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Wave equation with cone-bounded control laws
Christophe Prieur, Sophie Tarbouriech, João M. Gomes da Silva Jr

Abstract—This paper deals with a wave equation with
a one-dimensional space variable, which describes the
dynamics of string deflection. Two kinds of control are
considered: a distributed action and a boundary control.
It is supposed that the control signal is subject to a
cone-bounded nonlinearity. This kind of feedback laws
includes (but is not restricted to) saturating inputs. By
closing the loop with such a nonlinear control, it is thus
obtained a nonlinear partial differential equation, which is
the generalization of the classical 1D wave equation. The
well-posedness is proven by using nonlinear semigroups
techniques. Considering a sector condition to tackle the
control nonlinearity and assuming that a tuning parameter
has a suitable sign, the asymptotic stability of the closed-
loop system is proven by Lyapunov techniques. Some
numerical simulations illustrate the asymptotic stability of
the closed-loop nonlinear partial differential equations.

I. INTRODUCTION

The general problem in this paper is the study of the
wave in a one-dimensional media, as considered e.g.
when modeling the dynamics of an elastic slope vibrat-
ing around its rest position. To be more specific, it is
considered the wave equation describing the dynamics of
the deformation denoted by z(x, t). The control is either
defined by an external force f(x, t), or by a boundary
action g(t), where the force and the deformation may
depend on the space and the time variables. A scheme
of the considered problem is depicted in Figure 1.

Depending on the control action, two classes of partial
differential equations (PDEs) are obtained. In the pres-
ence of an external distributed force f when the slope is
attached at both extremities, the dynamic of the vibration
is described by the following (see e.g. [14, Chap. 5.3])
for all t ≥ 0, x ∈ (0, 1),

ztt(x, t) = zxx(x, t) + f(x, t) (1)
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Fig. 1. Vibrating slope subject to a external distributed action f(x, t)
and to a boundary action g(t).

where z stands for the state (the length of the string and
other physical parameters are normalized), and f(x, t) ∈
R is the control. The control f is distributed (in contrast
to boundary control), and is given by a bounded control
operator. Let us equip this system with the following
boundary conditions, for all t ≥ 0,

z(0, t) = 0 , (2a)

z(1, t) = 0 , (2b)

and with the following initial condition, for all x in
(0, 1),

z(x, 0) = z0(x) ,
zt(x, 0) = z1(x) ,

(3)

where z0 and z1 stand respectively for the initial deflec-
tion of the slope and the initial deflection speed.

When the control action is only at the boundary, it is
necessary to consider the following string equation, for
all t ≥ 0, x ∈ (0, 1),

ztt(x, t) = zxx(x, t) (4)

with the boundary conditions, for all t ≥ 0,

z(0, t) = 0 (5a)

zx(1, t) = g(t) (5b)

where g(t) is the boundary action at time t.
When closing the loop with a linear state feedback

law, the control problem of such a 1D wave equation is
considered in many works, see e.g. [8] where, in par-
ticular, stabilizing linear controllers and optimal linear
feedback laws are computed respectively by an appli-
cation of linear semigroup theory and LQR techniques.
The aim of this paper is to investigate the well-posedness
and the asymptotic stability of these classes of PDEs by
means of nonlinear control laws, and more precisely of
cone-bounded nonlinear control laws.
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Neglecting the presence of nonlinearity in the input
can be source of undesirable and even catastrophic
behaviors for the closed-loop system. See e.g., [3],
where it is shown that in presence of magnitude actuator
limitation, even for finite-dimensional systems, the fact
of disregarding the nonlinearity in the control loop may
yield an unstable system. For an introduction of such
nonlinear finite-dimensional systems and techniques on
how to estimate the basin of attraction for locally asymp-
totically stable equilibrium, see [25], [28] among other
references. Similarly, in the context of systems with
cone-bounded nonlinearities, a quite natural approach
to tackle the stability problem consists in combining
Lyapunov theory with cone-bounded sector conditions
(see e.g., [13], [4]). This allows to provide an estimate
of the basin of attraction of the nonlinear systems in
appropriate Sobolev spaces. This estimate can be either
a neighborhood of the equilibrium in the local case or
the whole space in the global case.

To our best knowledge, the well-posedness and the
asymptotic stability of PDE by means of a cone-bounded
input signal is less investigated than for corresponding
finite-dimensional systems. This class of feedback laws
includes classical saturation and deadzone nonlinearities
as well as more general nonlinear maps. The aim of this
work is to study the wave equation in presence of such
nonlinear control laws. To prove first the existence and
uniqueness of solutions to the PDE (1) (respectively (4))
with the boundary conditions (2) (resp. (5)) and initial
conditions (3), when the loop is closed with an odd,
Lipschitz and cone-bounded control law (see Theorems 1
and 2 below for precise statements), the nonlinear semi-
group theory in appropriate Sobolev spaces is rigorously
applied. The second contribution is to prove the global
(resp. local) asymptotic stability of the corresponding
closed-loop system by exploiting a cone-boundedness
assumption on the control as introduced in [13], [25]
for finite-dimensional systems, see Theorem 1 (resp.
Theorem 2) below for a precise statement. In other
words, this paper combines techniques that are usual
for finite dimensional systems in closed loop with cone-
bounded nonlinear control laws (see e.g. [12], [26]) with
Lyapunov theory for PDEs (see e.g. [10], [5], [21]).

It is worth noticing that for both PDEs (1)-(2) and (4)-
(5), Lyapunov techniques are applied, but the stability
proofs are quite different. To be more specific, the proof
of the stability of the PDE (1) with the boundary condi-
tions (2) when closing the loop with a nonlinear feedback
law is done by using the LaSalle invariance principle,
which needs to state a precompactness property of the
solutions. On the other hand, since a strict decreasing
Lyapunov function is computed, we do not need to use
the LaSalle invariance principle for the PDE (4) with a
nonlinear boundary control.

To our best knowledge, the first work considering
infinite dimensional systems with bounded control is
[24, Thm 5.1] where only compact and bounded control
operators with an a priori constraint are considered. In
[23] only the case of a distributed saturating control
has been considered. On the other hand, the paper [17]
suggests to use an observability assumption for the study
of PDE in closed loop with saturating controllers. In
particular the contraction semigroup obtained from the
saturating closed-loop system is compared to the corre-
sponding semigroup without saturation. In the present
paper, more general cone-bounded input nonlinearities
are considered and different techniques are used, in
particular the LaSalle invariance principle. Then, the
paper can be considered as complementary to [17] by
extending not only the class of nonlinear control laws but
also the nature of the used tools. Note finally that both
papers [24], [17] do not consider the case of saturation
of the value of the solution, but rather saturation of
the norm of the solution (compare [24, Eq. (2.8)] and
[17, Eq. (1.6)] with the definition of nonlinear controller
(8) below). Dealing with saturation of the value of
the solution is more complex and is more relevant for
applications, since it yields to a locally defined PDE.
However it needs further developments (in particular
more regularity is required to ensure that the nonlinear
map is well-defined).

