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Critical behavior of the annealed ising model on random regular graphs

Introduction

Ising model is one of the most well-known model in the field of statistical physics that exhibits phase transitions. This model has been investigated fruitfully for integer lattices, see e.g. [START_REF] Grimmett | Then random-cluster model[END_REF]. Recently, Ising model has been studied in random graphs as a model of the cooperative interaction of spins in random networks, see for instance [START_REF] Albert | Statistical mechanics of complex networks[END_REF][START_REF] Dembo | Ising models on locally tree-like graphs[END_REF][START_REF] Dommers | Ising critical exponents on random trees and graphs[END_REF][START_REF] Dorogovtsev | Ising model on networks with an arbitrary distribution of connections[END_REF][START_REF] Mossel | Exact thresholds for Ising-Gibbs samplers on general graphs[END_REF]. As for other models in random environments, probabilists study this model in both quenched setting and annealed setting. In the quenched one, the Ising model is defined accordingly to typical samples of graphs. On the other hand, in the annealed one, the Ising model is defined by taking information of all realizations of graphs. In contrast of the well-development of studies on quenched setting (see e.g. [START_REF] Dembo | Ising models on locally tree-like graphs[END_REF][START_REF] Dommers | Ising critical exponents on random trees and graphs[END_REF][START_REF] Giardinà | Quenched central limit theorems for the Ising model on random graphs[END_REF][START_REF] Mossel | Exact thresholds for Ising-Gibbs samplers on general graphs[END_REF]), there are few contributions in the annealed one. In two recent papers [START_REF] Giardinà | Annealed central limit theorems for the Ising model on random graphs[END_REF][START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF], the authors defined an annealed Ising model as follows.

Let G n = (V n , E n ) be a random multigraph (i.e. a random graph possibly having selfloops and multiple edges between vertices) with the set of vertices V n = {v 1 , . . . , v n } and the set of edges E n . A spin σ i is assigned to each vertex v i . Then for any configuration σ ∈ Ω n := {+1, -1} n , the Halmintonian is given by

H(σ) = -β i≤j k i,j σ i σ j -B n i=1 σ i ,
where k i,j is the number of edges between v i and v j , where β ≥ 0 is the inverse temperature and B ∈ R is the uniform external magnetic field.

Then the configuration probability is given by the annealed measure: for all σ ∈ Ω n ,

µ n (σ) = E(exp(-H(σ)) E(Z n (β, B)) ,
where E denotes the expectation with respect to the random graph, and Z n (β, B) is the partition function:

Z n (β, B) = σ∈Ωn exp(-H(σ)).

In [START_REF] Giardinà | Annealed central limit theorems for the Ising model on random graphs[END_REF], Giardinà, Giberti, van der Hofstad and Prioriello study this annealed Ising model on the rank-one inhomogeneous random graph, the random regular graph with degree 2 and the configuration model with degrees 1 and 2. After determining limits of thermodynamic quantities and the critical inverse temperature, they prove laws of large numbers and central limit theorems for the magnetization. Continuing this work, the authors of [START_REF] Giardinà | Annealed central limit theorems for the Ising model on random graphs[END_REF] and Dommers investigate the critical behaviors of the Ising model on inhomogeneous random graphs in [START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF].

In [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF], we generalize the result in [START_REF] Giardinà | Annealed central limit theorems for the Ising model on random graphs[END_REF] for all random regular graphs, and show that the thermodynamic limits in quenched and annealed models are actually the same. In this paper, we are going to study critical behaviors of the annealed model. More precisely, we aim to determine critical exponents of thermodynamics limits and prove a non-classical scaling limit theorem for the magnetization.

Before stating our main results, we first give some definitions following [START_REF] Giardinà | Annealed central limit theorems for the Ising model on random graphs[END_REF][START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF] of the thermodynamic quantities in finite volume.

(i) The annealed pressure is given by

ψ n (β, B) = 1 n log E(Z n (β, B)).
(ii) The annealed magnetization is given by

M n (β, B) = ∂ ∂B ψ n (β, B).
An interpretation of the magnetization is

M n (β, B) = E µn S n n ,
with S n the total spin, i.e. S n = σ 1 + . . . + σ n . (iii) The annealed susceptibility is given by

χ n (β, B) = ∂ ∂B M n (β, B) = ∂ 2 ∂B 2 ψ n (β, B). We also have χ n (β, B) = Var µn S n √ n .
(iv) The annealed specific heat is given by

C n (β, B) = ∂ 2 ∂β 2 ψ n (β, B).
When the sequence (M n (β, B)) n converges to a limit, say M(β, B), we define the spontaneous magnetization as M(β, 0 + ) = lim Bց0 M(β, B). Then the critical inverse temperature is defined as

β c = inf{β > 0 : M(β, 0 + ) > 0}.
The uniqueness region of the existence of the limit magnetization is defined as

U = {(β, B) : β ≥ 0, B = 0 or 0 < β < β c , B = 0}.
In [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF], we have proved the existence of the limit of thermodynamic quantities. (i) For all β ≥ 0 and B ∈ R, the annealed pressure converges

lim n→∞ ψ n (β, B) = ψ(β, B) = βd 2 -B + max 0≤t≤1 [H β (t) + 2Bt] ,
where

H β (t) = (t -1) log(1 -t) -t log t + dF β (t), with F β (t) = t∧(1-t) 0 log f β (s)ds, and t ∧ (1 -t) = min{t, 1 -t}, f β (s) = e -2β (1 -2s) + 1 + (e -4β -1)(1 -2s) 2 2(1 -s) .
(ii) For all (β, B) ∈ U, the magnetization converges

lim n→∞ M n (β, B) = M(β, B) = ∂ ∂B ψ(β, B).
Moreover, the critical inverse temperature is

