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Wave equation with cone-bounded control laws

This paper deals with a wave equation with a one-dimensional space variable, which describes the dynamics of string deflection. Two kinds of control are considered: a distributed action and a boundary control. It is supposed that the control signal is subject to a cone-bounded nonlinearity. This kind of feedback laws includes (but is not restricted to) saturating inputs. By closing the loop with such a nonlinear control, it is thus obtained a nonlinear partial differential equation, which is the generalization of the classical 1D wave equation. The well-posedness is proven by using nonlinear semigroups techniques. Considering a sector condition to tackle the control nonlinearity and assuming that a tuning parameter has a suitable sign, the asymptotic stability of the closedloop system is proven by Lyapunov techniques. Some numerical simulations illustrate the asymptotic stability of the closed-loop nonlinear partial differential equations.

I. INTRODUCTION

The general problem in this paper is the study of the wave in a one-dimensional media, as considered e.g. when modeling the dynamics of an elastic slope vibrating around its rest position. To be more specific, it is considered the wave equation describing the dynamics of the deformation denoted by z(x, t). The control is either defined by an external force f (x, t), or by a boundary action g(t), where the force and the deformation may depend on the space and the time variables. A scheme of the considered problem is depicted in Figure 1.

Depending on the control action, two classes of partial differential equations (PDEs) are obtained. In the presence of an external distributed force f when the slope is attached at both extremities, the dynamic of the vibration is described by the following (see e.g. [START_REF] King | Vibrations and Waves[END_REF]Chap. 5.3]) for all t ≥ 0, x ∈ (0, 1),

z tt (x, t) = z xx (x, t) + f (x, t) (1) 
f (x, t) z(x, t)

x = 0 x = 1 g(t)
Fig. 1. Vibrating slope subject to a external distributed action f (x, t) and to a boundary action g(t).

where z stands for the state (the length of the string and other physical parameters are normalized), and f (x, t) ∈ R is the control. The control f is distributed (in contrast to boundary control), and is given by a bounded control operator. Let us equip this system with the following boundary conditions, for all t ≥ 0,

z(0, t) = 0 , (2a) z(1 
, t) = 0 , (2b) 
and with the following initial condition, for all x in (0, 1), z(x, 0) = z 0 (x) , z t (x, 0) = z 1 (x) ,

where z 0 and z 1 stand respectively for the initial deflection of the slope and the initial deflection speed.

When the control action is only at the boundary, it is necessary to consider the following string equation, for all t ≥ 0, x ∈ (0, 1),

z tt (x, t) = z xx (x, t) (4) 
with the boundary conditions, for all t ≥ 0, z(0, t) = 0 (5a)

z x (1, t) = g(t) (5b) 
where g(t) is the boundary action at time t.

When closing the loop with a linear state feedback law, the control problem of such a 1D wave equation is considered in many works, see e.g. [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF] where, in particular, stabilizing linear controllers and optimal linear feedback laws are computed respectively by an application of linear semigroup theory and LQR techniques. The aim of this paper is to investigate the well-posedness and the asymptotic stability of these classes of PDEs by means of nonlinear control laws, and more precisely of cone-bounded nonlinear control laws.

Neglecting the presence of nonlinearity in the input can be source of undesirable and even catastrophic behaviors for the closed-loop system. See e.g., [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF], where it is shown that in presence of magnitude actuator limitation, even for finite-dimensional systems, the fact of disregarding the nonlinearity in the control loop may yield an unstable system. For an introduction of such nonlinear finite-dimensional systems and techniques on how to estimate the basin of attraction for locally asymptotically stable equilibrium, see [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Zaccarian | Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation[END_REF] among other references. Similarly, in the context of systems with cone-bounded nonlinearities, a quite natural approach to tackle the stability problem consists in combining Lyapunov theory with cone-bounded sector conditions (see e.g., [START_REF] Khalil | Nonlinear Systems[END_REF], [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF]). This allows to provide an estimate of the basin of attraction of the nonlinear systems in appropriate Sobolev spaces. This estimate can be either a neighborhood of the equilibrium in the local case or the whole space in the global case.

To our best knowledge, the well-posedness and the asymptotic stability of PDE by means of a cone-bounded input signal is less investigated than for corresponding finite-dimensional systems. This class of feedback laws includes classical saturation and deadzone nonlinearities as well as more general nonlinear maps. The aim of this work is to study the wave equation in presence of such nonlinear control laws. To prove first the existence and uniqueness of solutions to the PDE (1) (respectively (4)) with the boundary conditions (2) (resp. ( 5)) and initial conditions (3), when the loop is closed with an odd, Lipschitz and cone-bounded control law (see Theorems 1 and 2 below for precise statements), the nonlinear semigroup theory in appropriate Sobolev spaces is rigorously applied. The second contribution is to prove the global (resp. local) asymptotic stability of the corresponding closed-loop system by exploiting a cone-boundedness assumption on the control as introduced in [START_REF] Khalil | Nonlinear Systems[END_REF], [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] for finite-dimensional systems, see Theorem 1 (resp. Theorem 2) below for a precise statement. In other words, this paper combines techniques that are usual for finite dimensional systems in closed loop with conebounded nonlinear control laws (see e.g. [START_REF] Hu | Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions[END_REF], [START_REF] Tarbouriech | Stability analysis and stabilization of systems presenting nested saturations[END_REF]) with Lyapunov theory for PDEs (see e.g. [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF], [START_REF] Coron | Control and Nonlinearity[END_REF], [START_REF] Prieur | Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF]).