The rest of the paper is organized as follows. In
Section II, the nonlinear PDE (1) is introduced, and the
first main result is stated, namely the well-posedness
of the Cauchy problem, along with the global asymp-
totic stability, when closing the loop with a nonlinear
distributed control law. In Section III, the main result
is stated for the PDE (4), where a nonlinear boundary
action is considered. The proof of the two main results
are given respectively in Sections IV and V. Section VI
presents numerical simulations to illustrate both main
results. Some concluding remarks and possible further
research lines are presented in Section VII.

Notation: zt (resp. zx) stands for the partial derivative
of the function z with respect to t (resp. x) (this is
a shortcut for ∂z

∂t , resp. ∂z
∂x ). When there is only one

independent variable, ż and z′ stand respectively for
the time and the space derivative. For a matrix A, A>

denotes the transpose, and for a partitioned symmetric
matrix, the symbolF stands for symmetric blocks. <(s)
and =(s) stand respectively for the real and imaginary
part of a complex value s in C, s is the conjugate
of s, and |s| its modulus. ‖ ‖L2 denotes the norm
in L2(0, 1) space, defined by ‖u‖2L2(0,1) =

∫ 1

0
|u|2dx

for all functions u ∈ L2(0, 1). Similarly, H2(0, 1)
is the set of all functions u ∈ H2(0, 1) such that∫ 1

0
(|u|2 + |ux|2 + |uxx|2)dx is finite. Finally H1

0 (0, 1)
is the closure in L2(0, 1) of the set of smooth functions
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that are vanishing at x = 0 and at x = 1. It is equipped
with the norm ‖u‖2

H1
0 (0,1)

=
∫ 1

0
|ux|2dx. The associate

inner products are denoted 〈·, ·〉L2(0,1) and 〈·, ·〉H1
0 (0,1)

.

II. WAVE EQUATION WITH A NONLINEAR
DISTRIBUTED CONTROL

Consider the PDE (1), with the boundary conditions
(2) and the initial condition (3).

Letting for the control, for all t ≥ 0 and all x ∈ (0, 1),

f(x, t) = −azt(x, t), (6)

where a is a constant value, and exploiting properties of
the following energy function:

V1 =
1

2

∫
(z2x + z2t )dx, (7)

for any solution z to (1) and (2), when closing the loop
with the linear controller (6), allow to show that the
closed-loop system is (globally) exponentially stable in
H1

0 (0, 1)× L2(0, 1).
This can be formally shown by considering the time

derivative of V along the solutions to (1)-(2), which
yields

V̇1 =
∫ 1

0
(zxzxt − az2t + ztzxx)dx

= −
∫ 1

0
az2t dx+ [ztzx]

x=1
x=0

= −
∫ 1

0
az2t dx

where an integration by parts is performed to get the
second line from the first one, and the boundary condi-
tions (2) are applied for the last line. Therefore, for any
positive value a, it is formally obtained that the energy
is decreasing at long as zt is non vanishing in [0, 1]. In
other words, V1 is a (non strict) Lyapunov function.

Due to actuator limitations or imperfections, the actual
control law applied to the system, instead of (6), can be
modeled as follows

f(x, t) = −σ1(azt(x, t)) (8)

with σ1 : R → R being a bounded and continuous
nonlinear function satisfying, for a constant value L > 0
and for all (s, s̃) ∈ R2,

(σ1(s)− σ1(s̃))(s− s̃) ≥ 0 , (9a)

|σ1(s)| ≤ L|s| . (9b)

Note that (9a) generalizes the odd property. Examples of
such functions σ1 include the saturation maps, and are
considered in Section VI-A below.

Equation (1) in closed loop with the control (8)
becomes

ztt = zxx − σ1(azt) . (10)

A formal computation gives, along the solutions to
(10) and (2),

V̇1 = −
∫ 1

0

ztσ1(azt)dx (11)

which asks to handle the nonlinearity ztσ1(azt). A con-
vergence result is stated below, where the well-posedness
is separate from the asymptotic stability property.

Theorem 1. For all positive values a, and for all
bounded and continuous functions σ1 satisfying (9), the
model (10) with the boundary conditions (2) is glob-
ally asymptotically stable. More precisely the following
properties hold:
• [Well-posedness] For all (z0, z1) in(
H2(0, 1) ∩H1

0 (0, 1)
)
× H1

0 (0, 1), there exists a
unique solution z: [0,∞) → H2(0, 1) ∩ H1

0 (0, 1) to
(10), with the boundary conditions (2) and the initial
condition (3), that is differentiable from [0,∞) on
H1

0 (0, 1).
• [Global asymptotic stability] Moreover, for all initial

conditions (z0, z1) in
(
H2(0, 1) ∩H1

0 (0, 1)
)
×H1

0 (0, 1),
the solution to (10), with the boundary conditions (2) and
the initial condition (3), satisfies the following stability
property

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1)

≤ ‖z0‖H1
0 (0,1)

+ ‖z1‖L2(0,1), ∀t ≥ 0 ,
(12)

together with the attractivity property

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1) →t→∞ 0 . (13)

The proof of Theorem 1 is provided in Section IV.

III. WAVE EQUATION WITH A NONLINEAR
BOUNDARY ACTION

Consider the PDE (4), with the boundary conditions
(5) and the initial condition (3).

Letting for the control

g(t) = −bzt(1, t), (14)

where b is a positive tuning parameter, inspired by [16],
the following Lyapunov function candidate:

V2 = 1
2

(∫ 1

0
eµx(zt + zx)

2dx

+
∫ 1

0
e−µx(zt − zx)2dx

)
,

(15)

where µ > 0 will be prescribed below, is considered.
It may be proven that we have asymptotic stability of
(4) and (5). With this aim, let us formally compute the
time-derivative of V2 along the solutions of (4) and (5)
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as follows

V̇2 =
∫ 1

0
eµx(zt + zx)(ztt + zxt)dx

+
∫ 1

0
e−µx(zt − zx)(ztt − zxt)dx

=
∫ 1

0
eµx(zt + zx)(zxx + zxt)dx

−
∫ 1

0
e−µx(zt − zx)(zxt − zxx)dx

= −µ2
∫ 1

0
eµx(zt + zx)

2dx+ 1
2 [e

µx(zt + zx)
2]x=1
x=0

−µ2
∫ 1

0
e−µx(zt − zx)2dx− 1

2 [e
−µx(zt − zx)2]x=1

x=0

where the partial differential equation (4) has been used
in the first equality and two integrations by parts have
been performed in the second equality.