β c = atanh(1/(d -1)) = 1 2 log d d-2 if d ≥ 3 ∞ if d = 2.
(iii) For all (β, B) ∈ U, the annealed susceptibility converges

lim n→∞ χ n (β, B) = χ(β, B) = ∂ 2 ∂B 2 ψ(β, B
). The convergence of annealed pressure has been first proved by Dembo, Montanari, Sly and Sun in [START_REF] Dembo | The replica symmetric solution for Potts models on d-regular graphs[END_REF]. By showing the replica symmetry of the partition function, the authors prove that annealed and quenched pressures converge to a common limit, which has been established in [START_REF] Dembo | Ising models on locally tree-like graphs[END_REF]. Our proof of the convergence of annealed pressure in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF] is based on the direct relation between the Hamiltonian and the number of disagreeing edeges (i.e. edges with different spins) in random regular graphs. To characterize the law of the disagreeing edges, we combine the echangeability of the model and many combinatorial computations. The convergences of magnetization and susceptibility follow from the one of pressure and standard arguments introduced in [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF][START_REF] Giardinà | Annealed central limit theorems for the Ising model on random graphs[END_REF].

Unfortunately, we are not able to show the convergence of specific heat, though it is very natural to expect that C n (β, B) tends to the second derivative of ψ(β, B) w.r.t β. Hence, we study an "artificial" specific heat limit defined as

C(β, B) = ∂ 2 ∂β 2 ψ(β, B).
Following [START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF], we give a definition of critical exponents of thermodynamic limits.

Definition. The annealed critical exponents β, δ, γ, γ ′ , α, α ′ are defined by:

M(β, 0 + ) ≍ (β -β c ) β for β ց β c , M(β c , B) ≍ B 1/δ for B ց 0, χ(β, 0 + ) ≍ (β c -β) -γ for β ր β c , χ(β, 0 + ) ≍ (β -β c ) -γ ′ for β ց β c C(β, 0 + ) ≍ (β c -β) -α for β ր β c , C(β, 0 + ) ≍ (β -β c ) -α ′ for β ց β c ,
where we write f (x) ≍ g(x) if the ratio f (x)/g(x) is bounded from 0 and infinity for the specified limit. 

β = 1 2 δ = 3 γ = γ ′ = 1 α = α ′ = 0.
In [START_REF] Dommers | Ising critical exponents on random trees and graphs[END_REF], the authors settle the quenched critical exponents for a large class of random graphs, so-called locally-tree like graphs. In particular, for the random regular graphs, the quenched critical exponents satisfy β = 1 2 , δ = 3, γ = 1. Additionally, we have proved in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF] that for the case of random regular graphs, the annealed and quenched thermodynamic quantities are equal. Therefore, the values of β, δ, γ can be directly deduced from the result in [START_REF] Dommers | Ising critical exponents on random trees and graphs[END_REF]. On the other hand, the values of other critical exponents γ ′ , α, α ′ are new and are the main contribution of Theorem 1.2.

Our second result is on the asymptotic behavior of the total spin S n as n tends to infinity. In [9, Theorem 1.3 and Proposition 1.4], we have proved that if (β > 0, B = 0) or (0 < β < β c , B = 0) then S n satisfies a central limit theorem, and if (β > β c , B = 0) then S n /n is concentrated at two opposite values. In the following result, we study the scaling limit of S n for the remained case when β = β c and B = 0. Theorem 1.3. (Scaling limit theorem at criticality). Consider the annealed Ising model on random d-regular graphs with d ≥ 3. Suppose that β = β c and B = 0. Then

σ 1 + . . . + σ n n 3/4 (D) -→ X w.r.t. µ n ,
where X is a random variable with density proportional to

exp -(d -1)(d -2)x 4 12d 2 .
Different from classical central limit theorems, the scaling limit theorem at criticality has non-Gaussian limit distribution. This phenomena has been observed for some spin models, such as for Curie-Weiss model, or Ising model on Z 2 and inhomogeneous random graphs, see [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF][START_REF] Ellis | The statistics of Curie-Weiss models[END_REF][START_REF] Ellis | Limit theorems for sums of dependent random variables occurring in statistical mechanics[END_REF][START_REF] Camia | The Ising magnetization exponent is 1 15[END_REF][START_REF] Camia | Planar Ising magnetization field I. Uniqueness of the scaling limit[END_REF][START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF]. In fact, some authors believe that the critical nature of the total spin has universal scaling limit, see for example [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF][START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF]. Indeed, they guess that when β = β c and B = 0, S n scaled by n δ/(δ+1) , with δ the exponent of magnetization, converges in law to a random variable whose the tail of the density behaves like exp(-cx δ+1 ) for x large enough. Our results confirm this belief for the class of random regular graphs. 1.2. Discussion. We now make some further remarks on our results.

(i) Since β c is finite if and only if d ≥ 3, in our results, we always assume that d ≥ 3.

(ii) A simple interpretation of the specific heat is as follows

C n (β, B) = Var μn i≤j k i,j σ i σ j √ n ,
where μn is a probability measure on G n × Ω n , with G n the sample space of the random d-regular graph, given by

Gn×Ωn f dμ n = σ∈Ωn E f (G, σ)e -Hn(σ) σ∈Ωn E (e -Hn(σ)
) .

We notice that µ n is a marginal measure of μn ,

µ n (σ) = E(μ n (G, σ)).
Studying the measure μn might give some ideas to derive the convergence of (C n (β, B)).

