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We investigate the transport of energy in a linear chain of two-level quantum emitters (atoms) weakly coupled
to a blackbody radiation bath. We show that simply by displacing one or more atoms from their regular-chain
positions, the efficiency of the energy transport can be considerably amplified of at least one order of magnitude.
In addition, in configurations providing an efficiency greater than 100%, the distance between the last two atoms
of the chain can be up to 20 times larger than the one in the regular chain, thus achieving a much longer-range
energy transport. By performing both a stationary and time-dependent analysis, we ascribe this effect to an
elementary block of three atoms, playing the role of excitation injector from the blackbody bath to the extraction
site. By considering chains with up to seven atoms, we also show that the amplification is robust and can be
further enhanced up to 1400%.
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I. INTRODUCTION

Energy transport in quantum systems is a field of research
that has recently received a lot of attention [1–3]. The possibil-
ity of transporting energy efficiently in quantum systems is not
only of fundamental interest, but also promises many potential
technological applications, e.g., in quantum thermodynamics
[4,5]. As a matter of fact, it already has proven to be useful
in numerous fields such as organic photovoltaic cells [6],
quantum information [7], and, more generally, nanoscale
technologies [1]. In addition, the experimental observations of
light-harvesting proteins, such as the Fenna-Matthews-Olson
(FMO) complex [8], have also triggered a lot of interest [9–12].
All of these systems require energy to be transported within
quantum systems over distances that might be relatively large,
and with as little losses as possible. A deeper comprehension
of the mechanism at the origin of energy transport in such
systems is therefore essential. To this end, the investigation of
systems composed of two-level quantum emitters provides an
ideal framework [2,10,13–15].

One of the most challenging tasks remains to fully under-
stand the role played by the environment in energy-transport
processes. This role has been investigated both in weak and
strong coupling in many aspects [16]: quantum systems inside
in a cavity [12,17] or placed close to metallic surfaces, such
as a mirror [18] or nanospheres [19]. The boundary conditions
at the edges of linear systems have also been studied [20] as
well as the activation of nonlocal effects stemming from the
environmental thermal bath [21].

In this latter work, the system under investigation is
composed of a few two-level emitters embedded in blackbody
radiation. The efficiency of the transport of incoherently
pumped excitations is studied with respect to the spatial
distribution of the emitters. In particular, two-dimensional
(2D) and 3D configurations have been explored with the
intention of mimicking the geometry of an FMO complex.
Remarkably, in some cases, this efficiency can surpass the
value of 100% and even reach 300%, allowing one to extract

*Current address: Inria project Virtual Plants, CIRAD and INRA,
F-34095 Montpellier, France.

three times more energy than the one pumped in. This is due to
absorption of excitations during the transport process, which
is triggered by nonlocal effects stemming from the presence
of the thermal bath.

In this paper, we focus instead on the energy transport
within a 1D system, which is a linear chain of a few two-
level quantum emitters (from now on referred to as atoms)
weakly interacting with blackbody radiation at an arbitrary
temperature. Similarly to [21], the bath correlations provide the
atoms with the possibility to (collectively) absorb excitations
from the reservoir and to store them within the atomic system.
We show that for specific geometrical configurations of the
chain, atomic triplets can form an elementary block acting as
an excitation injector, resulting in a remarkable enhancement
of one order of magnitude of the efficiency. In other words, this
latter can reach values greater that 1000%. In addition, these
configurations realize energy transport over distances that are
much larger than the one of the chain with regularly distributed
atoms, which makes them particularly interesting for potential
technological applications.

The paper is structured as follow: in Sec. II, we introduce the
model and the quantities used to perform the study of energy
transport in our system. We present the main results of the
paper in Sec. III, i.e., the occurrence of efficiency amplification
and long-range energy transport. Section IV is dedicated to the
investigation, both at stationarity and during the dynamics, of
the mechanisms producing these effects for a specific four-
atom chain. Finally, in Sec. V, we analyze the robustness of
efficiency amplification and long-range energy transport with
respect to parameters such as, e.g., the electromagnetic (EM)
bath temperature, the atomic frequency, etc. We also study
these effects with linear chains composed of N = 5,6,7 atoms.

II. PHYSICAL SYSTEM

In this section, we provide all the details of the formalism
we use in the rest of the paper, so that the results of this paper
could be easily followed and reproduced without ambiguity in
the definition of the physical quantities.

The open system under investigation, depicted in Fig. 1, is
a linear chain of N identical two-level atoms of frequency ω

which is embedded in an EM blackbody bath at temperature
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FIG. 1. Linear chain of four atoms with induced dielectric dipole
μ (black arrows) embedded in a thermal bath at T . Neighboring atoms
are separated by a distance a, except the last two whose distance is d .
Energy is pumped (extracted) within (from) the system with flux P

(E) applied on the first (last) atom of the chain. An example of each
type of heat flux (local, nonlocal, and hopping) has been represented
in the figure.

T . In order to investigate energy-transport efficiency along the
chain, excitations are incoherently pumped into the system on
one edge (the pumping site p), while extraction is performed on
the other one (the extraction site e). The atoms composing the
chain are thus labeled as {p,2, . . . ,N − 1,e}, and we introduce
the Cartesian coordinates {x,y,z} where the x axis is defined
as the one on which the atoms are aligned.

Following [21], the total Hamiltonian describing this
system is

Htot = Ha + HB + Hint, (1)

where Ha and HB are, respectively, the atomic and bath
free Hamiltonians, and Hint is the interaction Hamiltonian.
More precisely, defining |gj 〉 (|ej 〉) the ground (excited)
state of the j th atom, and σ−

j = |gj 〉〈ej | (σ+
j = |ej 〉〈gj |)

the corresponding lowering (raising) operator, we have Ha =
�ω

∑N
j=1 σ+

j σ−
j . In addition, assuming that each atom has

the same dielectric dipole moment operator μ and within the
dipole approximation, the atom-bath interaction is given by
Hint = −∑N

j=1 μ · E(rj ), where E(rj ) is the electric field at
the position rj of the j th atom.