Now, note that the boundary condition (5a) implies
that zt(0, t) = 0 and thus, for all t ≥ 0,

[eµx(zt + zx)
2](0, t)− [e−µx(zt − zx)2](0, t)

= z2x(0, t)− z2x(0, t) = 0

Therefore, with (5b), it is deduced

V̇2 = −µV2 +
eµ

2
(zt(1, t) + zx(1, t))

2

−e
−µ

2
(zt(1, t)− zx(1, t))2 (16)

and thus

V̇2 = −µV2 +
eµ

2
(zt(1, t)− bzt(1, t))2

−e
−µ

2
(zt(1, t) + bzt(1, t))

2

= −µV2 +
1

2

(
eµ(1− b)2 − e−µ(1 + b)2

)
z2t (1, t)

For any positive value b, it holds |1 − b| < |1 + b|.
Now, pick any µ > 0 such that

eµ(1− b)2 ≤ e−µ(1 + b)2 (17)

holds.
With such a value b, we get V̇2 ≤ −µV2 and thus

the partial differential equation (4), with the boundary
condition (5), is exponentially stable.

Now instead of the boundary condition (5) in closed
loop with the linear controller (14), consider the bound-
ary conditions, for all t ≥ 0,

z(0, t) = 0
zx(1, t) = −σ2(bzt(1, t))

(18)

resulting from the boundary condition (5) in closed loop
with a bounded and continuous map σ2 : R → R
satisfying, for all (s, s̃) ∈ R,

(σ2(s)− σ2(s̃))(s− s̃) ≥ 0 , (19a)

|σ2(s)| ≤ u2 , (19b)

with u2 > 0. Assume moreover that, for all c in R, and
for all s in R, such that |(b− c)s| ≤ u2, it holds

ϕ2(bs)(ϕ2(bs) + cs) ≤ 0 , (19c)

where ϕ2(s) = σ2(s) − s. Such a function σ2 includes
the nonlinear functions satisfying some sector bounded
condition, as the saturation maps of level u2 (see [25,
Chap. 1] or [13, Chap. 7]). Since σ2 is a function
of zt(1, t), it is needed in the next result a stronger
regularity on the initial condition than the one imposed
in e.g. [17], so that (18) makes sense.

The stability analysis of the corresponding nonlinear
partial differential equation (4) and (18) asks for special
care. It is done in our second main result, given below,
where, following the notation in [5, Sec. 2.4], it is
denoted H1

(0)(0, 1) = {u ∈ H1(0, 1), u(0) = 0}, and

‖u‖H1
(0)

(0,1) =
√∫ 1

0
|u′|2(x)dx, for all u ∈ H1

(0).

Theorem 2. For all positive values b, and for all con-
tinuous functions σ2 satisfying (19), the model (4) with
the boundary conditions (18) is globally asymptotically
stable. More precisely the following properties hold:
• [Well-posedness] For all (z0, z1) in
{(u, v), (u, v) ∈ H2(0, 1)×H1

(0)(0, 1), u
′(1)+bv(1) =

0, u(0) = 0}, there exists a unique continuous solution
z: [0,∞) → H2(0, 1) ∩ H1

(0)(0, 1) to (4), with the
boundary conditions (18) and the initial condition (3),
that is differentiable from [0,∞) to H1

(0)(0, 1).
• [Global asymptotic stability] For all initial con-

ditions (z0, z1) in {(u, v), (u, v) ∈ H2(0, 1) ×
H1

(0)(0, 1), u
′(1) + bv(1) = 0, u(0) = 0}, the solution

to (4), with the boundary conditions (18) and the initial
condition (3), satisfies the following global stability
property

‖z(., t)‖H1
(0)

(0,1) + ‖zt(., t)‖L2(0,1)

≤ ‖z0‖H1
(0)

(0,1) + ‖z1‖L2(0,1), ∀t ≥ 0 ,
(20)

together with the attractivity property,

‖z(., t)‖H1
(0)

(0,1) + ‖zt(., t)‖L2(0,1) →t→∞ 0, (21)

holds.

Remark 1. As for many nonlinear control systems, in
particular the finite-dimensional ones subject to input
saturation (see e.g., [25]), only the local exponential
stability can sometimes be obtained, requiring to prove
the exponential stability of the system only for a set of
admissible initial conditions. Regarding a similar case
for an infinite dimensional system, Theorem 2 does not
state the global exponential stability, however we are
able to prove the global asymptotic stability.

The proof of Theorem 2 is provided in Section V.
Note that perturbation arguments (as considered in e.g.,
[20, Chap. 3]) may be used to study (10) in closed
loop with a saturating controller instead of the nonlinear
function σ2. It yields a local asymptotic stability property
without exhibiting any estimate of the basin of attraction,
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in contrast to the results given in Theorem 2 where an
explicit estimate of the basin of attraction is provided.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is split into two parts: 1) the
Cauchy problem has a unique solution, 2) the system is
globally asymptotically stable.

Part 1: Well-posedness of the Cauchy problem (10),
(2), (3).

Let us first prove the existence and unicity of solution
to the nonlinear equation (10) with the boundary condi-
tions (2) and the initial condition (3). To do that, let us
introduce the following nonlinear operator

A1

(
u
v

)
=

(
v

u′′ − σ1(a v)

)
with the domain D(A1) = (H2(0, 1) ∩ H1

0 (0, 1)) ×
H1

0 (0, 1).
To prove the well-posedness of the Cauchy problem,

we shall state that A1 generates a semigroup of con-
tractions, and thus we need to prove that A1 is closed,
dissipative, and satisfies a range condition (see (25)
below). Let us prove these properties successively.

Note that, using the terminology of [19, Def. 2.6], A1

is the sum of a closed operator and of the following
continuous operator(

u
v

)
7→
(

0
−σ1(a v)

)
,

and it is closed as proved in the following.

Claim 1. The sum of a closed operator and a continuous
operator is closed.