(iii) A natural and interesting question is to generalize our results for the configuration model random graphs with general degree distributions (see [START_REF] Van Der Hofstad | Random graphs and complex networks[END_REF] for a definition). Comparing with the case of random regular graphs, we have additionally a source of randomness coming from the sequence of degrees. This randomness makes the problem much more difficult. In particular, we have proved in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF]Proposition 7.3] that the annealed pressure converges to a limit given by

ψ(β, B) = -B + max 0≤t≤1 [(t -1) log(1 -t) -t log t + 2Bt + G β (t)] ,
where G β (t) is a Lipschitz function concerning with a large deviation result on the degree distribution of configuration model. Due to the complexity of G β (t), we are not able to show the differentiability of ψ(β, B). Without the differentiability, we can not go further to other thermodynamic limits or critical exponents. We also remark that when the degrees of vertices fluctuates, the authors of [START_REF] Giardinà | Quenched central limit theorems for the Ising model on random graphs[END_REF] conjecture that annealed and quenched Ising models behaves differently. In particular, they guess that the critical inverse temperatures are different. It would be very interesting to know whether the annealed and quenched critical exponents are equal or not. Notice that in the case of inhomogeneous random graphs, though the annealed and quenched models have different critical inverse temperatures, they have the same critical exponents, see [START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF].

(iv) On the proof of Theorems 1.2 and 1.3, we largely use techniques and results in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF][START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF]. In particular, to achieve the critical exponents, we exploit the representation of the annealed pressure ψ(β, B) in Theorem 1.1 and use Taylor expansion to study the partial derivatives of ψ when variables β, B tend to critical values. On the other hand, to prove Theorem 1.3, we show the convergence of the generating function of S n /n 3/4 as n tends to infinity, by using Laplace method as in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF]. Previously, the same strategy of proof has been applied by the authors in [START_REF] Dommers | Ising critical behavior of imhomogeneous Curie-Weiss models and annealed random graphs[END_REF] to identify critical exponents and prove scaling limit theorems for the case of inhomogeneous random graphs.

Finally, the paper is organized as follows. In Section 2, we give a definition of random regular graphs and prove some useful preliminary results. Then, we prove Theorems 1.2 and 1.3 in Sections 3 and 4 respectively.

Preliminaries

2.1. Random regular graphs. For each n, we start with a vertex set V n of cardinality n and construct the edge set as follows. For each vertex v i , start with d half-edges incident to v i . Then we denote by H the set of all the half-edges. Select one of them h 1 arbitrarily and then choose a half-edge h 2 uniformly from H \ {h 1 }, and match h 1 and h 2 to form an edge. Next, select arbitrarily another half-edge h 3 from H \ {h 1 , h 2 } and match it to another h 4 uniformly chosen from H \ {h 1 , h 2 , h 3 }. Then continue this procedure until there are no more half-edges. We finally get a multiple random graph that may have self-loops and multiple edges between vertices satisfying all vertices have degree d. We denote the obtained graph by G n,d and call it random d-regular graph.

Preliminary results.

Following the notation in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF], we denote by G m,1 the random 1-regular graph with the vertex set Vm = {w 1 , . . . , w m }. For any k ≤ m, X(k, m) is the number of edges between Ūk = {w 1 , . . . , w k } and Ūc

k = Vm \ Ūk in G m,1 . Then for all 0 ≤ k ≤ m, we define g β (k, m) = E e -2βX(k,m) . We have already proved in [9, Section 2] that (1) µ n (σ) = E e -Hn(σ) E(Z n (β, B)) = e ( βd 2 -B)n g β (d|σ + |, dn)e 2B|σ + | E(Z n (β, B)) ,
where σ + = {v j : σ j = 1}, and

(2)

E(Z n (β, B)) = e ( βd 2 -B)n × n j=0
n j e 2Bj g β (dj, dn).

In [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF], by deriving recursive formulas for the number of disagreeing edges (X(k, m)), we obtain the following result on the asymptotic behavior of the sequence (g β (dj, dn)).

Lemma 2.1. [9, Lemma 3.1] Suppose that β ≥ 0. Then there exists a positive constant C, such that for all 0 ≤ i ≤ j ≤ n,

(3) log g β (dj, dn) -ndF β j n -log g β (di, dn) -ndF β i n ≤ C(j -i) n ,
where F β (t) is defined in Theorem 1.1.

In the following lemma, we summarize some properties of critical points of the function H β (t) + 2Bt, which plays a key role in the formula of ψ(β, B). Lemma 2.2. Let H β (t) be the function defined in Theorem 1.1 (i). The following statements hold.

(i) For β ≥ 0 and B > 0, the equation Section 4]. Parts (ii) and (iv) are Claims 2a and 2b in [9, Section 4]. We now prove (iii) by contradiction. Suppose that t + (β) does not converges to 1 2 as β ց β c . Then there exist ε > 0 and a sequence

∂ t H β (t) + 2B = 0 has a unique solution t * = t * (β, B) ∈ ( 1 2 , 1). (ii) For β > β c , the equation ∂ t H β (t) = 0 has a unique solution t + = t(β) ∈ ( 1 2 , 1). Moreover, as B ց 0, we have t * → t + . (iii) As β ց β c , we have t + → 1 2 . (iv) For β < β c , as B ց 0, we have t * → 1 2 . Proof. Part (i) is proved in Claim 1 * in [9,
(β i ) ց β c , such that |t + (β i ) -1 2 | ≥ ε.
We observe that the sequence (t + (β i )) is bounded in ( 1 2 , 1). Hence there exists a subsequence (β i k ) ց β c , such that the sequence (t

+ (β i k )) converges to a point x ∈ [ 1 2 , 1]
. By the assumption on the value of (t + (β i )), we have x ≥ 1 2 + ε. Moreover, 