A. Master equation

Within the weak-coupling limit, the Born-Markov approx-
imation [22] allows us to describe the time evolution of the
reduced atomic density matrix ρ(t) with the following quantum
Markovian master equation [21,23]:

ρ̇ = − i

�
[Hsys,ρ] + Dloc[ρ] + Dnl[ρ] + Din[ρ] + Dout[ρ],

(2)

where here and in the following the explicit time dependence
of ρ and ρ-dependent quantities will be dropped for simplicity.
The effective Hamiltonian reads Hsys = Ha + H�, where

H� =
N∑

j<k

H
(jk)
� = �

N∑
j<k

�jk(σ+
j σ−

k + σ+
k σ−

j ) (3)

characterizes the unitary evolution of the atomic system. The
coefficient �jk is the interaction strength between induced
dipoles of the transitions of atoms j and k, which is mediated
by the EM field, and is given by

�jk = −3

4
γ0{2(μ̂ · r̂jk)2f (r̃jk) + [1 − (μ̂ · r̂jk)2]g(r̃jk)},

f (x) = cos x + x sin x

x3
, g(x) = (x2 − 1) cos x − x sin x

x3
,

(4)

where the coefficient γ0 = |μ|2ω3/3πε0�c3 is the rate of
spontaneous emission in vacuum. We have also introduced
μ̂ = μ

|μ| , r̂jk = rjk

|rjk | , where rjk = rj − rk and r̃jk = ω
c
|rjk|. It

is worth stressing that �jk dramatically increases when the
distance between the two atoms is smaller than c/ω.

The nonunitary interaction between the atomic system and
the bath is described by the so-called dissipators. First, each
atomic transition exchanges excitations with the thermal bath
by emitting or absorbing a photon of frequency ω. The local
dissipators capture these interactions,

Dloc[ρ] =
∑

j

D
(j )
loc[ρ]

=
∑

j

{
nγ0

(
σ+

j ρσ−
j − 1

2
{σ−

j σ+
j ,ρ}

)

+ (1 + n)γ0

(
σ−

j ρσ+
j − 1

2
{σ+

j σ−
j ,ρ}

)}
, (5)

where n = [exp(�ω/kBT ) − 1]−1 is the average number of
photons with energy �ω when the bath is at temperature T and
with {·,·} denoting an anticommutator.

In addition to a local dissipator, involving atoms separately,
we should also take into account that each pair of atoms may
interact with the EM field with a collective coherent behavior:
the two atoms behave as a single entity, and they trade the
same amount of energy with the environmental bath, both
of them absorbing or emitting energy in a unique process.
This nonlocal dissipation phenomenon is triggered by the
autocorrelation functions of the EM field which allow resonant
atomic transitions to cooperate. The corresponding nonlocal
dissipator reads

Dnl[ρ] =
∑
j<k

D
(jk)
nl [ρ]

=
∑
j<k

{
nγjk

(
σ+

j ρσ−
k − 1

2
{σ−

k σ+
j ,ρ}

)

+ (1 + n)γjk

(
σ−

j ρσ+
k − 1

2
{σ+

k σ−
j ,ρ}

)
+ H.c.

}
,

(6)

where γjk is the rate of spontaneous emission of the atomic
pair (j,k) which is obtained as

γjk = γ0

∑
l=1,2,3

([μ̂]l)
2α

(l)
jk, (7)

012138-2



EXCITATION INJECTOR IN AN ATOMIC CHAIN: LONG- . . . PHYSICAL REVIEW A 95, 012138 (2017)

with l denoting the three Cartesian components, and where we
used

α
(1)
jk = 3

r̃3
jk

(sin r̃jk − r̃jk cos r̃jk), (8)

α
(2)
jk = α

(3)
jk = 3

2r̃3
jk

[
r̃jk cos r̃jk + (

r̃2
jk − 1

)
sin r̃jk

]
. (9)

Under the sole action of the local and nonlocal dissipators,
the system would reach thermal equilibrium with the bath at
temperature T . However, the presence of incoherent pumping
and extraction perturbs the system, preventing it from reaching
its Gibbs state. The pumping performed on p is described by

Din[ρ] = γin
(
σ+

p ρσ−
p − 1

2 {σ−
p σ+

p ,ρ}), (10)

where γin is the pumping rate. The dissipator corresponding to
the extraction occurring on e with rate γout is

Dout[ρ] = γout
(
σ−

e ρσ+
e − 1

2 {σ+
e σ−

e ,ρ}). (11)

B. Heat fluxes and efficiency

In order to understand the energy-transport properties of our
system, it is natural to identify the different channels through
which the atomic system can either absorb, emit, or transmit
energy. Before entering into detail, let us precisely state that
the energy exchanges occurring in our system are heat fluxes as
defined in the framework of quantum thermodynamics [24,25].
No work is involved since ∂Hsys/∂t = 0.

Let us start with the so-called hopping heat fluxes. These
occur between two atomic resonant transitions and represent
energy exchanged between two atoms without modifying the
energy content of the environment. Therefore, these fluxes do
not change the energy of the global atomic system, but rather
describe trades of excitations between its different subparts.
More specifically, they stem from the field-induced dipole-
dipole interactions and, for the atom j , are defined as

Q̇
(jk)
hop = − i

�
Tr

(
H (j )

a

[
H

(jk)
� ,ρ

])
, (12)

where j and k (j �= k) index two atoms and with H
(j )
a =

�ωσ+
j σj . With this definition, having Q̇

(jk)
hop > 0 means that

atom j is absorbing energy at the expense of k. Moreover,
note that Q̇

(kj )
hop = −Q̇

(jk)
hop . It is worth stressing that Eq. (12)

can be rewritten, after straightforward calculations, as

Q̇
(jk)
hop = −2 �ω�jkIm(c(jk)), (13)

where c(jk) = 〈σ+
j σ−

k 〉 is the coherence between atoms j and
k. Equation (13) encapsulates two essential features of the
hopping fluxes. First, they depend on the amplitude of the
dipole-dipole interaction �jk , notably inheriting its spatial
dependence. Second, the existence and the strength of the
hopping fluxes directly depend on the presence of nonreal
coherences between the two atoms. Note that this term of
energy hopping between sites is often the only one considered
in standard transport models allowing energy to be transported
along atomic systems [12,17].