It is worth noticing that for both PDEs (1)-( 2) and ( 4)-( 5), Lyapunov techniques are applied, but the stability proofs are quite different. To be more specific, the proof of the stability of the PDE (1) with the boundary conditions [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF] when closing the loop with a nonlinear feedback law is done by using the LaSalle invariance principle, which needs to state a precompactness property of the solutions. On the other hand, since a strict decreasing Lyapunov function is computed, we do not need to use the LaSalle invariance principle for the PDE (4) with a nonlinear boundary control.

To our best knowledge, the first work considering infinite dimensional systems with bounded control is [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Thm 5.1] where only compact and bounded control operators with an a priori constraint are considered. In [START_REF] Prieur | Wellposedness and stability of a 1D wave equation with saturating distributed input[END_REF] only the case of a distributed saturating control has been considered. On the other hand, the paper [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] suggests to use an observability assumption for the study of PDE in closed loop with saturating controllers. In particular the contraction semigroup obtained from the saturating closed-loop system is compared to the corresponding semigroup without saturation. In the present paper, more general cone-bounded input nonlinearities are considered and different techniques are used, in particular the LaSalle invariance principle. Then, the paper can be considered as complementary to [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] by extending not only the class of nonlinear control laws but also the nature of the used tools. Note finally that both papers [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] do not consider the case of saturation of the value of the solution, but rather saturation of the norm of the solution (compare [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Eq. (2.8)] and [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF]Eq. (1.6)] with the definition of nonlinear controller (8) below). Dealing with saturation of the value of the solution is more complex and is more relevant for applications, since it yields to a locally defined PDE. However it needs further developments (in particular more regularity is required to ensure that the nonlinear map is well-defined).

The rest of the paper is organized as follows. In Section II, the nonlinear PDE (1) is introduced, and the first main result is stated, namely the well-posedness of the Cauchy problem, along with the global asymptotic stability, when closing the loop with a nonlinear distributed control law. In Section III, the main result is stated for the PDE (4), where a nonlinear boundary action is considered. The proof of the two main results are given respectively in Sections IV and V. Section VI presents numerical simulations to illustrate both main results. Some concluding remarks and possible further research lines are presented in Section VII.

Notation: z t (resp. z x ) stands for the partial derivative of the function z with respect to t (resp. x) (this is a shortcut for ∂z ∂t , resp. ∂z ∂x ). When there is only one independent variable, ż and z stand respectively for the time and the space derivative. For a matrix A, A denotes the transpose, and for a partitioned symmetric matrix, the symbol stands for symmetric blocks. (s) and (s) stand respectively for the real and imaginary part of a complex value s in C, s is the conjugate of s, and |s| its modulus.

L 2 denotes the norm in L 2 (0, 1) space, defined by u 2 L 2 (0,1) = 1 0 |u| 2 dx for all functions u ∈ L 2 (0, 1). Similarly, H 2 (0, 1) is the set of all functions u ∈ H 2 (0, 1) such that

1 0 (|u| 2 + |u x | 2 + |u xx | 2 )dx is finite. Finally H 1 0 (0, 1)
is the closure in L 2 (0, 1) of the set of smooth functions that are vanishing at x = 0 and at x = 1. It is equipped with the norm u 2

H 1 0 (0,1) = 1 0 |u x | 2 dx.
The associate inner products are denoted •, • L 2 (0,1) and •, • H 1 0 (0,1) .

II. WAVE EQUATION WITH A NONLINEAR DISTRIBUTED CONTROL

Consider the PDE (1), with the boundary conditions (2) and the initial condition [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF].

Letting for the control, for all t ≥ 0 and all x ∈ (0, 1),

f (x, t) = -az t (x, t), (6) 
where a is a constant value, and exploiting properties of the following energy function:

V 1 = 1 2 (z 2 x + z 2 t )dx, (7) 
for any solution z to ( 1) and ( 2), when closing the loop with the linear controller ( 6), allow to show that the closed-loop system is (globally) exponentially stable in

H 1 0 (0, 1) × L 2 (0, 1).
This can be formally shown by considering the time derivative of V along the solutions to ( 1)-( 2), which yields

V1 = 1 0 (z x z xt -az 2 t + z t z xx )dx = - 1 0 az 2 t dx + [z t z x ] x=1 x=0 = - 1 0 az 2 t dx
where an integration by parts is performed to get the second line from the first one, and the boundary conditions (2) are applied for the last line. Therefore, for any positive value a, it is formally obtained that the energy is decreasing at long as z t is non vanishing in [0, 1]. In other words, V 1 is a (non strict) Lyapunov function.

Due to actuator limitations or imperfections, the actual control law applied to the system, instead of (6), can be modeled as follows

f (x, t) = -σ 1 (az t (x, t)) (8) 
with σ 1 : R → R being a bounded and continuous nonlinear function satisfying, for a constant value L > 0 and for all (s, s) ∈ R 2 ,

(σ 1 (s) -σ 1 ( s))(s -s) ≥ 0 , ( 9a 
)
|σ 1 (s)| ≤ L|s| . (9b) 
Note that (9a) generalizes the odd property. Examples of such functions σ 1 include the saturation maps, and are considered in Section VI-A below. Equation ( 1) in closed loop with the control (8) becomes

z tt = z xx -σ 1 (az t ) . (10) 
A formal computation gives, along the solutions to (10) and ( 2),

V1 = - 1 0 z t σ 1 (az t )dx (11) 
which asks to handle the nonlinearity z t σ 1 (az t ). A convergence result is stated below, where the well-posedness is separate from the asymptotic stability property.