∂ t H β (t) = log 1 -t t + d∂ t F β (t) = log 1-t t + log f β (t) if t ∈ [0, 1 2 ) log 1-t t -log f β (1 -t) if t ∈ ( 1 2 , 1]. Since log f β ( 1 2 ) = 0, we have ∂ t H β ( 1 2 
+ ) = ∂ t H β ( 1 2 
H ′ ( 1 2 ) = H ′′ ( 1 2 ) = H ′′′ ( 1 2 ) = 0, and (6) 
H (4) ( 1 2 ) = -32(d -1)(d -2) d 2 < 0.
Proof. Using the same arguments for Claim 2b in [9, Section 4], we have H ′′ (t) ≤ 0 is a consequence of the following

(7) e -4β (d -2) 2 (t -t 2 ) + d -1 ≥ t(1 -t)(d -2) 2 . Since β = β c , ( 8 
) c := e -2β = d -2 d .
Hence ( 7) is equivalent to

(d -2) 2 (t -t 2 ) + d -1 ≥ d 2 (t -t 2 ),
or equivalently, 1 ≥ 4t(1 -t) which holds for all t ∈ [0, 1]. Hence the function H(t) is concave. Moreover, by a simple computation we have H ′ ( 12 ) = 0. Therefore H(t) gets the maximum at t = 1 2 . Now we prove ( 5) and [START_REF] Dorogovtsev | Ising model on networks with an arbitrary distribution of connections[END_REF]. We observe that ( 9)

H(t) = I(t) + dF (t),
where

I(t) = (t -1) log(1 -t) -t log t,
and F (t) = F βc (t) is defined in Theorem 1.1. We have

I ′ (t) = log 1 -t t , I ′′ (t) = -1 t(1 -t) , I ′′′ (t) = 1 t 2 - 1 (1 -t) 2 , I (4) (t) = 2 (t -1) 3 - 2 t 3 . Hence I ′ ( 1 2 ) = I ′′′ ( 1 2 ) = 0, I ′′ ( 1 2 ) = -4, I (4) ( 1 2 ) = -32. ( 10 
)
On the other hand,

F ′ (t) = log f (t) if t ∈ [0, 1 2 ) -log f (1 -t) if t ∈ ( 1 2 , 1],
with

f (t) = f βc (t).
In addition, f

( 1 2 ) = 1, so F ′ ( 1 2 + ) = F ′ ( 1 2 -) = 0. Hence F ′ ( 1 2 ) = 0 and F is a C 1 function on (0, 1). Furthermore, F ′′ (t) = f ′ (t) f (t) if t ∈ [0, 1 2 ) f ′ (1-t) f (1-t) if t ∈ ( 1 2 , 1]. Therefore, F ′′ ( 1 2 + ) = F ′′ ( 1 2 
-
). Hence, F ′′ ( 1 2 ) exists and F is a C 2 function on (0, 1). Similarly,

F ′′′ (t) = f ′′ (t)f (t)-(f ′ (t)) 2 f 2 (t) if t ∈ [0, 1 2 ) (f ′ (1-t)) 2 -f ′′ (1-t)f (1-t) f 2 (1-t) if t ∈ ( 1 2 , 1]. Thus F ′′′ ( 1 2 
+ ) = F ′′′ ( 1 2 
-) = 0, so F ′′′ ( 1 
2 ) = 0 and F is a C 3 function on (0, 1). Moreover,

F (4) (t) = f ′′′ (t)f (t)-f ′ (t)f ′′ (t) f 2 (t) -2f ′ (t)[f ′′ (t)f (t)-(f ′ (t)) 2 ] f 3 (t) if t ∈ [0, 1 2 ) f ′′′ (1-t)f (1-t)-f ′ (1-t)f ′′ (1-t) f 2 (1-t) -2f ′ (1-t)[f ′′ (1-t)f (1-t)-(f ′ (1-t)) 2 ] f 3 (1-t) if t ∈ ( 1 2 , 1]. Hence, F (4) ( 1 2 + ) = F (4) ( 1 2 
-), so F (4) ( 1 2 ) exits and F is a C 4 function on (0, 1). We now compute the values F ′′ ( 1 2 ) and F (4) ( 1 2 ). Observe that

f (t) = A(t) B(t) ,
where

A(t) = c(1 -2t) + 1 + (c 2 -1)(2t -1) 2 and B(t) = 2(1 -t),
with c as in [START_REF] Camia | Planar Ising magnetization field I. Uniqueness of the scaling limit[END_REF]. Hence

f ′ (t) = A ′ (t) B(t) - A(t)B ′ (t) B 2 (t) , f ′′ (t) = A ′′ (t) B(t) - A(t)B ′′ (t) + 2A ′ (t)B ′ (t) B 2 (t) + 2A(t)(B ′ (t)) 2 B 3 (t) , f ′′′ (t) = A ′′′ (t) B(t) - A(t)B ′′′ (t) + 3A ′ (t)B ′′ (t) + 3A ′′ (t)B ′ (t) B 2 (t) + 6A(t)B ′ (t)B ′′ (t) + 6A ′ (t)(B ′ (t)) 2 B 3 (t) - 6A(t)(B ′ (t)) 3 B 4 (t) .
After some computations, we get 3 . Combining ( 8), ( 9), ( 10) and ( 11), we obtain desired results.

A( 1 2 ) = 1, A ′ ( 1 2 ) = -2c, A ′′ ( 1 2 ) = 4(c 2 -1), A ′′′ ( 1 2 ) = 0, and B( 1 2 ) = 1, B ′ ( 1 2 ) = -2, B ′′ ( 1 2 ) = B ′′′ ( 1 2 ) = 0. Thus f ( 1 2 ) = 1, f ′ ( 1 2 ) = 2(1 -c), f ′′ ( 1 2 ) = 4(1 -c) 2 , f ′′′ ( 1 2 ) = 24(1 -c) 2 . Therefore (11) F ′ ( 1 2 ) = F ′′′ ( 1 2 ) = 0, F ′′ ( 1 2 ) = 2(1 -c), F (4) ( 1 2 ) = 24(1 -c) 2 -8(1 -c)

Proof of Theorem 1.2

We have proved in [9, Section 4, Claim 1 * ] that for all β ≥ 0 and B > 0, 

ψ(β, B) = βd/2 -B + L(

3.1.