Proof of Claim 1: Inspired from [15, Page 296, Ex. 12],
consider T1 a closed operator from D(T1) ⊂ X to Y ,
where X and Y are two Banach spaces. Let T2 be a
continuous operator from X to Y . Let (xn)n∈N be a
sequence in X and (x, y) in X × Y such that xn → x
and (T1+T2)xn → y as n→∞. We have to prove that
(T1 + T2)x = y. To do this, note first that T2xn → T2x
(since T2 is continuous). Moreover ‖T1xn+T2x−y‖ ≤
‖T1xn + T2xn − y‖ + ‖T2xn − T2x‖ → 0 as n → ∞.
Thus T1xn → y − T2x as n → ∞, and (by using the
closedness of T1) T1x = y−T2x. Therefore y = T1x+
T2x. �

Moreover, following the terminology of [19, Def. 2.4],
and using the nonnegativity of a, we may prove the
following lemma.

Lemma 1. A1 is a dissipative operator.

Proof of Lemma 1: Let us first denote by H1 the space
H1

0 (0, 1)×L2(0, 1). It is a Hilbert space equipped with

the inner product

〈
(
u
v

)
,

(
ũ
ṽ

)
〉 =

∫ 1

0
u′(x)ũ′(x)dx

+
∫ 1

0
v(x)ṽ(x)dx ,

(22)

and the norm∥∥∥∥( u
v

)∥∥∥∥ =

√∫ 1

0

|u′(x)|2 dx+

∫ 1

0

|v(x)|2 dx .

Let us enlarge the domain of definition of the function
σ1 to the complex numbers, by letting, for all s in C,

σ1C(s) := σ1(<(s)) + iσ1(=(s)) .

To ease the notation, we still use σ1 instead of σ1C . We
define ϕ1 for complex numbers in a similar way.

To check that A1 is dissipative, using first the def-
inition of A1 and then recalling the definition of the
inner product (22), let us compute the following, for all(
u
v

)
,
(
ũ
ṽ

)
in D(A1),

〈A1

(
u
v

)
−A1

(
ũ
ṽ

)
,

(
u
v

)
−
(
ũ
ṽ

)
〉

=
∫ 1

0
(v − ṽ)′(x)(u− ũ)′(x)dx

+
∫ 1

0
[(u′′ − σ1(a v))− (ũ′′ − σ1(a ṽ))] (x)

×(v − ṽ)(x)dx ,
=
∫ 1

0
(v − ṽ)′(x)(u− ũ)′(x)dx

+
∫ 1

0
(u′′ − ũ′′)(x)(v − ṽ)(x)dx

−
∫ 1

0
(σ1(a v)− σ1(a ṽ))(x)(v − ṽ)(x)dx .

(23)

Consider the second integral in the last equation. Per-
forming an integration by parts and using the definition
of D(A1), it gives∫ 1

0
(u′′ − ũ′′)(x)(v − ṽ)(x)dx

= −
∫ 1

0
(u′ − ũ′)(x)(v′ − ṽ′)(x)dx

+[(u′ − ũ′)(x)(v − ṽ)(x)]x=1
x=0

= −
∫ 1

0
(u′ − ũ′)(x)(v′ − ṽ′)(x)dx

Thus, with (23), it follows

<
(
〈A1 (

u
v )−A1

(
ũ
ṽ

)
, ( uv )−

(
ũ
ṽ

)
〉
)

= <
(∫ 1

0
(v − ṽ)′(x)(u− ũ)′(x)dx

)
−<

(∫ 1

0
(u′ − ũ′)(x)(v′ − ṽ′)(x)dx

)
−<

(∫ 1

0
(σ1(a v)− σ1(a ṽ))(x)

×(v − ṽ)(x)dx
)
,

= −<
(∫ 1

0
(σ1(a v)− σ1(a ṽ))(x)

×(v − ṽ)(x)dx
)
. (24)
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Note that, due to (9a), it holds, for all (s, s̃) ∈ C,

<
(
(σ1(s)− σ1(s̃))(s− s̃)

)
≥ 0 .

Therefore it follows, from (24) and the nonnegativity of
a,

<
(
〈A1 (

u
v )−A1

(
ũ
ṽ

)
, ( uv )−

(
ũ
ṽ

)
〉
)
≤ 0 ,

and thus A1 is dissipative. �
Let us now show that the operator A1 generates a

semigroup of contractions. To do that, we apply [2, Thm
1.3, Page 104] (or [19, Thm 4.2, Page 77]) and we need
to prove that

D(A1) ⊂ Ran(I − λA1) (25)

for all λ > 0 sufficiently small, where Ran(I − λA1) is
the range of the operator I − λA1. To prove (25), let us

pick
(
u
v

)
in D(A1) and let us prove that there exists(

ũ
ṽ

)
in D(A1) such that (I−λA1)

(
ũ
ṽ

)
=

(
u
v

)
.

Let us first note that this latter equation is equivalent to{
ũ− λṽ = u ,

ṽ − λ(ũ′′ − σ1(a ṽ)) = v ,

which may be rewritten as{
ṽ = 1

λ (ũ− u)
ũ′′ − 1

λ2 ũ− σ1( aλ (ũ− u)) = −
1
λv −

1
λ2u

(26)

To check that there exists ũ ∈ H2(0, 1)∩H1
0 (0, 1) such

that the second line of (26) holds, let us first note that
this is a nonhomogeneous nonlinear differential equation
in the ũ-variable with two boundary conditions (at x = 0
and at x = 1), as considered in the following:

Lemma 2. If a is nonnegative and λ is positive, then
there exists ũ ∈ H2(0, 1) ∩H1

0 (0, 1) solution to

ũ′′ − 1
λ2 ũ− σ1( aλ (ũ− u)) = −

1
λv −

1
λ2u

ũ(0) = ũ(1) = 0
(27)

Proof of Lemma 2: The proof of this lemma follows from
classical techniques (see e.g., [19, Page 113], or [5, Page
179]) and uses the Schauder fixed-point theorem (see
e.g., [5, Thm B.19]).

To prove this lemma, let us introduce the following
map

T1 : L2(0, 1) → L2(0, 1) ,
y 7→ z = T1(y) ,

where z = T1(y) is the unique solution to

z′′ − 1
λ2 z = − 1

λv −
1
λ2u+ σ1(

a
λ (y − u)) ,

z(0) = z(1) = 0 .
(28)

This map T1 is well-defined as soon as − 1
λ2 ≤ 0, i.e. as

soon as λ > 0. The well-posedness of T1 can be seen

as the well-posedness of the associate Sturm Liouville
problem1.