Theorem 1. For all positive values a, and for all bounded and continuous functions σ 1 satisfying (9), the model [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] with the boundary conditions ( 2) is globally asymptotically stable. More precisely the following properties hold:

• [Well-posedness] For all (z 0 , z 1 ) in H 2 (0, 1) ∩ H 1 0 (0, 1) × H 1 0 (0, 1)
, there exists a unique solution z: [0, ∞) → H 2 (0, 1) ∩ H 1 0 (0, 1) to [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF], with the boundary conditions ( 2) and the initial condition (3), that is differentiable from [0, ∞) on H 1 0 (0, 1).

• [Global asymptotic stability] Moreover, for all initial conditions (z 0 , z 1 ) in H 2 (0, 1) ∩ H 1 0 (0, 1) ×H 1 0 (0, 1), the solution to [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF], with the boundary conditions (2) and the initial condition (3), satisfies the following stability property

z(., t) H 1 0 (0,1) + z t (., t) L 2 (0,1) ≤ z 0 H 1 0 (0,1) + z 1 L 2 (0,1) , ∀t ≥ 0 , (12) 
together with the attractivity property z(., t) H 1 0 (0,1) + z t (., t) L 2 (0,1)

→ t→∞ 0 . ( 13 
)
The proof of Theorem 1 is provided in Section IV.

III. WAVE EQUATION WITH A NONLINEAR BOUNDARY ACTION

Consider the PDE (4), with the boundary conditions (5) and the initial condition [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF].

Letting for the control

g(t) = -bz t (1, t), ( 14 
)
where b is a positive tuning parameter, inspired by [START_REF] Krstic | Dead-time compensation for wave/string PDEs[END_REF], the following Lyapunov function candidate:

V 2 = 1 2 1 0 e µx (z t + z x ) 2 dx + 1 0 e -µx (z t -z x ) 2 dx , (15) 
where µ > 0 will be prescribed below, is considered. It may be proven that we have asymptotic stability of (4) and [START_REF] Coron | Control and Nonlinearity[END_REF]. With this aim, let us formally compute the time-derivative of V 2 along the solutions of ( 4) and ( 5)

as follows V2 = 1 0 e µx (z t + z x )(z tt + z xt )dx + 1 0 e -µx (z t -z x )(z tt -z xt )dx = 1 0 e µx (z t + z x )(z xx + z xt )dx - 1 0 e -µx (z t -z x )(z xt -z xx )dx = -µ 2 1 0 e µx (z t + z x ) 2 dx + 1 2 [e µx (z t + z x ) 2 ] x=1 x=0 -µ 2 1 0 e -µx (z t -z x ) 2 dx -1 2 [e -µx (z t -z x ) 2 ] x=1 x=0
where the partial differential equation ( 4) has been used in the first equality and two integrations by parts have been performed in the second equality. Now, note that the boundary condition (5a) implies that z t (0, t) = 0 and thus, for all t ≥ 0,

[e µx (z t + z x ) 2 ](0, t) -[e -µx (z t -z x ) 2 ](0, t) = z 2 x (0, t) -z 2 x (0, t) = 0 Therefore, with (5b), it is deduced V2 = -µV 2 + e µ 2 (z t (1, t) + z x (1, t)) 2 - e -µ 2 (z t (1, t) -z x (1, t)) 2 (16) 
and thus

V2 = -µV 2 + e µ 2 (z t (1, t) -bz t (1, t)) 2 - e -µ 2 (z t (1, t) + bz t (1, t)) 2 = -µV 2 + 1 2 e µ (1 -b) 2 -e -µ (1 + b) 2 z 2 t (1, t)
For any positive value b, it holds |1 -b| < |1 + b|. Now, pick any µ > 0 such that

e µ (1 -b) 2 ≤ e -µ (1 + b) 2 (17) 
holds.

With such a value b, we get V2 ≤ -µV 2 and thus the partial differential equation ( 4), with the boundary condition [START_REF] Coron | Control and Nonlinearity[END_REF], is exponentially stable. Now instead of the boundary condition (5) in closed loop with the linear controller [START_REF] King | Vibrations and Waves[END_REF], consider the boundary conditions, for all t ≥ 0,

z(0, t) = 0 z x (1, t) = -σ 2 (bz t (1, t)) (18) 
resulting from the boundary condition (5) in closed loop with a bounded and continuous map σ 2 : R → R satisfying, for all (s, s) ∈ R,

(σ 2 (s) -σ 2 ( s))(s -s) ≥ 0 , ( 19a 
)
|σ 2 (s)| ≤ u 2 , (19b) 
with u 2 > 0. Assume moreover that, for all c in R, and for all s in R, such that |(b -c)s| ≤ u 2 , it holds

ϕ 2 (bs)(ϕ 2 (bs) + cs) ≤ 0 , (19c) 
where ϕ 2 (s) = σ 2 (s) -s. Such a function σ 2 includes the nonlinear functions satisfying some sector bounded condition, as the saturation maps of level u 2 (see [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]Chap. 1] or [START_REF] Khalil | Nonlinear Systems[END_REF]Chap. 7]). Since σ 2 is a function of z t (1, t), it is needed in the next result a stronger regularity on the initial condition than the one imposed in e.g. [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF], so that (18) makes sense.