Proof of δ = 3. We have shown in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF]Section 4] that for all β ≥ 0 and B > 0,

M(β, B) = ∂ ∂B ψ(β, B) = -1 + 2t * ,
where t * is the solution of [START_REF] Ellis | Limit theorems for sums of dependent random variables occurring in statistical mechanics[END_REF]. By Lemma 2.2 (i) and (iii) we have t * ց 1 2 as B ց 0. We set s * = t * -1 2 . Hence s * ց 0 as B ց 0. We notice also that for t > 1 2 , (13)

∂ t H β (t) = log 1 -t t -d log f β (1 -t), with f β (1 -t) = e -2β (2t -1) + 1 + (e -4β -1)(2t -1) 2 2t .
Therefore the equation ( 12) is equivalent to the following

(14) 2B = -log θ 1 (s * ) + d log θ 2 (s * ),
where (15) θ 1 (s) = 1 -2s 1 + 2s , and ( 16)

θ 2 (s) = f β (1 -s) = 2e -2β s + 1 + 4(e -4β -1)s 2 1 + 2s .
We have

θ 1 (s * ) -1 = -4s * 1 + 2s * , and 
θ 2 (s * ) -1 = 2s * (e -2β -1) + 1 + 4(e -4β -1)s 2 * -1 1 + 2s * .
Using Taylor expansion, we get

1 1 + 2s * = 1 -2s * + 4s 2 log θ 1 (s * ) = θ 1 (s * ) -1 + -(θ 1 (s * ) -1) 2 2 + (θ 1 (s * ) -1) 3 3 + O((θ 1 (s * ) -1) 4 ) = -4s * - 16 3 s 3 * + O(s 4 * ), (17) 
and

log θ 2 (s * ) = θ 2 (s * ) -1 + -(θ 2 (s * ) -1) 2 2 + (θ 2 (s * ) -1) 3 3 + O(s 4 * ) = 2(e -2β -1)s * - 4 3 (e -2β -1) 2 (e -2β + 2)s 3 * + O(s 4 * ). ( 18 
)
In this subsection, we consider

β = β c = 1 2 log d d -2 or e -2β = d -2 d .
Hence

log θ 2 (s * ) = - 4 d s * + 32 3d 3 - 16 d 2 s 3 * + O(s 4 * ).
Therefore,

-log θ 1 (s * ) + d log θ 2 (s * ) = 16(d -1)(d -2) 3d 2 s 3 * + O(s 4 * ).
Combining this with ( 14), we get

B = 8(d -1)(d -2) 3d 2 s 3 * + O(s 4 * ). Thus as B ց 0, M(β, B) = 2s * ≍ B 1/3 . Therefore δ = 3. 3.2. Proof of β = 1 2 . Suppose that β > β c . We have proved in [9, Claim 2a] that M(β, 0 + ) = -1 + 2t + ,
where 

t + = t + (β) ∈ ( 1 2 , 1)
(s + ) = d log θ 2 (s + ),
with θ 1 (s) and θ 2 (s) as in ( 15) and ( 16). Using similar arguments and calculations for ( 17) and (18), we get

log θ 1 (s + ) = -4s + - 16 3 s 3 + + O(s 4 + ), and 
log θ 2 (s + ) = 2(e -2β -1)s + - 4 3 (e -2β -1) 2 (e -2β + 2)s 3 + + O(s 4 + ).
Hence, for any ε > 0, there exists δ > 0, such that for all β c < β < β c + δ,

-4s + - 16 3 + ε s 3 + ≤ log θ 1 (s + ) ≤ -4s + - 16 3 -ε s 3 + , (21) and log θ 2 (s + ) ≤ 2(e -2β -1)s + + ε - 4 3 (e -2β -1) 2 (e -2β + 2) s 3 + , ( 22 
)
and

log θ 2 (s + ) ≥ 2(e -2β -1)s + -ε + 4 3 (e -2β -1) 2 (e -2β + 2) s 3 + . (23)
Using ( 20), ( 21) and ( 22), we get

-4s + - 16 3 + ε s 3 + ≤ 2d(e -2β -1)s + + d ε - 4 3 (e -2β -1) 2 (e -2β + 2) s 3 + . Therefore -4 -2d(e -2β -1) ≤ 16 3 - 4d 3 (e -2β -1) 2 (e -2β + 2) + (d + 1)ε s 2 + .
We observe that as

β ց β c , 16 3 - 4d 3 (e -2β -1) 2 (e -2β + 2) -→ 16 3 - 16 3 (3d -2) d 2 = 16(d -1)(d -2) 3d 2 . Moreover, d -2 d -e -2β = e -2βc -e -2β = 2e -2βc (β -β c ) + O((β -β c ) 2 ) = 2 d -2 d (β -β c ) + O((β -β c ) 2 ). (24) Thus -4 -2d(e -2β -1) = 2d d -2 d -e -2β = 4(d -2)(β -β c ) + o((β -β c ))
Hence for β close enough to β c ,

4(d -2) -ε (β -β c ) ≤ 16(d -1)(d -2) 3d 2 + (d + 2)ε s 2 + .
Similarly, using (20), ( 21) and (23) we can also prove that for β close to β c ,

4(d -2) + ε (β -β c ) ≥ 16(d -1)(d -2) 3d 2 -(d + 2)ε s 2 + .
It follows from last two inequalities that (25)

s 2 + = 3d 2 4(d -1) (β -β c ) + o((β -β c )).
Combining ( 19) and (25), we get

β = 1 2 . 3.3. Proof of γ = γ ′ = 1. We have shown in [9, Section 5] that for B > 0 χ(β, B) = -4 ∂ tt H β (t * ) . (26) 
In the proof of Claim 1 * in [9, Section 4], it is shown that for all t ∈ (0, 1)

