3)

 [
ke

V
] 

-2

-1

0

1

2

measured value
MOESP (Fit = 59.9 %)
Prediction error (Fit = 83 %)

Figure 4: Comparison between the measured values of the simulated
system and the outputs of the identified system for the MOESP and
the output-error methods for simulation # 22 (see Table1).

5.2. Estimation of the reference steady-state

Once the best fitting model is obtained and the opti-
mal discrete representation of the system is transformed
into a continuous-time linear time invariant (LTI) model
[A, B, Cι], the reference equilibrium values of the states
as in [12] could be estimated. Considering a constant
input applied for a sufficiently long time,U(t) = U, the
steady state valuesΨr andTe are obtained. At steady
state the plasma is in equilibrium, andX can be calcu-
lated using the steady state solution (Ẋ(t) = 0) of (15),
and estimating the offset by (16) as:

X = −A−1[B · (U − 〈U〉) + ∆tX] + 〈X〉 (31)

The reference equilibrium point for the inverse of the
safety factor is then:

ι = CιX (32)

With this approximate estimation of the reference states,
the reduced states̃X around the reference point can be
found. The error of the approximation can only intro-
duce a constant offset both on the controlled variables
and their target values. It should therefore have no ef-
fect on the control action, which depends only on their
difference.

6. Identification results

For the identification of the model, 22 data sets from
the METIS tokamak simulator were provided. The
plasma parameters were those of a typical DIII-D steady
state scenario that is described with more details in [14].
The toroidal field is 1.8 T, the central plasma density is
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sim. number Vext(V) PNBI1(MW) PNBI2(MW) PECCD(MW)
1 0.02 1.5 2.5 5

2-6 -0.030 - 0.120 1.5 2.5 5
7-8 0.02 1.5 0 - 5 5
9-10 0.02 1.5 2.5 2.5 - 7.5
11-12 0.02 0 - 5 2.5 5

13 0.02 1.5 0 - 5 2.5 - 7.5
14 0.02 0 - 4 2.5 2.5 - 7.5

15-18 0.02 0 - 4 0 - 5 2.5 - 7
19-20 -0.23 - 0.27 0 - 4 0 - 5 2.5 - 7.5

21 -0.030 - 0.120 0 - 4 2.5 2.5 - 7.5
22 -0.030 - 0.120 1.5 0 - 5 2.5 - 7.5

Table 1: Table of the nonlinear METIS simulations used for thesystem identification showing the minimum and maximum values of the square-
wave modulated inputs (simulation numbers used for the identification: # 1, 2, 3, 4, 11, 14, 16, 17, 18, 21, 22).

Figure 5: Plot ofΨr (t) vs time for the simulation # 22 (see Table1),
The black dashed traces represent the outputs of the simulation of
the identified system and the red traces represent the outputs of the
original METIS simulation. The fit parameter defined in Eq. (13) is
indicated in each frame.

5 · 1019 m−3 and the plasma current varies between 0.6
MA and 1.2 MA depending on the values of the heating
and current drive actuators. The simulations were di-
vided into several groups presented on Table1. In each
group, either a single input was modulated or different
inputs were modulated in order to have a better estima-
tion of the response of the system when the various in-
puts are simultaneously varying. The inputs were mod-
ulated using pseudorandom binary sequences in order
to excite all the relevant frequencies which provides an
accurate model that is valid in a large frequency range.
In a real tokamak, such square wave excitation of the
actuators, and in particular ofVext, may not be possible
due to the finite response time of the actuators to their
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Figure 6: Plot ofTe(t) vs time for the simulation # 22 (see Table1),
The black dashed traces represent the outputs of the simulation of
the identified system and the red traces represent the outputs of the
original METIS simulation. The fit parameter defined in Eq. (13) is
indicated in each frame.

command. However, the response model we are seeking
here is to provide the response of the plasma to changes
in the actuator commands, rather than the response to
the actual input powers and surface voltage.
Half of the data set is merged to identify the model and
the other half is used for the validation stage. The sim-
ulation time for each data set is 15s and only the data
after 2.5 swere used, i.e when the system outputs reach
values close to the reference values around which the
linear model is sought. The measurements are taken
with a sampling time of 0.005 s. The four actuators of
the system,PNB1, PNB2, PECCD andVext have allowed
ranges of variation between 0− 5 MW, 2.5 − 10 MW,
0− 4 MW and -0.2− 0.5 V, respectively.
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Figure 7: Plot ofΨr (t) vs time for the simulation # 19 (see Table1),
The black dashed traces represent the outputs of the simulation of
the identified system and the red traces represent the outputs of the
original METIS simulation. The fit parameter defined in Eq. (13) is
indicated in each frame.