The stability analysis of the corresponding nonlinear partial differential equation ( 4) and ( 18) asks for special care. It is done in our second main result, given below, where, following the notation in [5, Sec. 2.4], it is denoted H 1 (0) (0, 1) = {u ∈ H 1 (0, 1), u(0) = 0}, and

u H 1 (0) (0,1) = 1 0 |u | 2 (x)dx, for all u ∈ H 1 (0) . Theorem 2.
For all positive values b, and for all continuous functions σ 2 satisfying (19), the model ( 4) with the boundary conditions ( 18) is globally asymptotically stable. More precisely the following properties hold:

• [Well-posedness] For all (z 0 , z 1 ) in {(u, v), (u, v) ∈ H 2 (0, 1) × H 1 (0) (0, 1), u (1) 
+ bv(1) = 0, u(0) = 0}, there exists a unique continuous solution z: [0, ∞) → H 2 (0, 1) ∩ H 1 (0) (0, 1) to ( 4), with the boundary conditions [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF] and the initial condition

(3), that is differentiable from [0, ∞) to H 1 (0) (0, 1). • [Global asymptotic stability] For all initial con- ditions (z 0 , z 1 ) in {(u, v), (u, v) ∈ H 2 (0, 1) × H 1 (0) (0, 1), u (1) 
+ bv(1) = 0, u(0) = 0}, the solution to (4), with the boundary conditions [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF] and the initial condition (3), satisfies the following global stability property z(., t) H 1 (0) (0,1) + z t (., t) L 2 (0,1) ≤ z 0

H 1 (0) (0,1) + z 1 L 2 (0,1) , ∀t ≥ 0 , (20) 
together with the attractivity property, z(., t) H 1 (0) (0,1) + z t (., t) L 2 (0,1) → t→∞ 0, (21) holds.

Remark 1. As for many nonlinear control systems, in particular the finite-dimensional ones subject to input saturation (see e.g., [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]), only the local exponential stability can sometimes be obtained, requiring to prove the exponential stability of the system only for a set of admissible initial conditions. Regarding a similar case for an infinite dimensional system, Theorem 2 does not state the global exponential stability, however we are able to prove the global asymptotic stability.

The proof of Theorem 2 is provided in Section V. Note that perturbation arguments (as considered in e.g., [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Chap. 3]) may be used to study [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] in closed loop with a saturating controller instead of the nonlinear function σ 2 . It yields a local asymptotic stability property without exhibiting any estimate of the basin of attraction, in contrast to the results given in Theorem 2 where an explicit estimate of the basin of attraction is provided.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is split into two parts: 1) the Cauchy problem has a unique solution, 2) the system is globally asymptotically stable.

Part 1: Well-posedness of the Cauchy problem ( 10), ( 2), [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF].

Let us first prove the existence and unicity of solution to the nonlinear equation [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] with the boundary conditions [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF] and the initial condition (3). To do that, let us introduce the following nonlinear operator

A 1 u v = v u -σ 1 (a v)
with the domain D(A 1 ) = (H 2 (0, 1) ∩ H 1 0 (0, 1)) × H 1 0 (0, 1).

To prove the well-posedness of the Cauchy problem, we shall state that A 1 generates a semigroup of contractions, and thus we need to prove that A 1 is closed, dissipative, and satisfies a range condition (see [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] below). Let us prove these properties successively.

Note that, using the terminology of [19, Def. 2.6], A 1 is the sum of a closed operator and of the following continuous operator

u v → 0 -σ 1 (a v) ,
and it is closed as proved in the following.

Claim 1. The sum of a closed operator and a continuous operator is closed.

Proof of Claim 1: Inspired from [15, Page 296, Ex. 12], consider T 1 a closed operator from D(T 1 ) ⊂ X to Y , where X and Y are two Banach spaces. Let T 2 be a continuous operator from X to Y . Let (x n ) n∈N be a sequence in X and (x, y) in X × Y such that x n → x and (T 1 T 2 )x n → y as n → ∞. We have to prove that (T 1 + T 2 )x = y. To do this, note first that

T 2 x n → T 2 x (since T 2 is continuous). Moreover T 1 x n + T 2 x -y ≤ T 1 x n + T 2 x n -y + T 2 x n -T 2 x → 0 as n → ∞. Thus T 1 x n → y -T 2 x
as n → ∞, and (by using the closedness of T 1 ) T 1 x = y -T 2 x. Therefore y = T 1 x + T 2 x.

Moreover, following the terminology of [19, Def. 2.4], and using the nonnegativity of a, we may prove the following lemma. Lemma 1. A 1 is a dissipative operator.

Proof of Lemma 1: Let us first denote by H 1 the space H 1 0 (0, 1) × L 2 (0, 1). It is a Hilbert space equipped with the inner product

u v , u v = 1 0 u (x) u (x)dx + 1 0 v(x) v(x)dx , (22) 
and the norm

u v = 1 0 |u (x)| 2 dx + 1 0 |v(x)| 2 dx .
Let us enlarge the domain of definition of the function σ 1 to the complex numbers, by letting, for all s in C, σ 1C (s) := σ 1 ( (s)) + iσ 1 ( (s)) .

To ease the notation, we still use σ 1 instead of σ 1C . We define ϕ 1 for complex numbers in a similar way.

To check that A 1 is dissipative, using first the definition of A 1 and then recalling the definition of the inner product [START_REF] Prieur | ISS-Lyapunov functions for timevarying hyperbolic systems of balance laws[END_REF], let us compute the following, for all

u v , u v in D(A 1 ), A 1 u v -A 1 u v , u v - u v = 1 0 (v -v) (x)(u -u) (x)dx + 1 0 [(u -σ 1 (a v)) -( u -σ 1 (a v))] (x) ×(v -v)(x)dx , = 1 0 (v -v) (x)(u -u) (x)dx + 1 0 (u -u )(x)(v -v)(x)dx - 1 0 (σ 1 (a v) -σ 1 (a v))(x)(v -v)(x)dx . ( 23 
)
Consider the second integral in the last equation. Performing an integration by parts and using the definition of D(A 1 ), it gives