(27) ∂ tt H β (t) = -P (t) Q(t) ,
where

P (t) = d(1 -t) e -2β θ 2 (t) -1 + e -2β (2t -1)θ 2 (t) + 2 -2t, and 
Q(t) = t(1 -t) e -2β (2t -1)θ 2 (t) + 2 -2t , with θ 2 (t) = f β (1 -t).
Case β > β c . By Lemma 2.2 (ii), we have t * → t + as B → 0 + , with t + = t + (β) the root of ∂ t H β . Therefore, by (26)

(28) χ(β, 0 + ) = -4 ∂ tt H β (t + )
.

Using [START_REF] Grimmett | Then random-cluster model[END_REF], the equation

∂ t H β (t + ) = 0 is equivalent to d log f β (1 -t + ) = log 1 -t + t + ,
or equivalently

θ 2 (t + ) = 1 -t + t + 1/d = 1 -2s + 1 + 2s + 1/d
, where s + = t + -1 2 . Notice that as β ց β c , we have t + ց 1 2 , thus s + ց 0. By Taylor expansion,

θ 2 (t + ) = 1 -2s + 1 + 2s + 1/d = 1 - 4s + d + 16s 2 + d 2 + O(s 3 + ).
Hence

Q(t + ) = ( 1 4 -s 2 + ) 2e -2β θ 2 (t + )s + + 1 -2s + = 1 4 + O(s + ) (by (25)) = 1 4 + O( β -β c ). (29) 
Similarly,

P (t + ) = d 1 2 -s + e -2β θ 2 (t + ) -1 + 2e -2β θ 2 (t + )s + + 1 -2s + = d 1 2 -s + e -2β 1 - 4s + d + 16s 2 + d 2 -1 + O(s 3 + ) + 1 -2s + +2e -2β 1 - 4s + d s + + O(s 3 + ) = d 2 e -2β - d -2 d + d d -2 d -e -2β s + + 4e -2β s 2 + + O(s 3 + ).
Combining this with (24) and (25), we get

P (t + ) = (d -2)(2d + 1) (d -1) (β -β c ) + o((β -β c )). (30) 
It follows from ( 27), ( 29), (30) that

(31) ∂ tt H β (t + ) = -4(d -2)(2d + 1) (d -1) (β -β c ) + o((β -β c )).
This together with (28) imply that as β ց β c ,

χ(β, 0 + ) ≍ (β -β c ) -1 ,
or equivalently γ ′ = 1.

Case β < β c . By Lemma 2.2 (iv), we have t * → 1 2 as B → 0 + . Therefore, by (26

) (32) χ(β, 0 + ) = -4 ∂ tt H β ( 1 2 )
.

We have

θ 2 ( 1 2 ) = f β ( 1 2 ) = 1. Hence Q( 1 2 ) = 1 4
, and

P ( 1 2 ) = d 2 (e -2β -1) + 1 = d 2 e -2β - d -2 d .
Thus

∂ tt H β ( 1 2 ) = -2d e -2β - d -2 d . (33) 
Using ( 24) and (33), we have as

β ր β c , ∂ tt H β ( 1 2 ) = -4(d -2)(β c -β) + O((β c -β) 2 ), so we get χ(β, 0 + ) ≍ (β c -β) -1
, and thus γ = 1. In addition, by Claim 1 * in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF], ∂ tt L(t * , β, B) = 0. Hence, t * is a differentiable function by the implicit function theorem. Taking derivative in β of (35), we get

3.4. Proof of α = α ′ = 0. We recall that (34) ψ(β, 
∂ tβ L(t * , β, B) + ∂ tt L(t * , β, B)∂ β t * = 0. Thus ∂ β t * = - ∂ tβ L(t * , β, B) ∂ tt L(t * , β, B) .
Using (34) and (35), we get

∂ β ψ(β, B) = d 2 + ∂ t L(t * , β, B)∂ β t * + ∂ β L(t * , β, B) = d 2 + ∂ β L(t * , β, B).
It follows from the last two equations that

∂ ββ ψ(β, B) = ∂ ββ L(t * , β, B) + ∂ tβ L(t * , β, B)∂ β t * = ∂ ββ L(t * , β, B) - (∂ tβ L(t * , β, B)) 2 ∂ tt L(t * , β, B) . ( 36 
)
For t > 1 2 , we have

∂ tβ L(t, β, B) = d∂ tβ F β (t) = -d∂ β log f β (1 -t) = -dp β (1 -t) (37)
and

∂ ββ L(t, β, B) = d∂ ββ F β (t) = d 1-t 0 ∂ β p β (s)ds, (38) 
where

p β (s) = ∂ β f β (s) f β (s) .
Case β > β c . By Lemma 2.2 (ii), t * → t + as B → 0 + . Hence using (36), we have

∂ ββ ψ(β, 0 + ) = ∂ ββ L(t + , β, 0) - (∂ tβ L(t + , β, 0)) 2 ∂ tt L(t + , β, 0) . (39) By (31), as β ց β c (40) ∂ tt L(t + , β, 0) = ∂ tt H β (t + ) = - 4(d -2)(2d + 1) d -1 (β -β c ) + o(β -β c ).
By direct calculations, we can show that

p β (s) = ∂ β f β (s) f β (s) = -2e -2β (1 -2s) 1 + (e -4β -1)(1 -2s) 2 . ( 41 
)
Using ( 25) and (24), we get as