We now turn to the fluxes stemming from the dissipators,
starting with the local ones. They describe the exchanges of

excitations between an atomic transition and the modes of the
EM bath at the same frequency,

Q̇
(j )
loc = Tr

(
HaD

(j )
loc[ρ]

)
, (14)

where Q̇
(j )
loc > 0 (< 0) means that the transition is absorbing

(emitting) energy from (to) the environment.
Similarly, the nonlocal dissipators produce heat fluxes

between an atomic pair and the modes of the environmental
field. Focusing, for example, on the couple (j,k), the energy
absorbed (emitted) by atom j reads

Q̇
(jk)
nl = Tr

(
H (j )

a D
(jk)
nl [ρ]

)
. (15)

In the case Q̇
(jk)
nl > 0 (< 0), the atoms j and k both absorb

(emit) an equal amount of energy Q̇
(jk)
nl from (to) the EM field.

Straightforward calculations lead to the following expression
of the nonlocal heat fluxes:

Q̇
(jk)
nl = −�ωγjkRe(c(jk)). (16)

Thus, similarly to the hopping fluxes, the nonlocal ones
can only exist in the presence of coherences. It is precisely
the presence of these terms, usually neglected in models of
quantum energy transport, that triggers remarkable effects on
the transport efficiency, as will be clarified in the next sections.

Finally, the heat flux of excitations injected into p is

P = Tr(HaDin[ρ]). (17)

Note that P � 0 since the energy of the atomic system is
always increased by this flux.

On the other hand, the extraction lowers the energy of the
atomic system. Thus, in order to have a positive quantity, we
define

E = −Tr(HaDout[ρ]), (18)

which corresponds to the energy extracted from e, so that
E � 0.

Following [21], we use the quantities introduced in
Eqs. (17) and (18) to investigate the energy-transport efficiency
along the chain, which we define as

χ = E − E0

P
, (19)

where E0 is the field thermal energy extracted from e in
the absence of pumping, i.e., in the limit γin → 0. Note that
although γin does not explicitly appear in Eq. (18), E is a
function of γin due to the dependence of the atomic state ρ on
the pumping rate.

In particular, having χ = 1 means that the amount of
energy pumped into p equals the extra energy extracted in the
presence of pumping, suggesting that the excitations have been
transported throughout the chain without any loss or gain. In
general, χ is a function of time because of the t dependence of
ρ. In what follows, we will study both the stationary efficiency
χstat, obtained in the limit t → ∞, and the dynamic behavior
of the efficiency.
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III. EFFICIENCY AMPLIFICATION AND LONG-RANGE
TRANSPORT

We dedicate this section to the presentation of the main
result of this paper, namely, the amplification of long-range
energy-transport efficiency, through the specific example of
the four-atom chain represented in Fig. 1.

Before getting to the heart of the matter, here we set some
parameters that will be used for the simulations throughout this
paper. The regular configuration that we take as a reference
has d = a = 0.1 μm. The dipoles are oriented along the z

direction, i.e., orthogonally to the chain, with magnitude
|μ| = 10−30 C m. The rates of pumping and extraction are
γin = 10−3γ0 and γout = 102γ0. These values have been used,
for instance, in [21] to simulate models analogous to FMO
complexes. Note that γin(out) depends on the frequency through
γ0. The numerical results have been obtained using the open-
source package QuTiP [26,27].

Let us now introduce the effects of efficiency amplification
and long-range transport in the case of a four-atom chain
{p,2,3,e} with an atomic frequency of ω = 1 × 1014 rad s−1.
The issue we address here is the robustness of energy-transport
efficiency at stationarity with respect to the displacement of
the extraction site, the last atom of the chain in our case, and
the temperature of the EM bath. As we will see, these two
parameters play a crucial role in the efficiency amplification
mechanism. To this end, we plot in Fig. 2 the efficiency as
atom e is moved away from the rest of the chain. This has
been simulated for two temperatures: T = 10 K to reproduce
an environment close to absolute zero and T = 300 K, the
scenario at ambient temperature being experimentally relevant
as well.

At T = 10 K (green curve), the efficiency reaches at most
100% and then decreases monotonically with d, the maximum
of efficiency occurring in the regular configuration (d = a).

FIG. 2. Efficiency as a function of the distance between atom
e and the rest of the chain at T = 10 K (dashed green line) and
T = 300 K (solid blue line).

On the contrary, when the displacement is realized at T =
300 K (blue curve), the efficiency is remarkably amplified
up to �900%. Besides, we have χ � 100% for a wide range
of d > a, meaning that when the efficiency is amplified, the
energy transport is performed over larger distances than in the
case T = 10 K.

To gain more insight into the effect of the temperature on
our system, we remark in Eqs. (5) and (6) that the local and
nonlocal dissipators depend on T only through the factor n.
As a consequence, since n → 0 as T → 0 K, lowering the
environmental temperature tends to suppress the interactions
between the atomic system and the EM thermal bath. On the
other hand, the interaction strength �jk characterizing the
dipole-dipole interaction between the atomic couple (j,k) is
temperature independent. Consequently, the hopping fluxes
depend on T only indirectly through the state ρ, and are much
less affected by a change of the environmental temperature
than the local and nonlocal ones. In particular, unlike the
dissipative fluxes, the hopping ones do not vanish in the limit
T → 0 K.