Let us prove the following intermediate result.

Claim 2. There exists M > 0 such that T1(L2(0, 1)) ⊂
K, where K is the set of functions w that are
continuously differentiable on [0, 1] and such that
‖w‖C0([0,1]) ≤M and ‖w′‖C0([0,1]) ≤M .

Proof of Claim 2: To prove this claim, let us first note
that each solution to (28) is a solution to

z′′ − 1
λ2 z = − 1

λv −
1
λ2u+ σ1(

a
λ (y − u)) ,

z(0) = 0, z′(0) = C1 .
(29)

for a suitable C1 ∈ R. To be more specific, the solution
to (29) is given by

z(x) = (1 0)eAx(0 C1)
>

+
∫ x
0
eA(x−s)(− 1

λv(s)−
1
λ2u(s)

+σ1(
a
λ (y(s)− u(s))))ds

where A =

(
0 1
1
λ2 0

)
. It holds A2 = 1

λ2

(
1 0
0 1

)
.

Thus, by using a recurrence argument, we may prove
that, for all x in [0, 1],

eAx =

 cosh(
√
x
λ )

λ sinh(
√
x
λ )√

x√
x sinh(

√
x
λ )

λ cosh(
√
x
λ )

 . (30)

Recall that σ1 is assumed to be bounded, and consider
a bound u1 > 0 such that, for all s ∈ R, |σ1(s)| ≤ u1.
By inspecting (1 0)eA(0 C1)

>, since λ sinh( 1λ ) 6= 0 and
since, for all y ∈ L2(0, 1), |σ1( aλ (y− u))| ≤ u1, we get
that the value C1 lies in a bounded set of R (which does
not depend on y ∈ L2(0, 1)) and thus the existence of
M > 0 follows, as stated in Claim 2. �

Moreover T1 is a continuous operator. Finally the
set K is convex and compact (by the Ascoli-Arzela
theorem), as a subset of L2(0, 1).

Therefore, by the Schauder fixed-point theorem (see
e.g., [5, Thm B.19]), there exists ũ ∈ K such that
T1(ũ) = ũ. This concludes the proof of Lemma 2. �

Now from the existence of ũ ∈ H2(0, 1) ∩H1
(0)(0, 1)

such that the second line of (26) holds, let us remark
that the first line of (26) defines a unique ṽ in H1

0 (0, 1).

Therefore (I − λA1)

(
ũ
ṽ

)
=

(
u
v

)
and (25) hold.

Since A1 is dissipative (due to Lemma 1), it follows,
from [2, Thm 1.3, Page 104] (or [19, Thm 4.2]), that A1

generates a semigroup of contractions T1(t). Moreover,
by [2, Thm 1.2, Page 102] (or [19, Thm 4.5]), for all(
ũ
ṽ

)
in D(A1), T1(t)

(
ũ
ṽ

)
is differentiable for all

1Note that the homogeneous Sturm Liouville problem (i.e. with v =
u = y) has only the trivial function as the solution, since − 1

λ2 < 0.
Therefore the Sturm Liouville problem described by T1 is well-posed,
as proven e.g. in [1, Chap. 14].
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t > 0 and is a solution to the Cauchy Problem (10), (2)
and (3). Moreover due to [19, Thm 4.10], it is the unique
solution to this Cauchy problem.

Part 2: Global asymptotic stability of the nonlinear
equation (10) with the boundary conditions (2).

Let us consider a solution to (10) and (2), for a
given initial condition in D(A1). The formal compu-
tation yielding (11) makes sense. Therefore with the
nonnegativity of a and with (9a), we get V̇1 ≤ 0, along
the solutions to (10) and (2), for any initial condition in
D(A1).

To be able to apply LaSalle’s Invariance Principle,
we have to check that the trajectories are precompact
(see e.g. [9]). This precompactness is a corollary of the
following lemma (which is similar to [10, Lem. 2] where
different boundary conditions are considered).

Lemma 3. The canonical embedding from D(A1),
equipped with the graph norm, into H1 is compact.

Proof of Lemma 3: Before proving this lemma, recall that
its statement is equivalent to prove, for each sequence
in D(A1), which is bounded with the graph norm, that
it exists a subsequence that (strongly) converges in H1.

Recalling the definition of the graph norm, it holds,
for all ( uv ) in D(A1),

‖( uv )‖
2
D(A1)

:= ‖( uv )‖
2
+ ‖A1 (

u
v )‖

2

=

∫ 1

0

(|u′|2 + |v|2 + |v′|2

+ |u′′ − σ1(av)|
2
)dx .

Therefore, on the one hand, one gets

‖( uv )‖
2
D(A1)

≥
∫ 1

0

(|v|2 + |v′|2)dx, (31)

and on the other hand, due to (9b), it holds
|v| ≥ min(1, 1

La ) |σ1(av)| and |u′′ − σ1(av)| ≥
min(1, 1

La ) |u
′′ − σ1(av)|, it holds

‖( uv )‖
2
D(A1)

≥
∫ 1

0

(
|u′|2 +min(1, 1

L2a2 ) |σ1(av)|
2

+ min(1, 1
L2a2 ) |u

′′ − σ1(av)|
2
)
dx.

Since, for all (s, s̃) ∈ C2, it holds |s+s̃|2 ≤ 2|s|2+2|s̃|2,
it follows 2 |u′′ − σ1(av)|2 + 2 |σ1(av)|2 ≥ |u′′|2 and
thus

‖( uv )‖
2
D(A1)

≥
∫ 1

0

(|u′|2+min(1, 1
L2a2

)

2 |u′′|2)dx,

≥ min(1, 1
L2a2

)

2

∫ 1

0

(|u′|2 + |u′′|2) .

(32)

Consider now a sequence
(
un
vn

)
n∈N

in D(A1)

bounded for the graph norm of D(A1). From (31) and
(32), it follows that this sequence is bounded in the
product space (H2(0, 1)∩H1

0 (0, 1))×H1(0, 1). Since the
canonical embedding from H2(0, 1) to H1

0 (0, 1) (resp.
from H1(0, 1) to L2(0, 1)) is compact, there exists a

subsequence still denoted
(
un
vn

)
n∈N

such that

un → u in H1
0 (0, 1) , vn → v in L2(0, 1)

and thus
(
u
v

)
belongs to H1, which proves the

lemma. �
Inspired by [11, Thm 1, (iii)], using the dissipativity

(see Lemma 1) it follows that the function

t 7→
∥∥∥∥( z(., t)

zt(., t)

)∥∥∥∥ (33)

is a nonincreasing. Moreover, since A1 is single valued,
the canonical restriction of A1 equals A1 (see [19, Def.
2.7] for the introduction of this notion), and thus with
[19, Cor. 3.7], we get that

t 7→
∥∥∥∥A1

(
z(., t)
zt(., t)

)∥∥∥∥ (34)

is also a nonincreasing function. Therefore, with Lemma

3, the trajectory
(

z(., t)
zt(., t)

)
is precompact in H1.