β ց β c , e -2β = d -2 d + O(β -β c ), (42) 
and

2t + -1 = 3d 2 d -1 β -β c + o β -β c . (43) 
Using (37), (41), (42), (43) we have as β ց β c ,

∂ tβ L(t + , β, 0) = -dp β (1 -t + ) = - 2 √ 3d(d -2) √ d -1 β -β c + o β -β c .
Hence

(∂ tβ L(t + , β, 0)) 2 = 12d 2 (d -2) 2 d -1 (β -β c ) + o(β -β c ). (44) 
We have (45)

∂ β p β (s) = 4e -2β (1 -2s)(1 -(1 -2s) 2 ) 1 + (e -4β -1)(1 -2s) 2 3 .
Therefore using (38), we obtain

∂ ββ L(t + , β, 0) = 4d 1-t + 0 e -2β (1 -2s)(1 -(1 -2s) 2 ) 1 + (e -4β -1)(1 -2s) 2 3 ds = 2d 1 2t + -1 e -2β u(1 -u 2 ) 1 + (e -4β -1)u 2 3 du = 2d 1 0 e -2β u(1 -u 2 ) 1 + (e -4β -1)u 2 3 du -2d 2t + -1 0 e -2β u(1 -u 2 ) 1 + (e -4β -1)u 2 3 du = J 1 -J 2 . ( 46 
)
We set

j * = [n/2],
where [x] stands for the integer part of x. Define for 0 ≤ j ≤ n,

x j (n) = n j g(dj, dn). ( 53 
)
Using the same arguments as in [9, Section 5], we prove in Appendix that x j (n).

x j (n) x j * (n) = (1 + o(1)) j * (n -j * ) j(n -j) exp n [H(j/n) -H(j * /n)] + [log g(dj, dn) -ndF (j/n)] -[log g(dj * , dn) -ndF (j * /n)] , (54) 
Observe that when |j -j * | ≤ n 5/6 , (56)

j * (n -j * ) j(n -j) = 1 + O(|j -j * |/n) = 1 + O(n -1/6 ).
Lemma 2.1 implies that for all j,

(57) log g(dj, dn) -ndF (j/n) -log g(dj * , dn) -ndF (j * /n) = O(|j -j * |/n).
Using Taylor expansion and Lemma 2.3, we have

H ′ (j * /n) = H ′ ( 1 2 ) + H ′′ ( 1 2 ) j * n - 1 2 + H ′′′ ( 1 2 ) j * n - 1 2 2 +O j * n - 1 2 3 = O(n -3 ).
Similarly,

H ′′ (j * /n) = O(n -2 ), H ′′′ (j * /n) = O(n -1 ), H (4) (j * /n) = H (4) ( 1 2 ) + O(n -1 ).
Hence for all |j -j * | ≤ n 5/6 ,

H(j/n) -H(j * /n) = H ′ j * n j -j * n + H ′′ j * n (j -j * ) 2 2n 2 + H ′′′ j * n (j -j * ) 3 6n 3 +H (4) j * n (j -j * ) 4 24n 4 + O j -j * n 5 = O n -(3+1/6) + O n -(2+1/3) + O n -(1+1/2) + H (4) 1 2 + O(n -1 ) (j -j * ) 4 24n 4 + O(n -1/6 ) (j -j * ) 4 24n 4 = 1 + O(n -1/6 ) H (4) ( 1 2 ) 24 (j -j * ) 4 n 4 + O(n -3/2 ). (58) 
We observe that by Lemma 2.3

α * := H (4) ( 1 2 ) 24 = - 4(d -1)(d -2) 3d 2 < 0.
Let ε > 0 be any given positive real number. Using (54), ( 56), ( 57) and (58), we get that for all n large enough and |j -j * | ≤ n 5/6 , (59)

x j (n) ≤ (1 + ε) exp (α * + ε) (j -j * ) 4 n 3 x j * (n), and (60) 
x j (n) ≥ (1 -ε) exp (α * -ε) (j -j * ) 4 n 3 x j * (n).
Using (59) and similar arguments as in [9, Section 5], we can show that Ân = |j-j * |≤n 5/6

x j (n) exp 2r(j -j * )

n 3/4 ≤ (1 + ε)x j * (n) |k|≤n 5/6 exp (α * + ε)k 4 n 3 + 2rk n 3/4 ≤ (1 + ε)x j * (n) ∞ k=-∞ exp (α * + ε)k 4 n 3 + 2rk n 3/4 ≤ (1 + 2ε)x j * (n)n 3/4 ∞ -∞ exp (α * + ε)x 4 + 2rx dx (y = 2x) = (1 + 2ε) x j * (n)n 3/4 2 ∞ -∞ exp (α * + ε)y 4 16 + ry dy. (61) 
Similarly, using (60) we have

Ân ≥ (1 -2ε) x j * (n)n 3/4 2 ∞ -∞ exp (α * -ε)y 4 16 + ry dy. (62) 
Using the same arguments for (61) and (62), we can also prove that Bn = |j-j * |≤n 5/6 x j (n) ≤ (1 + 2ε)

x j * (n)n 61), (62), ( 63) and (64), we obtain We observe that the derivatives with respect to α at α * of the functions A(α, r) and B(α) are bounded. Hence, there exists a constant C, such that (66)

1 -2ε 1 + 2ε A(α * -ε, r) B(α * + ε) ≤ Ân Bn ≤ 1 + 2ε 1 -2ε A(α * + ε, r) B(α * -ε) , (65) 
A(α * ± ε, r) B(α * ± ε) - A(α * , r) B(α * ) ≤ Cε.
On the other hand,

A(α * , r) B(α * ) = E(e rX ), (67) 
where X is a random variable with density proportional to Combining (65), (66) and (67), and letting n tends to infinity and ε tend to 0, we have Ân Bn -→ E(e rX ).