1 0 (u -u )(x)(v -v)(x)dx = - 1 0 (u -u )(x)(v -v )(x)dx +[(u -u )(x)(v -v)(x)] x=1 x=0 = - 1 0 (u -u )(x)(v -v )(x)dx Thus, with (23), it follows A 1 ( u v ) -A 1 u v , ( u v ) -u v = 1 0 (v -v) (x)(u -u) (x)dx - 1 0 (u -u )(x)(v -v )(x)dx - 1 0 (σ 1 (a v) -σ 1 (a v))(x) ×(v -v)(x)dx , = - 1 0 (σ 1 (a v) -σ 1 (a v))(x) ×(v -v)(x)dx . ( 24 
)
Note that, due to (9a), it holds, for all (s, s) ∈ C,

(σ 1 (s) -σ 1 ( s))(s -s) ≥ 0 .
Therefore it follows, from [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] and the nonnegativity of a,

A 1 ( u v ) -A 1 u v , ( u v ) -u v ≤ 0 ,
and thus A 1 is dissipative.

Let us now show that the operator A 1 generates a semigroup of contractions. To do that, we apply [2, Thm 1.3, Page 104] (or [19, Thm 4.2, Page 77]) and we need to prove that

D(A 1 ) ⊂ Ran(I -λA 1 ) (25) 
for all λ > 0 sufficiently small, where Ran(I -λA 1 ) is the range of the operator I -λA 1 . To prove [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], let us pick u v in D(A 1 ) and let us prove that there exists

u v in D(A 1 ) such that (I-λA 1 ) u v = u v
Let us first note that this latter equation is equivalent to

u -λ v = u , v -λ( u -σ 1 (a v)) = v ,
which may be rewritten as

v = 1 λ ( u -u) u -1 λ 2 u -σ 1 ( a λ ( u -u)) = -1 λ v -1 λ 2 u (26) 
To check that there exists u ∈ H2 (0, 1) ∩ H1 0 (0, 1) such that the second line of (26) holds, let us first note that this is a nonhomogeneous nonlinear differential equation in the u-variable with two boundary conditions (at x = 0 and at x = 1), as considered in the following: Lemma 2. If a is nonnegative and λ is positive, then there exists u ∈ H 2 (0, 1) ∩ H 1 0 (0, 1)

solution to u -1 λ 2 u -σ 1 ( a λ ( u -u)) = -1 λ v -1 λ 2 u u(0) = u(1) = 0 ( 27 
)
Proof of Lemma 2: The proof of this lemma follows from classical techniques (see e.g., [START_REF] Miyadera | Nonlinear Semigroups. Translations of mathematical monographs[END_REF]Page 113], or [5, Page 179]) and uses the Schauder fixed-point theorem (see e.g., [START_REF] Coron | Control and Nonlinearity[END_REF]Thm B.19]).

To prove this lemma, let us introduce the following map

T 1 : L 2 (0, 1) → L 2 (0, 1) , y → z = T 1 (y) ,
where z = T 1 (y) is the unique solution to

z -1 λ 2 z = -1 λ v -1 λ 2 u + σ 1 ( a λ (y -u)) , z(0) = z(1) = 0 . ( 28 
)
This map T 1 is well-defined as soon as -1 λ 2 ≤ 0, i.e. as soon as λ > 0. The well-posedness of T 1 can be seen as the well-posedness of the associate Sturm Liouville problem 1 .

Let us prove the following intermediate result.

Claim 2. There exists M > 0 such that T 1 (L 2 (0, 1)) ⊂ K, where K is the set of functions w that are continuously differentiable on [0, 1] and such that

w C 0 ([0,1]) ≤ M and w C 0 ([0,1]) ≤ M .
Proof of Claim 2: To prove this claim, let us first note that each solution to ( 28) is a solution to

z -1 λ 2 z = -1 λ v -1 λ 2 u + σ 1 ( a λ (y -u)) , z(0) = 0, z (0) = C 1 . ( 29 
)
for a suitable C 1 ∈ R. To be more specific, the solution to (29) is given by

z(x) = (1 0)e Ax (0 C 1 ) + x 0 e A(x-s) (-1 λ v(s) -1 λ 2 u(s) +σ 1 ( a λ (y(s) -u(s))))ds where A = 0 1 1 λ 2 0 . It holds A 2 = 1 λ 2 1 0 0 1 .
Thus, by using a recurrence argument, we may prove that, for all x in [0, 1],

e Ax =   cosh( √ x λ ) λ sinh( √ x λ ) √ x √ x sinh( √ x λ ) λ cosh( √ x λ )   . (30) 
Recall that σ 1 is assumed to be bounded, and consider a bound

u 1 > 0 such that, for all s ∈ R, |σ 1 (s)| ≤ u 1 .
By inspecting (1 0)e A (0 C 1 ) , since λ sinh( 1 λ ) = 0 and since, for all y ∈ L 2 (0, 1), |σ 1 ( a λ (y -u))| ≤ u 1 , we get that the value C 1 lies in a bounded set of R (which does not depend on y ∈ L 2 (0, 1)) and thus the existence of M > 0 follows, as stated in Claim 2.

Moreover T 1 is a continuous operator. Finally the set K is convex and compact (by the Ascoli-Arzela theorem), as a subset of L 2 (0, 1).

Therefore, by the Schauder fixed-point theorem (see e.g., [START_REF] Coron | Control and Nonlinearity[END_REF]Thm B.19]), there exists u ∈ K such that T 1 ( u) = u. This concludes the proof of Lemma 2. Now from the existence of u ∈ H 2 (0, 1) ∩ H 1 (0) (0, 1) such that the second line of (26) holds, let us remark that the first line of (26) defines a unique v in H 1 0 (0, 1).