This explains the difference between the two configurations
of Fig. 2. Indeed, at T = 10 K, the interactions between the
atomic system and the EM bath are limited. As a consequence,
the excitations pumped into p are transmitted to atom 2 via
hopping without almost any loss, and so forth until they
reach the extraction site e. The interaction strength of the
hopping fluxes �ij being a decreasing function of the distance
between atoms i and j , the case of the regular chain (d = a)
produces the best transport with χ � 100%. However, as d

increases, the interaction �3e between atoms 3 and e decreases,
inducing a diminution of the hopping flux between them: the
hopping-transmission chain weakens, resulting in an efficiency
collapsing to 0.

In the case T = 300 K, the initial scenario (d � a =
0.1 μm) is quite similar, with χ � 100% for a regular chain.
However, contrary to the low-temperature scenario, pulling
away the extraction atom results in a remarkable efficiency
amplification. In particular, as pointed out previously, the
efficiency reaches a maximum value greater than 900%. This
means that the increase of extracted energy from e due to
pumping is much larger than the energy injected into p.
This suggests that the atomic system draws the additional
excitations from the environmental thermal bath. A detailed
investigation of this phenomenon will be the object of Sec. IV.

This dramatic efficiency amplification, of almost one order
of magnitude, is the main result of this paper. We have shown
that despite the simple 1D geometry of the system, a clever
manipulation of thermal and geometrical parameters can be
exploited to actively tune the amount of energy transported
within the chain. Compared to previous works concerning 2D
and 3D geometries [21], our 1D chain is able to produce an
efficiency at least three times greater.

Moreover, the efficiency amplification we highlight is
achievable in a wide range of geometrical configurations.
More specifically, while for T = 10 K the only chain realizing
χ � 100% is the regular one, for T = 300 K an efficiency
larger than 100% is produced within the entire interval
d ∈ [0.5,2] μm, including distances between the last two
atoms up to 20 times greater than the regular-chain spacing.
This proves that this long-range amplified energy transport
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is robust with respect to small displacements of atom e, and
results indeed from a combination of thermal and geometrical
features.

IV. DISCUSSION

In this section, we unveil the physical mechanisms produc-
ing the efficiency amplification and the long-range transport.
To this end, we remain focused on the case studied in the
previous section, namely a four-atom chain. The efficiency
amplification being a stationary effect, we begin this section
with a steady-state analysis. After that, we look into the
dynamics of the system to understand the establishment of
the mechanisms entering into play.

In both Secs. IV A and IV B, the simulations have been
realized with the temperature of the EM bath fixed at T =
361 K, which produces a maximum efficiency of χ � 1000%,
with the rest of the parameters being the same as in Sec. III.

A. Steady-state analysis

According to Eq. (19), the efficiency characterizes the
difference in the energy extracted from the chain between the
scenarios with and without pumping. Therefore, in order to
understand the origin of the efficiency amplification observed
in the previous section, it is natural to investigate the effect of
the pumping on the energy exchanges occurring both inside
the atomic system and between the atoms and the bath. We
start this section by introducing the quantities we use to study
these effects. These are valid at any time t , but we will start
our investigation by focusing on the steady state of the atomic
system, i.e., the state reached for t → +∞. The analysis of
the dynamics will be the object of Sec. IV B.

In order to characterize the effect of the pumping on the
heat fluxes, we define the differences

�Q̇
(j )
loc = Q̇

(j )
loc − Q̇

(j )
loc,0,

�Q̇(jk)
ϕ = Q̇(jk)

ϕ − Q̇
(jk)
ϕ,0 ,

(20)

where the index ϕ ∈ {nl,hop} according to the type of flux
under investigation. The label 0 corresponds to the scenario in
which no pumping is performed. We also define, for a given
atom j ,

�Q̇(j )
ϕ =

∑
k �=j

�Q̇(jk)
ϕ , (21)

which describes the total contribution of the type of flux under
consideration involving atom j (once again, ϕ ∈ {nl,hop}).

In our linear chains, the number of heat fluxes grows very
quickly with the number of atoms, and understanding the
interplay between all of them can be tricky. For this reason,
in the following, we track step by step the root of the mecha-
nism producing efficiency amplification starting from general
observations, so that the reader can follow the entire reasoning.

We begin our analysis by investigating the effect of pumping
on each kind of flux involving atom e. Figure 3 shows �Q̇

(e)
loc,

�Q̇
(e)
nl , and �Q̇

(e)
hop as a function of d at stationarity normalized

by P , the flux of energy pumped into the system (the extraction
site is not show). As one can see, the hopping contribution
has a behavior extremely similar to the one of the efficiency

FIG. 3. Difference of the heat fluxes involving atom e between
the scenarios with and without pumping at the steady state divided
by P . Each type of heat flux is represented: �Q

(e)
hop (solid blue line),

�Q
(e)
nl (long-dashed purple line), and �Q

(e)
loc (dashed orange line). The

contribution of each atom to �Q
(e)
hop is also plotted: �Q

(ep)
hop (dashed

green line with squares), �Q
(e2)
hop (solid red line with circles), and

�Q
(e3)
hop (dot-dashed cyan line with stars).

(see Fig. 2), while the local and nonlocal contributions are
small with respect to the hopping one. In particular, having
�Q̇

(e)
hop > 0 hints that the efficiency amplification arises from

the enhancement (due to pumping) of the energy received by
e through hopping fluxes from the rest of the chain.

More specifically, unveiling the contribution of each atom
to �Q̇

(e)
hop provides further insight. Indeed, the hopping flux

between atoms 2 and e is clearly the most affected by
the displacement of the latter. In particular, in the interval
d ∈ [0.5,2] μm, which is when efficiency amplification is
realized, we have �Q̇

(e2)
hop > 0, meaning that the energy flowing

from atom 2 to e is increased in the presence of pumping.
The opposite behavior occurs for the couples (e,p) and (e,3).
However, the variation is less pronounced than the one of
�Q̇

(e2)
hop , which explains why the resulting hopping contribution

verifies �Q̇
(e)
hop > 0. Therefore, the efficiency amplification

stems from the particularly enhanced hopping flux between
atoms 2 and e. Note that in the regular-chain configuration
(d = 0.1 μm), atom e receives the additional energy due to
pumping only by hopping from its closest neighbor, that is,
atom 3.