From this convergence and (51), we can deduce the desired result.

5. Appendix:Proof of (54) and (55)

We will repeat some computations in [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF] and use Lemma 2.1 to prove these claims. 

H(t) = max{H( 1 2 ± δ)}.
Hence for n large enough (such that n -1/6 ≤ ε), we have for all |j -j * | > n 5/6 , (68) H(j/n) -H(j * /n) ≤ max{H(j * /n ± n -1/6 ) -H(j * /n)}.

Using the same arguments for (58), we can prove that H(j * /n ± n -1/6 ) -H(j * /n) = α * n -2/3 + o(n -2/3 ).

Therefore

(69) n H(j * /n ± n -1/6 ) -H(j * /n) = α * n 1/3 + o(n 1/3 ).

Using α * and (68), (69), we have for n large enough and |j -j * | > n 5/6 , (70) n H(j/n) -H(j * /n) ≤ α * n 1/3 2 .

On the other hand, for all j x j (n) ≤ x j * (n)n -5 , here we recall that x j (n) = 0 for all j < 0 or j > n. Similarly, for n large enough and |j -j * | > n 

Theorem 1 . 1 . [ 9 ,

 119 Theorem 1.1 ]. Let us consider the Ising model on the random d-regular graph with d ≥ 2. Then the following assertions hold.

2 , 1 )

 21 B) = βd/2 -B + L(t * , β, B), where t * = t * (β, B) ∈ ( 1 is the solution of the following equation ∂ t L(t * , β, B) = 0. (35)

exp α * 16 x 4

 4 = exp -(d -1)(d -2)x 4 12d 2 .

  It follows from (54), (57), (70) and (71) that for n large enough and |j -j * | > n 5/6 ,x j (n) ≤ x j * (n) √ n exp α * n 1/3 2 ≤ x j * (n)n -6 ,since α * < 0. Therefore (72) Ān := |j-j * |>n5/6 

5 .

 5 x j (n) ≤ x j * (n)n -Since all the terms (x j (n)) are non negative, (74)Ân = |j-j * |≤n 5/6 x j (n) ≥ x j * (n),andBn = |j-j * |≤n 5/6 exp r(2j -n) n 3/4 x j (n) ≥ exp r(2j * -n) n 3/4 x j * (n) ≥ exp -|r| n 3/4 x j * (n) ≥ x j * (n) 2 ,(75)for n large enough and r fixed. Finally, combining (72), (73), (74) and (75) yields that

  Hence, the function H β (•) is differentiable at the point 1 2 . In addition, the function f β (t) is jointly continuous at every point (t, β) with t ≤ 1 2 . Hence, the function ∂ t H β (t) is jointly continuous. Therefore, 0 = lim This leads to a contradiction, since by Lemma 2.3 below the equation ∂ t H βc (t) = 0 has a unique solution t = 1 2 . The behavior of the function H βc (t) around the extreme point t = 1 2 is described in the following result, by using Taylor expansion. Lemma 2.3. Let us consider H(t) = H βc (t) with H β (t) as in Theorem 1.1. Then we have

	(4)	max 0≤t≤1	H(t) = H( 1 2 ).
	Moreover,		
	(5)		

-). k→∞ ∂ t H β i k (t + (β i k )) = ∂ t H βc (x).

  Proof of (55). Since H(t) attains the maximum at a unique point 1 2 , there exists a positive constant ε, such that for all δ ≤ ε,

	Therefore using (53), we get					
	x j (n) x j * (n)	= (1 + o(1))	j * (n -j * ) j(n -j)	exp n I	j n	-I	j * n	+ log g(dj, dn) -log g(dj * , dn)
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		= (1 + o(1))	j * (n -j * ) j(n -j) + log g(dj, dn) -ndF exp n H j n	j * n -log g(dj * , dn) -ndF -H j n	j * n	,
	which yields (54).						
	5.2. max |t-1 2 |≥δ		
	5.1. Proof of (54). Using Stirling's formula, we have
		n j	=	1 √ 2π	+ o(1)	n j(n -j)	exp nI	j n	,

with

I(t) = (t -1) log(1 -t) -t log t.
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	exp	r(2j -n) n 3/4	x j (n) ≤ x j * (n)	√	n exp	|r(2j -n)| n 3/4	exp	α * n 1/3 2
			≤ x j * (n)	√	n exp |r|n 1/4 +	α * n 1/3 2
			≤ x j * (n)n				
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We observe that 0 ≤ e -2β u(1 -u 2 )

1 + (e -4β -1)u 2 3 ≤ e 4β .

Hence 0 ≤ J 2 ≤ 2de 4β (2t + -1). Combining this inequality with (43) yields that as β ց β c

On the other hand, by using (42) we have

Combining the last two equations and (46) gives that (47)

It follows from (39), (40), ( 44) and (47) that as

.

Case β < β c . By Lemma 2.2 (iv), we have t * → 1 2 as B → 0 + . Therefore, by (36)

.

Using (33), we obtain

Moreover, by (37) and ( 41)

1 + (e -4β -1)u 2 3 du.

Combining the last four equations yields that

1 + (e -4β -1)u 2 3 du. Now, by using (42), we get as β ր β c ,

Hence α = 0.

Proof of Theorem 1.3

In this section, we use the same strategy as in the proof of [START_REF] Can | Annealed limit theorems for the Ising model on random regular graphs[END_REF]Theorem 1.3] to prove our result. In particular, we show that the generating function of (σ 1 +. . .+σ n )/n 3/4 converges to the one of a specific random variable. In fact, Theorem 1.3 is a direct consequence of the following proposition. Proposition 4.1. Suppose that β = β c and B = 0. Then for all r ∈ R, we have

where X is the random variable defined in Theorem 1.3.

Proof. Using ( 1) and ( 2), we have