Therefore (I -λA 1 ) u v = u v and (25) hold. 
Since A 1 is dissipative (due to Lemma 1), it follows, from [2, Thm 1. 

v in D(A 1 ), T 1 (t) u v is differentiable for all Lemma 5. If λ is positive, then there exists u ∈ H 2 (0, 1) solution to u -1 λ 2 u = -1 λ v -1 λ 2 u u(0) = 0 , u (1) = -σ 2 ( b λ u(1) -bu(1)) (38) 
Proof of Lemma 5: To prove this lemma, let us introduce the following map

T 2 : H 1 (0, 1) → L 2 (0, 1) , y → z = T 2 (y) ,
where z = T 2 (y) is the unique solution to

z -1 λ 2 z = -1 λ v -1 λ 2 u , z(0) = 0 , z (1) = -σ 2 ( b λ y(1) -bu(1)) . (39) 
This map T 2 can be seen as a boundary value problem, and it is well-defined for all λ > 0. In a similar way as in the proof of Claim 2, we have the following claim.

Claim 3. There exists M > 0 such that T 2 (L 2 (0, 1)) ⊂ K, where K is the set of functions w that are continuously differentiable on [0, 1] and such that

w C 0 ([0,1]) ≤ M and w C 0 ([0,1]) ≤ M .
Proof of Claim 3: As for the proof of Claim 2, let us first note that each solution to (39) is such that

z (x) = (0 1)e Ax (0 C 2 ) + x 0 e A(x-s) (-1 λ v -1 λ 2 u
)ds for a suitable value of C 2 , where the matrix A is defined in the proof of Claim 2 and e Ax is given by (30). The value of C 2 is so that z (1) = -σ 2 ( b λ y(1) -bu(1)). Recall (19b). By inspecting (0 1)e A (0 C 2 ) , since cosh( 1 λ ) = 0 and since, for all y ∈ L 2 (0, 1), |σ 2 ( b λ y(1)bu(1))| ≤ u 2 , we get that the value C 2 lies in a bounded set of R (which does not depend on y ∈ L 2 (0, 1)) and thus the existence of M > 0 follows, as stated in Claim 3.

Moreover T 2 is a continuous operator. Finally the set K is convex and compact (by the Ascoli-Arzela theorem), as a subset of L 2 (0, 1).

Therefore, by the Schauder fixed-point theorem (see e.g., [START_REF] Coron | Control and Nonlinearity[END_REF]Thm B.19]), there exists u ∈ K such that T 2 ( u) = u. This concludes the proof of Lemma 5. Now from the existence of u ∈ H 2 (0, 1) ∩ H 1 (0) (0, 1) such that the second line of (37) holds, let us remark that the first line of (37) defines a unique v in H 1 (0, 1). 4), [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF], and (3). Moreover due to [START_REF] Miyadera | Nonlinear Semigroups. Translations of mathematical monographs[END_REF]Thm 4.10], it is the unique solution to this Cauchy problem.

Therefore (I -λA 2 ) u v = u v
Part 2: Global asymptotic stability of the nonlinear equation ( 4) with the boundary conditions [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF].

Let us consider a solution to (4) and ( 18) for a given initial condition in D(A 2 ). Now, as in the proof of Theorem 1, using the dissipativity (see Lemma 4) 

A 2 z 0 z 1 2 = z 0 2 L 2 (0,1) + z 1 2 H 1 (0) (0,1) . ( 40 
)
On the other hand, since z t (0, t) = 0, it holds

|z t (1, t)| 2 = | 1 0 z xt (., t)dx| 2 ≤ 1 0 |z xt (., t)| 2 dx = z t (., t) 2
H 1 (0) (0,1) . Thus, with (40), for all t ≥ 0,

|z t (1, t)| ≤ A 2 z(., 0) z t (., 0) . ( 41 
)
Let us now prove the following Lemma 6. For each b > 0 and for all > 0, there exist λ > 0, µ > 0 and c in R such that Since the trace of M is -4b -2λ, the sum of the eigenvalues is negative as soon as λ > 0 and b > 0. The determinant is the product of the eigenvalues: P = 8bλ -(2 + λc) 2 . Let us denote = b -c, and make a Taylor expansion of P with respect to at = 0. It holds

M = (1-b) 2 e µ -(1+b)
P = 8bλ -4 -4λb + 4λ -λ 2 b 2 + 2λ 2 b + o( ) = -(λb -2) 2 + 2 λ(2 + λb) + o( ).
Therefore letting λ = 2/b, it holds P = 16 /b + o( ) which is positive as soon as is sufficiently small and positive. This implies that both eigenvalues of M are negative and we conclude that M < 0. Note now that for µ → 0 we get that matrix M approaches M. Hence, by the continuity of the eigenvalues of matrix M with respect to parameters, we get the existence of λ > 0, c in R (close to b) and µ > 0 (close to 0) such that (42) and |b -c| ≤ hold. This concludes the proof of Lemma 6.