This leads us to investigate the reason why �Q̇
(e2)
hop > 0. To

this end, we plot in Fig. 4 the quantities defined in Eqs. (20)
and (21) involving atom 2 at stationarity normalized by P .

In the interval of d in which efficiency amplification is
realized, the local flux of atom 2 is clearly enhanced, meaning
that the presence of pumping increases the energy drawn
locally by atom 2 from the bath, reaching a maximum � 15 P

close to d � 1 μm. The nonlocal contributions �Q̇
(2)
nl are also

increased, but are constant and relatively small compared to
�Q̇

(2)
loc in the efficiency-amplification region.
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FIG. 4. Difference of the heat fluxes involving atom 2 between
the pumping and no-pumping cases normalized by P at the steady
state. Each type of flux is plotted: �Q̇

(2)
loc (solid blue line with circles),

�Q̇
(2)
hop (solid green line), and �Q̇

(2)
nl (dash-dotted brown line). The

contribution of �Q̇
(2e)
hop (dashed red line) is also shown.

On the contrary, the hopping fluxes show a behavior
opposed to the one of �Q̇

(2)
loc, highlighting the fact that the

energy absorbed by atom 2 from the environment is almost
entirely transmitted by hopping to the rest of the chain.
Moreover, as illustrated by �Q̇

(2e)
hop , most of this energy is

yielded to the extraction site e.
The previous observations illustrate the efficiency-

amplification mechanism: in the presence of pumping, as the
extraction site is moved away from the rest of the chain, the
energy absorbed by atom 2 from the EM bath is significantly
increased with respect to the no-pumping scenario. Most of
this energy is transmitted to atom e through hopping flux and
results in an efficiency χ � 100%, meaning that the additional
energy extracted from the chain is greater than the one injected
in site p.

The behavior of the local flux of atom 2 being modified in
the presence of pumping suggests that the other atoms might
be subject to a change in their interaction with the EM bath as
well. To explore this possibility, we plot in Fig. 5 the difference
of the local and nonlocal heat fluxes of atoms p and 3 between
the scenarios with and without pumping, as a function of the
displacement of e.

As d increases, both atoms experience a similar diminution
of their local fluxes which reaches a constant value when e

is far enough. On the other hand, �Q̇
(p3)
nl has an analogous

behavior but with an opposite sign. As a consequence, the
energy loss occurring through the local channels Q̇

(p)
loc and

Q̇
(3)
loc is almost entirely counterbalanced by the absorption of

excitations through their nonlocal flux.
So far, the analysis of the fluxes gives us an interpretation of

the efficiency-amplification mechanism. Pumping excitations
into the chain results in a reorganization of the interactions
between the atoms and the environmental EM bath, to the
benefit of the efficiency.

FIG. 5. Difference between the pumping and no-pumping cases
of the local heat fluxes of the atoms p (�Q̇

(p)
loc , dashed blue line

with circles) and 3 (�Q̇
(3)
loc, solid red line), and of the nonlocal flux

between them (�Q̇
(p3)
nl , solid green line with squares), as a function of

the displacement of e. These quantities are normalized by the energy
flux pumped into the system.

More specifically, the triplet (p,2,3) plays the role of an
excitation injector: the collective interaction of the couple
(p,3) has the effect of singling out atom 2, which sees its
locally drawn energy improved. The energy absorbed by the
triplet is then transmitted to the extraction site e via hopping,
with, notably, a particularly enhanced flux of the pair (2,e). As
a result, the energy extracted from e is not only greater than
in the no-pumping scenario, but of an amount which can go
largely beyond the energy injected in the chain.

According to this interpretation, the reasons why amplified
efficiency occurs over long ranges, along with the nonmono-
tonic behavior of the efficiency as a function of d, both become
clear. On the one hand, the excitation injector needs to be
relatively isolated from the rest of the system; otherwise the
symmetry of this triplet is broken, resulting in a different
heat-flux distribution and thus in the disappearance of the
effect. On the other hand, if the triplet (p,2,3) is too far
away from the rest of the chain, the hopping fluxes will be
diminished, resulting in a lowered efficiency. Therefore, the
optimal displacement of e stems from the best compromise
between the confinement of the excitation injector and its
proximity to the extraction site.

Thus, in this section, the investigation of the effect of
pumping on the heat-flux distribution has led us to identify the
first three atoms of the chain as an excitation injector. As the
name suggests, the effect of this triplet is to inject excitations
within the atomic chain, resulting in an enhancement of
the energy extracted from the chain. The reason why this
efficiency amplification occurs over long range stems from
the geometrical condition required for the establishment of the
mechanism of the excitation injector.
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FIG. 6. Time evolution of the efficiency χ (solid blue line). Inset:
Ground-state population of each atom (index 0 corresponds to the
no-pumping scenario): p(p) (solid red line with circles), p

(p)
0 (dashed

red line), p(2) (solid green line), p
(2)
0 (dot-dashed green line), and

p(e) (solid brown line with squares). The curves p(3), p
(3)
0 , and p

(e)
0

coincide with p(p), p
(p)
0 , and p(e), respectively.

B. Dynamics

Having unveiled the mechanism producing the long-range
energy-transport efficiency amplification at the steady state,
we dedicate this section to the dynamics of our system. The
analysis of the different time scales of the system will allow us
to understand the apparition of the different channels of energy
exchanges, and, in particular, to identify the establishment
over time of the excitation injector. Throughout this part, the
distance between the extraction site and atom 3 is fixed at
d = 1.03 μm, resulting in an efficiency of χ = 1021%.