Moreover the ω-limit set ω
[(

z(., 0)
zt(., 0)

)]
⊂ D(A1),

is not empty and invariant with respect to the nonlinear
semigroup T1(t) (see [24, Thm 3.1]).

We now use LaSalle’s invariance principle to show

that ω
[(

z(., 0)
zt(., 0)

)]
= {0}. To do that, consider a

solution such that V̇1(t) = 0, for all t ≥ 0. It follows
from (11) that zt(x, t) = 0 for almost all x in (0, 1) and
for all t ≥ 0. Due to (9b) and the continuity of σ1, it
follows σ1(0) = 0. Therefore z is a solution to the linear
equation (1) with the boundary conditions (2), such that
ztt(x, t) = zxx(x, t) = 0 which implies that z = 0.

Therefore ω
[(

z(., 0)
zt(., 0)

)]
= {0}, and the convergence

property (13) holds along the solutions to the nonlinear
equation (10) with the boundary conditions (2).

This concludes the proof of Theorem 1. �

V. PROOF OF THEOREM 2

Part 1: Well-posedness of the Cauchy problem (4), (3),
(18).

Let us first prove the existence and unicity of solution
to the nonlinear equation (4), with the boundary condi-
tions (18) and the initial condition (3). To do that, let us
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introduce the following nonlinear operator

A2

(
u
v

)
=

(
v
u′′

)
with the domain D(A2) = {(u, v), (u, v) ∈ H2(0, 1)×
H1(0, 1), ux(1)+σ2(bv(1)) = 0, u(0) = 0, v(0) = 0}.

To prove the well-posedness of the Cauchy problem,
we shall state that A2 generates a semigroup of contrac-
tions by applying [2, Thm 1.3, Page 104], and thus we
need to prove that A2 is closed, dissipative, and satisfies
a range condition (see (25) below). Let us prove these
properties successively.

The nonlinear operator A2 is closed, and using the
nonnegativity of b, we may prove the following lemma.

Lemma 4. A2 is a dissipative operator.

Proof of Lemma 4: Recall that H1
(0)(0, 1) is a Hilbert

space with the inner product

〈u, ũ〉H1
(0)

(0,1) =

∫ 1

0

u′(x)ũ′(x)dx.

Now denote by H2 the space H1
(0)(0, 1)×L

2(0, 1). It is
a Hilbert space equipped with the same inner product as
for H1, that is (22).

To check that A2 is dissipative, using first the def-
inition of A2 and then recalling the definition of the
inner product in H2, let us compute the following, for

all
(
u
v

)
,
(
ũ
ṽ

)
in D(A2),

〈A2

(
u
v

)
−A2

(
ũ
ṽ

)
,

(
u
v

)
−
(
ũ
ṽ

)
〉

= 〈
(

v − ṽ
u′′ − ũ′′

)
,

(
u− ũ
v − ṽ

)
〉 ,

=
∫ 1

0
(v − ṽ)′(x)(u− ũ)′(x)dx

+
∫ 1

0
(u′′ − ũ′′)(x)(v − ṽ)(x)dx . (35)

Consider the second integral in the last equation. Per-
forming an integration by parts and using the definition
of D(A2), it gives∫ 1

0
(u′′ − ũ′′)(x)(v − ṽ)(x)dx

= −
∫ 1

0
(u′ − ũ′)(x)(v′ − ṽ′)(x)dx

+[(u′ − ũ′)(x)(v − ṽ)(x)]x=1
x=0

= −
∫ 1

0
(u′ − ũ′)(x)(v′ − ṽ′)(x)dx

+(u′(1)− ũ′(1))(v(1)− ṽ(1))
= −

∫ 1

0
(u′ − ũ′)(x)(v′ − ṽ′)(x)dx

+(−σ2(bv(1)) + σ2(bṽ(1)))(v(1)− ṽ(1)) .

By combining the previous equation with (35), we
conclude the proof of Lemma 4 using (19a) as in the
end of Lemma 1. �

Let us now show that the operator A2 generates a
semigroup of contractions. To do that, we apply [2, Thm
1.3, Page 104] (or [19, Thm 4.2, Page 77]) and we need
to prove that

D(A2) ⊂ Ran(I − λA2) (36)

for all λ > 0 sufficiently small, where Ran(I − λA2) is
the range of the operator I − λA2. To prove (36), let us

pick
(
u
v

)
in D(A2) and let us prove that there exists(

ũ
ṽ

)
in D(A2) such that (I−λA2)

(
ũ
ṽ

)
=

(
u
v

)
.

Let us first note that this latter equation is equivalent to{
ũ− λṽ = u ,
ṽ − λũ′′ = v ,

which may be rewritten as{
ṽ = 1

λ (ũ− u) ,
ũ′′ − 1

λ2 ũ = − 1
λv −

1
λ2u .

(37)

To check that there exists ũ ∈ H2(0, 1) such that
ũ(0) = 0, ũ′(1) = −σ2( bλ ũ(1) − bu(1)), and such that
the second line of (37) holds, let us first note that this
is a nonhomogeneous nonlinear differential equation in
the ũ-variable with two boundary conditions (at x = 0
and at x = 1), as considered below:

Lemma 5. If λ is positive, then there exists ũ ∈ H2(0, 1)
solution to

ũ′′ − 1
λ2 ũ = − 1

λv −
1
λ2u

ũ(0) = 0 , ũ′(1) = −σ2( bλ ũ(1)− bu(1))
(38)

Proof of Lemma 5: To prove this lemma, let us introduce
the following map

T2 : H1(0, 1) → L2(0, 1) ,
y 7→ z = T2(y) ,

where z = T2(y) is the unique solution to

z′′ − 1
λ2 z = − 1

λv −
1
λ2u ,

z(0) = 0 , z′(1) = −σ2( bλy(1)− bu(1)) .
(39)

This map T2 can be seen as a boundary value problem,
and it is well-defined for all λ > 0. In a similar way as
in the proof of Claim 2, we have the following claim.