Pick r > 0 and an initial condition satisfying z 0 2 L 2 (0,1) + z 1 2 H 1 (0) (0,1) ≤ r 2 . Apply Lemma 6 with b > 0 and = u 2 /r. We obtain that the initial condition satisfies |b-c| 2 ( z 0 2 L 2 (0,1) + z 1 2

H 1 (0) (0,1) ) ≤ u 2 2
. With (40) and (41), we obtain, along the solutions of ( 4) and ( 18) starting from such an initial condition,

|(b -c)z t (1, t)| ≤ u 2 .
Using (19c) with s = z t (1, t), it follows, along the solutions to (4) and ( 18) starting from such an initial condition,

ϕ 2 (bz t (1, t))(ϕ 2 (bz t (1, t)) + cz t (1, t)) ≤ 0 . (43) 
The formal computation (16) of the Lyapunov function candidate V 2 along the solutions to (4) and ( 18) makes sense and it holds, along the solutions to (4) and ( 18),

V2 + µV 2 = e µ (z t (1, t) + z x (1, t)) 2 -e -µ (z t (1, t) -z x (1, t)) 2 = e µ (z t (1, t) -σ 2 (bz t (1, t))) 2 -e -µ (z t (1, t) + σ 2 (bz t (1, t))) 2 = e µ (z t (1, t) -ϕ 2 (bz t (1, t)) -bz t (1, t)) 2 -e -µ (z t (1, t) + ϕ 2 (bz t (1, t)) + bz t (1, t)) 2 .
Let us denote ϕ 2 instead of ϕ 2 (bz t (1, t)). For λ > 0 given by Lemma 6, and using (43), it follows

V2 ≤ -µV 2 + e µ (z t (1, t) -ϕ 2 -bz t (1, t)) 2 -e -µ (z t (1, t) + ϕ 2 + bz t (1, t)) 2 -2λϕ 2 (ϕ 2 + cz t (1, t)) ≤ -µV 2 + z t (1, t) ϕ 2 M z t (1, t) ϕ 2
where M is defined in (42). With (42), we get V2 ≤ -µV 2 , along the solutions to (4), ( 18) and (3) starting from an initial condition satisfying

z 0 2 L 2 (0,1) + z 1 2 H 1 (0) (0,1) ≤ r 2 . ( 44 
)
As a conclusion, for all b > 0, and for all r > 0, for all initial conditions in {(u, v), (u, v) ∈ H2 (0, 1) × H 1 (0) (0, 1), u (1) + bv(1) = 0, u(0) = 0} satisfying (44), there exists µ > 0 such that V2 (t) ≤ -µV 2 (t), and thus with the expression of V 2 in (15), it implies [START_REF] Prieur | Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF]. This implies the global attractivity as stated in Theorem 2.

VI. NUMERICAL SIMULATIONS

A. Illustrating Theorem 1

Let us illustrate Theorem 1 by discretizing the PDE [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] with the boundary conditions (2) and the initial condition (3) by means of finite difference method. To do that we compute the values of z at the next time step by using the values known at the previous two time steps (see e.g. [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF] for an introduction on the numerical implementation). It is chosen the time and the space steps so that the stability condition of the numerical scheme is satisfied. Due to the presence of the nonlinear map, an implicit equation has to be solved when discretizing the dynamics. 2 Consirer a = 1, and the following nonlinear function σ 1 (s) = sat 1 (sin(s) + s), for s ∈ R, where sat 1 is the saturation map of level u 1 = 1.5. This function satisfies [START_REF] Dafermos | Asymptotic behavior of nonlinear contraction semigroups[END_REF].

Let us consider the initial condition (3) with z 0 (x) = sin(πx) and z 1 (x) = 0, for x ∈ [0, 1]. The time evolution of the numerically computed z-component of the solution is given in Figure 2 where it is checked that it converges to the equilibrium. Moreover on Figure 3 it can be observed that the control law saturates for small positive time. 
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VII. CONCLUSION

The well-posedness and the asymptotic stability of a class of 1D wave equations have been studied. The PDE under consideration resulted from the feedback connection of a classical wave equation and a cone bounded nonlinear control law. The controller is either applied in the space domain (distributed input) or at one boundary (boundary action). The well-posedness issue has been tackled by using nonlinear semigroup techniques and the stability has been proven by Lyapunov theory for infinite dimensional systems.

This work lets some questions open. In particular, it could be interesting to use other classes of Lyapunov functions, as those considered in [START_REF] Valmórbida | Semidefinite programming and functional inequalities for distributed parameter systems[END_REF] and to compare the obtained domain of attraction with the one estimated in Theorem 2. It would also be interesting to study other PDEs appearing in vibration control theory, such as the beam equation (as considered in [START_REF] Crépeau | Control of a clamped-free beam by a piezoelectric actuator[END_REF]). Other hyperbolic systems as the one considered in this paper may also be considered as the conservation laws that are useful for the flow control (see [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF], [START_REF] Prieur | ISS-Lyapunov functions for timevarying hyperbolic systems of balance laws[END_REF]). For such a class of PDEs, Lyapunov theory is an useful tool when designing stabilizing linear controllers, and may be also the key when computing saturating stabilizing feedback laws. Generalization to the design of output feedback laws, instead of state feedback controls as considered in particular in Theorem 1, is also a natural research line.
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  and (36) hold. Since A 2 is dissipative (due to Lemma 4), it follows, from [2, Thm 1.3, Page 104] (or [19, Thm 4.2]), that A 2 generates a semigroup of contractions T 2 (t).

				Moreover,
	by [2, Thm 1.2, Page 102] (or [19, Thm 4.5]), for all
	u v	in D(A 2 ), T 2 (t)	u v	is strongly differen-
	tiable for all t > 0 and is a solution to the Cauchy
	problem (		

Note that the homogeneous Sturm Liouville problem (i.e. with v = u = y) has only the trivial function as the solution, since -1 λ

< 0. Therefore the Sturm Liouville problem described by T 1 is well-posed, as proven e.g. in[START_REF] Agarwal | Ordinary and partial differential equations, with special functions, Fourier series, and boundary value problems[END_REF] Chap. 14].

The simulation code for both examples can be downloaded from http://www.gipsa-lab.fr/∼christophe.prieur/
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t > 0 and is a solution to the Cauchy Problem [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF], [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF] and [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF]. Moreover due to [START_REF] Miyadera | Nonlinear Semigroups. Translations of mathematical monographs[END_REF]Thm 4.10], it is the unique solution to this Cauchy problem.