First, to have an overview of the dynamics of the system, let
us begin this analysis with Fig. 6 showing the time evolution
of the efficiency as well as the ground-state population of each
atom of the chain. It becomes clear from the plots that the latter
evolves according to three different time scales. The first one
is due to the extraction, characterized by the rate γout, which
occurs very early and drives the population of the atom e

close to p(e) � 1 similarly in both cases, i.e., with and without
pumping (p(e) = p

(e)
0 , with the index 0 referring to quantities

in the absence of pumping).
The second time scale entering into play triggers the

evolution of the population of atoms p, 2, and 3 and is
described by the local (γj ) and nonlocal (γjk) rates. These
are of the order of magnitude of γ0, which is the only one
represented in the inset of Fig. 6. It is worth stressing that
the ground-state population of atoms p and 3 has the same
evolution whether the pumping is performed (p(p) = p(3)) or
not (p(p)

0 = p
(3)
0 ), and that in both scenarios, this evolution

is different from the one of the ground-state population of
atom 2.

In addition, the populations of each atom have a different
dynamics between the two scenarios p(j ) �= p

(j )
0 (except for the

atom e, as mentioned before). Not surprisingly, this difference

FIG. 7. Time evolution of the hopping fluxes for each couple
of atoms in the presence of pumping. Inset: Imaginary part of the
coherences of couples (p,e), (2,e), and (3,e) also in the presence of
pumping, with the same color scheme. The curves of pairs (p,e) and
(2,e) are superimposed. The dotted lines, both in the main part of the
figure and in the inset, represent the same quantities in the absence
of pumping.

becomes significant only at the third time scale of the system,
determined by the pumping rate γin. In particular, the stationary
ground-state populations of atoms p and 3 in the no-pumping
scenario are greater than the one of atom 2 (p(p)

0 = p
(3)
0 >

p
(2)
0 ), while the situation is reversed in the pumping case

(p(2) > p(p) = p(3)). In other words, the presence of pumping
has a notable effect on the population distribution of these
atoms, which suggests why the efficiency is increasing the
most at this stage of the evolution.

In order to explain this modification in the distribution of
the ground-state populations, we now turn our investigation
toward the dynamics of the heat fluxes. We start with Fig. 7,
depicting the time evolution of the hopping ones. According to
Eq. (13), the dynamics of these energy exchanges is driven by
the one of the imaginary part of the coherences, as confirmed
by the inset.

The peaks appearing in the interval [10−2,10−1] stem from
the fact that the atom e is in its ground state (p(e) � 1) due
to extraction. As a consequence, coherences raise between
subparts of the atomic system in order to draw it closer to its
Gibbs state, thus producing hopping fluxes within the chain.
Note that the ones with the greatest amplitudes are the fluxes
involving atom e. The decrease of these peaks coincides with
the appearance of the local and nonlocal heat fluxes whose
dynamics is shown in Figs. 8 and 9.

Concerning the local heat fluxes, note that Q̇
(e)
loc begins its

evolution earlier than the rest of the others because of the
extraction. Moreover, Q̇(e)

loc > 0 implies that this flux competes
with the loss of energy induced by γout. Later in the evolution,
the local and nonlocal fluxes of the other atoms enter into play.
Note that only the couples (p,3) and (2,3) produce nonlocal
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FIG. 8. Time evolution of the local heat fluxes of each atom
of the chain in the presence of pumping: Q̇

(p)
loc (solid red line with

circles), Q̇
(2)
loc (solid green line), and Q̇

(e)
loc (solid brown line with

squares). The dotted lines are the same quantities in the absence
of pumping: Q̇

(p)
loc,0 (dashed red line), Q̇

(2)
loc,0 (dot-dashed green line),

and Q̇
(e)
loc,0 (double-dot-dashed brown line). The curves describing

Q̇
(3)
loc and Q̇

(3)
loc,0 coincide with those of Q̇

(p)
loc and Q̇

(p)
loc,0, respectively.

FIG. 9. Dynamics of the nonlocal fluxes for each pair of atoms
composing the chain. Inset: Real part of the coherences of the couples
(p,2) (solid orange line with pumping, dashed orange line without
pumping) and (p,3) (solid green line with squares with pumping,
dot-dashed green line without pumping). Main part: Nonlocal fluxes
between qubits. The same color scheme is used for the couples (p,2)
and (p,3). Both in the inset and in the main part, the results for the
couple (2,3) coincide with the ones of (p,2). In the main part, all of
the remaining heat fluxes (almost negligible and unchanged with and
without pumping) are traced with dotted lines.

contributions, and that they are driven by the real part of the
coherences (inset of Fig. 9).

The main distinction between the pumping and no-pumping
scenarios occurs at the third time scale. The local fluxes of
atoms p and 3 become negative, meaning that they are both
losing energy. However, the nonlocal flux stemming from the
collective interaction between them increases significantly in
the pumping case, such that the resulting flux between the field
and this pair of atoms is positive: Q̇

(p3)
nl + Q̇

(p)
loc + Q̇

(3)
loc > 0. In

other words, the subsystem (p,3) is absorbing more energy
than in the no-pumping scenario, which explains why their
ground-state population is lowered.

In addition, the local flux of atom 2 increases with respect
to the no-pumping case. Yet, its ground-state population is the
closest one to p(e) and the imaginary parts of the coherences
of the pair (2,e) are also increased, inducing an enhanced
hopping flux between these two atoms. On the contrary,
the amplitudes of Q̇

(pe)
hop and Q̇

(3e)
hop are lowered, but remain

positive, meaning that atoms p and 3 keep yielding energy
to the extraction site (see Fig. 7). This analysis suggests
a complicated three-body coupled dynamics, in which two
symmetric atoms build up correlations leaving to the central
atom more freedom to strongly interact with the thermal
environment. The description in terms of physical quantities
pertaining to subparts of such a three-body system, on the one
hand provides a direct and clearer physical picture, but on the
other hand hinders the full complexity of this phenomenon.
However, a complete study of the complicated structure of
the interplay between atom-atom coherences and collective
atom-environment coupling is beyond the goal of this work.