Claim 3. There exists M > 0 such that T2(L2(0, 1)) ⊂
K, where K is the set of functions w that are
continuously differentiable on [0, 1] and such that
‖w‖C0([0,1]) ≤M and ‖w′‖C0([0,1]) ≤M .

Proof of Claim 3: As for the proof of Claim 2, let us
first note that each solution to (39) is such that

z′(x) = (0 1)eAx(0 C2)
>

+
∫ x
0
eA(x−s)(− 1

λv −
1
λ2u)ds

for a suitable value of C2, where the matrix A is defined
in the proof of Claim 2 and eAx is given by (30). The
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value of C2 is so that z′(1) = −σ2( bλy(1) − bu(1)).
Recall (19b). By inspecting (0 1)eA(0 C2)

>, since
cosh( 1λ ) 6= 0 and since, for all y ∈ L2(0, 1), |σ2( bλy(1)−
bu(1))| ≤ u2, we get that the value C2 lies in a bounded
set of R (which does not depend on y ∈ L2(0, 1)) and
thus the existence of M > 0 follows, as stated in Claim
3. �

Moreover T2 is a continuous operator. Finally the
set K is convex and compact (by the Ascoli-Arzela
theorem), as a subset of L2(0, 1).

Therefore, by the Schauder fixed-point theorem (see
e.g., [5, Thm B.19]), there exists ũ ∈ K such that
T2(ũ) = ũ. This concludes the proof of Lemma 5. �

Now from the existence of ũ ∈ H2(0, 1) ∩H1
(0)(0, 1)

such that the second line of (37) holds, let us remark
that the first line of (37) defines a unique ṽ in H1(0, 1).

Therefore (I − λA2)

(
ũ
ṽ

)
=

(
u
v

)
and (36) hold.

Since A2 is dissipative (due to Lemma 4), it follows,
from [2, Thm 1.3, Page 104] (or [19, Thm 4.2]), that A2

generates a semigroup of contractions T2(t). Moreover,
by [2, Thm 1.2, Page 102] (or [19, Thm 4.5]), for all(
ũ
ṽ

)
in D(A2), T2(t)

(
ũ
ṽ

)
is strongly differen-

tiable for all t > 0 and is a solution to the Cauchy
problem (4), (18), and (3). Moreover due to [19, Thm
4.10], it is the unique solution to this Cauchy problem.

Part 2: Global asymptotic stability of the nonlinear
equation (4) with the boundary conditions (18).

Let us consider a solution to (4) and (18) for a given
initial condition in D(A2). Now, as in the proof of
Theorem 1, using the dissipativity (see Lemma 4) and
[19, Cor. 3.7], we get

t 7→
∥∥∥∥( z(., t)

zt(., t)

)∥∥∥∥ , t 7→
∥∥∥∥A2

(
z(., t)
zt(., t)

)∥∥∥∥ ,

are two non-increasing functions. The decreasing prop-
erty of the first function yields the global stability
property as written in Theorem 2. Now, by focusing on
the second function, it holds, for all t ≥ 0,

‖zt(., t)‖H1
(0)

(0,1) ≤
∥∥∥∥A2

(
z(., 0)
zt(., 0)

)∥∥∥∥ .

Moreover, on the one hand, by definition of A2 and of
H2, it holds∥∥∥∥A2

(
z0

z1

)∥∥∥∥2 = ‖z0′′‖2L2(0,1) + ‖z
1‖2H1

(0)
(0,1) . (40)

On the other hand, since zt(0, t) = 0, it holds
|zt(1, t)|2 = |

∫ 1

0
zxt(., t)dx|2 ≤

∫ 1

0
|zxt(., t)|2dx =

‖zt(., t)‖2H1
(0)

(0,1)
. Thus, with (40), for all t ≥ 0,

|zt(1, t)| ≤
∥∥∥∥A2

(
z(., 0)
zt(., 0)

)∥∥∥∥ . (41)

Let us now prove the following

Lemma 6. For each b > 0 and for all ε > 0, there exist
λ > 0, µ > 0 and c in R such that

M =
(

(1−b)2eµ−(1+b)2e−µ ?

(b−1)eµ−(1+b)e−µ−λc eµ−e−µ−2λ

)
≤ 0 (42)

and |b− c| ≤ ε hold.

Proof of Lemma 6: Let b > 0 and ε > 0. First consider
the following matrix

M̃ =
( −4b ?
−2−λc −2λ

)
Since the trace of M̃ is −4b − 2λ, the sum of the
eigenvalues is negative as soon as λ > 0 and b > 0.
The determinant is the product of the eigenvalues: P =
8bλ − (2 + λc)2. Let us denote ε̃ = b − c, and make
a Taylor expansion of P with respect to ε̃ at ε̃ = 0. It
holds P = 8bλ−4−4λb+4λε̃−λ2b2+2λ2bε̃+o(ε̃) =
−(λb − 2)2 + 2ε̃λ(2 + λb) + o(ε̃). Therefore letting
λ = 2/b, it holds P = 16ε̃/b+ o(ε̃) which is positive as
soon as ε̃ is sufficiently small and positive. This implies
that both eigenvalues of M̃ are negative and we conclude
that M̃ < 0. Note now that for µ → 0 we get that
matrix M̃ approaches M. Hence, by the continuity of
the eigenvalues of matrixM with respect to parameters,
we get the existence of λ > 0, c in R (close to b) and
µ > 0 (close to 0) such that (42) and |b − c| ≤ ε hold.
This concludes the proof of Lemma 6. �

Pick r > 0 and an initial condition satisfying
‖z0′′‖2L2(0,1)+‖z

1‖2
H1

(0)
(0,1)
≤ r2. Apply Lemma 6 with

b > 0 and ε = u2/r. We obtain that the initial condition
satisfies |b−c|2(‖z0′′‖2L2(0,1)+‖z

1‖2
H1

(0)
(0,1)

) ≤ u22. With
(40) and (41), we obtain, along the solutions of (4) and
(18) starting from such an initial condition,

|(b− c)zt(1, t)| ≤ u2 .