Part 2: Global asymptotic stability of the nonlinear equation [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] with the boundary conditions [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF].

Let us consider a solution to [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] and [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF], for a given initial condition in D(A 1 ). The formal computation yielding [START_REF] Novel | Exponential stabilization of an overhead crane with flexible cable via the cascade approach[END_REF] makes sense. Therefore with the nonnegativity of a and with (9a), we get V1 ≤ 0, along the solutions to [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] and [START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF], for any initial condition in D(A 1 ).

To be able to apply LaSalle's Invariance Principle, we have to check that the trajectories are precompact (see e.g. [START_REF] Dafermos | Asymptotic behavior of nonlinear contraction semigroups[END_REF]). This precompactness is a corollary of the following lemma (which is similar to [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF]Lem. 2] where different boundary conditions are considered).

Lemma 3. The canonical embedding from D(A 1 ), equipped with the graph norm, into H 1 is compact.

Proof of Lemma 3: Before proving this lemma, recall that its statement is equivalent to prove, for each sequence in D(A 1 ), which is bounded with the graph norm, that it exists a subsequence that (strongly) converges in H 1 .

Recalling the definition of the graph norm, it holds, for all

Therefore, on the one hand, one gets

and on the other hand, due to (9b), it holds

Since, for all (s, s)

thus

Consider now a sequence

bounded for the graph norm of D(A 1 ). From (31) and (32), it follows that this sequence is bounded in the product space (H 2 (0, 1)∩H 1 0 (0, 1))×H 1 (0, 1). Since the canonical embedding from H 2 (0, 1) to H 1 0 (0, 1) (resp. from H 1 (0, 1) to L 2 (0, 1)) is compact, there exists a subsequence still denoted u n v n n∈N such that 

is also a nonincreasing function. Therefore, with Lemma 3, the trajectory z(., t) z t (., t) is precompact in H 1 .

Moreover the ω-limit set ω z(., 0)

is not empty and invariant with respect to the nonlinear semigroup T 1 (t) (see [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Thm 3.1]). We now use LaSalle's invariance principle to show that ω z(., 0) z t (., 0) = {0}. To do that, consider a solution such that V1 (t) = 0, for all t ≥ 0. It follows from ( 11) that z t (x, t) = 0 for almost all x in (0, 1) and for all t ≥ 0. Due to (9b) and the continuity of σ 1 , it follows σ 1 (0) = 0. Therefore z is a solution to the linear equation ( 1) with the boundary conditions (2), such that

Therefore ω z(., 0) z t (., 0) = {0}, and the convergence property ( 13) holds along the solutions to the nonlinear equation [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF] with the boundary conditions (2). This concludes the proof of Theorem 1.

V. PROOF OF THEOREM 2

Part 1: Well-posedness of the Cauchy problem (4), (3), [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF].

Let us first prove the existence and unicity of solution to the nonlinear equation ( 4), with the boundary conditions [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF] and the initial condition (3). To do that, let us introduce the following nonlinear operator

To prove the well-posedness of the Cauchy problem, we shall state that A 2 generates a semigroup of contractions by applying [2, Thm 1.3, Page 104], and thus we need to prove that A 2 is closed, dissipative, and satisfies a range condition (see [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] below). Let us prove these properties successively.

The nonlinear operator A 2 is closed, and using the nonnegativity of b, we may prove the following lemma.

Proof of Lemma 4: Recall that H 1 (0) (0, 1) is a Hilbert space with the inner product

Now denote by H 2 the space H 1 (0) (0, 1) × L 2 (0, 1). It is a Hilbert space equipped with the same inner product as for H 1 , that is [START_REF] Prieur | ISS-Lyapunov functions for timevarying hyperbolic systems of balance laws[END_REF].

To check that A 2 is dissipative, using first the definition of A 2 and then recalling the definition of the inner product in H 2 , let us compute the following, for

Consider the second integral in the last equation. Performing an integration by parts and using the definition of D(A 2 ), it gives

By combining the previous equation with (35), we conclude the proof of Lemma 4 using (19a) as in the end of Lemma 1.

Let us now show that the operator A 2 generates a semigroup of contractions. To do that, we apply [ 

Let us first note that this latter equation is equivalent to

which may be rewritten as

To check that there exists u ∈ H 2 (0, 1) such that u(0) = 0, u (1) = -σ 2 ( b λ u(1) -bu( 1)), and such that the second line of (37) holds, let us first note that this is a nonhomogeneous nonlinear differential equation in the u-variable with two boundary conditions (at x = 0 and at x = 1), as considered below: Codes/code-tac16.zip 

B. Illustrating Theorem 2

Let us illustrate now Theorem 2 by discretizing the PDE (4) with the boundary conditions [START_REF] Lindfield | Numerical Methods: Using MATLAB[END_REF] and the initial condition [START_REF] Campo | Robust control of processes subject to saturation nonlinearities[END_REF].

Consider b = 1, and the following nonlinear function σ 2 (s) = sat 2 (s), for s ∈ R, where sat 2 is the saturation map of level u 2 = 0.05. This function satisfies [START_REF] Miyadera | Nonlinear Semigroups. Translations of mathematical monographs[END_REF].

Let us consider the same initial condition as in the previous subsection.

The time evolution of the numerically computed zcomponent of the solution is given in Figure 4 where it is observed that it converges to the equilibrium z = 0. In Figure 5 it is observed that the control law saturates around 30 times within 20s. Therefore, in spite of the saturation, note that the convergent behavior can be observed as predicted by Theorem 2.