V. GENERAL STUDY OF EFFICIENCY AMPLIFICATION
AND LONG-RANGE TRANSPORT

A. Variation of relevant parameters

Thus far, we have studied the efficiency amplification and
long-range transport in the case of a four-atom chain with
specific parameters. We dedicate the first part of this section to
the analysis of the robustness of these two effects when relevant
parameters of the system (frequency, temperature, coordinate
of the last atom) are changed, still with a four-atom chain. The
second part, on the other hand, is devoted to the study of chains
composed with a different number of atoms.

We start our investigation with Fig. 10, where we analyze
the dependence of the efficiency amplification on different
parameters. More specifically, Figs. 10(a)–10(d) are density
plots of χ as a function of d and of the temperature T for
different transition frequencies.

The first feature to point out is that Figs. 10(a)–10(c)
show efficiency-amplified regions (χ > 100%), witnessing a
nonmonotonic behavior of χ with respect to both parameters
d and T , absent in Fig. 10(d). Note that in some regions,
the efficiency takes negative values, meaning that pumping
excitations into the system reduces the energy extracted from
the chain (E < E0).

Moreover, we must stress that the values taken by the
efficiency are very different for each panel of Fig. 10, showing
a strong dependence of this effect on the atomic transition
frequency.
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FIG. 10. (a)–(d) Efficiency as a function of the distance between atom e and the rest of the chain and of the bath temperature for different
frequencies: (a) ω = 0.5 × 1014 rad s−1, (b) ω = 1 × 1014 rad s−1, (c) ω = 2 × 1014 rad s−1, and (d) ω = 5 × 1014 rad s−1. (e) Maximum
efficiency and (f) distance at which this maximum is realized, as a function of the frequency. The maximization has been performed with
respect to the parameters d ∈ [0.1,3] μm and T ∈ [10,1000] K. The black arrows in (e) and (f) indicate the asymptotic limit of respectively
χmax and dmax at low frequencies.

In order to have a deeper insight on this dependence,
Fig. 10(e) shows the maximum efficiency with respect to
both variables d ∈ [0.1,3] μm and T ∈ [10,1000] K as a
function of ω. Remarkably, at frequencies around ω � 0.1 ×
1014 rad s−1, the efficiency reaches χmax � 4000%. Then it
decreases when increasing ω, until reaching values �100%,
meaning that the efficiency amplification is no longer realized
at frequencies �2 × 1014 rad s−1.

In the asymptotic limit of low frequencies, indicated by
black arrows in Figs. 10(e) and 10(f), the efficiency reaches a
plateau at χmax � 4500% for ω � 0.01 × 1014 rad s−1 [28].

To have a deeper insight into the pumping and extraction
fluxes entering into play, Fig. 11 pictures the quantities from
which χmax of Fig. 10 is obtained in the region where χmax >

100%. As one can see, we have Pχmax 	 Eχmax , and increasing
the frequency results in increasing both Pχmax and Eχmax . These
two features stem, respectively, from the facts that γin 	 γout

and that both of these coefficients depend on γ0.
Concerning the position of the maximum of efficiency in

Figs. 10(a)–10(d), one can notice that increasing the frequency
increases the temperature Tχmax at which χmax is reached. In the
configurations such that χmax > 100%, Tχmax (ω) follows a lin-
ear behavior (not shown here) with respect to ω. This behavior
is close to that of the temperature TBmax (ω), which produces the
maximum of the spectral radiance B of the blackbody radiation
given by Planck’s law: B(ω,T ) = n(ω,T )hω3/4π3c2. In other
words, we have Tχmax (ω) � TBmax (ω), which shows that the
efficiency amplification is indeed the consequence of thermal
effects. This similarity is due to the fact that the thermal
dependence of the state of our system stems from the presence
of the local and nonlocal dissipators in the master equation, in
which the temperature acts only through the factor n, similarly
to B.

Moreover, when increasing the frequency, the distance of
the last atom for which χmax is reached approaches that of
the regular-chain configuration. To study this phenomenon in

more detail, we plot in Fig. 10(f) the displacement of atom
e at which χmax is reached as a function of the frequency.
Clearly, the distance dmax decreases when increasing ω.
The discontinuity at ω � 2.3 × 1014 rad s−1 witnesses the
transition from the long-range energy-transport configuration,
in which the efficiency is amplified, to the regular-chain one,
where χmax � 100%. In other words, while for ω � 2.3 ×
1014 rad s−1 the best efficiency (�100%) is always realized by
the regular configuration (d = a), for any lower frequencies

FIG. 11. Left vertical scale: difference (E − E0)χmax of the energy
extracted from the chain between the scenarios with and without
pumping (solid blue line) and Pχmax of the energy pumped into the
chain (dashed green line). Right vertical scale: Eχmax (dot-dashed red
line) of the energy extracted from the chain in the pumping case.
All of the quantities are plotted as a function of the frequency and
correspond to the maximum of efficiency for every frequency, i.e.,
(E − E0)χmax/Pχmax results in χmax plotted in Fig. 10(e).

012138-9



DOYEUX, MESSINA, LEGGIO, AND ANTEZZA PHYSICAL REVIEW A 95, 012138 (2017)

we observe an optimized distance dmax producing a long-range
efficiency amplification.

B. More atoms

Having studied in detail the four-atom configuration, we
have shown in Sec. IV that the excitation injector, i.e., the
triplet of the first three atoms of the chain, is a key ingredient
to observe long-range efficiency amplification.

First, we begin our analysis by reproducing Fig. 2 with N =
2, . . . ,7. This means that for each N , we have a linear chain
{p, . . . ,N − 1,e} (reducing to {p,e} in the case of two atoms).
The distance between two neighbors is a = 0.1 μm, except the
one between atoms (N − 1,e) that we call d. Following Fig. 2,
we plot the efficiency as d increases, i.e., when the extraction
site is moved away from the rest of the chain, for the two
temperatures T = 10 and T = 300 K. All of the parameters
being the same as in Fig. 2, the case N = 4 is strictly the same
in both figures.