For the outputs of the system, 4 Galerkin coefficients
were chosen from the poloidal magnetic flux profileΨ
and the safety factorι, at knotsx = [0, 0.4, 0.7, 0.9]
and 4 Galerkin coefficients were chosen for the electron
temperature,Te at knotsx = [0, 0.2, 0.3, 0.5]. Thus
the identified system is of order 8.
The characteristic time constants of the estimated sys-
tem are: 7.69 s, 1.0 s, 0.75 s, 0.62 s, 0.13 s, 0.11 s,
0.07 s, 0.01 s. The estimated̂A satisfies the eigenvalue
constraints described in Sections 4.2. Simulations were
included where only specific actuators were modulated
while the others are fixed for a better estimation of the
columns ofBP that are related to these inputs. The cal-
culated value ofBΨ,V, which is known from the physics
of the problem, provides the response of the poloidal
magnetic flux to the most powerful actuator in the sys-
tem,Vext.
Note that this system is a linearized model that repre-
sents the dynamics of the kinetic and magnetic profiles
in a tokamak in a relatively broad vicinity of the lin-
earization point, since the reference data set has a large
variation of the actuators. Despite the highly nonlin-
ear dynamics of the physical system, this model can be
used only if the states of the system are in this broad
vicinity, and therefore it is restricted to profile control
applications in a particular tokamak and plasma sce-
nario (toroidal magnetic field, plasma shape and av-
erage density) but with relatively large power varia-
tions (several megawatts). By taking the mean value
of all the inputs used for the identification:PNBI1 =

2.3 MW, PNBI2 = 4.8 MW, PECCD = 1.1 MW and
Vext = 0.028 V as reference inputs, the reference states
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Figure 8: Plot ofTe(t) vs time for the simulation # 19 (see Table1),
The black dashed traces represent the outputs of the simulation of
the identified system and the red traces represent the outputs of the
original METIS simulation. The fit parameter defined in Eq. (13) is
indicated in each frame.

Figure 9: Plot of the four inputs (P and Vext) and the total plasma
current (Ip) vs time for simulation # 22 (see Table1).

of the identified system can be calculated. Calculat-
ing the reference states forΨ and Te using (31), we
get: Ψr = [2, 1.43, 0.61, 0.18]T Wb and Te =

[5.56, 5.31, 5.03, 3.94]T keV.
The results of the system identification can be evalu-

ated by comparing the data predicted by the identified
model with the original data. The inputs waveforms
used in the simulation # 22 that is included in the iden-
tification data are presented in Fig.9 and the identifica-
tion results in Fig.5 and Fig.6. The results for simula-
tion # 19, which is not used for identification but only
for validation, are also presented. The input waveforms
are presented in Fig.10and the evaluation results in Fig.
7 and Fig. 8. In both simulations all the inputs were
modulated and the plots of the reference data (METIS
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Figure 10: Plot of the four inputs (P andVext) and the total plasma
current (Ip) vs time for simulation # 19 (see Table1).

Figure 11: Plot of the inputs (P andVext) and the total plasma current
(Ip) vs time and the plasma for simulation # 20 (see Table1).

simulation) are compared with the output data predicted
by the identified system. For each output of the system,
the fit parameter values varied from about 70−98 % for
Ψr (x, t) outputs and 60− 88 % forTe(x, t). The quality
of the fit is varying within these ranges for all differ-
ent simulation data except for simulations # 15 and #
20. The fit parameters for simulations # 15 and # 20
were also in the same range if the data is restricted to
t < 11.6 s, but they become poor at the end of the simu-
lation (11s< t ≤ 15 s), yielding fit parameters around
24− 45 % forΨr (x, t) and 55− 58 % forTe(x, t). The
results for simulation # 20 are presented in Fig.12 and
Fig. 13 and the inputs in Fig.11. This is explained by
the fact that the total power dropped down to 2.5 MW
between 11.6 s and 15 s, which results in a low tem-
perature plasma (Te(0, t) < 2.3 keV, Te(0.2, t) < 2 keV,
Te(0.3, t) < 1.8 keV, Te(0.5, t) < 1.24 keV) where non-
linearities become more important. The dynamics of
the temperature is faster than the dynamics of magnetic

flux and when the temperature states are out of the va-
lidity domain, this implies a bad estimation of the mag-
netic flux states because of their strong coupling. Note
that when we have short temperature drops, the estimate
remains reasonably accurate. The identification results
have shown that a linearized multivariable model of the
coupled dynamics using a limited number of actuators
can be obtained and that the model fits the original data
satisfactorily when the power remains in the range of
2.5− 16.5 MW.