Using (19c) with s = zt(1, t), it follows, along the
solutions to (4) and (18) starting from such an initial
condition,

ϕ2(bzt(1, t))(ϕ2(bzt(1, t)) + czt(1, t)) ≤ 0 . (43)

The formal computation (16) of the Lyapunov function
candidate V2 along the solutions to (4) and (18) makes
sense and it holds, along the solutions to (4) and (18),

V̇2 + µV2

= eµ(zt(1, t) + zx(1, t))
2

− e−µ(zt(1, t)− zx(1, t))2

= eµ(zt(1, t)− σ2(bzt(1, t)))2

− e−µ(zt(1, t) + σ2(bzt(1, t)))
2

= eµ(zt(1, t)− ϕ2(bzt(1, t))− bzt(1, t))2

− e−µ(zt(1, t) + ϕ2(bzt(1, t)) + bzt(1, t))
2 .
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Let us denote ϕ2 instead of ϕ2(bzt(1, t)). For λ > 0
given by Lemma 6, and using (43), it follows

V̇2 ≤ −µV2 + eµ(zt(1, t)− ϕ2 − bzt(1, t))2

−e−µ(zt(1, t) + ϕ2 + bzt(1, t))
2

−2λϕ2(ϕ2 + czt(1, t))

≤ −µV2 +
(
zt(1, t)
ϕ2

)>
M
(
zt(1, t)
ϕ2

)
where M is defined in (42). With (42), we get V̇2 ≤
−µV2, along the solutions to (4), (18) and (3) starting
from an initial condition satisfying

‖z0′′‖2L2(0,1) + ‖z
1‖2H1

(0)
(0,1) ≤ r

2 . (44)

As a conclusion, for all b > 0, and for all r > 0, for
all initial conditions in {(u, v), (u, v) ∈ H2(0, 1) ×
H1

(0)(0, 1), u
′(1) + bv(1) = 0, u(0) = 0} satisfying

(44), there exists µ > 0 such that V̇2(t) ≤ −µV2(t),
and thus with the expression of V2 in (15), it implies
(21). This implies the global attractivity as stated in
Theorem 2. �

VI. NUMERICAL SIMULATIONS

A. Illustrating Theorem 1

Let us illustrate Theorem 1 by discretizing the PDE
(10) with the boundary conditions (2) and the initial
condition (3) by means of finite difference method. To
do that we compute the values of z at the next time
step by using the values known at the previous two time
steps (see e.g. [18] for an introduction on the numerical
implementation). It is chosen the time and the space steps
so that the stability condition of the numerical scheme
is satisfied. Due to the presence of the nonlinear map,
an implicit equation has to be solved when discretizing
the dynamics. 2

Consirer a = 1, and the following nonlinear function
σ1(s) = sat1(sin(s) + s), for s ∈ R, where sat1 is the
saturation map of level u1 = 1.5. This function satisfies
(9).

Let us consider the initial condition (3) with z0(x) =
sin(πx) and z1(x) = 0, for x ∈ [0, 1]. The time
evolution of the numerically computed z-component of
the solution is given in Figure 2 where it is checked that
it converges to the equilibrium. Moreover on Figure 3 it
can be observed that the control law saturates for small
positive time.

2The simulation code for both examples can be downloaded
from http://www.gipsa-lab.fr/∼christophe.prieur/
Codes/code-tac16.zip
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Fig. 2. Time evolution of the z-component of the solution to (10), (2)
and (3) with σ1.
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Fig. 3. Time evolution of the nonlinear control law with σ1.

B. Illustrating Theorem 2

Let us illustrate now Theorem 2 by discretizing the
PDE (4) with the boundary conditions (18) and the initial
condition (3).

Consider b = 1, and the following nonlinear function
σ2(s) = sat2(s), for s ∈ R, where sat2 is the saturation
map of level u2 = 0.05. This function satisfies (19).

Let us consider the same initial condition as in the
previous subsection.

The time evolution of the numerically computed z-
component of the solution is given in Figure 4 where it
is observed that it converges to the equilibrium z = 0.
In Figure 5 it is observed that the control law saturates
around 30 times within 20s. Therefore, in spite of the
saturation, note that the convergent behavior can be
observed as predicted by Theorem 2.



11

1
0.8

0.6
0.4

<-- x -->
0.2

Solution z(x,t)

800
60

40
<-- t -->
20

0

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0.6

0.8

1

V
e

rt
ic

a
l 
d

is
p

la
c
e

m
e

n
t

Fig. 4. Time evolution of the z-component of the solution to (4), (18)
and (3) with σ2.
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VII. CONCLUSION

The well-posedness and the asymptotic stability of a
class of 1D wave equations have been studied. The PDE
under consideration resulted from the feedback connec-
tion of a classical wave equation and a cone bounded
nonlinear control law. The controller is either applied in
the space domain (distributed input) or at one boundary
(boundary action). The well-posedness issue has been
tackled by using nonlinear semigroup techniques and the

stability has been proven by Lyapunov theory for infinite
dimensional systems.

This work lets some questions open. In particular, it
could be interesting to use other classes of Lyapunov
functions, as those considered in [27] and to compare
the obtained domain of attraction with the one estimated
in Theorem 2. It would also be interesting to study
other PDEs appearing in vibration control theory, such
as the beam equation (as considered in [7]). Other
hyperbolic systems as the one considered in this paper
may also be considered as the conservation laws that
are useful for the flow control (see [6], [22]). For such a
class of PDEs, Lyapunov theory is an useful tool when
designing stabilizing linear controllers, and may be also
the key when computing saturating stabilizing feedback
laws. Generalization to the design of output feedback
laws, instead of state feedback controls as considered in
particular in Theorem 1, is also a natural research line.
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[6] J.-M. Coron, B. d’Andréa Novel, and G. Bastin. A strict
Lyapunov function for boundary control of hyperbolic systems
of conservation laws. IEEE Transactions on Automatic Control,
52(1):2–11, 2007.
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[10] B. d’Andréa Novel, F. Boustany, F. Conrad, and B.P. Rao.
Feedback stabilization of a hybrid PDE-ODE system: Application
to an overhead crane. Mathematics of Control, Signals, and
Systems, 7(1):1–22, 1994.
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Toulouse, France in 1997. In 1997 he joined
the UFRGS, where he is currently Full Pro-

fessor and Head of the Department of Automation and Energy. In 2011,
he was Honorary Visiting Fellow in the University of Leicester, UK.
Since 2000, he is a researcher of the CNPq/Brazil (National Council
for Scientific and Technological Development). From 2013 to 2014
he was General Coordinator of the Program Science without Borders
at the CNPq. He is member of the Conference Editorial Board of
IEEE Control Systems Society, and member of the IFAC Technical
Committee on Linear Control Systems (TC2.2). He was member of the
Executive Board of the Brazilian Automation Society (SBA) from 2008
to 2010 and is currently member of its Council. His research topics
include: constrained control, time-delay systems, networked control
systems, robust control and non-linear systems.