For T = 10 K, the behavior we observe for any N is
qualitatively the same as the one we already had for N = 4:
an efficiency starting from 100% and collapsing to 0 as d

increases.
On the contrary, for T = 300 K, we clearly see that N = 4

is the only configuration showing a strong amplification of
the efficiency. As we explained before, the excitation injector
needs to be relatively isolated from the rest of the chain to
be effective; otherwise its mechanism is perturbed by energy
exchanges with other atoms. In Fig. 12, the configuration N =
4 is the only one to provide this condition for appropriate
values of d, which explains why it is the only one showing an
amplified efficiency.

FIG. 12. Efficiency as a function of the distance between atom
e and atom N − 1 for different values of N (total number of atoms
composing the chain; see legend). The upper plot is realized at T =
10 K and the lower one at T = 300 K.

FIG. 13. Density plot of the efficiency as a function of the
displacement of atoms 4 and e in a five-atom linear chain. The other
atoms are regularly separated by a distance a = 0.1 μm.

More specifically, in the case N = 3, the symmetry of the
excitation injector (p,2,e) is broken since atom e is moved
away. On the other hand, for N > 4, the role of the excitation
injector being played by (p,2,3) is broken due to the presence
of atom 4, which is too close to atom 3.

With this information in mind, we have explored geomet-
rical configurations with N > 4 atoms in which the effect of
the excitation injector is not killed. To this end, we allowed
displacements not only of atom e, but also of any atom
which does not belong to the triplet (p,2,3). In the following
simulations, the atomic frequency is ω = 1 × 1014 rad s−1 and
the temperature is fixed at T = 361 K.

For the configuration N = 5, Fig. 13 is a density plot of the
efficiency as a function of the displacement of both atoms 4
and e in the chain {p,2,3,4,e}. There is clearly a region where
long-range efficiency amplification is realized.

TABLE I. Maxima of the efficiency for linear chains with
different number of atoms. These maxima have been obtained with
a genetic algorithm (GA) and are either global (N = 4,5) or local
(N = 6,7). In each simulation, the variables are the displacement dj

along the x axis of the j th atom with respect to its regular position,
and such that j /∈ (p,2,3). These three atoms are regularly distributed
with a separation of a = 0.1 μm. Concerning the parameters used for
the GA, the initial population of each iteration was pGA = 103, with
only the best half of it surviving. The mutation rate was fixed at
rGA = 20%, and convergence has been reached when the relative
difference between each couple of the first 20 positions as well as the
difference between their efficiencies were, at most, 10−3, except for
N = 7 for which it was 10−2.

N d4 (μm) d5 (μm) d6 (μm) d7 (μm) χ

5 0.763 0.618 13.518
6 0.556 1.076 0.578 13.982

0.782 0.564 0.518 13.631
7 0.768 0.581 0.380 0.419 13.908
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Moreover, Table I shows maxima of χ after displacement
of the atoms that do not belong to the excitation injector in
the case of N -atom chains (N ∈ {5,6,7}). They have been
computed with the use of a genetic algorithm [29]. In the
cases N = 4,5, these maxima are global, while they are local
for the configurations with N = 6,7 atoms. As one can see, for
N > 4, the long-range efficiency amplification is even higher
than the four-atom configuration. In particular, in the case
of the seven-atom chain, the efficiency can reach values up
to 1390%, which is ∼1.4 times greater than the maximum
of the four-atom chain (1000%). In addition, the transport is
performed over longer distances.

Finally, the presence of multiple local maxima of the
efficiency for N = 6,7 indicates that having more and more
atoms in the chain can provide geometrical flexibility to
produce highly efficient energy transport over large distances.
Indeed, with an increase in the number of channels of energy
exchanges, the number of geometrical configurations for
which the interplay of the fluxes produces a local maximum
of efficiency is increased as well.

VI. CONCLUSIONS

We studied energy transport within a chain of two-level
quantum emitters weakly coupled to an environmental black-
body radiation. In particular, we investigated the efficiency
of energy transport when excitations are incoherently pumped
from one edge of the chain and extracted at the other one. As the
main result, we have highlighted the remarkable appearance
of a strongly amplified efficiency occurring for long-range
transport.

More specifically, we have shown that this phenomenon is
produced for nonregular configurations at finite temperature
and results in an efficiency greater than the one observed with
a regular chain at low T . In particular, efficiency can reach
values far greater than 100% (e.g., χ � 1400%), meaning that
the chain harvests additional energy from the bath during the
transport process. Moreover, the length of the chain producing
this amplified efficiency is remarkably greater than the regular

configuration, thus allowing energy transport over longer
distances.

We have also investigated, in the particular case of a
four-atom chain, the robustness of efficiency amplification
with respect to relevant parameters of the system, such as
the temperature, the atomic frequency, and the distance of the
extraction site. We have shown that this effect can be produced
for a relatively wide range of temperatures and distances.

The investigation of the heat fluxes both at the steady
state and during the time evolution of the atomic system has
provided an interpretation for the mechanism producing this
amplification: the elementary block composed of the first three
atoms of the chain plays the role of an excitation injector by
absorbing energy from the environment. More specifically,
the atoms (p,3) collectively draw excitations through nonlocal
flux, while in addition atom 2 absorbs energy locally. The
energy absorbed by the triplet is transmitted to the extraction
site mainly through hopping fluxes.

We have also explored systems composed of N = 5,6,7
atoms, where we provided specific examples of configurations
producing a long-range efficiency amplification. Two encour-
aging results stem from this study when compared to the more
elementary four-atom chain: the efficiency can reach higher
values (∼1.4 times greater) and the chains producing such
high efficiency also transport energy over distances larger than
the regular configuration.

Further investigations with an even larger number of atoms
would be insightful, notably in the case of linear chains
composed of multiple excitation injectors. Besides, the long-
range efficiency amplification discussed in this paper could
possibly be experimentally observed with, e.g., Rydberg atoms
[30] or quantum dots [31–35] playing the role of the quantum
emitters.
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