7. Conclusion

This identified LTI model can be used in future work
for the control of the coupled parameters in tokamaks.
The identification scheme can be easily adapted to dif-
ferent tokamaks and in different conditions where the
inputs are different than those used in this study.
The actuator variations used in METIS to obtain the
identification/validation data are quite large (several
megawatts, fractions of a volt) and typical of the vari-
ations that will be allowed during control experiments,
with plasma current varying between 0.6 MA and
1.2 MA. As long as the toroidal field and plasma shape
do not change, the identified model should then be ap-
propriate for control applications. Otherwise, if a non-
linear model is not available, the only way to use the
present approach is to perform series of linear model
identifications around different plasma reference pro-
files. Previous approaches [12, 13, 14] to the simultane-
ous control of magnetic and kinetic variables in a toka-
mak based on the same postulated linear system struc-
ture used singular perturbation methods (a two-time-
scale approximation) to divide the system into a slow
and a fast system that were identified separately. In con-
trast, the linear model obtained here contains the whole
coupled dynamics of the electron temperature and the
poloidal magnetic flux, which may be more adequate
for some tokamak machines, depending on the differ-
ence of the kinetic and magnetic time scales in a particu-
lar machine. The identification method presented in this
paper is faster than the one presented in the previous ap-
proaches. The execution time of the subspace identifica-
tion takes about 10 seconds, while the iterative output-
error methods execution time takes about 180 seconds.
This combination of subspace and output-error methods
could also be used within the two time scale estimation.
It can provide a better estimate of the respective order of
the slow and the fast models based on the information
contained in the low frequency and high frequency data
set, respectively.
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Figure 12: Plot ofΨr (t) vs time for the simulation # 20 (see Table1),
The black dashed traces represent the outputs of the simulation of
the identified system and the red traces represent the outputs of the
original METIS simulation. The fit parameter defined in Eq. (13) is
indicated in each frame. In this simulation at 11.6 s, the totalpower
drops down to 2.5 MW.
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Appendix A. Estimation of the safety factor profile

While the poloidal magnetic fluxΨr is a natural
choice to describe the plasma state, control objectives
are generally formulated in terms of the safety factor
[6, 43] or its inverse [14]. A change of variable is then
necessary to convertΨr into the controlled variable. For
example, the relation betweenι(x, t) andΨr (x, t) can be
written as in [13]:

ι(x, t) = −
(
∂Ψr (x, t)
∂x

)
·
(
∂x

∂Φ(x, t)

)

= − 1
2Φmax(t)

(1
x
∂Ψr (x, t)
∂x

) (A.1)

where the normalized radius is defined asx =

(Φ/Φmax)1/2 andΦmax(t) = Φ(1, t) is the toroidal flux
inside the magnetic separatrix. The inverse of the safety
factor can be presented by finite expansions on a differ-
ent set of basis functions [14]. The approximation ofι
with the basis functionαk(x) = (1/x)(dak/dx), where
ak are the cubic splines forΨr defined in Section 2, is
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Figure 13: Plot ofTe(t) vs time for the simulation # 20 (see Table1),
The black dashed traces represent the outputs of the simulation of
the identified system and the red traces represent the outputs of the
original METIS simulation. The fit parameter defined in Eq. (13) is
indicated in each frame. In this simulation at 11.6 s, the totalpower
drops down to 2.5 MW.

obtained as

ι(x, t) = − 1
2Φmax(t)

n∑

k=1

αk(x)Ψr k(t) (A.2)

If Φmax is assumed to be constant, which is a good
approximation when the toroidal field and the plasma
shape are fixed, a matrixCι for the relation betweenι(t)
andΨ(t) can be found as:

ι̃(t) = Cι · X̃ =
[
Cι,Ψr 0

] [Ψ̃rk(t)
T̃ek(t)

]
(A.3)

Once the model for the dynamics ofΨr and Te is
identified, the relation betweenι and the states is
approximated by (A.3) using the expression (A.2) to
define the matrixCι,Ψr .
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[41] J. Löfberg, YALMIP: A toolbox for modeling and optimiza-
tion in matlab, in: IEEE International Symposium on Computer
Aided Control Systems Design, Taipei, Taiwan, 2004, pp. 284–
289.

[42] D. Leith, D. Murray-Smith, R. Bradley, Combination of data
sets for system identification, in: IEE Proceedings D-Control
Theory and Applications, Vol. 140, IET, 1993, pp. 11–18.

[43] J. E. Barton, K. Besseghir, J. Lister, E. Schuster, Robust con-
trol of the safety factor profile and stored energy evolutions in
high performance burning plasma scenarios in the ITER toka-
mak, in: 52nd Conference on Decision and Control, Florence,
Italy, 2013, pp. 4194–4199.

15


	Introduction
	Problem statement and identification procedure
	Problem statement
	Overview of the identification method

	Pre-processing the data for system identification
	Subspace identification
	MOESP method for system identification
	Determining the order of the system
	Eigenvalues constraints in subspace identification

	Output-error identification
	Estimation of the state-space matrices
	Estimation of the reference steady-state

	Identification results
	Conclusion
	Estimation of the safety factor profile

